
Mälardalen University Doctoral Dissertation 363

Efficient Design of Scalable
Deep Neural Networks for
Resource-Constrained Edge
Devices
Mohammad Loni

M
oham

m
ad Loni EFFIC

IEN
T D

ESIG
N

 O
F SC

A
LA

BLE D
EEP N

EU
RA

L N
ETW

O
RKS FO

R RESO
U

RC
E-CO

N
STRA

IN
ED

 ED
G

E D
EVIC

ES
2022

ISBN 978-91-7485-563-0
ISSN 1651-4238

Address:
P.O. Box 883, SE-721 23 Västerås. Sweden
P.O. Box 325, SE-631 05 Eskilstuna. Sweden
E-mail: info@mdu.se Web: www.mdu.se

Deep Neural Networks (DNNs) are increasingly being processed on resource-con-
strained edge nodes (computer nodes used in, e.g., cyber-physical systems or at the
edge of computational clouds) due to efficiency, connectivity, and privacy concerns.
This thesis investigates and presents new techniques to design and deploy DNNs for
resource-constrained edge nodes. We have identified two major bottlenecks that
hinder the proliferation of DNNs on edge nodes: (i) the significant computational de-
mand for designing DNNs that consumes a low amount of resources in terms of energy,
latency, and memory footprint; and (ii) further conserving resources by quantizing
the numerical calculations of a DNN provides remarkable accuracy degradation.

To address (i), we present novel methods for cost-efficient Neural Architecture Search
(NAS) to automate the design of DNNs that should meet multifaceted goals such as
accuracy and hardware performance. To address (ii), we extend our NAS approach
to handle the quantization of numerical calculations by using only the numbers -1, 0,
and 1 (so-called ternary DNNs), which achieves higher accuracy. Our experimental
evaluation shows that the proposed NAS approach can provide a 5.25x reduction
in design time and up to 44.4x reduction in network size compared to state-of-the-
art methods. In addition, the proposed quantization approach delivers 2.64% higher
accuracy and 2.8x memory saving compared to full-precision counterparts with the
same bit-width resolution. These benefits are attained over a wide range of com-
mercial-off-the-shelf edge nodes showing this thesis successfully provides seamless
deployment of DNNs on resource-constrained edge nodes.

W

b
+

Mälardalen University Press Dissertations
No. 363

EFFICIENT DESIGN OF SCALABLE DEEP NEURAL
NETWORKS FOR RESOURCE-CONSTRAINED EDGE DEVICES

Mohammad Loni

2022

School of Innovation, Design and Engineering

Mälardalen University Press Dissertations
No. 363

EFFICIENT DESIGN OF SCALABLE DEEP NEURAL
NETWORKS FOR RESOURCE-CONSTRAINED EDGE DEVICES

Mohammad Loni

2022

School of Innovation, Design and Engineering

1

Copyright © Mohammad Loni, 2022
ISBN 978-91-7485-563-0
ISSN 1651-4238
Printed by E-Print AB, Stockholm, Sweden

Copyright © Mohammad Loni, 2022
ISBN 978-91-7485-563-0
ISSN 1651-4238
Printed by E-Print AB, Stockholm, Sweden

2

Mälardalen University Press Dissertations
No. 363

EFFICIENT DESIGN OF SCALABLE DEEP NEURAL
NETWORKS FOR RESOURCE-CONSTRAINED EDGE DEVICES

Mohammad Loni

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid Akademin
för innovation, design och teknik kommer att offentligen försvaras torsdagen

den 13 oktober 2022, 13.30 i Delta och online, Mälardalens universitet, Västerås.

Fakultetsopponent: Professor Franz Pernkopf, TU Graz

Akademin för innovation, design och teknik

Mälardalen University Press Dissertations
No. 363

EFFICIENT DESIGN OF SCALABLE DEEP NEURAL
NETWORKS FOR RESOURCE-CONSTRAINED EDGE DEVICES

Mohammad Loni

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid Akademin
för innovation, design och teknik kommer att offentligen försvaras torsdagen

den 13 oktober 2022, 13.30 i Delta och online, Mälardalens universitet, Västerås.

Fakultetsopponent: Professor Franz Pernkopf, TU Graz

Akademin för innovation, design och teknik

3

Abstract
Deep Neural Networks (DNNs) are increasingly being processed on resource-constrained edge nodes
(computer nodes used in, e.g., cyber-physical systems or at the edge of computational clouds) due to
efficiency, connectivity, and privacy concerns. This thesis investigates and presents new techniques
to design and deploy DNNs for resource-constrained edge nodes. We have identified two major
bottlenecks that hinder the proliferation of DNNs on edge nodes: (i) the significant computational
demand for designing DNNs that consumes a low amount of resources in terms of energy, latency, and
memory footprint; and (ii) further conserving resources by quantizing the numerical calculations of a
DNN provides remarkable accuracy degradation.

To address (i), we present novel methods for cost-efficient Neural Architecture Search (NAS) to automate
the design of DNNs that should meet multifaceted goals such as accuracy and hardware performance.
To address (ii), we extend our NAS approach to handle the quantization of numerical calculations by
using only the numbers -1, 0, and 1 (so-called ternary DNNs), which achieves higher accuracy. Our
experimental evaluation shows that the proposed NAS approach can provide a 5.25x reduction in design
time and up to 44.4x reduction in network size compared to state-of-the-art methods. In addition, the
proposed quantization approach delivers 2.64% higher accuracy and 2.8x memory saving compared
to full-precision counterparts with the same bit-width resolution. These benefits are attained over a
wide range of commercial-off-the-shelf edge nodes showing this thesis successfully provides seamless
deployment of DNNs on resource-constrained edge nodes.

ISBN 978-91-7485-563-0
ISSN 1651-4238

Abstract
Deep Neural Networks (DNNs) are increasingly being processed on resource-constrained edge nodes
(computer nodes used in, e.g., cyber-physical systems or at the edge of computational clouds) due to
efficiency, connectivity, and privacy concerns. This thesis investigates and presents new techniques
to design and deploy DNNs for resource-constrained edge nodes. We have identified two major
bottlenecks that hinder the proliferation of DNNs on edge nodes: (i) the significant computational
demand for designing DNNs that consumes a low amount of resources in terms of energy, latency, and
memory footprint; and (ii) further conserving resources by quantizing the numerical calculations of a
DNN provides remarkable accuracy degradation.

To address (i), we present novel methods for cost-efficient Neural Architecture Search (NAS) to automate
the design of DNNs that should meet multifaceted goals such as accuracy and hardware performance.
To address (ii), we extend our NAS approach to handle the quantization of numerical calculations by
using only the numbers -1, 0, and 1 (so-called ternary DNNs), which achieves higher accuracy. Our
experimental evaluation shows that the proposed NAS approach can provide a 5.25x reduction in design
time and up to 44.4x reduction in network size compared to state-of-the-art methods. In addition, the
proposed quantization approach delivers 2.64% higher accuracy and 2.8x memory saving compared
to full-precision counterparts with the same bit-width resolution. These benefits are attained over a
wide range of commercial-off-the-shelf edge nodes showing this thesis successfully provides seamless
deployment of DNNs on resource-constrained edge nodes.

ISBN 978-91-7485-563-0
ISSN 1651-4238

4

Sammanfattning

Deep Neural Networks (DNN) bearbetas alltmer på resursbegränsade kantn-
oder (datornoder som används i t.ex. cyberfysiska system eller i utkanten
av beräkningsmoln) på grund av effektivitet, anslutningsmöjligheter och in-
tegritetsproblem. Denna avhandling undersöker och presenterar nya tekniker
för att designa och distribuera DNN:er för resursbegränsade kantnoder. Vi har
identifierat två stora flaskhalsar som hindrar spridningen av DNN på kantnoder:
(i) det betydande beräkningsbehovet för att designa DNN som förbrukar en låg
mängd resurser i termer av energi, latens och minnesfotavtryck; och (ii) ytterli-
gare bevarande av resurser genom att kvantisera de numeriska beräkningarna
av en DNN ger en anmärkningsvärd noggrannhetsförsämring.

