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Abstract—Probabilistic timing and schedulability analysis of
real-time systems is constrained by the problem of often in-
tractable exact computations. The intractability problem is
present whenever there is a large number of entities to be
analysed, e.g., jobs, tasks, etc. In the last few years, the analytical
approximations for deadline-miss probability emerged as an
important solution in the above problem domain.

In this paper, we explore analytical solutions for two major
problems that are present in the probabilistic analysis of real-time
systems. First, for a safe approximation of the entire probability
distributions (e.g., of the accumulated execution workloads) we
show how the Berry-Esseen theorem can be used. Second, we
propose an approximation built on the Berry-Esseen theorem
for efficient computation of the quantile functions of probability
execution distributions. We also show the asymptotic bounds on
the execution distribution of the fixed-priority preemptive tasks.

In the evaluation, we investigate the complexity and accuracy
of the proposed methods as the number of analysed jobs and
tasks increases. The methods are compared with the circular
convolution approach. We also investigate the memory footprint
comparison between the proposed Berry-Esseen-based solutions
and the circular convolution. . The contributions and results pre-
sented in this paper complement the state-of-the-art in accurate
and efficient probabilistic analysis of real-time systems.

Index Terms—probabilistic timing analysis, probabilistic
schedulability analysis, analytical bounds, Berry-Esseen theorem

I. INTRODUCTION

The analysis of hard real-time systems has been built on
the foundations of various mathematical concepts such as an-
alytical bounds, fixed-point recursions, Linear Programming,
etc. Among the most important concepts being used, there are
the linear and non-linear bounds which allow for efficient and
accurate analysis of different aspects of real-time systems, e.g.,
feasibility, schedulability, resource bandwidth, etc.

When hard real-time systems are considered, the bounds
must be deterministic. The evolution of bound-based analysis
started from the seminal paper by Liu and Layland [28], result-
ing in many analytical bounds for various model assumptions,
e.g. [2], [7], [9], [25].

However, the majority of real-time systems exhibit an
execution time that is typically lower than the estimated
worst-case, which often leads to the corresponding resource
provisioning being pessimistic. Diverse research efforts have
been devoted to overcoming such pessimism while provid-
ing tools for analysing relevant real-time properties. More
specifically, in recent years, analytical bounds on deadline

miss probability have been proposed to solve the following
(generalised) problem.

Problem 1. How to efficiently and accurately derive an
upper bound on the probability that a distribution (e.g., of an
execution workload) exceeds a given value (e.g., an arbitrary
time point, or a deadline)?

To solve the problem, several probabilistic inequalities were
formally adjusted to be used in real-time systems, e.g., the
Hoeffding [26] and Bernstein bound [3], as shown by von der
Brüggen et al. [47], [48], and the Chernoff bound [16], as
shown by Chen et al. [12], [14], [15].

As discussed in the survey by Davis and Cucu-Grosjean [18]
there are also problems that directly benefit from the computa-
tion of the entire probabilistic response time distributions, task
workloads and their cumulative distribution functions (CDFs).
To quote the survey by Davis and Cucu-Grosjean [18](Section
3.4, p.23) “Two key problems that remain with probabilistic
response time analysis are the tractability of the analysis
for task sets of practical sizes”. In the same survey [18]
the authors highlighted the significance of the probabilistic
response time analysis that considers multiple hyper-periods
(Section 3.2, p.18): “In contrast to classical task models,
task sets containing a number of tasks with execution times
described by random variables can usefully have a total worst-
case processor utilisation that exceeds 1. This means that there
is a backlog, meaning outstanding task execution with a finite
probability of occurrence, at the end of each hyperperiod. This
backlog makes the analysis of probabilistic response times for
each job in the hyperperiod much more complex”. Therefore,
we formulate Problem 2, the first problem addressed in this
paper.

Problem 2. How to efficiently, accurately, and safely, approxi-
mate a probability distribution (e.g., of an execution workload
or a response-time) whose exact computation is intractable?

This problem is also relevant in areas such as probabilistic
cache and WCET analysis [17], [36] (see [19] for a more
comprehensive list), and for this reason, we stated the problem
in a more general form. In Problem 2, the term intractability
considers the computation demands in terms of space (mem-
ory) and time, which cannot be met by computing the exact
distributions (e.g., using the linear or circular convolution-
based approaches). This is a common problem, as identified
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by Davis and Cucu-Grosjean [18], and remains one of the
important unsolved problems in the probabilistic analysis of
real-time systems. The second problem addressed in this paper
is stated below.

Problem 3. How to efficiently and accurately derive the least
value x (e.g., time point within some interval), such that
the probability that a distribution (e.g., execution workload)
precedes x is greater than or equal to some probability
threshold p.

This problem can be particularly relevant for the analysis
and control of real-time systems and is the inverse of Prob-
lem 1. In general, quantiles can provide important information
on where certain workloads should be placed in the timeline so
that they minimise the probabilistic interference upon the other
workloads they might affect. The main issue with utilising this
approach is that it is often too expensive to compute the exact
quantile, especially in the domain of probabilistic real-time
system analysis, where possibly many hyper-periods dictate
the final distribution lengths, as pointed out by Davis and
Cucu-Grosjean [18]. The three problems are discussed in more
detail in the context of the state-of-the-art in Section II.

A. Contributions of this paper

In this paper, we propose and investigate the effectiveness
of solutions (see Table I) to Problems 1, 2, and 3, taking
advantage of the properties of the Lyapunov Central Limit
Theorem (CLT). The regular font in the table indicates bounds
that have been adjusted and improved in the literature for
the probabilistic analysis of real-time systems. The bold font
indicates bounds adjusted, improved, or proposed in this paper.

TABLE I
LIST OF INEQUALITIES AND BOUNDS THAT ARE ADJUSTED AND PROPOSED

(BOLD) FOR PROBABILISTIC ANALYSIS OF REAL-TIME SYSTEMS.

Problem 1 Problem 2 Problem 3
• Chernoff bound [12] • Berry-Esseen • Short quantile [42]
• Bernstein bound [48] bound • Berry-Esseen
• Hoeffding bound [48] quantile
• Lyapunov CLT

Regarding the bounds in this paper, the contributions are:
• We prove the safe bounds on the asymptotic behaviour of

the probability distribution of the preemptive independent
tasks, thus contributing also to the asymptotic behaviour
with respect to the Problems 1 to 3, using Lyapunov CLT.

• We adjust the Berry-Esseen inequality [4], [22] in order to
safely approximate the entire distributions in the probabilis-
tic analysis of real-time systems, addressing Problem 2.

• We use the Berry-Esseen inequality and Lyapunov’s CLT in
order to address Problem 3.
The evaluation shows that the proposed use of the Berry-

Esseen theorem accurately, safely, and efficiently approximates
the accumulated distributions of computation-demanding tasks
and job workloads as the problem size increases. The improve-
ment in computation time and space efficiency is significantly

greater compared to the circular convolution approach [32],
which is the most efficient and accurate method found in
the state-of-the-art for Problems 2 and 3. The conclusion
of the evaluation is that the two methods complement each
other, where the circular convolution is very efficient when the
number of analysed entities is small, whereas, by increasing
the number of analysed entities, the Berry-Esseen formulation
is increasingly more accurate and efficient, which is a direct
implication of the central limit theorem that is integrated
within the proposed method.

