A Generic Software Architecture for PoOE Power
Sourcing Equipment

Andreas Mikild2, Anna Friebe?, Leif Enblom?!, Per Erik Strandbergl, T. Seceleanu?
L Westermo Network Technologies, Visteras, Sweden
2 Milardalen University, Visteras, Sweden
{andreas.makila, leif.enblom, per.strandberg} @ westermo.se
{anna.friebe, tiberiu.seceleanu}@mdu.se

Abstract—Many hardware solutions for Power over Ethernet
(PoE) Power Sourcing Equipment (PSE) exist, with slightly
varying feature sets. A software solution is needed for interaction
with the PSEs, and for managing a power budget across several
PSEs. A generic interface is desirable, as well as generic software
components that can be used in support of several PSE solutions.
In this paper we present a union of features and real-time
requirements for three hardware solutions, and the development
of a generic software architecture.

Index Terms—power over Ethernet, software architecture, real-
time requirements.

I. INTRODUCTION

Power over Ethernet (PoE), a part of the IEEE 802.3
(Ethernet) standard, is a technique which allows powered
devices with appropriate technology, called Power Sourcing
Equipment (PSE), to deliver power to other devices which
are otherwise unpowered, called Powered Devices (PD). This
technique provides the advantage of not needing a separate
power supply for every network device, cutting down on
the need for cables and power outlets. This makes the tech-
nique especially important in rugged setups, such as outdoor
surveillance cameras, where reducing the amount of cables
helps remove points of failure and makes general setup and
maintenance much easier.

There exist many hardware solutions for PoE PSE from
many different vendors. Most of them have simple PoE
circuits, able to handle individual ports. Some, though, contain
so called “companion chips”, which can control the PoE
circuits on a higher level. For instance, they can supervise
the total amount of power consumption for all ports and
take appropriate actions when the total power consumption
exceeds the maximum that the device can provide. If a system
does not feature these extra functions in hardware, then it
falls to software to handle it, instead. This creates a unique
opportunity. By creating a software API which can present a
generic user interface and adapt to any combination of PSE
circuits, it would allow the hardware of a system to be based
on the functionality required of that system, without being
restricted by the limitations of the circuits or the ability of
any single-target software suite. This is the goal which this
project, done in collaboration with Westermo, is aiming for.

In this paper, we outline work on developing the API
architecture for PSE, such as can be seen in figure 1, enabling

PoE

Manager
Unix PSE
Socketl Wrapper

Fig. 1: An illustration of the overall structure of the final
architecture.

a generic interface with support for several PSE circuits. A
union of features for the evaluated circuits is derived, and real-
time requirements are analyzed. Four different architecture
proposals are evaluated through the Architecture Tradeoff
Analysis Method (ATAM).

II. BACKGROUND

We briefly review here the technologies used by PoE.
Power over Ethernet. PoE is a group of standards defining
methods of transmitting power over twisted-pair cables (often
referred to as “Ethernet cables”), which contain four pairs of
twisted cables (of which only two are used in sub-gigabit
connections). IEEE maintains three PoE standards, which
govern how much power can be sent through the cables, as
well as what transmission modes can be used [2].

The latter can be identified as: 802.3af - PoE or Type 1,
allowing around 12.95 W to be received by the PD; 802.3at
- PoE+ or Type 2, allowing 25.50 W at the PD; 802.3bt -
PoE++/4PPoE, which allows either 51 W in Type 3 or 71 W in
Type 4. All of these also include some ability to choose a level
of power through classification and, optionally, the Link Local
Discovery Protocol (LLDP), allowing the amount received to
be tailored.

IEEE also maintains three standards for how the power is
transmitted through the cable [2]: common-mode data pair
power (alternative/mode A): the power is provided over the
same two wire pairs used to carry the data signal on the 10
and 100 Mbit/s Ethernet variants; spare-pair (alternative/mode

B): the power is provided through the two wire pairs which go
unused on these variants; 4-pair transmission (4PPoE): power
is provided over all four wire pairs.