För att ta itu med (i), presenterar vi nya metoder för kostnadseffektiv Neural
Architecture Search (NAS) för att automatisera designen av DNN:er som ska
uppfylla mångfacetterade mål som noggrannhet och hårdvaruprestanda. För att
ta itu med (ii) utökar vi vår NAS-metod för att hantera kvantiseringen av nu-
meriska beräkningar genom att endast använda siffrorna -1, 0 och 1 (så kallade
ternära DNN), vilket uppnår högre noggrannhet. Vår experimentella utvärder-
ing visar att den föreslagna NAS-metoden kan ge en 5,25× minskning av de-
signtid och upp till 44,4× minskning av nätverksstorlek jämfört med state-
of-the-art metoder. Dessutom ger den föreslagna kvantiseringsmetoden 2,64%
högre noggrannhet och 2,8× minnesbesparing jämfört med motsvarigheter med
full precision med samma bitbreddsupplösning. Dessa fördelar uppnås över
ett brett utbud av kommersiella kantnoder, vilket visar att denna avhandling
framgångsrikt tillhandahåller sömlös distribution av DNN på resursbegränsade
kantnoder.

i

Sammanfattning

Deep Neural Networks (DNN) bearbetas alltmer på resursbegränsade kantn-
oder (datornoder som används i t.ex. cyberfysiska system eller i utkanten
av beräkningsmoln) på grund av effektivitet, anslutningsmöjligheter och in-
tegritetsproblem. Denna avhandling undersöker och presenterar nya tekniker
för att designa och distribuera DNN:er för resursbegränsade kantnoder. Vi har
identifierat två stora flaskhalsar som hindrar spridningen av DNN på kantnoder:
(i) det betydande beräkningsbehovet för att designa DNN som förbrukar en låg
mängd resurser i termer av energi, latens och minnesfotavtryck; och (ii) ytterli-
gare bevarande av resurser genom att kvantisera de numeriska beräkningarna
av en DNN ger en anmärkningsvärd noggrannhetsförsämring.

För att ta itu med (i), presenterar vi nya metoder för kostnadseffektiv Neural
Architecture Search (NAS) för att automatisera designen av DNN:er som ska
uppfylla mångfacetterade mål som noggrannhet och hårdvaruprestanda. För att
ta itu med (ii) utökar vi vår NAS-metod för att hantera kvantiseringen av nu-
meriska beräkningar genom att endast använda siffrorna -1, 0 och 1 (så kallade
ternära DNN), vilket uppnår högre noggrannhet. Vår experimentella utvärder-
ing visar att den föreslagna NAS-metoden kan ge en 5,25× minskning av de-
signtid och upp till 44,4× minskning av nätverksstorlek jämfört med state-
of-the-art metoder. Dessutom ger den föreslagna kvantiseringsmetoden 2,64%
högre noggrannhet och 2,8× minnesbesparing jämfört med motsvarigheter med
full precision med samma bitbreddsupplösning. Dessa fördelar uppnås över
ett brett utbud av kommersiella kantnoder, vilket visar att denna avhandling
framgångsrikt tillhandahåller sömlös distribution av DNN på resursbegränsade
kantnoder.

i

5

6

Abstract
Deep Neural Networks (DNNs) are increasingly being processed on resource-
constrained edge nodes (computer nodes used in, e.g., cyber-physical systems
or at the edge of computational clouds) due to efficiency, connectivity, and pri-
vacy concerns. This thesis investigates and presents new techniques to design
and deploy DNNs for resource-constrained edge nodes. We have identified two
major bottlenecks that hinder the proliferation of DNNs on edge nodes: (i) the
significant computational demand for designing DNNs that consumes a low
amount of resources in terms of energy, latency, and memory footprint; and
(ii) further conserving resources by quantizing the numerical calculations of a
DNN provides remarkable accuracy degradation.

To address (i), we present novel methods for cost-efficient Neural Archi-
tecture Search (NAS) to automate the design of DNNs that should meet mul-
tifaceted goals such as accuracy and hardware performance. To address (ii),
we extend our NAS approach to handle the quantization of numerical cal-
culations by using only the numbers -1, 0, and 1 (so-called ternary DNNs),
which achieves higher accuracy. Our experimental evaluation shows that the
proposed NAS approach can provide a 5.25× reduction in design time and
up to 44.4× reduction in network size compared to state-of-the-art methods.
In addition, the proposed quantization approach delivers 2.64% higher accu-
racy and 2.8× memory saving compared to full-precision counterparts with
the same bit-width resolution. These benefits are attained over a wide range of
commercial-off-the-shelf edge nodes showing this thesis successfully provides
seamless deployment of DNNs on resource-constrained edge nodes.

iii

Abstract
Deep Neural Networks (DNNs) are increasingly being processed on resource-
constrained edge nodes (computer nodes used in, e.g., cyber-physical systems
or at the edge of computational clouds) due to efficiency, connectivity, and pri-
vacy concerns. This thesis investigates and presents new techniques to design
and deploy DNNs for resource-constrained edge nodes. We have identified two
major bottlenecks that hinder the proliferation of DNNs on edge nodes: (i) the
significant computational demand for designing DNNs that consumes a low
amount of resources in terms of energy, latency, and memory footprint; and
(ii) further conserving resources by quantizing the numerical calculations of a
DNN provides remarkable accuracy degradation.

To address (i), we present novel methods for cost-efficient Neural Archi-
tecture Search (NAS) to automate the design of DNNs that should meet mul-
tifaceted goals such as accuracy and hardware performance. To address (ii),
we extend our NAS approach to handle the quantization of numerical cal-
culations by using only the numbers -1, 0, and 1 (so-called ternary DNNs),
which achieves higher accuracy. Our experimental evaluation shows that the
proposed NAS approach can provide a 5.25× reduction in design time and
up to 44.4× reduction in network size compared to state-of-the-art methods.
In addition, the proposed quantization approach delivers 2.64% higher accu-
racy and 2.8× memory saving compared to full-precision counterparts with
the same bit-width resolution. These benefits are attained over a wide range of
commercial-off-the-shelf edge nodes showing this thesis successfully provides
seamless deployment of DNNs on resource-constrained edge nodes.

iii

7

8

If you’re the smartest person in a room,
you’re in the wrong room!

If you’re the smartest person in a room,
you’re in the wrong room!

9

10

Acknowledgments
As a pleasant part of my life, this ongoing journey has been full of unique and
memorable moments, and many people had supporting roles to play in different
stages of the journey. First, my sincere thanks go to the team of my supervisors.
I would like to thank Prof. Mikael Sjödin, for his big encouragement and
always supporting me. I am deeply grateful to Prof. Masoud Daneshtalab for
always being supportive and kind to me.

I am grateful to my colleagues, Prof. Arash GharehBaghi, and Prof. Hadi
Esmaeilzadeh, for providing feedback as co-authors of my published papers. I
would like to express my deep gratitude to Prof. Marius Lindauer for giving me
the opportunity to visit his research group. Taking part in the everyday morning
meetings and weekly paper reading meetings was a completely different and
exciting experience. I would like to thank Byung Hoon Ahn for the discussion
and for teaching me how to write an advanced scientific article.

Many thanks to my dear friend, Mohammad Riazati (Ramon), for his com-
passionate advice on my personal life. I would like to thank my parents, my
brothers, and close friends for all their acts of kindness.

Above all, I would like to give special thanks to my sweetheart, Fatemeh
Poursalim, for her unwavering support and patience with me. Without her, this
thesis could not have been conducted.

Mohammad Loni, Västerås, October 2022

vii

Acknowledgments
As a pleasant part of my life, this ongoing journey has been full of unique and
memorable moments, and many people had supporting roles to play in different
stages of the journey. First, my sincere thanks go to the team of my supervisors.
I would like to thank Prof. Mikael Sjödin, for his big encouragement and
always supporting me. I am deeply grateful to Prof. Masoud Daneshtalab for
always being supportive and kind to me.

I am grateful to my colleagues, Prof. Arash GharehBaghi, and Prof. Hadi
Esmaeilzadeh, for providing feedback as co-authors of my published papers. I
would like to express my deep gratitude to Prof. Marius Lindauer for giving me
the opportunity to visit his research group. Taking part in the everyday morning
meetings and weekly paper reading meetings was a completely different and
exciting experience. I would like to thank Byung Hoon Ahn for the discussion
and for teaching me how to write an advanced scientific article.

Many thanks to my dear friend, Mohammad Riazati (Ramon), for his com-
passionate advice on my personal life. I would like to thank my parents, my
brothers, and close friends for all their acts of kindness.

Above all, I would like to give special thanks to my sweetheart, Fatemeh
Poursalim, for her unwavering support and patience with me. Without her, this
thesis could not have been conducted.

Mohammad Loni, Västerås, October 2022

vii

11

12

List of publications

Papers included in the thesis1

Paper A DeepMaker: A multi-objective optimization framework for deep neu-
ral networks in embedded systems, Mohammad Loni, Sima Sinaei, Ali
Zoljodi, Masoud Daneshtalab, Mikael Sjödin. In the Microprocessors
and Microsystems Journal, 2020, Elsevier (IF=3.503).

Paper B TOT-Net: An Endeavour Toward Optimizing Ternary Neural Net-
works, Najmeh Nazari, Mohammad Loni, Mostafa E. Salehi, Masoud
Daneshtalab, Mikael Sjödin. In the Proceedings of IEEE International
Conference on Digital System Design (DSD 2019). Chalkidiki, Greece,
August 2019.

Paper C TAS: Ternarized Neural Architecture Search for Resource-Constrained
Edge Devices, Mohammad Loni, Hamid Mousavi, Mohammad Riazati,
Masoud Daneshtalab, and Mikael Sjödin. In the proceeding of IEEE De-
sign, Automation & Test in Europe Conference & Exhibition (DATE).
Antwerp, Belgium, March 2022.

