
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Constituent Systems Quality Requirements
Engineering in Co-opetitive Systems of Systems

Pontus Svenson, Thomas Olsson, and Jakob Axelsson
RISE Research Institutes of Sweden

Stockholm, Sweden
pontus.svenson,thomas.olsson,jakob.axelsson@ri.se

Abstract—Systems of systems consist of independently
owned, operated, and developed constituent systems that work
together for mutual benefit. Co-opetitive systems of systems
consist of constituent systems that in addition also compete. In
this paper, we focus on quality requirement engineering for a
constituent systems developer in such SoS. We discuss the needs
and requirements of a structured quality requirements
engineering process, with examples taken from the
transportation domain, and find that there is a need for
mediators and agreements between constituent systems
developers to enable quality data exchange.

Keywords—— Quality requirements engineering,
collaborative systems of systems.

I. INTRODUCTION
Systems of systems (SoS) are becoming more and more

important as digitalization increases. An SoS is defined [1] as
a set of independently operated and independently managed
constituent systems (CS) that collaborate to attain some
common goal. Each CS is characterized by its capabilities,
i.e., what it can do. During its lifetime, the SoS is presented
with various tasks that it must address. For these tasks, the SoS
puts together constellations [2] that consist of a set of CS
whose combined capabilities enable it to solve each task. The
constellations are thus the working horses of the SoS.

Each CS is assumed to have an owning, an operating, and
a developing organization. Because of the managerial and
operational independence of CS, there are in general several
such organizations represented in the SoS. In general, the
developing organizations are independent from each other;
this is one component of the managerial independence in SOS.
The developing organisations need to prioritize how their
engineering resources are used to improve the quality in use
of their CS. It is crucial for them to let data drive development.
The operation needs to be monitored, since the operating
conditions are difficult to fully comprehend at development
time, and may change. Hence, to get access to relevant data,
there needs to be agreements within the SoS on which
information to share and how it should be shared.

In the work presented in this paper, we are investigating
concepts around data sharing in a SoS to support product
portfolio management and quality management aspects in SoS
where the CS are simultaneously both collaborating and
competing. We refer to this as a co-opetitive SoS.

One example of such a co-opetitive SoS is vehicle
platooning. Here, different trucks (CS) cooperate by driving
closely together, which reduces dynamic drag and leads to
lower fuel consumption. A key issue in enabling such
platooning is the possibility for trucks produced by different
companies and belonging to different haulers to cooperate [3].
CS operators (haulers) and CS developers (Original

Equipment Manufacturers, OEM) are simultaneously
collaborators and competitors in a platooning SoS:

• The truck manufacturers need to collaborate to
ensure that their products can platoon together but
are also competing in selling to the haulers.

• The haulers need to collaborate to save on fuel but
are of course also competing for the same cargo.

This means that the operating, developing, and owning
organizations cannot just share all available data between
themselves: they must take account of business needs, and
weigh the benefits and drawbacks before sharing info.

Co-opetitive SoS in general is a main focus of our
research, and in this paper we focus on the specific issue of
product portfolio and quality management for a CS developer
and the need to obtain data from other organizations within the
SoS. Specifically, we address this issue by adapting the
QREME model [4] developed for quality requirements
management to the problem of how a CS developer can
improve their understanding of the quality needs of their
constituent systems when they are part of a co-opetitive SoS

The paper is outlined as follows. We start by
characterizing the kinds of SoS we study in Section II, which
is followed by an introduction to quality and product portfolio
management in Section III. The application of the QREME
method to platooning is then discussed in Section IV, followed
by a conceptual discussion of quality information handling in
Section V, after which the paper is concluded.

II. CO-OPETITIVE SYSTEMS OF SYSTEMS
In this section we introduce some SoS concepts, apply

them to the platooning example, and briefly outline the quality
data collection problem.

A. SoS concepts
An SoS consists of independently owned, operated, and

developed CS. Figure 1 shows a conceptual overview of the
structure of an SoS, including the important roles of CS
owner, developer, and operator. (In some SoS, two or even all
three of these roles could be fulfilled by the same company.
However, the general case, as well as the platooning SoS
studied in this paper, may include all three roles.) A CS owner
procures a CS from a CS developer and then instructs the CS
operator. The SoS includes several CS, which in all but the
simplest cases will have different owners, operators, and
developers.