B. Paper outline

Section II reviews the related work. Section III presents the
mathematical background. Section IV establishes the safety
and applicability of the approximations proposed in the paper,
while in Section V we analyse the asymptotic behaviour of
the approximation. In Section VI we describe the proposed
solution to Problem 2. Section VII describes the proposed
solution to Problem 3. Evaluation of the solutions is presented
in Section VIII. The paper is concluded in Section IX.

II. RELATED WORK

Analytical bounds emerged as efficient solutions for the in-
tractability problems of probabilistic timing and schedulability
analysis, as shown by Davis and Cucu-Grosjean [18], [19].

Considering Problem 1, the seminal work on those bounds
was contributed by Chen et al. [12] where they adapted the
use of Chernoff bound for the probabilistic analysis of real-
time systems. Also, Chen et al. [14] proposed the use of
the golden-section search to address the optimisation problem
that naturally occurs in Chernoff bounds. Taking into account
closed-form solutions, von der Brüggen et al. [47], [48]
proposed the use of Bernstein and Hoeffding bounds that
are more efficient than the Chernoff bound-based solutions,
but also less accurate. Lastly, Chen et al. [13] revisited the
critical instant for probabilistic real-time systems and proposed
corrections. One of them is used in this paper (Theorem 2).

In the domain of non-analytical contributions to Problems 1
and 2, Milutinović et al. [36] proposed several improvements
for computing convolution between random variables in the
context of probabilistic cache analysis, although applicable
in the general problem space of real-time system analysis.
Recently, Marković et al. [32] proposed the use of circular
convolution to efficiently compute the sum of random variables
that represent the execution time modes. There is also a rich
area of downsampling methods which addressed the problems
of time and space complexity of performing convolutions,
e.g. [21], [27], [34], [35], [37]. Bozhko et al. [10] proposed the
Monte Carlo simulation to calculate deadline-miss probability.

Considering Problem 2, Section 3 in the survey from Davis
and Cucu-Grosjean [18] points to many non-analytical meth-
ods to calculate probabilistic response time, execution work-
load, or backlog distributions. However, as quoted from [18] in
Section I, such methods suffer from concerns about efficiency
and intractability, especially when a job backlog is possible.
Various non-analytical methods exist for the periodic task
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model [1], [11], [20], [21], [23], [27], [30], [44]–[46], [50],
and a few for the sporadic task model [33], [49]. The majority
of them rely on convolutions with the noticeable exception
of [11] which uses a Stochastic Timed Petri Nets.

Considering Problem 3, its formulation is very similar to
the quantile function, and this concept was used several times
in the analysis and control-optimisation problems of real-time
systems. For example, Short and Proenza [42] proposed a
stochastic error model in a real-time system, and one of the
problems in that work was the need for efficient and accurate
computation of the upper-tail quantiles, due to quick control
decisions that were based on the result of the computation.
This work later motivated the mathematical contribution [41]
by Short, where the problem of the efficient approximation
of the upper-tail quantile functions for Poisson and Binomial
Distribution was proposed. Following a similar line of utilising
quantiles for control decisions, Bertini et al. [5] showed that
such an approach may improve the predictability of workloads
thus directly propagating in more accurate quality of service
control. In a different real-time setup, Marković et al. [31]
proposed the use of quantile functions for controlling the
distribution of the preemption overheads thus minimising the
deadline-miss probability of tasks in a system.

In this work, we aim at providing an efficient and accurate
approximation, addressing Problem 2, and also providing the
efficient and accurate way for computing quantiles, given a
general random variable, not constraining the problem only
to Poisson and Binomial distributions (since those were ad-
dressed by Short and Proenza).

III. MATHEMATICAL NOTATION, SYSTEM ASSUMPTIONS
AND TERMINOLOGY

In this section, we first describe mathematical notation
and terminology, and then provide a system model that can
straightforwardly benefit from the equations and theorems
used in this paper. Throughout the main content of the paper,
the final equations consider a real-time task model, described
in Section III-B, while some equations are mathematically
generalised so that they can be adapted to broader assumptions.

A. Mathematical notation and terminology

Definition 1 (Discrete Random Variable). A discrete random
variable X on the probability space (Ω,F ,P) is defined to be
a measurable function X : Ω −→ R such that the image X(Ω)
is a countable subset of R, and {ω ∈ Ω : X(ω) = x} ∈ F
for x ∈ R.

In the above definition, Ω is a sample space, the set of
all possible outcomes. F is an event space, where an event
is a set of outcomes in the sample space. P represents a
probability function, that assigns each event in the event space
a probability.

The image of Ω under X is denoted with ImX , and it is the
set of values taken by X , with a strictly positive probability.

Given a random variable X , we define its probability
mass function as fX(x) ≜ P (X = x), its cumulative dis-
tribution function as FX(x) ≜ P (X ≤ x), and its expected

value (also called expectation, mean, or the first moment)
as E [X] ≜

∑
x∈ImX x · P (X = x), while its variance is

defined as V [X] ≜
∑
x∈ImX P (X = x) · (x− E [X])2 =

E
[
(X − E [X])2

]
.

Definition 2 (Usual Stochastic order [38]). Two random
variables X and Y , with cumulative distribution functions FX
and FY , are said to be in the usual stochastic order, denoted
as X ⪰ Y , if and only if ∀x, FX(x) ≤ FY (x).

In the literature of probabilistic timing analysis, X is con-
sidered a safe approximation (upper bound) of Y if X ⪰ Y .

Definition 3 (Independence). Two (discrete) random variables
X and Y are independent if the pair of events {X = x} and
{Y = y} are independent for all x, y ∈ R. Formally,

P(X = x, Y = y) = P(X = x)P(Y = y), ∀ x, y ∈ R. (1)

Definition 4 (Convolution or sum of random variables). If
X and Y are independent discrete random variables on
(Ω,F ,P), then Z = X + Y has probability mass function

P(Z = z) =

∞∑
x=−∞

P(X = x)P(Y = z − x), ∀ z ∈ R. (2)

Definition 5 (The n-th moment of a random variable). The
n-th moment of a random variable X is denoted as E [Xn]
and it is defined as

E [Xn] ≜
∑

x∈ ImX

xn · P (X = x) . (3)

Property 1 (Linearity of expectation and variance).