Paper D FastStereoNet: A Fast Neural Architecture Search for Improving the
Inference of Disparity Estimation on Resource-Limited Platforms, Mo-
hammad Loni, Ali Zoljodi, Amin Majd, Byung Hoon Ahn, Masoud
Daneshtalab, Mikael Sjödin, and Hadi Esmaeilzadeh. In the Transac-
tions on Systems, Man, and Cybernetics: Systems, 2021, IEEE (IF=11.471).

1The included articles have been reformatted to comply with the thesis layout.

ix

List of publications

Papers included in the thesis1

Paper A DeepMaker: A multi-objective optimization framework for deep neu-
ral networks in embedded systems, Mohammad Loni, Sima Sinaei, Ali
Zoljodi, Masoud Daneshtalab, Mikael Sjödin. In the Microprocessors
and Microsystems Journal, 2020, Elsevier (IF=3.503).

Paper B TOT-Net: An Endeavour Toward Optimizing Ternary Neural Net-
works, Najmeh Nazari, Mohammad Loni, Mostafa E. Salehi, Masoud
Daneshtalab, Mikael Sjödin. In the Proceedings of IEEE International
Conference on Digital System Design (DSD 2019). Chalkidiki, Greece,
August 2019.

Paper C TAS: Ternarized Neural Architecture Search for Resource-Constrained
Edge Devices, Mohammad Loni, Hamid Mousavi, Mohammad Riazati,
Masoud Daneshtalab, and Mikael Sjödin. In the proceeding of IEEE De-
sign, Automation & Test in Europe Conference & Exhibition (DATE).
Antwerp, Belgium, March 2022.

Paper D FastStereoNet: A Fast Neural Architecture Search for Improving the
Inference of Disparity Estimation on Resource-Limited Platforms, Mo-
hammad Loni, Ali Zoljodi, Amin Majd, Byung Hoon Ahn, Masoud
Daneshtalab, Mikael Sjödin, and Hadi Esmaeilzadeh. In the Transac-
tions on Systems, Man, and Cybernetics: Systems, 2021, IEEE (IF=11.471).

1The included articles have been reformatted to comply with the thesis layout.

ix

13

Paper E NAS-PxAF: Neural Architecture Search for Accurate Detecting Parox-
ysmal Atrial Fibrillation, Mehdi Asadi, Mohammad Loni, Masoud Danesh-
talab, Mikael Sjödin, and Arash Gharehbaghi. In the Transactions on
Systems, Man, and Cybernetics: Systems, 2022, IEEE (Under Review).

Additional papers, not included in the thesis
1. A Review on Deep Learning Methods for ECG Arrhythmia Classifica-

tion, Zahra Ebrahimi, Mohammad Loni, Masoud Daneshtalab, and Arash
Gharehbaghi. In the Expert Systems with Applications, 2020, Elsevier
(IF=8.665).

2. PR-DARTS: Pruning-Based Differentiable Architecture Search, Mousavi,
Hamid, Mohammad Loni, Mina Alibeigi, and Masoud Daneshtalab. Trans-
actions on Neural Networks and Learning Systems, 2022, IEEE (Under
Review)

Paper E NAS-PxAF: Neural Architecture Search for Accurate Detecting Parox-
ysmal Atrial Fibrillation, Mehdi Asadi, Mohammad Loni, Masoud Danesh-
talab, Mikael Sjödin, and Arash Gharehbaghi. In the Transactions on
Systems, Man, and Cybernetics: Systems, 2022, IEEE (Under Review).

Additional papers, not included in the thesis
1. A Review on Deep Learning Methods for ECG Arrhythmia Classifica-

tion, Zahra Ebrahimi, Mohammad Loni, Masoud Daneshtalab, and Arash
Gharehbaghi. In the Expert Systems with Applications, 2020, Elsevier
(IF=8.665).

2. PR-DARTS: Pruning-Based Differentiable Architecture Search, Mousavi,
Hamid, Mohammad Loni, Mina Alibeigi, and Masoud Daneshtalab. Trans-
actions on Neural Networks and Learning Systems, 2022, IEEE (Under
Review)

14

Contents

I Thesis 1

1 Introduction 3
1.1 Introduction . 3
1.2 Thesis Outline . 6

2 Background 9
2.1 Deep Learning . 9

2.1.1 Theory behind Neural Networks 10
Transfer Function . 10
Neural Network Training 12
Performance Generalization 12

2.1.2 Convolutional Neural Network 13
2.2 Neural Architecture Search (NAS) 15

2.2.1 Search Space . 16
2.2.2 Search Method . 18
2.2.3 Evaluation Strategy 20

3 Research Statement 23
3.1 Problem Statement . 23
3.2 Research Goals . 25
3.3 Research Challenges . 26
3.4 Research Methodology . 27

3.4.1 Problem definition 28
3.4.2 Consolidate an idea 28
3.4.3 Implementation . 29

xi

Contents

I Thesis 1

1 Introduction 3
1.1 Introduction . 3
1.2 Thesis Outline . 6

2 Background 9
2.1 Deep Learning . 9

2.1.1 Theory behind Neural Networks 10
Transfer Function . 10
Neural Network Training 12
Performance Generalization 12

2.1.2 Convolutional Neural Network 13
2.2 Neural Architecture Search (NAS) 15

2.2.1 Search Space . 16
2.2.2 Search Method . 18
2.2.3 Evaluation Strategy 20

3 Research Statement 23
3.1 Problem Statement . 23
3.2 Research Goals . 25
3.3 Research Challenges . 26
3.4 Research Methodology . 27

3.4.1 Problem definition 28
3.4.2 Consolidate an idea 28
3.4.3 Implementation . 29

xi

15

3.4.4 Evaluation . 29

4 Research Contribution 31
4.1 Contributions Addressing the Research Goals 31

4.1.1 Contribution of subgoal 1 31
4.1.2 Contribution of subgoal 2 31
4.1.3 Contribution of subgoal 3 32
4.1.4 Contribution of subgoal 4 32
4.1.5 Contribution of subgoal 5 33

4.2 Overview of the Included Papers 33
4.2.1 Paper A . 33
4.2.2 Paper B . 34
4.2.3 Paper C . 35
4.2.4 Paper D . 36
4.2.5 Paper E . 37
4.2.6 Mapping Contributions to Subgoals 38

5 Related Work 39
5.1 Neural Architecture Search 39

5.1.1 Macro NAS . 39
5.1.2 Micro NAS . 40
5.1.3 Improving NAS Efficiency 41

5.2 Network Ternarization . 41

6 Discussion, Conclusion and Future Work 43
6.1 Discussion and Conclusion 43

6.1.1 Thesis Storyline. 44
6.1.2 Disparity Estimating Performance 45
6.1.3 Ternary Neural Networks (TNNs) Performance 46
6.1.4 Paroxysmal Atrial Fibrillation Classification Performance 47

6.2 Future Work . 50

Bibliography 51

3.4.4 Evaluation . 29

4 Research Contribution 31
4.1 Contributions Addressing the Research Goals 31

4.1.1 Contribution of subgoal 1 31
4.1.2 Contribution of subgoal 2 31
4.1.3 Contribution of subgoal 3 32
4.1.4 Contribution of subgoal 4 32
4.1.5 Contribution of subgoal 5 33

4.2 Overview of the Included Papers 33
4.2.1 Paper A . 33
4.2.2 Paper B . 34
4.2.3 Paper C . 35
4.2.4 Paper D . 36
4.2.5 Paper E . 37
4.2.6 Mapping Contributions to Subgoals 38

5 Related Work 39
5.1 Neural Architecture Search 39

5.1.1 Macro NAS . 39
5.1.2 Micro NAS . 40
5.1.3 Improving NAS Efficiency 41

5.2 Network Ternarization . 41

6 Discussion, Conclusion and Future Work 43
6.1 Discussion and Conclusion 43

6.1.1 Thesis Storyline. 44
6.1.2 Disparity Estimating Performance 45
6.1.3 Ternary Neural Networks (TNNs) Performance 46
6.1.4 Paroxysmal Atrial Fibrillation Classification Performance 47

6.2 Future Work . 50

Bibliography 51

16

Contents xiii

II Included Papers 65

7 Paper A:
DeepMaker: A multi-objective optimization framework for deep
neural networks in embedded systems 67
7.1 Introduction . 69
7.2 Related Work . 71

7.2.1 Automatic Design of Deep Neural Network Architecture 71
Hyperparameter Optimization 71
Reinforcement Learning 72
Evolutionary-based approaches 72