PoE and PoE+ support mode A and mode B, PoE++ Type

3 supports both modes as well as 4PPoE, while PoE++ Type
4 only supports 4PPoE.
Power Sourcing Equipment. The PSE can be installed ei-
ther as an endspan or as a midspan. An endspan PSE is
installed directly into the device the PD connects to (such as a
switch), and is common in newly installed equipment, whereas
midspans exist between the PD and the device it connects to,
adding power to a previously unpowered conection, and being
more common in situations where the equipment used is older
and does not support PoE.

When a PD is connected to a PSE it goes through an initial
power up phase, consisting of the following steps.

1. The PSE performs signature detection, using a low voltage
to detect a 25 k) resistance present in PoE PD.

2. The PSE classifies the maximum power input of the PD
by applying a higher voltage (15-20 V) and measuring the
current.

3. The PSE begins supplying power.

A second power up phase may be performed, with the two
devices communicating over LLDP to negotiate how much
power the PD may use. The PD initiates the communication
by sending its maximum and requested power to the PSE, and
the PSE responds with the max power allocated to the PD.
After this, the PD may use as much power as it has been
allocated, with the PSE being able to request reduced power
draw if needed.

PSEs contain micro controllers which perform their func-
tions. There are options to configure them in different ways
(e.g. establishing how many physical Ethernet ports there are,
which standard to use for each, any restrictions on power draw,
etc.) or read information about events (e.g. error interrupts,
current power draw, etc.), typically using I2C or UART. PSEs
typically govern only a handful of ports, providing around 8
channels for PoE, with mode A and mode B connections using
one channel while 4PPoE connections use two, resulting in
between 4-8 physical ports per chip.

These micro controllers are quite basic and are unable to

perform more advanced functions such as intelligent power
balancing, and feature no method of inter-chip communica-
tion. Certain manufacturers (notably MicroSemi with their
PD692X0 series) produce so-called companion chips, which
connect the PSEs to enable these higher functions.
Link Local Discovery Protocol. LLDP is a vendor-neutral
layer 2 protocol used by devices to announce their names,
capabilities, and neighbours [1]. In systems using PoE it is
optionally used for communication between the PSE and PD,
allowing the two to negotiate the power to be delivered. LLDP
provides the opportunity to send many different kinds of data
with the optional Type, Length, Value (TLV) field. It begins
with a 7 bit type ID, followed by a 9 bit length, and a data
value which can be between 0-511 octets long.

Inter-Integrated Circuit (I>C). Inter-Integrated Circuits (12C)
is a serial communication bus standard primarily used for
connecting lower speed integrated circuits to processors or
micro controllers on a circuit board for short-range intra-
board communication. Devices on the bus are divided into
two categories: controllers, which generate a clock signal and
initiate communications, and targets, which receive the clock
signal and respond to messages sent from a controller. 12C
busses can be used to allow a single micro controller or
processor to access register information from multiple other
circuits while only requiring the use of two pins: Serial Data
Line and Serial Clock Line.

User space vs. Kernel space. On most modern operation
systems, including Linux-based ones, programs can live in two
different parts of memory: the user space or the kernel space.
The kernel space is reserved for programs which need elevated
privileges and direct memory access. It includes the OS kernel
and extensions, but also most of the device drivers and features
such as process scheduling and memory management. In
contrast to this, the user space operates on top of the kernel
and houses programs which use the features provided by it.
This includes the C standard library, init daemons, window
managers, and all user applications.

Inter-Process Communication (IPC). Inter-Process Com-
munication (IPC) is the broad term used to describe any
mechanism which allows data to be transferred between two
or more separate processes running on a single or multi-
ple computers. IPC allow communication between user-space
processes, kernel-space processes, or a combination of the
two. In the development of processes that are not entirely
self-contained, IPC is an imporant component. Examples of
such processes are microkernels, that reduce functions in the
kernel and instead provide them through other processes,
and distributed computing, where different computers work
together to compute a single result. IPC protocols exist in
many shapes and forms, including files, TCP/IP sockets, mes-
sage queues, etc. Some popular ones include: Netlink, which
allows user space apps to communicate with kernel modules
using standard socket APIs, such as those used in TCP/IP
communication; sysfs, which creates a virtual file system that
processes can read from and write to; the Unix domain socket,
which provides an interface similar to an internet socket, but
tailored for IPC on a single host; message queues, often used
bu GUIs to receive input events from the host system.