In the introduction, we mentioned constellations as the sets
of CS that perform actual work solving a specific task that is
presented to the SoS. Enabling the constellations to
collaboratively solve these constellation-level tasks is the
raison d’être for building the SoS in the first place. However,
the independence of the CS enables them to simultaneously

This research was funded by Vinnova (Sweden’s innovation agency),
grant no. 2019-05100.

work on solving CS-level tasks that do not require
collaboration with others. We show a conceptual model of this
in Figure 2.

Our running example of truck platooning illustrates this
well: each participating truck delivers its goods (solves its CS-
level task) by itself, while simultaneously possibly
participating in a platoon (constellation) that solves a
constellation-level task – reducing the fuel consumption of the
involved trucks. It is this simultaneous work on tasks at
different levels that enables the possibility of simultaneous
competition and cooperation in the SoS.

Returning to the different CS-related roles, we note that
for our purposes it is particularly important to distinguish
between the developer and operator of the CS. It is the quality
requirements challenges induced by the competition between
different CS developers and CS operators that are the focus of
this paper:

• Different CS developers compete against each other
to sell CS to CS owners – the CS developers can thus
be reluctant to share some data with each other, lest
business intelligence is given away. However, the CS
developers still need to cooperate to ensure that their
products can work together within the SoS.

• Different CS collaborate to jointly solve a
constellation-level task, while each CS also pursues
its own CS-level task. The CS compete against each
other to get orders from customers – CS level tasks.

A common classification of SoS [1] is in terms of
collaborative; acknowledged; directed; virtual. Here we use a
characterization of SoS that is not directly related to any of
these. From the perspective of this paper, we are interested in
co-opetitive SoS where the CS operators and CS developers
are both collaborators and competitors. One possible
characterization of such SoS is that the CS collaborate because
collaboration gives some business advantages but can
nevertheless be competitors for the same customers.

B. Platooning SoS
We show an example platooning SoS in Figure 3. A

platooning SoS is an example where CS operators and CS
developers are both competing and collaborating. Two CS
developers OEM1 and OEM2 compete against each to sell CS
(trucks). The CS operators (haulers) want their CS to
cooperate to form platoons. At the same time, they are also
competitors for the same goods transports. Using the
terminology introduced in Figure 2, we can say that the CS
compete to get as many CS-level tasks as possible for their
trucks, while they also collaborate in order to form platoons
that solve the constellation-level task of reducing fuel
consumption.

Figure 4 shows the same SoS at an instant in time in which
CS2, CS3 and CS4 are collaborating in a platoon. While
Hauler 1 benefits from collaboration with Hauler2, there is
also competition, shown by the fact that CS1 is driving empty.
From Hauler1’s perspective, it would be better if GoodsB or
GoodsC were transported by CS1. However, the benefits of
trying to get this business (e.g., by aggressive pricing) need to
be compared to the drawbacks if Hauler2 decides to withdraw
from the SoS.

We now turn to the issue of data collection for quality
purposes.

C. Quality Data Collection
It is useful to collect data about quality aspects to

understand the problems and context of the CS [9]. Such data
is also needed to understand the formation of the
constellations that solve the SoS-level tasks. There is thus a

Figure 1. A conceptual view of a SoS, describing
the owner, operator, and developer roles for a CS

Figure 2. CS participate in constellations that collaborate to

solve a constellation-level task, while also solving their
individual CS-level tasks

Figure 3. Example composition of a platooning SoS:

there are two CS developers (OEM's) and two CP
operators (haulers). OEM1 and OEM2 are competitors

in selling CS to Hauler1 and Hauler2

need for both CS developers and CS operators to share some
data – by doing this, both the CS and the SoS will perform
better.

However, there are also incentives for the CS developers
and CS operators to not share data. In platooning and similar
SoS, it is the CS-level tasks that bring income. The SoS-level
task for platooning consists of driving closely together to
reduce fuel – this saves money for the hauler companies but
does not give them any income. A hauler company whose
trucks perform very well in the platooning task but very poorly
in the goods transport task will soon go into bankruptcy!