7.2.2 Neural Network Pruning 73
7.2.3 Automatic Code Approximation Frameworks 73

7.3 Preliminaries . 74
7.3.1 Convolutional Neural Networks (CNNs) 74
7.3.2 Multi-Objective Optimization (MOO) 75

7.4 The proposed framework . 76
7.4.1 Design Space Exploration 77
7.4.2 Neural Network Pruning 82

7.5 Experimental results . 82
7.5.1 Training Datasets . 83
7.5.2 Design Space Exploration 83
7.5.3 Neural Network Pruning 87
7.5.4 Hardware Implementation 88

7.6 Conclusions . 94
Bibliography . 95

8 Paper B:
TOT-Net: An Endeavour Toward Optimizing Ternary Neural Net-
works 101
8.1 Introduction . 103
8.2 Background . 105

8.2.1 Convolutional neural networks 105
8.2.2 Piece-wise activation functions 106
8.2.3 Ternary weight network 107

8.3 Related Work . 108

Contents xiii

II Included Papers 65

7 Paper A:
DeepMaker: A multi-objective optimization framework for deep
neural networks in embedded systems 67
7.1 Introduction . 69
7.2 Related Work . 71

7.2.1 Automatic Design of Deep Neural Network Architecture 71
Hyperparameter Optimization 71
Reinforcement Learning 72
Evolutionary-based approaches 72

7.2.2 Neural Network Pruning 73
7.2.3 Automatic Code Approximation Frameworks 73

7.3 Preliminaries . 74
7.3.1 Convolutional Neural Networks (CNNs) 74
7.3.2 Multi-Objective Optimization (MOO) 75

7.4 The proposed framework . 76
7.4.1 Design Space Exploration 77
7.4.2 Neural Network Pruning 82

7.5 Experimental results . 82
7.5.1 Training Datasets . 83
7.5.2 Design Space Exploration 83
7.5.3 Neural Network Pruning 87
7.5.4 Hardware Implementation 88

7.6 Conclusions . 94
Bibliography . 95

8 Paper B:
TOT-Net: An Endeavour Toward Optimizing Ternary Neural Net-
works 101
8.1 Introduction . 103
8.2 Background . 105

8.2.1 Convolutional neural networks 105
8.2.2 Piece-wise activation functions 106
8.2.3 Ternary weight network 107

8.3 Related Work . 108

17

8.3.1 Network Quantization 108
8.3.2 Neural Network Optimization 109

8.4 Architecture . 110
8.4.1 Ternary Neural Networks 110
8.4.2 Ternary Neural Networks Optimization 115

8.5 Experimental Results . 117
8.5.1 The Results of Classification Accuracy 117
8.5.2 Activation Function 119
8.5.3 Learning Rate . 120

8.6 Conclusion and Future Work 122
Bibliography . 123

9 Paper C:
TAS: Ternarized Neural Architecture Search for Resource-Constrained
Edge Devices 129
9.1 Introduction . 2
9.2 Related Work . 3
9.3 Ternarized Neural Architecture Search 4

9.3.1 Specialized Ternary NAS: Motivation 4
9.3.2 Search Space . 5
9.3.3 Cell Template for TAS 6
9.3.4 New Ternary Quantization Method 7

Ternary Weights . 7
9.3.5 Search Objective . 9

9.4 Experiments . 10
9.4.1 Experimental Setup 10
9.4.2 Results on CIFAR-10 11
9.4.3 Results on FPGA Implementation 12

9.5 Conclusion . 12
Bibliography . 13

10 Paper D:
FastStereoNet: A Fast Neural Architecture Search for Improving
the Inference of Disparity Estimation on Resource-Limited Plat-
forms 17
10.1 Introduction . 2

8.3.1 Network Quantization 108
8.3.2 Neural Network Optimization 109

8.4 Architecture . 110
8.4.1 Ternary Neural Networks 110
8.4.2 Ternary Neural Networks Optimization 115

8.5 Experimental Results . 117
8.5.1 The Results of Classification Accuracy 117
8.5.2 Activation Function 119
8.5.3 Learning Rate . 120

8.6 Conclusion and Future Work 122
Bibliography . 123

9 Paper C:
TAS: Ternarized Neural Architecture Search for Resource-Constrained
Edge Devices 129
9.1 Introduction . 2
9.2 Related Work . 3
9.3 Ternarized Neural Architecture Search 4

9.3.1 Specialized Ternary NAS: Motivation 4
9.3.2 Search Space . 5
9.3.3 Cell Template for TAS 6
9.3.4 New Ternary Quantization Method 7

Ternary Weights . 7
9.3.5 Search Objective . 9

9.4 Experiments . 10
9.4.1 Experimental Setup 10
9.4.2 Results on CIFAR-10 11
9.4.3 Results on FPGA Implementation 12

9.5 Conclusion . 12
Bibliography . 13

10 Paper D:
FastStereoNet: A Fast Neural Architecture Search for Improving
the Inference of Disparity Estimation on Resource-Limited Plat-
forms 17
10.1 Introduction . 2

18

Contents xv

10.2 Related Work . 4
10.2.1 Disparity Estimation on Resource-limited devices . . . 4
10.2.2 Neural Architecture Search (NAS) 5

Macro NAS . 5
Micro NAS . 6
Improving NAS Efficiency 7

10.3 Architecture Design Space 7
10.3.1 Siamese Network Architecture 7
10.3.2 Representation of CNN Architectures 9
10.3.3 Efficient NAS by Transferred Weights Mechanism . . 11

10.4 Search Strategy . 13
10.4.1 Proposed Method . 13
10.4.2 FastStereoNet Practical Proof of Convergence 16
10.4.3 FastStereoNet Complexity Analysis 16

10.5 Experimental Setup . 19
10.5.1 Evaluation Dataset 19
10.5.2 Hardware Specifications 19
10.5.3 Experimental Configuration 19

10.6 Results . 21
10.6.1 Disparity Estimation Performance 22
10.6.2 Estimation Error Across Different Metrics 24
10.6.3 Smoothing Comparison 24
10.6.4 Search Convergence Analysis 24
10.6.5 Analyzing Search Methods 26
10.6.6 Reproducibility of the Results 27
10.6.7 FPGA Implementation Results 27

10.7 Conclusion . 33
10.8 Disparity Estimation Pipeline A1
10.9 Simulated Annealing vs Genetic Algorithm A2
10.10Traditional Complexity Analysis of FastStereoNet A2
10.11Empirical Complexity Analysis of FastStereoNet A3
10.12Smoothing FastStereoNet Outputs A3
10.13Hardware Implementation Details A5
10.14Latency Prediction . A7
10.15Reproducibility of Results A13
10.16Analyzing Frequency Selection of the Dominant Operations . A15

Contents xv

10.2 Related Work . 4
10.2.1 Disparity Estimation on Resource-limited devices . . . 4
10.2.2 Neural Architecture Search (NAS) 5

Macro NAS . 5
Micro NAS . 6
Improving NAS Efficiency 7

10.3 Architecture Design Space 7
10.3.1 Siamese Network Architecture 7
10.3.2 Representation of CNN Architectures 9
10.3.3 Efficient NAS by Transferred Weights Mechanism . . 11

10.4 Search Strategy . 13
10.4.1 Proposed Method . 13
10.4.2 FastStereoNet Practical Proof of Convergence 16
10.4.3 FastStereoNet Complexity Analysis 16

10.5 Experimental Setup . 19
10.5.1 Evaluation Dataset 19
10.5.2 Hardware Specifications 19
10.5.3 Experimental Configuration 19

10.6 Results . 21
10.6.1 Disparity Estimation Performance 22
10.6.2 Estimation Error Across Different Metrics 24
10.6.3 Smoothing Comparison 24
10.6.4 Search Convergence Analysis 24
10.6.5 Analyzing Search Methods 26
10.6.6 Reproducibility of the Results 27
10.6.7 FPGA Implementation Results 27

10.7 Conclusion . 33
10.8 Disparity Estimation Pipeline A1
10.9 Simulated Annealing vs Genetic Algorithm A2
10.10Traditional Complexity Analysis of FastStereoNet A2
10.11Empirical Complexity Analysis of FastStereoNet A3
10.12Smoothing FastStereoNet Outputs A3
10.13Hardware Implementation Details A5
10.14Latency Prediction . A7
10.15Reproducibility of Results A13
10.16Analyzing Frequency Selection of the Dominant Operations . A15

19

10.17Illustration of the FastStereoNet optimized architecture A17
Bibliography . A17
Bibliography . A23

11 Paper E:
NAS-PxAF: Neural Architecture Search for Accurate Detecting Parox-
ysmal Atrial Fibrillation 31
11.1 Introduction . 2
11.2 Background: Paroxysmal Atrial Fibrillation 3
11.3 Related Works . 5

11.3.1 NAS for ECG . 5
11.3.2 PxAF Diagnosis Using DL Methods 6

11.4 Methodology . 6
11.4.1 Method Overview 6
11.4.2 ECG Signal Processing 8
11.4.3 CNN Architecture Search 8

11.5 Experimental Setup . 10
11.5.1 Database Preparation 10
11.5.2 Configuration Setup 11
11.5.3 Baseline for Comparison 11