Two IPCs are of particular note: Netlink and sysfs. Netlink
is used primarily for networking functions, such as user space
routing, but it also contains a generic interface for transmitting
data to and from the kernel, although it requires its own
protocol definition. sysfs allows communication with kernel
modules through a pseudo-file system available under the /sys/
directory. It is used to access information and properties about
different hardware connected to the host, such as USB, PCI,
and ACPI devices, with kernel modules also able to directly
create files and directories.

III. RELATED WORK

Many modern devices featuring PoE (especially those aimed
at the consumer market) feature only a couple PoE out
ports with minimal configuration available, making high-level
management software mostly irrelevant, which may contribute
to the lack of research. Therefore, alongside existing solutions
in the PoE field, solutions for adjacent technologies will also
be analysed and considered.

Yokohata et al. have proposed an extension to LLDP which
would allow PoE to supply power on demand [8]. Their
work also provides the ability for devices to hold different
priorities, with higher-priority devices causing lower-priority
ones to shut down if there is insufficient power available for
both. Their work seems to focus mostly on the design of
the protocol used by the PSE and PD to communicate and
negotiate, as opposed to the design of the API used within the
PSE, and their conclusion explicitly states that the design and
implementation of the PSE is a future work. They have also
published another work [9], discussing and implementing an
algorithm for handling power distribution.

Cumulus Networks (now owned by Nvidia) have created
and maintain a Linux distribution implementing PoE with
prioritized ports. However, this implementation currently sup-
ports only a handful platforms, and does not provide a generic
interface. The system is also closed source, limiting the
information available to make comparisons.

Sharma et al. [6] present an architecture to manage and
control network energy consumption, called NEEM (Network
Energy Efficiency Manager). This architecture utilized PoE
for the purpose of allowing policies to be placed on the power
consumption of PDs, such as turning off unnecessary devices
or reducing the allocated power amounts for ports which are
allocated more power than they use. The PoE policies were
implemented using HP’s Network Automation (HPNA) tool.

Another API aiming to improve consistency and flexibility,
but in the field of network firewalls, is introduced by Singh and
Singh [7]. It’s proposed that the system resided in the kernel,
with user space applications able to make calls to a “rule
acceptor” module; the rules are stored in a rule repository”, to
be used by a “rule matcher” module. The authors suggest using
either input/output control (IOCTL) system calls or shared
memory for communication between user space and kernel
space. They also suggest that, between power downs, any
configuration information should be recorded and stored by
the user applications rather than the kernel module.

The development of an Internet Traffic Manager (ITM),
using a unified framework of functions, and allowing operation
in both user- and kernel-space, is detailed in [4]. This system
aimed to be extensible and easy-to-deploy, and implemented
and event driven system where, for each event generated
by a packet, a set of functions is called to classify, log,
process, update classes, and update control parameters. This
type of unified event-driven system may be of interest in the
design of the PoE API, where one could imagine events being

generated by, for example, a PD being classified, disconnected,
or exceeding its power limit.

IV. METHOD

The PSE managers considered for this work are the Mi-
crosemi PD69200, the Analog Devices LTC4291, and the
Texas Instruments TPS23880. For testing purposes, these are
all available on evaluation boards. The work of finding the
feature-union of PoE solutions and determining any real-time
constraints was done mostly through studies of technical doc-
umentation and discussions with company stakeholders, with
practical tests of hardware (with the purpose of, for example,
determining response times) being performed when necessary.
The research of PoE features and real-time requirements was
separate from the research and design of the API, and was
largely a prerequisite for the APL.