E [a ·X + b · Y ] = a · E [X] + b · E [Y ] , ∀a, b ∈ R (4)

V [a ·X + b · Y ] = a2 · V [X] + b2 · V [Y ] , ∀a, b ∈ R (5)

Theorem 1 (Lyapunov Central Limit Theorem [6]). Suppose
{X1, . . . , Xn, . . .} is a sequence of independent random vari-
ables, each with finite expected value µi and variance σ2

i . Let
Sn =

∑n
i=1Xi and let v2n = V [Sn]. If for some δ > 0, the

Lyapunov condition

lim
n→∞

1

v2+δn

n∑
i=1

E
(
|Xi − µi|2+δ

)
= 0 (6)

is satisfied, then Sn−E[Sn]√
V[Sn]

converges in distribution to a

standard normal random variable N (0, 1), as n goes to
infinity:

Sn − E [Sn]√
V [Sn]

d→ N (0, 1). (7)

The above definitions are available in the book [24]. Addi-
tionally, we often consider normal distribution in this paper.
The probability density function of a normally distributed
random variable X ∼ N (µ, σ2) is defined as

fX
(
x | µ, σ2

)
=

1

σ
√
2π

exp

[
− (x− µ)2

2σ2

]
(8)
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TABLE II
LIST OF IMPORTANT SYMBOLS USED IN THE PAPER.

Symbol Brief explanation
X,Y, Z Discrete random variables.
ImX Image of random variable X .
E [X] Expected value of X .
E [Xn] The n-th moment of X .
V [X] Variance of X.
Φ(·) Cumulative distribution function of normal distribution.
t Time duration that is analysed.
τk The k-th task in the system.
Tk Minimum inter-arrival time of τk.
Dk Relative deadline of τk.
αk,t Upper bound on the number of releases of instances of

τk, within an arbitrary time interval of length t.
Ck Random variable that characterises the execution modes

and their respective probabilities for τk.
Sk,t Upper bound on the probabilistic workload accumulated

over an interval of length t, for the jobs with a priority
greater than or equal to the priority of τk.

and its Cumulative Distribution Function (CDF) is defined as

Φ

(
x− µ

σ

)
=

1

2

[
1 + erf

(
x− µ

σ
√
2

)]
(9)

where erf(·) is the error function. In Table II, we provide the
list of the most important and frequently used symbols in the
paper.

B. Taskset model assumptions and notation

In this paper, we assume a taskset Γ consisting of g
sporadic independent tasks such that Γ ≜ {τ1, τ2, . . . , τg}. For
1 ≤ k ≤ g, each task τk releases an infinite number of task
instances (jobs), and it is defined with a tuple ⟨Ck,Tk,Dk⟩,
where Ck denotes the discrete random variable that charac-
terises the execution time of the jobs of τk, Tk represents the
minimum inter-arrival time between two consecutive instances
of τk, and Dk represents the relative deadline of τk. Ck is
a discrete random variable with a known distribution (same
as the model in [10]). Ck can also represent the execution
time modes according to the model proposed by von der
Brüggen et al. [48] where τk has a finite set of execution
time modes, and each job of τk is executed in one of those
distinct modes. Each execution time mode is characterised
by the worst-case execution time c such that c ∈ ImCk,
and also the probability that an instance of τk is executed
in the respective mode, denoted as P (Ck = c). The random
variables C1, C2, . . . , Cg are assumed to be independent. We
consider a constrained deadline taskset model, i.e., Dk ≤ Tk

for 1 ≤ k ≤ g. It is assumed that the taskset is scheduled
according to a preemptive fixed-priority scheduling policy
such that the priority of each task instance (job) is identical
to the priority of the corresponding task. Task priorities are
assumed to be distinct and are represented by task indexes
such that for two tasks τk and τl where k < l, τk has a higher
priority than τl. Therefore, τ1 is the task with the highest
priority, while τg is the task with the lowest priority in Γ.

Definition 6. The upper bound αk,t on the number of jobs of
τk that may affect the response times of lower-priority tasks
within a time interval of length t, is defined as αk,t ≜

⌈
t+Dk

Tk

⌉
.

Note that αk,t ∈ N for t > 0.

Property 2. The value of αk,t can be bounded as

t

Tk
≤ αk,t ≤

t

Tk
+ 2.

The upper bound t
Tk

+2 follows from the system assumptions
since we consider constrained deadlines. Since Dk ≤ Tk then
Dk

Tk
≤ 1, and since αk,t ≜

⌈
t+Dk

Tk

⌉
=
⌈
t

Tk
+ Dk

Tk

⌉
it follows

that αk,t ≤ t
Tk

+ 2.

Theorem 2 (Corollary 12 in [13]). Given a fully preemptive
fixed-priority scheduler, a set of constrained-deadline sporadic
tasks, and under the assumption that incomplete jobs are
aborted at their deadline, let

S⋄
k,t ≜ Ck +

k−1∑
i=1

αi,t∑
j=1

Ci. (10)

Then, the following inequality holds,

DMPk ≤ min
0<t≤Dk

P
(
S⋄
k,t > t

)
≤ P

(
S⋄
k,t > Dk

)
. (11)

In the above inequality, DMPk is the maximum possible
deadline miss probability among all jobs of τk. The inequality
states that P

(
S⋄
k,t > Dk

)
is a safe upper bound on DMPk,

as shown in [13].

Definition 7. The random variable Sk,t is the upper bound
on the probabilistic workload accumulated over an interval of
length t, for the jobs with a priority greater than or equal to
the priority of τk, and it is defined as

Sk,t ≜
k∑
i=1

αi,t∑
j=1

Ci. (12)

Eqs. (10) and (12) implicitly assume the synchronous busy
period i.e., an arrival pattern in which τk and all tasks with
a priority greater than or equal to the priority of τk release
a job simultaneously at time 0 and continue to release jobs
with minimal inter-arrival time [10]. The number of releases
is safely upper bounded by αi,t as shown by Chen et al. [13].
Note that Sk,t ⪰ S⋄

k,t due to the potentially additional sums
of Ck, and thus Sk,t upper-bounds S⋄

k,t (see Definition 2).

IV. APPLICABILITY OF Sk,t

Let us now consider the applicability of the Sk,t term for
deriving the safe distribution approximation and consequently
the deadline miss probabilities under the following two job-
abortion policies: (A.) incomplete jobs aborted at their deadline
while t is arbitrarily long (generalising above Theorem 2), and
(B.) jobs run to completion despite the deadline miss. Note that
synchronous busy period is implicitly assumed in both cases.
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A. Incomplete Jobs Aborted (JA) at their deadline

Corollary 1. P (Sk,t > t) is a safe upper bound on the
probability that the accumulated workload of τk within an
arbitrary t-long time interval exceeds t time units.

Proof. Let us assume an additional virtual task τ∗, with C∗ =
0 and D∗ = T∗ = t, whose priority is lower than the priority
of τk and greater than the priority of τk+1. P

(
S⋄
∗,t > t

)
is

a safe upper bound, as follows from Theorem 2. Note that
S⋄
∗,t = Sk,t as C∗ = 0 thus P (Sk,t > t) is also a safe upper

bound, and the corollary holds.

The above implies that P (Sk,t ≤ t) is also a safe bound
on the CDF of the cumulative distribution of τk within an
arbitrary t-long time interval. This follows from the fact that
P (Sk,t ≤ t) = 1−P (Sk,t > t) and since P (Sk,t > t) is a safe
upper bound on the cumulative distribution of τk exceeding t,
P (Sk,t ≤ t) is a safe lower bound on the cumulative distribu-
tion of τk being less than or equal to t (see Definition 2).