11.6 Performance Measurement 13
11.7 Experimental Results . 13

11.7.1 PxAF Classification Performance 13
11.7.2 ROC Analysis . 13

11.8 Discussion . 16
11.9 Conclusion . 18
Bibliography . 19

10.17Illustration of the FastStereoNet optimized architecture A17
Bibliography . A17
Bibliography . A23

11 Paper E:
NAS-PxAF: Neural Architecture Search for Accurate Detecting Parox-
ysmal Atrial Fibrillation 31
11.1 Introduction . 2
11.2 Background: Paroxysmal Atrial Fibrillation 3
11.3 Related Works . 5

11.3.1 NAS for ECG . 5
11.3.2 PxAF Diagnosis Using DL Methods 6

11.4 Methodology . 6
11.4.1 Method Overview 6
11.4.2 ECG Signal Processing 8
11.4.3 CNN Architecture Search 8

11.5 Experimental Setup . 10
11.5.1 Database Preparation 10
11.5.2 Configuration Setup 11
11.5.3 Baseline for Comparison 11

11.6 Performance Measurement 13
11.7 Experimental Results . 13

11.7.1 PxAF Classification Performance 13
11.7.2 ROC Analysis . 13

11.8 Discussion . 16
11.9 Conclusion . 18
Bibliography . 19

20

I

Thesis

1

I

Thesis

1

21

22

Chapter 1

Introduction

1.1 Introduction

Learning is a task that humans can perform very well in most circumstances but
is difficult for computers to accomplish. Machine learning is the field devoted
to studying how computers can learn and improve their performance by gaining
knowledge, making intelligent decisions, or recognizing complex patterns from
a set of data.

Deep Neural Network (DNN) is a subset of machine learning algorithms
containing more than one hidden layer and can be used to classify multi-
dimensional input data. Recently, DNNs have made unprecedented progress in
many learning tasks such as pattern recognition [1], image processing [2], im-
age classification [3], speech processing [4], Natural language processing [5],
and signal processing [6]. Advantages of DNNs against traditional machine
learning techniques include requiring less domain knowledge for the problem
they are trying to solve [3]. In addition, DNNs easily scale because accuracy
improvement usually is achievable either by augmenting the training dataset
or increasing the complexity of the network architecture. On the other hand,
shallow learning models such as decision trees and Support Vector Machines
(SVMs) are inefficient for many modern applications. Due to the vast usage
of DNNs, they have been deployed in many platforms, from high-performance
workstations to resource-constrained edge devices. Convolutional Neural Net-
works (CNNs) are one of the most important Deep Learning (DL) algorithms

3

Chapter 1

Introduction

1.1 Introduction

Learning is a task that humans can perform very well in most circumstances but
is difficult for computers to accomplish. Machine learning is the field devoted
to studying how computers can learn and improve their performance by gaining
knowledge, making intelligent decisions, or recognizing complex patterns from
a set of data.

Deep Neural Network (DNN) is a subset of machine learning algorithms
containing more than one hidden layer and can be used to classify multi-
dimensional input data. Recently, DNNs have made unprecedented progress in
many learning tasks such as pattern recognition [1], image processing [2], im-
age classification [3], speech processing [4], Natural language processing [5],
and signal processing [6]. Advantages of DNNs against traditional machine
learning techniques include requiring less domain knowledge for the problem
they are trying to solve [3]. In addition, DNNs easily scale because accuracy
improvement usually is achievable either by augmenting the training dataset
or increasing the complexity of the network architecture. On the other hand,
shallow learning models such as decision trees and Support Vector Machines
(SVMs) are inefficient for many modern applications. Due to the vast usage
of DNNs, they have been deployed in many platforms, from high-performance
workstations to resource-constrained edge devices. Convolutional Neural Net-
works (CNNs) are one of the most important Deep Learning (DL) algorithms

3

23

that provide highest accuracy for many computer vision (e.g., depth estima-
tion [7], object detection [8], coronavirus detection from X-ray- or CT- images
[9], etc) and biomedical signal processing (e.g., heart arrhythmia classification
[10], lung sound classification [11]) tasks.

The life-cycle of CNNs comprises two major stages as described in the fol-
lowing: Stage 1: Design & Train. Designing and training a CNN with the pri-
mary goal of achieving maximum accuracy and inference efficiency. Despite
the success of manually designing DL models, they do not always scale up with
increasing model complexity. They also require massive trial-and-error result-
ing in enormous costs for both human and computational resources. Neural
Architecture Search (NAS) emerged as a viable solution to automatically de-
sign efficient CNNs for a specific task requiring little human effort [12]. Stage
2: Inference. Inference is the deployment of a trained DL model to a target
device using low-level compilation tools [13]. Despite significant advances of
CNNs in both stages, CNNs still suffer from implementation difficulties:

• CNNs’ impressive results have been obtained by increasing the CNN
computational size leading to explosive training cost doubling every few
months [14]. Handling such a large amount of computational require-
ments poses severe challenges for scalable design and efficient model
deployment. Furthermore, it can produce excessive carbon dioxide, as
NAS is estimated to produce up to 284019 Kg of CO2 emissions [15].
This can result in harmful impacts on climate and severe consequences
for ecosystems and biodiversity [16], as CO2 is the leading cause of
global warming.

• CNN applications suffer from the skyrocketing increase of the data vol-
ume caused by the billions of edge devices (up to 30.9 billion by 2025)
connected across the globe [17], which are expected to create over 175
ZB of data by 2025 [18]. Alongside decreasing the innovation land-
scape of DL models, it reduces the efficiency of commodity computing
devices.

• For more accurate results, CNNs are becoming more complex models
containing hundreds of deep layers and millions of floating-point oper-
ations. Thus, having too many trainable parameters negatively impacts
computational performance. Due to limited processing and power bud-

that provide highest accuracy for many computer vision (e.g., depth estima-
tion [7], object detection [8], coronavirus detection from X-ray- or CT- images
[9], etc) and biomedical signal processing (e.g., heart arrhythmia classification
[10], lung sound classification [11]) tasks.

The life-cycle of CNNs comprises two major stages as described in the fol-
lowing: Stage 1: Design & Train. Designing and training a CNN with the pri-
mary goal of achieving maximum accuracy and inference efficiency. Despite
the success of manually designing DL models, they do not always scale up with
increasing model complexity. They also require massive trial-and-error result-
ing in enormous costs for both human and computational resources. Neural
Architecture Search (NAS) emerged as a viable solution to automatically de-
sign efficient CNNs for a specific task requiring little human effort [12]. Stage
2: Inference. Inference is the deployment of a trained DL model to a target
device using low-level compilation tools [13]. Despite significant advances of
CNNs in both stages, CNNs still suffer from implementation difficulties:

• CNNs’ impressive results have been obtained by increasing the CNN
computational size leading to explosive training cost doubling every few
months [14]. Handling such a large amount of computational require-
ments poses severe challenges for scalable design and efficient model
deployment. Furthermore, it can produce excessive carbon dioxide, as
NAS is estimated to produce up to 284019 Kg of CO2 emissions [15].
This can result in harmful impacts on climate and severe consequences
for ecosystems and biodiversity [16], as CO2 is the leading cause of
global warming.

• CNN applications suffer from the skyrocketing increase of the data vol-
ume caused by the billions of edge devices (up to 30.9 billion by 2025)
connected across the globe [17], which are expected to create over 175
ZB of data by 2025 [18]. Alongside decreasing the innovation land-
scape of DL models, it reduces the efficiency of commodity computing
devices.

• For more accurate results, CNNs are becoming more complex models
containing hundreds of deep layers and millions of floating-point oper-
ations. Thus, having too many trainable parameters negatively impacts
computational performance. Due to limited processing and power bud-

24

1.1 Introduction 5

get, the problem is more pronounced in deploying CNNs on resource-
constrained edge devices.

Many prior works attempted to reduce the computational complexity and
frequent memory accesses of CNNs (see Section 5). In general, the efficiency
of the CNN implementation can be enhanced via the following techniques:

1. Many CNN hardware accelerators are proposed to overcome the compu-
tational cost and huge memory footprint of CNNs by parallel computing
and efficient data reuse [19, 20, 21].

2. Model pruning is a practical method to minimize the size of the net-
work and refine the network accuracy by removing redundant network
connections and fine-tuning weights [22, 23, 24].

3. Low-rank matrix factorization is a technique that can reduce the compu-
tation and memory costs of DNNs by decomposing a large matrix into
multiple smaller ones [25, 26, 27].

4. Model quantization is an impressive method trying to reduce the mem-
ory footprint and computation complexity of CNNs by representing the
floating-point weights and/or activation functions as fixed-point and with
fewer bits [28, 29, 30, 31].

5. Hardware-aware NAS methods jointly optimize multiple objectives en-
abled by considering either a proxy (e.g., model operations) or latency
estimators to involve the awareness of hardware performance as a NAS
objective [32, 33, 34].