Phase IV

Tradeoffs

Phase |
Scenario &
Requirements
Gathering

Collect

Identi
iy Scenarios

Tradeoffs

Collect
Requirements,

Constraints,

Environment

Identify
Sensitivities

Describe
Architectural
Views

Attribute
Specific

Analyses .
Realize
Scenarios

Phase 1l

Model Building
& Analyses

Phase II

Architectural Views
& Scenario Realization

Fig. 2: An illustration of the ATAM model, inspired from [5]

Designing the API involved studies of previous similar
systems, but was mostly done through iterative designs and
implementations. The Architecture Tradeoff Analysis Method
(ATAM)[5], [3] was used to ensure the resulting architecture
fulfills the requirements placed on scalability, flexibility, and
real-time deadlines. The ATAM model is divided into four
phases, all but one of which are further divided into two parts
[5]. Fig. 2 illustrates the model along the four phases described
below.

Phase one: deals with the collection of the scenarios and
requirements. Scenarios are events expected of the system,
including both intentional ones (such as a server receiving a
request), and unintentional ones (such as a server experiencing
a reboot). Requirements are often derived from the scenarios
and collected from stakeholders, and present a manner in
which the scenarios are expected to be performed (e.g. the
server should be able to process an event within x ms).

Phase two: describes architectural candidates for the system,
based on the requirements previously identified. These views
may be original or, more commonly, based on existing ar-
chitectures, or on “improved” architectures - which still need
to be compared with older ones. The architectures should be
framed based on what they bring to the system, in terms of
availability, security, modifiability, or other qualities which are

important to the system. Distinct architectural views are often
used to analyse these qualities, such as module views, process
views, dataflow views, etc.

Phase three: analysis of the quality attributes in isolation
for each architecture, where the performance of the different
scenarios is roughly determined. The exact technique to use
is not important, as this step is primarily focused on finding
how different architectures trade off qualities. However, the
analysis should be scrutinized, and other techniques should
be used on particularly sensitive areas where more detail is
required, yielding a series of statements on system’s behaviour.
Phase four: involves finding sensitivities and tradeoffs. Sensi-
tivities are any modeled values which are significantly affected
by a change to the architecture. Tradeoff points are elements
of the architectures which affect the sensitivities when altered
(e.g. the number of servers will affect both a systems avail-
ability and security, and is thus a tradeoff point).

V. UNION OF FEATURES & REAL-TIME REQUIREMENTS

The creation of a union of features was primarily ac-

complished by reviewing relevant technical documentation
for three PSE circuits: the PD69204, the LTC4291, and the
TPS23880, along with that of the companion chip PD69200.
The discovery of real-time requirements was primarily accom-
plished by performing a basic analysis and also by investigat-
ing current issues faced in the software development.
Union of Features. The union of features includes features
present on the common PSEs and features present in the
necessary add-on chip. These features may be originally
implemented as either hardware or software solutions.

Some of the most important features we look for are

port priorities, optional forced PoE (always transmit power,
skip classification), and power balancing. These features are
deemed to be of particular importance due to their current
usage in PoE software!. They are especially important for
implementing real-time requirements, as for communicating
with the host computer.
PSE manager features. Table I shows features built into the
given PSE managers which are considered for the purpose of
this study. The PD69200 is considered here as well, since the
PSE managers which connect to it (PD69208 and PD69204)
cannot operate without it.

The investigated PSEs present many common features. Of
these, the interrupt pin and the ability to generate interrupts are
among the most important, since interrupts allow the handling
of critical events without polling. The semi-auto mode most
commonly describes an operation mode where classification is
done automatically, but power is not supplied until accepted
by the PSE host.