Similarly, while it is beneficial for the truck developers to
make their trucks interoperable and able to work well together
on the SoS-level task, they must also always try to find better
ways of solving the CS-level task, so that the hauler
companies buy their trucks instead of the competitor’s.

III. PRODUCT PORTFOLIO MANAGEMENT AND QUALITY
We now describe some quality requirements engineering

background and introduce the QREME conceptual model

A. Background
Product portfolio management deals with the long-term

development of a set of products. In the platooning case, we
are considering the long-term development strategy of the
truck manufacturer specifically for quality aspects.

Handling of quality needs is too often an afterthought
rather than an informed decision [5]. The quality needs are
translated into quality requirements (also known as non-
functional requirements) which too often are insufficiently
handled. Quality experience depends on the context [5] [6] –
both operational environment as well as stakeholders.
Stakeholders can be both direct (i.e. users), and indirect (i.a.
owners). In a system in general and in a SoS specifically, it is
challenging to attain a sufficient understanding of the context
at design time [7]. Hence, a systematic quality engineering
requires a continuous monitoring and measuring of the
operation of all constituent systems in operation.

QREME [4] - Quality Requirements Engineering – is a
conceptual model for the engineering activities that an
organization must undertake to work on product quality. A

core concept is combining upfront hypothesis-driven
engineering activities with data-driven measurements from
operation to understand the quality needs. In a SoS, not only
might the developer and the operator of a system be different
organizations, but there are many organizations developing
constituent systems and there are many organizations
operating various constellations of constituent systems.
Hence, monitoring of the operation to understand the quality
needs requires sharing of data across a consortium of
organizations – perhaps even competitors.

B. Quality in Use
The different stakeholders perceive a system as a

combination of software, hardware and operating
environment. Quality in use refers to how the stakeholders
perceive the quality of a system, see Figure 5. Examples from
ISO25010 are effectiveness and trust [6].

It is key to be able to connect the quality in use to
engineering actions that can be taken for a system developer
to understand how to address specific quality in use concerns.
The ability to determine the quality in use at design time
depends heavily on the operating environment and on the
stakeholders. However, modelling the operating environment
and stakeholders can be challenging. Relying on design time
activities such as focus groups and expert opinions might not
necessarily capture the actual relevant quality in use. There is
hence a need to find ways to measure product quality in
operation and relate those to quality in use – which typically
cannot be measured directly on the usage.

In the kinds of SoS under study in this paper, it is a
constellation of several CS that jointly address a specific
problem instance. Hence, to be able to get relevant
measurements from usage requires agreements with many
parties on the exchange of usage data.

Quality in use depends not only on the operating
environment but also the other CS in the SoS. However,
despite some independence, there are agreements among the
CS developers and CS operators, making it possible to
exchange more information than other systems and
stakeholders that are not part of the SoS.

CS developers may not have direct contact with end
users [4]. They still need to get quality data from the users to
understand the operating environment of their CS and to make
as good a product as possible for how to use their engineering
resources on their CS.

C. A conceptual view on quality requirements engineering
The QREME conceptual model divides the quality-related

artefacts into abstraction levels (strategic and tactical) and
context (engineering and operation), as illustrated in Figure 6.
Activities, such as creating a quality model or setting up a data

Figure 4. A snapshot of the state of the SoS at an instant in time.

CS2, CS3, and CS4 are platooning, which saves fuel and thus
increases profit for Hauler1 and Hauler2. This means that

OEM1 and OEM2 have a need to cooperate so that the CS can
participate in the same SoS. CS1 is currently empty, giving
Hauler1 an incentive to compete with Hauler2 for goods.

Figure 5. Quality perspectives, adapted from [6].

collection framework, are defined for how to create the
artefacts. Lastly, input-output along the forward- and
feedback-loop are defined among the artefacts, e.g., product
quality requirements on performance and product
performance measurements.