This thesis aims to devise novel methods for designing CNN architectures
that maximize efficiency and minimize design costs. Considering the limited
time of the Ph.D. studies, this dissertation focuses on the fourth (Paper B and
Paper C) and the fifth (Paper A, Paper D, and Paper E) approaches to amortize
the design cost of CNNs and improve the model efficiency at inference time.

In Papers A, D, and E, the main focus is on proposing a cost-efficient NAS
technique in order to improve the accuracy of image classification (Paper A),
disparity estimation (Paper D), and arrhythmia classification (Paper E) tasks.
Additionally, Papers A and D reduce the computational burden of CNNs by

1.1 Introduction 5

get, the problem is more pronounced in deploying CNNs on resource-
constrained edge devices.

Many prior works attempted to reduce the computational complexity and
frequent memory accesses of CNNs (see Section 5). In general, the efficiency
of the CNN implementation can be enhanced via the following techniques:

1. Many CNN hardware accelerators are proposed to overcome the compu-
tational cost and huge memory footprint of CNNs by parallel computing
and efficient data reuse [19, 20, 21].

2. Model pruning is a practical method to minimize the size of the net-
work and refine the network accuracy by removing redundant network
connections and fine-tuning weights [22, 23, 24].

3. Low-rank matrix factorization is a technique that can reduce the compu-
tation and memory costs of DNNs by decomposing a large matrix into
multiple smaller ones [25, 26, 27].

4. Model quantization is an impressive method trying to reduce the mem-
ory footprint and computation complexity of CNNs by representing the
floating-point weights and/or activation functions as fixed-point and with
fewer bits [28, 29, 30, 31].

5. Hardware-aware NAS methods jointly optimize multiple objectives en-
abled by considering either a proxy (e.g., model operations) or latency
estimators to involve the awareness of hardware performance as a NAS
objective [32, 33, 34].

This thesis aims to devise novel methods for designing CNN architectures
that maximize efficiency and minimize design costs. Considering the limited
time of the Ph.D. studies, this dissertation focuses on the fourth (Paper B and
Paper C) and the fifth (Paper A, Paper D, and Paper E) approaches to amortize
the design cost of CNNs and improve the model efficiency at inference time.

In Papers A, D, and E, the main focus is on proposing a cost-efficient NAS
technique in order to improve the accuracy of image classification (Paper A),
disparity estimation (Paper D), and arrhythmia classification (Paper E) tasks.
Additionally, Papers A and D reduce the computational burden of CNNs by

25

considering the complexity of the network as the second search objective. Pa-
per C extends the idea of Paper B by integrating the ternarization mechanism
into the NAS process to improve the accuracy of ternarized networks. The
overview of the thesis contributions is shown in Figure 1.1.

Frontend

Backend

Search Engine Performance Evaluation
FastStereoNet

(Paper D)
NAS-PxAF

(Paper E)

TAS

(Paper D)

TOT-Net
(Paper A)

Paper A: Accuracy & #Params
Paper B: Accuracy & #Params
Paper C: Accuracy & #Params

Paper D: Accuracy & Latency

Paper E: Accuracy

CuDNN

DeepHLS Vivado

OpenVINO

Quantization
TOT-Net

(Paper B)
TAS

(Paper C)

DeepMaker

(Paper A)

Applications
(i) Disparity Estimation (ii) Image Classification (iii) Heart Arrhythmia Classification

Optimal Designed Network

Figure 1.1: The overview of the contributions of the thesis.

1.2 Thesis Outline
This thesis is organized into two parts. The first part includes six chapters,
which are presented in the following order: Chapter 1 gives an overview of
the thesis. Chapter 2 presents background and preliminaries of this thesis.
Chapter 3 presents research questions, research challenges, research goals, and
the research methodology. In Chapter 4, we describe the contributions of the
thesis to the realization of the research goals. Chapter 5 reviews significant

considering the complexity of the network as the second search objective. Pa-
per C extends the idea of Paper B by integrating the ternarization mechanism
into the NAS process to improve the accuracy of ternarized networks. The
overview of the thesis contributions is shown in Figure 1.1.

Frontend

Backend

Search Engine Performance Evaluation
FastStereoNet

(Paper D)
NAS-PxAF

(Paper E)

TAS

(Paper D)

TOT-Net
(Paper A)

Paper A: Accuracy & #Params
Paper B: Accuracy & #Params
Paper C: Accuracy & #Params

Paper D: Accuracy & Latency

Paper E: Accuracy

CuDNN

DeepHLS Vivado

OpenVINO

Quantization
TOT-Net

(Paper B)
TAS

(Paper C)

DeepMaker

(Paper A)

Applications
(i) Disparity Estimation (ii) Image Classification (iii) Heart Arrhythmia Classification

Optimal Designed Network

Figure 1.1: The overview of the contributions of the thesis.

1.2 Thesis Outline
This thesis is organized into two parts. The first part includes six chapters,
which are presented in the following order: Chapter 1 gives an overview of
the thesis. Chapter 2 presents background and preliminaries of this thesis.
Chapter 3 presents research questions, research challenges, research goals, and
the research methodology. In Chapter 4, we describe the contributions of the
thesis to the realization of the research goals. Chapter 5 reviews significant

26

1.2 Thesis Outline 7

research works in the domain of NAS and network ternarization. Finally, in
Chapter 6, we conclude the first part of the thesis with a discussion on our
key results as well as possible directions for future work. The second part of
the thesis is given as a collection of the included publications that present the
thesis’s technical contributions in detail.

1.2 Thesis Outline 7

research works in the domain of NAS and network ternarization. Finally, in
Chapter 6, we conclude the first part of the thesis with a discussion on our
key results as well as possible directions for future work. The second part of
the thesis is given as a collection of the included publications that present the
thesis’s technical contributions in detail.

27

28

Chapter 2

Background

In this chapter, we first present Deep Learning (DL) and Convolutional Neural
Networks (CNNs). Next, we present the preliminaries of neural architecture
search (NAS).

2.1 Deep Learning

Learning is a task that humans can perform very well in most circumstances
but is difficult for computers to accomplish. Machine learning is the field de-
voted to studying how computers can learn and/or improve their performance
by gaining knowledge, making predictions, making intelligent decisions, or
recognizing complex patterns from a set of data.

Deep Neural Networks (DNNs) are a subset of machine learning algorithms
that are proposed to classify multi-dimensional input data. Recently, DNNs
provide maximum performance in many learning tasks such as pattern recog-
nition [1], image processing [2], image classification [3], speech processing
[4], Natural language processing [5], and signal processing [6]. Advantages
of DNNs against traditional machine learning techniques include providing the
best results for large-scale datasets and requiring less domain knowledge for
the problem they are trying to solve [3].

We briefly present the theory behind neural networks in the rest of this
section. Afterward, we introduce convolutional neural networks as the target

9

Chapter 2

Background

In this chapter, we first present Deep Learning (DL) and Convolutional Neural
Networks (CNNs). Next, we present the preliminaries of neural architecture
search (NAS).

2.1 Deep Learning

Learning is a task that humans can perform very well in most circumstances
but is difficult for computers to accomplish. Machine learning is the field de-
voted to studying how computers can learn and/or improve their performance
by gaining knowledge, making predictions, making intelligent decisions, or
recognizing complex patterns from a set of data.

Deep Neural Networks (DNNs) are a subset of machine learning algorithms
that are proposed to classify multi-dimensional input data. Recently, DNNs
provide maximum performance in many learning tasks such as pattern recog-
nition [1], image processing [2], image classification [3], speech processing
[4], Natural language processing [5], and signal processing [6]. Advantages
of DNNs against traditional machine learning techniques include providing the
best results for large-scale datasets and requiring less domain knowledge for
the problem they are trying to solve [3].

We briefly present the theory behind neural networks in the rest of this
section. Afterward, we introduce convolutional neural networks as the target

9

29

optimization tasks in this thesis.

2.1.1 Theory behind Neural Networks

Neural Network (NN), so-called Multi-layer Perceptron (MLP), is constructed
by artificial neurons grouped in one or more layers. Figure 2.1 pictures the
functionality of an artificial neuron. An artificial neuron consists of input val-
ues, weights, a bias, and an activation function. Each layer is either an input
layer, hidden layer, or output layer, where the hidden layers extract features of
input data to produce the final output (see Figure 2.2.a). In general, the dif-
ferent layers of an MLP have a different number of neurons. Regarding the
functionality of artificial neurons, the input is multiplied by the weight, then
added with the bias, which produces the activation function input. Together
the summation and activation function represents the transfer function defining
the neuron output. Hence the characteristics of the NN are determined by the
transfer function [35].

Figure 2.1: Structure of an artificial neuron, where x represents the neuron input, w
weight, netj the activation function input, θj the activation function threshold, and oj
is the output of neuron.