Notably, the LTC4291’s priority system consists of the
ability to tag certain ports as low-priority and, by pulling a
pin up, being able to quickly shut them down. The activation
of the pin must be done by software procedures, illustrating a
need for a low-level, low-latency interrupt handling routine.

lin particular the weos operating system from Westermo
https://www.westermo.se/solutions/weos

Feature PD69200 | LTC4291 TPS23880
Supports all 4 PoE-types Yes Yes Only 3 and 4
Per-port status Yes Yes Yes
Per-port priority 4 levels 2 levels 8 levels
Per-port power limit Yes Yes Yes
LLDP Power Negotiation Yes Yes No
Semi-auto mode No Yes Yes
Forced power mode Yes Yes Yes
Overcurrent protection Yes Yes Yes
Overtemperature shutdown Yes Yes Yes
Temperature measurement Yes No Yes
Interrupt pin Yes Yes Yes
I?’C Yes Yes Yes
UART Yes No No

TABLE I: Union of listed features for PSEs

Real-time Requirements. One of the major real-time require-
ments of a PSE is handling its own distribution of power. The
circuits can only track their own power draw, not the draw
of the entire system, and they will by default allow any PD
to draw power as long as it won’t put them above their own
power limit. As such, in a system with multiple PSE circuits,
it is possible for a device to become automatically connected
despite there not existing enough free power for it. In these
instances, the host device must in some way intervene before
the additional power draw causes electrical faults. An example
of how this can occur is illustrated in figure 3.

Bl zz| =3 BB
T a =T SE
g2 :E] 2 2
fEl E5| &: 5%
Qi Qol: Dd: Qi

s
i

Total power budget: 50W

Fig. 3: The power distribution issue: when a new, high-priority,
device is connected (the right one), the system’s power budget
will be exceeded. The two low-priority ports should shut down,
thus providing enough power for the newly connected device.

In the case of rugged devices unable to use active cooling,
these have an additional real-time requirement in the form of
overheating. Since their devices are completely enclosed and
thus don’t have any fans or air intakes, cooling is only done
passively through heat sinks on the outside of the devices.
This means that PSEs may need to reduce their provided
power or even disable some PDs in order to cool off. The
real-time requirements of this are not as strict as those of
excessive power draw mentioned above, but extended periods
of overheating can still result in damage to the devices.

VI. DEVELOPING THE API ARCHITECTURE

After collecting the current PoE solution features, and
completing the PSE manager functions and the real-time

poecomm poecomm
program program
ry [y
v ¥
Input Event
method socket
Time-based Event-driven
poelib poelib
A A A A
v v ¥ ¥
Message| |Message Message| |Message
socket socket socket socket
X wrapper Y wrapper X wrapper Y wrapper

(a) Polling
architectures

(b) Event-driven
architectures

Fig. 4: Module structures of the event-driven and polling
architectures

requirements, the PoE API construction started.

Four architectures were designed, all residing user space.
Two of the architectures are Direct, this means that they
support only the functionality available in the circuits in use
at a certain time. The two Generic architectures on the other
hand provide software emulation for some functionality when
it is not supported in hardware. Most notably this includes
functions for a semi-auto mode even if no such mode is
officially supported for the device. The Direct and Generic
architectures are further divided into Polling and Event-driven
versions.

All architectures provide wrappers for each type of PSE at
the lowest level, as can be seen in Fig. 4. These host a socket
server which would receive generic commands and translate
them to PSE-specific API calls. Above the wrappers is the PoE
library (poelib), which creates a generic C library front-end for
sending and receiving to the socket servers. This library also
implements commonly requested functionality such as priority
shutdown handling and automatic restarting of ports. At the
highest level is the PoE command utility (poecomm), which
provides a terminal interface for modifying parameters such
as priorities and calling poelib functions.

The generic architectures allow more general feature imple-
mentation at the cost of a slightly reduced ability to use circuit
functions directly.

The Event-driven architectures provide fast response to
user commands and less idle resource usage, by only per-
forming functions when prompted by either the user sending
a command or a wrapper reporting an event. The polling
architectures feature a similar overall structure to their event-
driven counterparts, but operate in timed loops through polling
for updates and commands instead.

Attribute Models. The systems were primarily measured on
four different criteria, described here as follows.