The conceptual model should be tailored to the
organization and context characteristics. There are both
external factors – such as laws and regulations – and internal
factors – such as ability to update the software or market
characteristics. Data collection is a challenging area when the
developing organization is not responsible for the operation of
the system. There might be agreements on overall quality
requirements on a SoS Engineering level. The SoS quality
level in operation should be monitored. If it is not possible to
articulate requirements, relevant metrics for SoS quality in use
can be agreed upon. Measurements are collected by different
CS and needs to be agreed how to share with the relevant CS
stakeholders.

IV. CASE STUDY: A PLATOONING SOS
A major difference between a SoS and non-SoS contexts

is that the different CS developers and operators have direct
or indirect relationships in a SoS. Hence, not only do the CS
contribute to the SoS but the SoS contributes to the CS as well.
To understand the needs, it is vital to analyse the current
usage. This has a great potential in a SoS.

A. Reliable estimates for a platooning SoS
A major acceptance factor for a platooning SoS is reliable

estimates – a quality goal. For example, the ability to estimate
the actual fuel savings induced by joining the platoon, or the
time needed to catch up (product measurements) with a
platoon. Fuel savings are related to how closely the vehicles
can drive in a platoon (product quality requirement). This, in
turn, is related to braking ability and not only by a single
vehicle but the other vehicles in the platoon as well. The
drivers trust in the estimates is an example of quality in use.

There are many factors affecting the braking capability
such as the brakes, the weather conditions, tire conditions, or

the weight of the load. Some of these factors can be tested
during development time, but others vary with operating
conditions. As safety can not be compromised, if relying
purely on development time input, margins will be larger than
necessary.

If, however, information is shared in the SoS, estimates
can be improved in a way not possible if the CS are not sharing
data. By collecting and sharing data on, e.g., road condition
and weight, the situation awareness of the different CS can be
improved and the estimates for safe distance to the vehicle in-
front made more accurate, which in turn contributes to
improved estimates of fuel savings.

Hence, if usage data is not shared within the SoS and this
data is not used in the product management process to make
decisions, the decisions are likely to be less accurate and risk
wasting engineering resources on improving aspects not really
adding value to the individual CS nor the SoS.

B. Platoon formation
The CS (currently the drivers, but in the future

autonomous trucks) must actively decide to join a platoon for
platoons to form. Many factors influence this, e.g., incentive
models, user experience, traffic conditions, and estimated time
loss. A user experience quality goal might be to minimize the
decisions needed by a driver and try to automatize finding
platoons and presenting them in a succinct way (product
quality requirements).

It is difficult to directly measure quality in use, e.g., driver
satisfaction with timing of platoon example presentation.
Drivers can be interviewed to rationalize their decisions. Since
it is not possible to ask all drivers to rationalize all their
decisions, we have to use product measurements to
understand the behaviour. One example such measurement is
the ratio of presented platoon alternatives and actual platoons
joined. However, interpreting that metric requires some
afterthought as many factors contribute. Another product
measurement might be to collect data on platoons formed for
different geographic areas.

The forming of platoons depends on many factors.
Analysing data from just one CS might not lead to actionable
insight, but if data from the SoS can be shared, there is a larger
likelihood that the data is actionable. With actionable data, the
CS developers can experiment and test different ways of
automating aspects of finding and presenting platooning
information. The different CS developers, therefore, need to
share some information even though they are competitors but
can still make informed decisions on how to improve their
individual CS in competition with others.

V. QUALITY DATA FLOWS IN A SOS
The previous section discussed some of the data which is

needed for proper quality requirements management in
platooning, i.e., what data would be needed. We now turn to
the issue of how to get that data.

Sometimes there is a need for agreements within the SoS,
supported by a mediator function. The mediator role is not
fully independent of the SoS. They are used to help the CS
collaborate. In a platooning SoS, there are needs for several
kinds of mediators [3]:

• Platoon forming mediators, that help inform
trucks/CS about possible platoons.

Figure 6. A quality requirements engineering conceptual
model.

• Payment mediators, that help ensure that the benefits
of platooning are distributed according to the
agreements of the CS operators.

The operating organizations can measure the performance
of their CS. The developing organization can sometimes
directly get data from the operation, but sometimes need to go
through other organizations. Mediators can measure both the
performance of their mediating service and have a mediating
role in the constellations that collaborate to support the data
sharing agreement within the SoS. We note that there is a need
to perform measurements on how well the constellations
within the SoS perform the SoS-level tasks they are assigned.
Are there opportunities for improvement in how the
constellations are put together? Or in how they work together
to solve the SoS-level task?