B. Jobs run to Completion (JC)

Given a taskset ΓJC (with the JC policy), a job of τk ∈ ΓJC

may be delayed due to the previous job of τk that is executing
over its assigned deadline. For this reason, in the context of
the JC policy, we need to restrict the assumptions compared
to the JA policy for Sk,t to be a safe bound. We first observe
the following property of the JC policy.

Property 3. In the taskset ΓJC, deadlines do not affect
scheduling decisions at any time point, since the jobs are not
aborted.

We prove the following theorem:

Theorem 3. If no task has an accumulated workload at time
0 (e.g., at system startup), then P (Sk,t > t) is a safe upper
bound on the probability that the accumulated workload of
τk ∈ ΓJC exceeds t time units.

Proof. Taking into account the time interval [0, t], we can
transform any taskset ΓJC (with the JC policy) into a taskset
ΓJA (with the JA policy) that has the same scheduling proper-
ties. Such a mapping is defined by the map m : ΓJC ×N0 →
ΓJA, that maps jobs of ΓJC into distinctive tasks of ΓJA. More
specifically, let us assume that a job τi,j of the task τi ∈ ΓJC

that can be released within [0, t) is a distinctive task τm(i,j)

in ΓJA, where j ∈ [1, . . . , αi,t].
The mapping is constructed such that ∀τm(i,j) ∈ ΓJA,

Tm(i,j) = t, which preserves the property of τi,j ∈ ΓJC being
released at most once within [0, t]. Then, we also construct
that Dm(i,j) = t which implies that none of these tasks
can be aborted due to a deadline miss. Next, to preserve
the arrival properties of the jobs in ΓJC, we assume that
the release time rm(i,j+1) of each task τm(i,j+1) ∈ ΓJA is
conditioned on the release time rm(i,j) of τm(i,j) ∈ ΓJA

such that rm(i,j+1) ≥ rm(i,j) +Ti. This defines the mapping
between ΓJC and ΓJA.

With this mapping, in ΓJA we preserved the same work-
loads, with the same execution distributions, priorities and the
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Fig. 1. (From [32]) Consecutive additions of the same random variable. The
points are connected in order to show the resemblance (or lack of it) to the
continuous normal distribution.

minimum inter-arrival times as in ΓJC. Due to Property 3 that
holds for ΓJC and the fact that tasks in ΓJA cannot be aborted
due to a deadline miss within t time units, the two tasksets
enjoy the same scheduling properties within the interval [0, t].

If we assume a virtual task τ∗ ∈ ΓJA whose priority is lower
than the priority of τk ∈ ΓJC and higher than the priority of
τk+1 ∈ ΓJC, while C∗ = 0 and T∗ = t, then due to the same
scheduling properties it holds that Sk,t = S∗,t.

From Corollary 1, for τ∗ ∈ ΓJA it is true that P (S∗,t > t) is
a safe upper bound, then due to the same scheduling properties
the same applies to P (Sk,t > t) in ΓJC.

Corollary 2. Under the assumptions of Theorem 3, Sk,t is a
safe bound on the accumulated workload of τk within t time
units, under the JC policy.

Proof. From Theorem 3 it follows that P (Sk,t > t) is an
upper bound on the accumulated workload of τk being greater
than t. Since P (Sk,t ≤ t) = 1 − P (Sk,t > t) it follows that
P (Sk,t ≤ t) is a safe lower bound on the accumulated work-
load of τk being less than or equal to t. Due to Definition 2,
the corollary holds.

Note that Theorem 2 does not hold for the JC policy, so any
consecutive job of τk may experience the maximum deadline-
miss probability, which may be computationally intractable. In
the following section, we consider the asymptotic behaviour
of Sk,t while in Section VI we propose an efficient and safe
analytical approximation of Sk,t that enables analysis within
multiple hyperperiods.

V. ASYMPTOTIC BEHAVIOUR OF Sk,t

In this section, we prove the asymptotic behaviour of the
cumulative probability distribution of τk as t→ ∞.

Let us first notice that Sk,t (Eq. (12)) is a summation of
multiple random variables (Ci) that increases in the number
of addends as t grows. Recalling Theorem 1, as the number of
addends grows, a certain transformation of the sum converges
in distribution to a standard normal distribution.

In Fig. 1, we show the simple example in which the random
variable X has the opposite properties compared to the normal
distribution, i.e., large values in the tails and small values
around the mean. However, already after twenty additions,
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the sum resembles the normal distribution. This implication
of the central limit theorem is important due to its potential
to be utilised in the real-time system analysis since it is often
the case that such analysis accounts for the iteratively enlarged
probabilistic workload (e.g., accounting job releases in Sk,t).

Since the distributions of execution times are not necessarily
identical between different tasks, we need to show that the
Lyapunov CLT holds for the assumed task model. We start by
proving the following lemmas.

Lemma 1. The third centred moment E
[
(Ci − E [Ci])

3
]

of
the execution time distribution Ci (1 ≤ i ≤ q) is a finite
value.

Proof. It follows from the system model assumption since
each Ci is defined as a discrete random variable with the
minimum possible value of 0 and the maximum possible value
of c ∈ ImCi. Under these assumptions and according to
Definition 5 and the definition of expected value, the lemma
is valid.

Lemma 2. The variance V [Ci] is a finite value.

Proof. Similarly to the proof of Lemma 1, it follows from the
system model assumptions and the definition of variance.

Now, we prove that Lyapunov’s condition holds for Sk,t in
the following adjusted form for t → ∞, since the value of t
dictates the number of summed execution time distributions
in Sk,t.

Proposition 1. For δ = 1, and v2k,t =
∑k
i=1

∑αi,t

j=1 V [Ci],

lim
t→∞

1

v2+1
k,t

k∑
i=1

αi,t∑
j=1

E
[
|Ci − E [Ci]|2+1

]
= 0. (13)

Proof. Let Q ≜ maxki=1 E
[
|Ci − E [Ci]|3

]
, and W ≜

minki=1 V [Ci]. Then

lim
t→∞

∑k
i=1

∑αi,t

j=1 E
[
|Ci − E [Ci]|2+1

]
(∑k

i=1

∑αi,t

j=1 V [Ci]
)3/2 ≤

lim
t→∞

∑k
i=1

∑αi,t

j=1Q(∑k
i=1

∑αi,t

j=1W
)3/2 ≤ lim

t→∞

∑k
i=1

(
t
Ti

+ 2
)
·Q(∑k

i=1
t
Ti

·W
)3/2 ≤

lim
t→∞

t ·
∑k
i=1

(Q+
2·Ti ·Q

t )
Ti

t3/2 ·
(∑k

i=1
W
Ti

)3/2 ≤ lim
t→∞

t ·Q∗

t3/2 · (W ∗)
3/2

= 0

where Q∗ ≜
∑k
i=1

Q
Ti

, and W ∗ ≜
∑k
i=1

W
Ti

, and Property 2
was used. This proves that the Lyapunov condition holds.

Now we prove the following statement about the CDF of Sk,t.