Flexib.
3

Scalab. | Sum
15
11
14
11
14
11
14
12
14
12
15
11
13
18
13
17

Recipient nr. Arch. Univers.
1 Gen Poll
Dir Poll
Gen Event
Dir Event
2 Gen Poll
Dir Poll
Gen Event
Dir Event
3 Gen Poll
Dir Poll
Gen Event
Dir Event
4 Gen Poll
Dir Poll
Gen Event
Dir Event

Modily.

an
e

R e b R e o e o I]

T [U R U TOR U P R TO CRC
O T N O L I S TS RSy

WL Wb W W W W W W

Fig. 5: Results of the expert questionnaire.

Modifiability is the ability to modify the code to fit with the
needs of the user and the system (such as unique prioritization
schemes or scheduling of port power). The code should
preferably be as easy to modify as possible to allow it to
adapt to new or unique cases.

Universality is the ability of similar code to be run on different
systems with the same effect (for example, port prioritization
may always work the same way for poelib). More universal
code is better able to handle different setups without needing
to be modified, reducing the effort required to adapt it.
Flexibility is the ability of the code to adapt to new PSEs and
their unique function set. More flexible code is better able to
adapt to new circuits and make use of their unique functions.
Scalability is the ability of the code to continue working
efficiently as more PSEs, incuding ones of different models,
are added (Such as two different models with different limits
on class). More scalable code allows the device to continue
operating efficiently as more PSEs are added, allowing the
requirements of the device to be unrestricted by the capacity
of the code.

Analysis of Architectures. Here we present an analysis of
the different architecture options in regard to the different
attributes. This was done primarily through a questionnaire,
with questions based on plausible scenarios the system may
experience which test the required attributes (so-called “real-
ization of scenarios” in the ATAM model). It was also done
through subjective analysis of the architectures and, later on,
partial implementations.

Analysis of Questionnaire Results. The questionnaire con-
tains descriptions of four candidate architectures (Generic
Polling, Direct Polling, Generic Event-driven, and Direct
Event-driven), with questions intended to cover each of the
four attributes and a text field for giving any further thoughts.
The responses received for the attributes are shown in Fig. 5,
along with the sum of the values given to each attribute, and
visualized in Fig. 6. The generic architectures were preferred
over the direct architectures and there was no preference
towards either polling or event-driven, when addressing the
generic architectures.

In-depth Analysis. It is hard to determine a superior architec-

DIRECT EVENT DIRECT POLL GENERIC EVENT GENERIC POLL
5-

o
4- ° . i
Y
3e o .] ® o o o0 o o oC
2
2-] .
5- (]] . =
o
10 @ . e o o o o o o2
&
3 . . . z
=]
o <
85 . .
2] 173
o
4 e o o e o =
>
@
3 o o [] e eor—
5
2
2e @ o o
5 =
Z
4 (] (] . . =
)
[
3- o o o o o o oo o °>
3
ce e =
1 2 3 41 2 3 41 2 3 41 2 3 4
Respondent

Fig. 6: Visualization of the questionnaire scores per architec-
ture, quality attribute and respondent.

ture between the direct and generic. The generic architectures
appear better overall, with better modifiability (thanks to only
having one set of functions), scalability (since the manager
doesn’t need to be rewritten for new PSEs or combinations
of PSEs) and universality (since much code can be reused,
owing to the universal featureset). However, it also has lower
flexibilty (since it can’t always utilize unique features of
PSEjy), it relies somewhat on emulation, and it may experience
problems with less than fully featured PSEs.

The event-based architectures also present a possible trade
between better scalability (since only reacting to events re-
duces idle traffic) and response time, but possibly lower modi-
fiability (since event-based code will have more considerations
than the simpler polling).

Tradeoffs. One of the initially assumed tradeoffs in the system
was that between a universal API and a flexible API, since a
more universal API would need to hide some parts of the
PSEs’ functionality in order to implement features, which
would make it less flexible to unique functions. The opposite
applies to a flexible API, which cannot be as universal since
its functions are exposed more directly, and these functions
may not be the same between PSEs.