Each of these things can be improved in several different
ways, hence it is also important to understand who needs to
get the information. Is it any of the mediators that need to
improve? Is it the CS developer? Or is it the agreements and
business models implemented for the SoS as a whole that
should be changed?

In Figure 7 we show a conceptual view of the quality data
flows in a SoS. Quality data can be collected both on the
constellation level and on the CS level. For the constellation
level, the quality data is a measure of how well the
constellation satisfies the users/beneficiaries of the SoS. For
the platooning example, this could be the savings induced by
the fuel reduction enables by the platooning. In addition to
direct benefits to the users of the SoS, there are also societal
benefits (e.g., less pollution and congestion, contributions to
CO2 emission reduction). These, too, are collected on the
constellation level. It is the responsibility of the SoS to collect

this constellation level data. For this, a mediator service could
be used. This mediator needs to collate all data and send
appropriate summaries of it to CS operators and developers as
well as other stakeholder roles. As explained above, there is
also a need to share data between different CS operators and
developers, both of which can be collecting quality data from
the CS. This too can be facilitated by the quality data mediator,
as shown in Figure 7.

VI. CONCLUSIONS
In this paper, we briefly discussed the quality requirements

engineering for constituent systems participating in SoS with
some degree of competition between the CS. We described the
problem and some background an presented a conceptual
model for information sharing. The conceptual model
described the need for agreements between CS operators and
developers on data exchange, and how a mediator service that
can help CS developers receive quality data on the
constellation level is needed.

As mentioned above, the long-term goal of this work is to
work towards concepts for how SoS actors can form
agreement about information and data sharing related to
requirements engineering, thus enabling companies to make
informed decisions about what and how to share. In order for
the companies to find the correct balance between the initial
competitive advantage of keeping data proprietary, and the
long-term advantages of improved SoS performance, it is vital
that they can assess the benefits and drawbacks of different
approaches to information sharing.

REFERENCES
[1] M. W. Maier, “Architecting Principles for Systems-of-Systems,”

INCOSE Int. Symp., vol. 6, no. 1, pp. 565–573, Jul. 1996.

Figure 7. A conceptual diagram of quality requirements and quality data flows in a SoS.

[2] J. Axelsson, “A Refined Terminology on System-of-Systems
Substructure and Constituent System States,” in IEEE Systems of
Systems Conference, pp. 31–36, 2019.

[3] J. Axelsson, “Business Models and Roles for Mediating Services in a
Truck Platooning System-of-Systems,” in IEEE Systems of Systems
Conference, 2019, pp. 113–118.

[4] T. Olsson and K. Wnuk, "QREME–Quality requirements management
model for supporting decision-making." In International Working
Conference on Requirements Engineering: Foundation for Software
Quality, pp. 173-188. Springer, Cham, 2018.

[5] T. Olsson, A. Sentilles, and E. Papatheocharous, “A systematic
literature review of empirical research on quality requirements”
Requirements Engineering, 1–23, 2022. Retrieved from
https://doi.org/10.1007/s00766-022-00373-9

[6] ISO/IEC 25010:2011(E): Systems and Software Engineering - Systems
and Software Quality Requirements and Evaluation (SquaRE).

[7] J. Larsson, M. Borg, and T. Olsson. "Testing Quality Requirements of
a System-of-Systems in the Public Sector-Challenges and Potential
Remedies," 3rd International Workshop on Requirements Engineering
and Testing (RET 2016), March 14, 2016, Gothenburg, Sweden. Vol.
1564. 2016.

[8] D. Firesmith. “Profiling systems using the defining characteristics of
systems of systems (SoS)”, CARNEGIE-MELLON UNIV
PITTSBURGH PA SOFTWARE ENGINEERING INST, 2010.

[9] W. Maalej, M. Nayebi, T. Johann, and G. Ruhe, "Toward data-driven
requirements engineering", IEEE software 33, no. 1 (2015): 48-54.