Theorem 4. As t → ∞, P (Sk,t ≤ x) → Φ
(
x−µ√
σ2

)
where

µ =
∑k
i=1 αi,t · E [Ci] and σ2 =

∑k
i=1 α

2
i,t · V [Ci].

Proof. From Proposition 1, the Lyapunov CLT holds
Sk,t − E [Sk,t]√

V [Sk,t]

d→ N (0, 1) which implies

P

(
Sk,t − E [Sk,t]√

V [Sk,t]
≤ x

)
→ Φ

(
x− 0

1

)
P
(
Sk,t ≤ x ·

√
V [Sk,t] + E [Sk,t]

)
→ Φ(x).

Let a = x ·
√

V [Sk,t] + E [Sk,t], then x =
a−E[Sk,t]√

V[Sk,t]
, and

P (Sk,t ≤ a) → Φ

(
a− E [Sk,t]√

V [Sk,t]

)
= Φ

(
a− µ√
σ2

)
,

where E [Sk,t] = µ and V [Sk,t] = σ2 are true statements due
to Property 1.

Similarly, we can derive the asymptotic behaviour of the
probability that Sk,t exceeds the time point x as t→ ∞.

Corollary 3. As t → ∞, P (Sk,t > x) → 1−Φ
(
x−µ√
σ2

)
where

µ =
∑k
i=1 αi,t · E [Ci] and σ2 =

∑k
i=1 α

2
i,t · V [Ci].

Proof. Follows from Theorem 4, as P (Sk,t > x) = 1 −
P (Sk,t ≤ x), analogously holding for normal distribution.

Using the corollary, we conclude this section by formulating
the deadline-miss probability approximation that shows the
convergence of the deadline-miss probability of a task as
t→ ∞. This can be very important for tasksets with JC policy,
since, as pointed out by Davis and Cucu-Grosjean [18] a task
running on a JC policy may experience a backlog and thus its
deadline-miss probability needs to be analysed over multiple,
possibly infinitely many hyperperiods.

Corollary 4 (Asymptotic deadline miss probability).

lim
t→∞

P (Sk,t > t) ≤ 1− Φ

1−
∑k
i=1

E[Ci]
Ti√∑k

i=1
V[Ci]
(Ti)2

 (14)

Proof. From Corollary 3, for x = t it holds that

lim
t→∞

P (Sk,t > t) = 1− Φ

(
t− µ√
σ2

)
with µ =

∑k
i=1 αi,t · E [Ci] and σ2 =

∑k
i=1 α

2
i,t · V [Ci].

If the argument of Φ(·) converges to a finite value, then the
asymptotic deadline miss probability will be upper bounded by
a probability strictly less than 1. Therefore, we can analyze
the convergence of the argument of Φ(·):

lim
t→∞

t−
∑k
i=1 αi,t · E [Ci]√∑k
i=1 α

2
i,t · V [Ci]

≤ lim
t→∞

t−
∑k
i=1

(
t
Ti

+ 2
)
· E [Ci]√∑k

i=1

(
t
Ti

)2
· V [Ci]

= lim
t→∞

t ·
(
1−

∑k
i=1

(
E[Ci]
Ti

))
t ·
√∑k

i=1
V[Ci]
(Ti)2

=
1−

∑k
i=1

E[Ci]
Ti√∑k

i=1
V[Ci]
(Ti)2

,

where Property 2 was used to compute the upper bound. This
concludes the proof.
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VI. APPROXIMATING THE ENTIRE CUMULATIVE
DISTRIBUTION

In this section, we solve Problem 2: How to efficiently,
accurately, and safely, approximate a probability distribution
(e.g., of an execution workload or a response-time) whose
exact computation is intractable?

To solve the above problem, we build on the results of the
previous section, knowing that the sum of random variables
will converge to a normal distribution. After Aleksandr Lya-
punov proved Theorem 1, mathematicians were interested in
quantifying the rate of convergence given an arbitrarily long
sum, and the mathematical contributions to that problem are
used in this section.

Exemplification: Let us provide an intuitive example of
what is stated above. In Fig. 2, we illustrate a CDF of Sk,t,
denoted with P (Sk,t ≤ x). For a large value of t and (or) com-
plex task parameters, computing the exact value of Sk,t is very
costly or even not possible on commodity platforms. Along
such CDF we illustrate the CDF of the normal distribution
Φ
(
x−µ
σ

)
to which the CDF of Sk,t converges, as t increases.

This property is proved in Theorem 4, and for a larger value of
t than the one depicted in the figure, the resemblance between
the two functions would be even more obvious. However, the
relevant question is, if we know the value of t, can we say
something more about the rate of convergence of the normal
distribution? Do we know the accuracy of such approximation?

The answer is yes, and to approximate the cumulative
distribution of the sum of random variables, we use the Berry-
Esseen theorem, which states the following inequality.

Theorem 5 (Berry-Esseen inequality, proposed in [4], [22]).
Let X1, . . . , Xn be independent random variables such that

1 ≤ i ≤ n, E [Xi] = 0, E
[
X2
i

]
> 0, E

[
|Xi|3

]
<∞,

and let σ2
i = E

[
X2
i

]
, ρi = E

[
|Xi|3

]
, and

Sn ≜
X1 +X2 + · · ·+Xn√
σ2
1 + σ2

2 + · · ·+ σ2
n

,

where Sn is the normalized n-th partial sum. Let Fn be
the CDF of Sn, and Φ be the CDF of the standard normal
distribution. Then, for any n ∈ N,

sup
x∈R

|Fn(x)− Φ(x)| ≤ A · ψ,

where A is a positive constant, and ψ ≜
n∑
i=1

ρi ·
( n∑
i=1

σ2
i

)−3/2

.

The Berry-Esseen theorem essentially states that for any
x ∈ R, the supremum of the difference between the cumulative
distribution Fn(x), of the n-th partial normalised sum Sn, and
the standard normal distribution Φ(x), never exceeds A · ψ.
Intuitively, in Fig. 2 we are aware of the convergence property,
but we cannot quantify it. However, using the Berry-Esseen
inequality, in the following proofs we will get to the point
where the rate of convergence is well known (see Fig. 3). In
Fig. 3, we are able to provide the lower and the upper bound
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Fig. 2. Exact CDF of Sk,t (red, step function) compared to the normal
distribution to which the CDF converges (black, continuous) as t increases.

on the possible values of the CDF of Sk,t, and because of
that we do not need to compute Sk,t with costly convolutions.
Instead, we can use the knowledge about how closely Sk,t
resembles the CDF of the corresponding normal distribution,
i.e. Φ

(
x−µ
σ

)
. Comparing the two figures, one may notice that

adding and subtracting the term A · ψ plays a major role
in quantifying the bounds. The tight value of the absolute
positive constant A was an important topic in the mathematics
community, and it is even up to this day. To the best knowledge
of the authors, the tightest bound at the moment of writing is
the one proved by Irina Shevtsova [39], [40], and Theorem 5
holds safely for the value A = 0.5583. Note that in the
following logical statements and proofs we assume the
values of A and ψ as defined in Theorem 5.