Transfer Function

As we mentioned before, the summation and the activation function compose
the transfer function. According to [36], the activation functions are catego-
rized in three classes: activation by inner product, distance, or a combination
of both. Activation by inner product, also known as weighted activation, is a

optimization tasks in this thesis.

2.1.1 Theory behind Neural Networks

Neural Network (NN), so-called Multi-layer Perceptron (MLP), is constructed
by artificial neurons grouped in one or more layers. Figure 2.1 pictures the
functionality of an artificial neuron. An artificial neuron consists of input val-
ues, weights, a bias, and an activation function. Each layer is either an input
layer, hidden layer, or output layer, where the hidden layers extract features of
input data to produce the final output (see Figure 2.2.a). In general, the dif-
ferent layers of an MLP have a different number of neurons. Regarding the
functionality of artificial neurons, the input is multiplied by the weight, then
added with the bias, which produces the activation function input. Together
the summation and activation function represents the transfer function defining
the neuron output. Hence the characteristics of the NN are determined by the
transfer function [35].

Figure 2.1: Structure of an artificial neuron, where x represents the neuron input, w
weight, netj the activation function input, θj the activation function threshold, and oj
is the output of neuron.

Transfer Function

As we mentioned before, the summation and the activation function compose
the transfer function. According to [36], the activation functions are catego-
rized in three classes: activation by inner product, distance, or a combination
of both. Activation by inner product, also known as weighted activation, is a

30

2.1 Deep Learning 11

commonly used technique that establishes the base of sigmoidal transfer func-
tions. The base of Gaussian transfer functions is activation by distance defined
as the euclidean distance between the input vectors and a reference. The neural
network layers or artificial neurons are not required to utilize the same activa-
tion functions [37]. With that said, the proper selection of network activation
functions significantly influences the performance of DNNs. Some frequently
used activation functions are discussed in the following [38]:

Sigmoidal activation function. It is a non-linear function that is repeatedly
used in subsequent layers, affecting the output according to Equation 11.1. The
function transforms the input into a value between zero and one, with the hard
indications tendency. In other words, the output is more likely to be a high
value or a low value rather than a middle value.

F (n) =
1

1 + e−n
(2.1)

However, the main disadvantage of this approach is not responding to input
values close to the function endpoints causing the vanishing gradients problem.
The problem determines whether the neuron activates or not, leading to slow
down the learning process [35, 39].

Tanh activation function. Tanh is a scaled version of the sigmoidal activa-
tion functions. Therefore it inherits sigmoidal properties such as non-linearity.
Tanh transforms the input value between minus one to one by using Equa-
tion 9.1.

F (n) =
2

1 + e−2n
− 1 (2.2)

Tanh suffers from the vanishing gradients problem for the same reason as
sigmoid. The main distinction between the two is their sensitivity to input data.
Tanh is more sensitive than sigmoid since it has sharper derivative [39].

Relu. [40] It is a popular non-linear activation function. The output of
Relu produces i as output if i is positive and zero as output if i is negative
(Equation 11.2). Opposed to Tanh, the output of Relu is not shielded by the
function allowing the output to be in the range of zero to infinity.

F (n) = max(0, n) (2.3)

Not activating neurons when the input value is negative has both benefits
and drawbacks. Although less activated neurons are superior for increasing

2.1 Deep Learning 11

commonly used technique that establishes the base of sigmoidal transfer func-
tions. The base of Gaussian transfer functions is activation by distance defined
as the euclidean distance between the input vectors and a reference. The neural
network layers or artificial neurons are not required to utilize the same activa-
tion functions [37]. With that said, the proper selection of network activation
functions significantly influences the performance of DNNs. Some frequently
used activation functions are discussed in the following [38]:

Sigmoidal activation function. It is a non-linear function that is repeatedly
used in subsequent layers, affecting the output according to Equation 11.1. The
function transforms the input into a value between zero and one, with the hard
indications tendency. In other words, the output is more likely to be a high
value or a low value rather than a middle value.

F (n) =
1

1 + e−n
(2.1)

However, the main disadvantage of this approach is not responding to input
values close to the function endpoints causing the vanishing gradients problem.
The problem determines whether the neuron activates or not, leading to slow
down the learning process [35, 39].

Tanh activation function. Tanh is a scaled version of the sigmoidal activa-
tion functions. Therefore it inherits sigmoidal properties such as non-linearity.
Tanh transforms the input value between minus one to one by using Equa-
tion 9.1.

F (n) =
2

1 + e−2n
− 1 (2.2)

Tanh suffers from the vanishing gradients problem for the same reason as
sigmoid. The main distinction between the two is their sensitivity to input data.
Tanh is more sensitive than sigmoid since it has sharper derivative [39].

Relu. [40] It is a popular non-linear activation function. The output of
Relu produces i as output if i is positive and zero as output if i is negative
(Equation 11.2). Opposed to Tanh, the output of Relu is not shielded by the
function allowing the output to be in the range of zero to infinity.

F (n) = max(0, n) (2.3)

Not activating neurons when the input value is negative has both benefits
and drawbacks. Although less activated neurons are superior for increasing

31

efficiency in deep networks, it gives birth to a negative phenomenon called
dying Relu. This phenomenon results from a zero gradient, which happens
when the input of the neuron is repeatedly a negative value, causing the neuron
to stop learning. Leaky Relu [41] is a variation of Relu that attempts to avoid
a zero gradient by multiplying the 0.01 value to the Relu negative inputs for
minimizing sensitivity to the dying ReLU problem [39].

Neural Network Training

A dataset represents the prospective environment and required objects of inter-
est to train the NN. The dataset is initially divided into two sets: train and test.
The training data are divided into sets of training and validation. In general,
it is optional how to divide the dataset into these three sets. Hagan et al. [35]
propose to consider 70% for training, 15% for validation, and the remaining
15% for test. In some scenarios, when we deal with huge datasets, we can
consider 90% for training, 5% for validation, and the remaining 5% for the
test. NNs update initial weights, which are usually selected at random based
on the error made from the training dataset. The backpropagation algorithm
alters the network weights in every epoch to recognize the optimal weights.
Epoch is one iteration of the entire training dataset. For most of the time, the
dataset is too large to be processed by the hardware platforms at once. Thus
one epoch is divided into batches, or mini-batches [42]. The training will be
performed repeatedly until the model is deemed sufficient, or the learning is
stopped [43, 44].

Performance Generalization

The performance of neural networks is defined as model’s ability to general-
ize, which is evaluated by measuring how the model performs on unseen data.
To provide a robust model, increasing the generalization performance is crit-
ical. However, the generalization performance is affected by the presence of
errors, such as interpolation and extrapolation errors [35]. Interpolation errors,
known as overfitting, occur when the prediction accuracy is high for the train-
ing dataset and arbitrarily exposed to a new dataset [45, 46, 35]. Extrapolation
error, known as underfitting, happens due to a lack of variations in the training
dataset. Underfitting causes low prediction accuracy [46, 35]. The concept of

efficiency in deep networks, it gives birth to a negative phenomenon called
dying Relu. This phenomenon results from a zero gradient, which happens
when the input of the neuron is repeatedly a negative value, causing the neuron
to stop learning. Leaky Relu [41] is a variation of Relu that attempts to avoid
a zero gradient by multiplying the 0.01 value to the Relu negative inputs for
minimizing sensitivity to the dying ReLU problem [39].

Neural Network Training

A dataset represents the prospective environment and required objects of inter-
est to train the NN. The dataset is initially divided into two sets: train and test.
The training data are divided into sets of training and validation. In general,
it is optional how to divide the dataset into these three sets. Hagan et al. [35]
propose to consider 70% for training, 15% for validation, and the remaining
15% for test. In some scenarios, when we deal with huge datasets, we can
consider 90% for training, 5% for validation, and the remaining 5% for the
test. NNs update initial weights, which are usually selected at random based
on the error made from the training dataset. The backpropagation algorithm
alters the network weights in every epoch to recognize the optimal weights.
Epoch is one iteration of the entire training dataset. For most of the time, the
dataset is too large to be processed by the hardware platforms at once. Thus
one epoch is divided into batches, or mini-batches [42]. The training will be
performed repeatedly until the model is deemed sufficient, or the learning is
stopped [43, 44].

Performance Generalization

The performance of neural networks is defined as model’s ability to general-
ize, which is evaluated by measuring how the model performs on unseen data.
To provide a robust model, increasing the generalization performance is crit-
ical. However, the generalization performance is affected by the presence of
errors, such as interpolation and extrapolation errors [35]. Interpolation errors,
known as overfitting, occur when the prediction accuracy is high for the train-
ing dataset and arbitrarily exposed to a new dataset [45, 46, 35]. Extrapolation
error, known as underfitting, happens due to a lack of variations in the training
dataset. Underfitting causes low prediction accuracy [46, 35]. The concept of

32

2.1 Deep Learning 13

methods that can be directly applied to prevent the overfitting and underfitting
problems is described below.