In the questionnaire two participants rated universality as
being higher on the generic variants and lower on the direct
ones, while one rated it as equal on all and one as being
higher on the direct variant. Participants also rated flexibility
seemingly unrelated from their rating on universality.

In general the participants favored the generic variants over
the direct variants in every way, and had a slight preference
towards either the polling or event-driven one, with one
participant rating polling with better modifiability and another
rating event-driven with better scalability.

VII. CONCLUSION AND FUTURE WORK

The goal of this study was to create an API architecture
for Power over Ethernet (PoE) which would allow any combi-
nation of PSEs to work together, for the purpose of allowing
more open PSE hardware selection by removing the limitations
of the PSEs or their associated software suites.

From the work performed on discovering features and
analysing the different architectures, four primary candidates
have been identified, which allow excellent compatibility with
PSEs of almost any feature set. These architectures can also
be easily expanded to handle new PSEs, while reducing
the amount of real-time requirements handled by the host
computer by delegating these to the PSEs themselves.

Although disregarded for this work due to time constraints
and a seeming lack of benefits, APIs residing partly or fully
in kernel space may still be of interest for future research,
if cases are found where this is required to meet real time
requirements.

Although a best effort was made in discovering current PSE
feature sets, only a small number of circuits were analyzed in
depth. There exist many which were not thoroughly analyzed,
which may work in ways which contradict the findings on
common feature sets described in this work, and would thus
require a different API architecture.

REFERENCES

[1] IEEE Standard for local and metropolitan area networks— station and
media access control connectivity discovery corrigendum 2: Technical and
editorial corrections. IEEE Std 802.1AB-2009/Cor 2-2015 (Corrigendum
to IEEE Std 802.1AB-2009), pages 1-68, 2015.

IEEE Standard for Ethernet Amendment 2: Physical Layer and Man-
agement Parameters for Power over Ethernet over 4 pairs. [IEEE Std
802.3bt-2018 (Amendment to IEEE Std 802.3-2018 as amended by IEEE
Std 802.3¢b-2018), pages 1-291, 2019.

Mario Barbacci, S. Carriere, Peter Feiler, Rick Kazman, Mark Klein,
Howard Lipson, Thomas Longstaff, and Charles Weinstock. Steps in
an architecture tradeoff analysis method: Quality attribute models and
analysis. 06 1998.

[4] G. Diamant, L. Veytser, I. Malta, A. Bestavros, M. Guirguis, Liang
Guo, Yuting Zhang, and Scan Chen. itmbench: generalized api for
internet traffic managers. In IEEE Global Telecommunications Conference
Workshops, 2004. GlobeCom Workshops 2004., pages 306-311, 2004.
Rick Kazman, Mark Klein, Mario Barbacci, Thomas Longstaff, Howard
Lipson, and S. Carriére. The architecture tradeoff analysis method. pages
68-78, 01 1998.

Puneet Sharma, Sujata Banerjee, Deniz Demir, Srikanth Natarajan, and
Swamy Mandavilli. Neem: Network energy efficiency manager. In 2072
IEEE Network Operations and Management Symposium, pages 623—-626,
2012.

Maninder Singh and Maninder Singh. A powerful easy-to-use packet
control api for linux. In 2009 International Conference on Advances in
Recent Technologies in Communication and Computing, pages 146—148,
2009.

Masaya Yokohata, Tomotaka Maeda, and Yasuo Okabe. An extension of
the link layer discovery protocol for on-demand power supply network
by poe. In 2013 27th International Conference on Advanced Information
Networking and Applications Workshops, pages 1612-1616, 2013.
Masaya Yokohata, Tomotaka Maeda, and Yasuo Okabe. Power allocation
algorithms of poe for on-demand power supply. In 2013 IEEE 37th
Annual Computer Software and Applications Conference Workshops,
pages 517-522, 2013.

[2

—

—
(98]
—

[5

—_

[6

—_

[7

—

[8

—

[9

—