Note that in Theorem 5, there is an assumption that
E [Xi] = 0. We prove that in a more general case when
E [Xi] is not necessarily equal to zero, the following holds.

Corollary 5. Let Y1, . . . , Yn be random variables such that

1 ≤ i ≤ n, E [Yi] ∈ R, E
[
Y 2
i

]
> 0, E

[
|Yi|3

]
<∞.

Then, for any x ∈ R, the supremum of the difference between
the CDF of the sum of random variables Y1, . . . , Yn at x
and the CDF of the general normal distribution defined as
N (
∑n
i=1 E [Yi] ,

√∑n
i=1 σ

2
i ) is never greater than A · ψ.

Formally defined, it holds that

sup
x∈R

∣∣∣∣∣P
(

n∑
i=1

Yi ≤ x

)
− Φ

(
x−

∑n
i=1 E [Yi]√∑n
i=1 σ

2
i

)∣∣∣∣∣ ≤ A · ψ,

(15)
where σ2

i = E
[
(Yi − E [Yi])

2
]
= V [Yi] .

Proof. Let Xi = Yi − E [Yi]. Then, the following holds due
to linearity of expectation and the initial assumptions,

E [Xi] = 0, E
[
X2
i

]
> 0, E

[
|Xi|3

]
<∞.
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Furthermore, the Berry-Esseen theorem holds as follows

sup
x∈R

∣∣∣∣∣P
( ∑n

i=1Xi√∑n
i=1 σ

2
i

≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ A · ψ, (16)

Substituting Xi with Yi − E [Yi] yields

sup
x∈R

∣∣∣∣∣P
(∑n

i=1(Yi − E [Yi])√∑n
i=1 σ

2
i

≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ A · ψ, (17)

Considering the inner inequality of the CDF function, we can
multiply both sides with

√∑n
i=1 σ

2
i thus deriving

sup
x∈R

∣∣∣∣∣∣P
 n∑
i=1

(Yi − E [Yi])) ≤ x ·

√√√√ n∑
i=1

σ2
i

− Φ(x)

∣∣∣∣∣∣ ≤ A ·ψ.

(18)
Then, by adding

∑n
i=1 E [Yi] to both sides of the inequality,

the following inequality is obtained

sup
x∈R

∣∣∣∣∣∣P
 n∑
i=1

Yi ≤ x ·

√√√√ n∑
i=1

σ2
i +

n∑
i=1

E [Yi]

− Φ(x)

∣∣∣∣∣∣ ≤ A·ψ.

(19)
Let a = x ·

√∑n
i=1 σ

2
i +

∑n
i=1 E [Yi], then,

x =
a−

∑n
i=1 E [Yi]√∑n
i=1 σ

2
i

, from which follows that

sup
a∈R

∣∣∣∣∣P
(

n∑
i=1

Yi ≤ a

)
− Φ

(
a−

∑n
i=1 E [Yi]√∑n
i=1 σ

2
i

)∣∣∣∣∣ ≤ A · ψ.

(20)

Next, we approximate only the cumulative distribution of
the sum Sn =

∑n
i=1 Yi of random variables, and from

Corollary 5 it follows that for any x ∈ R,

Φ

(
x− µ

σ

)
−A · ψ ≤ P (Sn ≤ x) ≤ Φ

(
x− µ

σ

)
+A · ψ,

where µ =

n∑
i=1

E [Yi] and σ =

√√√√ n∑
i=1

E
[
(Yi − E [Yi])

2
]
.

(21)
Considering the real-time system model assumption, now

we can apply the Berry-Esseen theorem to bound the cumu-
lative distribution function of Sk,t as follows.

Theorem 6 (Berry-Esseen theorem applied to Sk,t).

Φ

(
x− µ

σ

)
−A · ψ ≤ P (Sk,t ≤ x) ≤ Φ

(
x− µ

σ

)
+A · ψ,

where µ =

k∑
i=1

αi,t · E [Ci] , σ =

√√√√ k∑
i=1

α2
i,t · V [Ci]

ρi = |αi,t · Ci − E [αi,t · Ci]|3 = |αi,t · (Ci − E [Ci])|3

ψ =
( k∑
i=1

α2
i,t · V [Ci]

)−3/2

·
k∑
i=1

ρi.

(22)

−∞ +∞0
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Fig. 3. CDF of the exact Sk,t compared to the CDF bounds derived from the
normal distribution in Theorem 6. The upper bound is blue, while the lower
bound is light green. The red step function is the actual CDF of Sk,t.

Proof. Follows directly from Corollary 5 and Property 1.

The benefit of Theorem 6 is that it approximates the entire
cumulative distribution function of Sk,t from both sides (see
Fig. 3) using the CDF of the generalised normal distribution
to which it converges. In Fig. 3 we illustrate the most im-
portant terms of the theorem. Red step function represents
the potential CDF of Sk,t. The black line is the normal
CDF approximation that has the mean and standard deviation
identical to the one of Sk,t, while the blue and green lines
represent the upper and lower bound on potential CDF values
for Sk,t. Gray area represents all the potential values for
CDF of Sk,t (assuming that one cannot compute the actual
FSk,t

). Considering the normal CDF approximation, it can be
efficiently computed using Eq. (9).

Theorem 7 (Safe approximation of Sk,t). To safely approxi-
mate Sk,t we define random variable Z,

Z(x) =


1 x ≥

∑k
i=1 αi,t ·max(ImCi)

0 Φ
(
x−µ
σ

)
−A · ψ < 0

Φ
(
x−µ
σ

)
−A · ψ otherwise

for which holds that

Z ⪰ Sk,t

Proof. Directly follows from Theorem 6 and the fact that

P

(
Sk,t ≤

k∑
i=1

αi,t ·min(ImCi)

)
= 0

and

P

(
Sk,t ≤

k∑
i=1

αi,t ·max(ImCi)

)
= 1.
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VII. APPROXIMATING THE VALUE WITH A PREDEFINED
EXCEEDANCE PROBABILITY

In this section, we solve Problem 3: How to efficiently and
accurately derive the least value x (e.g., time point within some
interval), such that the probability that a random variable X
(e.g., of execution workload) precedes x is greater than or
equal to some probability threshold p.

For this purpose, we consider the quantile function QX(p),
defined as

QX(p) ≜ inf {x ∈ ImX : p ≤ FX(x)} , p ∈ (0, 1). (23)

In general terms, finding the result of QX(p) for the given
distribution X and the predefined threshold p can, for example,
be relevant to controlling the deadline-miss probability when
assigning the releases of the new workloads. This is the case
due to the fact that the result x of QX(p) can also represent the
time point for which its exceedance probability P (X ≥ x) ≤
1− p, as follows from Eq. (23). This is then analogous to the
case where the result x of QX(p) represents the earliest time
point for which the deadline-miss probability of X is less than
or equal to 1− p.

Exemplification: Let us provide a bit more concrete and
easy-to-follow example of the lengthy mathematical descrip-
tion above. Similarly as before, in Fig. 4 we consider the
accumulated execution workload Sk,t of τk. Consider the
following problem. The task τk is not required to always finish
its execution, but there is a requirement that the probability that
it finishes its execution is at least 0.2. Additionally, we want to
add another workload to the timeline, but without invalidating
the above requirement. How to determine the time point t for
which the above requirement is satisfied? First of all, there
are multiple such points. In the figure, ∀x > x′ (green thick
line) the defined property will hold. However, if we delay
adding the new workload, then we may push the other jobs that
may come for execution and possibly increase their deadline-
miss probabilities, or even the deadline-miss probability of the
newly added task. Thus, it is of interest to add such workload
as early as possible, i.e. as soon as the requirement is met.

The earliest time point which satisfies the requirement can
be derived exactly by using Eq. (23) and substituting X for
Sk,t. The value of QSk,t

would be x′ but it can only be
derived after computing the exact CDF of Sk,t, which can
be intractable. Therefore, once more we will try to derive
an efficient approximation of QSk,t

for which we know by
construction that it is safe. It means that the result of approxi-
mation must be larger than x′, otherwise, the requirement that
the probability of τk finishing its execution being at least 0.2
will not be satisfied.

An approximation of quantile QSk,t
(p) can be derived
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Fig. 4. Exact quantile QSk,t
(0.2) = x′ of Sk,t for probability equal to 0.2

(vertical line). A thick green line represents all values of x ∈ R for which
the approximation on the exact quantile is safe.

according to Theorem 4, with the following equation

Qclt
Sk,t

(p) ≜ F−1
N (µ,σ)(p) = µ+ σ

√
2 erf−1(2p− 1),

where µ =

k∑
i=1

αi,t · E [Ci]

and σ =

√√√√ k∑
i=1

α2
i,t · V [Ci].

(24)

The above equation takes into account that the quantile
QSk,t

(p) of random variable Sk,t for probability p is ap-
proximately equal to the corresponding quantile F−1

N (µ,σ)(p)

of normal distribution N (µ, σ) as t → ∞. This is the case
since FSi,t(x) converges to FN (µ,σ)(x), as we showed in
the previous sections. In Eq. (24), the quantile of the normal
distribution N (µ, σ) is expressed in the form of the inverse
error function.

To safely approximate the quantile QSk,t
(p) we need to

find an approximation QaSk,t
(p) such that for any p ∈ (0, 1)

QSk,t
(p) ≤ QaSk,t

(p).

Theorem 8 (Safe approximation of quantile).

QSk,t
(p) ≤ F−1

N (µ,σ)(p+A·ψ) = µ+σ
√
2 erf−1(2(p+A·ψ)−1)

(25)

Proof. From Theorem 6 it holds that

Φ

(
x− µ

σ

)
−A · ψ ≤ FSi,t

(x), x ∈ ImX

Let f(x) ≜ Φ
(
x−µ
σ

)
− A · ψ. Since f is a monotonically

increasing function, then f−1 is also monotonically increasing.
Since f(x) ≤ FSi,t

(x) and f−1 is monotonically increasing,
then

f−1(f(x)) ≤ f−1(FSi,t
(x)) ⇒ x ≤ f−1(FSi,t

(x))
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Fig. 5. The exact quantile of QSk,t
(0.2) may be any of the points within

the red line. The bounds on the range of the red line are depicted according
to Remark 1, using the quantiles of the appropriate normal distributions.

Let QSi,t(p) be the quantile function of FSi,t(x). Then it holds
that QSi,t

(FSi,t
(x)) = x, yielding

QSi,t
(FSi,t

(x)) ≤ f−1(FSi,t
(x)) which is the same as

QSi,t
(p) ≤ f−1(p).

Therefore the quantile function is upper bounded by f−1(p)
that can be obtained by inverting the function f(x):

p = f(x) = Φ

(
x− µ

σ

)
−A · ψ

Φ

(
x− µ

σ

)
= p+A · ψ

x = σΦ−1(p+A · ψ) + µ = F−1
N (µ,σ)(p+A · ψ) = f−1(p)

which concludes the proof.

In general, following from Corollary 5, Theorem 6, and
properties of quantile functions, the following remark holds.

Remark 1.

F−1
N (µ,σ)(p−A · ψ) ≤ QSi,t(p) ≤ F−1

N (µ,σ)(p+A · ψ)

We depicted the essential terms of the remark in Fig. 5.
The red line represents the potential range of the quantile for
probability equal to 0.2. The projection of the green dot is the
upper bound on the quantile, while the one of the blue dot is
the lower bound on the quantile. Therefore, if one wants to
more accurately approximate quantile Q(Si,t, p) it is enough
to search it in the range given in the remark. One potential
solution would be to use the methods of Problem 1, together
with the binary search on the interval defined under the remark.
However, this line of research remains for the future work.

VIII. EVALUATION

The evaluation is organised into two parts, separated in
the following sections; (A.) Approximation of the entire cu-
mulative distribution of Sq,t, and (B.) Approximation of the
quantile function of Sq,t.

Hardware and software configuration. We used a Macbook
Pro with 2,6 GHz 6-Core Intel Core i7 CPU, and 16 GB of
RAM memory. All equations are implemented in MATLAB,
using Advanpix Multiprecision Computing Toolbox [29].

A. Approximation of the entire cumulative distribution of Sq,t
Goal of the evaluation and the evaluated entities. In this
evaluation, we compared the approximation of the CDF of
Sq,t computed using Theorem 6 (labeled with BE), with the
circular-convolution method (labeled with CC, from [32]) that
computes the actual CDF of Sq,t. In the experiment, we
compared the computation time and the memory footprint of
the respective methods.
Experiment Setup. To approximate the CDF of Sq,t, we
generated 1000 tasksets per each point in the graphs shown,
considering the taskset sizes 5, 10, . . . , 50. Respective task
utilisations were generated using UUniFast [8] with the util-
isation of the taskset set to 0.7. The task periods were
randomly generated from the log-uniform distribution with
a range from 10 to 1000 ms. The worst-case execution
time value max{ImCi} for each task was obtained with
mi = max{ImCi} = Ti · Ui, where Ui is the utilisation
generated using UUnifast for the respective task. The discrete
random variable Ci was generated randomly (up to mi), using
the MATLAB function randi, which allows random variability
in the probabilistic distribution. The generation function was
implemented using a library for random vectors, contributed
by Roger Stafford [43]. To give a fair advantage to the
circular convolution method, the generated timing values were
supported by the discrete space where the minimum value is
50µs. Reducing the quanta of the support vector would reduce
the efficiency of CC.
Experiment Results. In Fig. 6, 7, and 8, we report the
average computation time, memory footprint, and the accuracy
respectively, for computing the approximation and the exact
result of Sq,t. Sq,t is the maximum accumulated probabilistic
workload over an interval of length t, for jobs with a priority
greater than or equal to the priority of τq . τq is the task with
the lowest priority in the generated taskset. There are three
subfigures for the different values of t, which are Tq , 50 ·Tq ,
and 100 ·Tq . An increase in the values of t has a purpose to
increase the analysed workloads.

We observe that the proposed approximation BE is compu-
tationally efficient (see Fig. 8), since even for t = 100·Tq , the
computation time is below 6 ms. On the other hand, the exact
calculation with CC takes significantly longer to compute,
with each increase in the interval under consideration. For
t = 100 · Tq and the size of the task set 50, CC took on
average 45 seconds to calculate the cumulative distribution
function, while with BE the approximations were obtained in
5.4 ms at most. The efficiency of the BE method is due to the
nature of its calculations and its use of the moments of random
variables, and expectation-related values that are rather quickly
computed using the linearity of expectation.

In Fig. 7, we also reported the average memory footprint,
reported in megabytes (MB). We note that the average memory
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Fig. 6. Average computation time of the CDF approximation of Sq,t. Shown
as a function of a taskset size, for different values of the analysed interval t.

footprint of BE is significantly better than that of CC for each
analysed combination. For example (see Fig. 7), for t = 100 ·
Tq and the taskset size 50, CC on average requires 1157 MB,
while BE requires only 0.029 MB.

Next, in Fig. 8, we reported the accuracy of BE. The
accuracy was measured with ∆ = A · ψ from Theorem 6,
which is the highest possible deviation of BE compared to
the exact result of CC for any value. Ideally, ∆ would have
a value of zero, which is not possible considering the finite
number of computations. We observe that the accuracy of the
approximation BE is benefiting from the increase of the taskset
size (it is approaching zero). But, we can also observe that it
benefits from the increase of t. This is expected due to the
nature of the Berry-Esseen theorem and the Lyapunov CLT.

As observed by Davis and Cucu-Grosjean [18] comput-
ing the average deadline-miss probability of strictly periodic
tasksets requires estimating the backlog distributions and
deadline-miss probabilities at all periods within a hyperperiod
(p.14 in [18]). In addition, Davis and Cucu-Grosjean also note
that for the tasksets with JC policy, “calculation becomes more
complex if the task model permits a backlog of outstanding
execution at the end of the hyperperiod“((p.14 in [18])). Thus,
to further investigate the efficiency and accuracy of BE we
performed the experiment depicted in Fig. 9 (a), where t
is equal to the Least Common Multiple (LCM) of the task
periods. The average time of BE was below 6 milliseconds,
while CC often resulted in memory allocation problems or
did not provide a result within a few hours of observing the
experiment progress, so those results are omitted.
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Fig. 7. Average memory footprint of the CDF approximation of Sq,t. Shown
as a function of a taskset size, for different values of the analysed interval t.

The greatest improvement for BE in accuracy is observable
in Fig. 9 (b), when the LCM was considered as an interval.
For the taskset size of 50, the maximum deviation from the
exact distribution was just 10−16. This trend continues with
each new increase in workload Sk,t, which is a very positive
property when considering real-time systems that are often
analysed with respect to iteratively increasing workloads.

B. Approximation of the quantile function of Sq,t
Goal of the evaluation and the evaluated entities. In this
evaluation, we compared the accuracy of the quantile approx-
imations for QSq,t

(0.8) considering three different versions:
• CLT-based – A quantile approximation based on the Lya-

punov CLT, that is increasingly more accurate as t grows,
but possibly unsafe. It is given in Equation 24,

• upper – Upper-bound quantile approximation (Remark 1),
• down – Lower-bound quantile approximation (Remark 1).
We also compared the execution times needed for deriving
the approximations (jointly labelled with BE) and the exact
quantile result (labelled with CC).
Experiment Setup. In order to approximate Q(Sq,t, 0.8), we
use the same experiment setup as in the previous subsection,
but the taskset size is fixed to 5, while we modify t values,
given by the following set {1 ·Tq, 5 ·Tq, 10 ·Tq, . . . , 50 ·Tq}.
The results are presented as normalised average values over
the actual value of the quantile (computed with CC). Thus, CC
has a constant value of 100%, while if the approximation is
higher, its value will be greater than 100%, and if it is lower,
its value will be less than 100%.
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Fig. 8. Average accuracy of approximation ∆. ∆ = 0 theoretically means
that the approximation is equivalent to the approximated exact CDF.
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Fig. 9. Average computation time and the average accuracy of the approxi-
mation for t equal to the least common multiple of the periods of the analysed
tasks.

Experiment Results. In Fig. 10 (a), we observe that the time
needed to compute the exact quantile using CC is increasing
rapidly (10 seconds for t = 50 · Tq), while it is less than 4
miliseconds for any t when BE is used.

In Fig. 10 (b), we can observe that the accuracy of each of
the three quantile approximations is low for the values 1 ·Tq

and 5 ·Tq . This property of the BE bounds can also be seen
with respect to the CDF approximation, in Fig. 8, for the small
values of t and q. We can conclude that the proposed methods
complement the state-of-the-art (especially CC), providing
very efficient approximations (both in computation time and
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Fig. 10. Average computation time and the average accuracy of
the quantile approximation for the taskset size of 5, and t ∈
{20Tq , 40Tq , 60Tq , 80Tq}.

space complexity) when the analysed tasksets and considered
time intervals increase in size.

IX. CONCLUSION

In this paper, we addressed the following main problem
in the probabilistic analysis of real-time systems. How to
efficiently and accurately derive an analytical approximation
of the intractable probabilistic execution workloads? To solve
the above problem, we first applied and proved the Lyapunov
central limit theorem considering the accumulated execution
distribution of the fixed-priority fully-preemptive tasks, under
the synchronous busy period. We considered the job-abortion
and job-run-to-completion policies. This proof showed that
as time goes to infinity, the accumulated execution distri-
bution (e.g., probabilistic response time) can converge to a
normal distribution of certain characteristics. We then proved
the bound on the asymptotic behaviour of the deadline-miss
probability as time goes to infinity.

To safely approximate the accumulated execution distribu-
tion of a task within an arbitrarily long finite time interval,
we adjusted the Berry-Esseen theorem to the investigated
task model and proposed two safe approximations: 1) for
the cumulative distribution function and 2) for the quantile
function.

In the evaluation, we generated synthetic tasksets to in-
vestigate the computational efficiency and the approximation
accuracy compared to the actual results derived with the
circular convolution. We showed that the proposed approxi-
mations exhibit an extremely low computational cost (below
4 ms for all experiment setups even in the case of analysing
LCM intervals), while the accuracy of the approximations is
increasingly better upon increasing the number of workloads
whose probabilistic interaction is to be approximated. The
evaluation suggests that the proposed methods complement
the state-of-the-art of analytical approximations.
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Chen. Critical instant for probabilistic timing guarantees: Refuted and
revisited. In IEEE 43rd Real-Time Systems Symposium. IEEE, 2022.

[14] Kuan-Hsun Chen, Niklas Ueter, Georg von der Brüggen, and Jian-Jia
Chen. Efficient computation of deadline-miss probability and potential
pitfalls. In Design, Automation & Test in Europe Conf. & Exhibition
(DATE), pages 896–901, 2019.

[15] Kuan-Hsun Chen, Georg von Der Brüggen, and Jian-Jia Chen. Analysis
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