Dropout regularization. Dropout is a technique used in the training pro-
cess for preventing the overfitting problem. Dropout removes neurons ran-
domly during training to take samples from different narrowed-down architec-
tures. Figure 2.2 shows the difference between a network leveraging dropout
at training time and a network that does not. The amount of neurons to drop
is determined by the retain probability p. It is recommended to select a high
p value for input layers and convolutional layers, while others get a standard
probability of 0.5 [47, 48].

Batch normalization. Normalization is applied for each mini-batch in or-
der to address the internal covariance shift problem. This technique normalizes
the input to decrease the required training time which results in producing a
non-deterministic output.

Transfer learning. The main aim of transfer learning is to reduce the time
required to find the optimal neural network weights. Transfer learning reuses
knowledge from a pre-trained model on a new task. The method may decrease
the number of required training epochs [49]. In addition, transfer learning can
improve generalization performance since the effect of viewing the first dataset
persists even after extensive training [50].

Pre-training. We train a network on a dataset before re-training and fine-
tuning the same network on another dataset to decrease the training error. This
technique improves the generalization performance for smaller datasets, while
large datasets reap more generalization benefits [51].

2.1.2 Convolutional Neural Network

In recent years, several deep learning models have been proposed to improve
the accuracy of different learning tasks. Convolutional Neural Network (CNN)
is one of the most popular deep learning architectures that attained state-of-the-
art results in many application domains, especially in computer vision tasks
[3]. CNNs have been successfully deployed on many platforms, from high-
performance workstations to mobile embedded devices.

In general, a CNN consists of multiple back-to-back layers connected in a
feed-forward manner. The main layers include the convolution, normalization,
pooling, and fully-connected layers. The convolutional layer extracts high-

2.1 Deep Learning 13

methods that can be directly applied to prevent the overfitting and underfitting
problems is described below.

Dropout regularization. Dropout is a technique used in the training pro-
cess for preventing the overfitting problem. Dropout removes neurons ran-
domly during training to take samples from different narrowed-down architec-
tures. Figure 2.2 shows the difference between a network leveraging dropout
at training time and a network that does not. The amount of neurons to drop
is determined by the retain probability p. It is recommended to select a high
p value for input layers and convolutional layers, while others get a standard
probability of 0.5 [47, 48].

Batch normalization. Normalization is applied for each mini-batch in or-
der to address the internal covariance shift problem. This technique normalizes
the input to decrease the required training time which results in producing a
non-deterministic output.

Transfer learning. The main aim of transfer learning is to reduce the time
required to find the optimal neural network weights. Transfer learning reuses
knowledge from a pre-trained model on a new task. The method may decrease
the number of required training epochs [49]. In addition, transfer learning can
improve generalization performance since the effect of viewing the first dataset
persists even after extensive training [50].

Pre-training. We train a network on a dataset before re-training and fine-
tuning the same network on another dataset to decrease the training error. This
technique improves the generalization performance for smaller datasets, while
large datasets reap more generalization benefits [51].

2.1.2 Convolutional Neural Network

In recent years, several deep learning models have been proposed to improve
the accuracy of different learning tasks. Convolutional Neural Network (CNN)
is one of the most popular deep learning architectures that attained state-of-the-
art results in many application domains, especially in computer vision tasks
[3]. CNNs have been successfully deployed on many platforms, from high-
performance workstations to mobile embedded devices.

In general, a CNN consists of multiple back-to-back layers connected in a
feed-forward manner. The main layers include the convolution, normalization,
pooling, and fully-connected layers. The convolutional layer extracts high-

33

(a)

(b)

Figure 2.2: Illustrating a) an example of a NN architecture, and b) the same NN archi-
tecture during one mini-batch of the dropout regularization.

level abstraction of its inputs called a feature map by using various filters.
Equation 8.1 shows the operation of a 3D convolutional layer that convolves
the inputs via a filter W ∈ RC×X×Y for each feature map where C, X , and Y

are the number of input channels and spatial dimensions of the filter, respec-
tively. Many multiply and accumulate (MAC) operations are required to obtain
one point of the output feature map.

(a)

(b)

Figure 2.2: Illustrating a) an example of a NN architecture, and b) the same NN archi-
tecture during one mini-batch of the dropout regularization.

level abstraction of its inputs called a feature map by using various filters.
Equation 8.1 shows the operation of a 3D convolutional layer that convolves
the inputs via a filter W ∈ RC×X×Y for each feature map where C, X , and Y

are the number of input channels and spatial dimensions of the filter, respec-
tively. Many multiply and accumulate (MAC) operations are required to obtain
one point of the output feature map.

34

2.2 Neural Architecture Search (NAS) 15

conv3D = fact(

C−1∑
k=0

X−1∑
i=0

Y−1∑
j=0

I [k] [X − i] [Y − j]×W [k] [i] [j]) (2.4)

Where conv3D, I , and W are the output feature maps, input feature maps,
and k × k weight filters, respectively. Pooling layers perform down-sampling
on data to decrease the amount of computation. Usually, in CNNs, pooling lay-
ers such as max pooling and average pooling are used after some convolutional
layers. Max-pooling selects the maximum feature map, and Average-pooling
computes the average feature maps in the pooling window. In general, after
distinguishing high-level abstraction features, fully-connected layers are em-
ployed for classification. A significant portion of computations, over 90%, are
performed in the convolutional layers where fully-connected layers are mainly
memory-bound [17]. Fig. 2.3 shows an overview of convolutional neural net-
works.

Input
Fully	connected	layers

Output	Layer

Cat

Dog

Figure 2.3: The general architecture of CNN.

2.2 Neural Architecture Search (NAS)

Neural Architecture Search (NAS) refers to the automatic optimization pro-
cess of network architectures for a new task. Figure 2.4 shows the overview
of the NAS algorithm. NAS starts with a set of predefined operations to form
the search space. NAS uses a search method to explore among a large num-
ber of candidate architectures. All selected candidate architectures are trained
and ranked. We perform the performance evaluation on the test set to evaluate
the network architecture. Then, the search method is updated according to the

2.2 Neural Architecture Search (NAS) 15

conv3D = fact(

C−1∑
k=0

X−1∑
i=0

Y−1∑
j=0

I [k] [X − i] [Y − j]×W [k] [i] [j]) (2.4)

Where conv3D, I , and W are the output feature maps, input feature maps,
and k × k weight filters, respectively. Pooling layers perform down-sampling
on data to decrease the amount of computation. Usually, in CNNs, pooling lay-
ers such as max pooling and average pooling are used after some convolutional
layers. Max-pooling selects the maximum feature map, and Average-pooling
computes the average feature maps in the pooling window. In general, after
distinguishing high-level abstraction features, fully-connected layers are em-
ployed for classification. A significant portion of computations, over 90%, are
performed in the convolutional layers where fully-connected layers are mainly
memory-bound [17]. Fig. 2.3 shows an overview of convolutional neural net-
works.

Input
Fully	connected	layers

Output	Layer

Cat

Dog

Figure 2.3: The general architecture of CNN.

2.2 Neural Architecture Search (NAS)

Neural Architecture Search (NAS) refers to the automatic optimization pro-
cess of network architectures for a new task. Figure 2.4 shows the overview
of the NAS algorithm. NAS starts with a set of predefined operations to form
the search space. NAS uses a search method to explore among a large num-
ber of candidate architectures. All selected candidate architectures are trained
and ranked. We perform the performance evaluation on the test set to evaluate
the network architecture. Then, the search method is updated according to the

35

ranking information of the previous candidates to obtain a set of new candi-
date architectures. After terminating the search process, the most promising
network architecture is delivered to the user as the final optimal architecture.
In the following, the functionality of each NAS stage is described.

Search Space

Search
Strategy

Candidate
Architecture

Evaluation
Strategy

Optimal
Architecture

Training and Rank

Select
Performance
Evaluation

Figure 2.4: The overview of the NAS framework.

2.2.1 Search Space

We classify the search spaces into two essential categories: discrete and con-
tinuous. Discrete NAS search strategies are mainly categorized as macro NAS
and micro NAS [52].

• Macro NAS strategies directly search the entire neural network architec-
ture. In other words, NAS finds an optimal network architecture within
a huge search space with the granularity of operations. Although the
macro NAS strategies yield a flexible search space, larger search spaces
enforce higher search costs. Figure 2.5 illustrates examples of two com-
mon macro NAS search spaces with a chain-based connection structure.
Figure 2.5.a shows a simple example of a chain-based architecture. Fig-
ure 2.5.b shows a chain-based architecture with supporting skip connec-
tions to provide more diversity.

• Micro NAS strategies, so-called cell-based NAS, use pre-learned neural
cells, where each cell is usually well-optimized for comparatively proxy
tasks. Figure 2.6 shows an example of NASNet [53] as one of the first
studies using this micro NAS idea. Micro NAS strategies try to find the
optimal interconnection among neural cells by stacking many copies of
the cells. Although micro NAS strategies drastically decrease the search
time, they might not be optimal for unseen tasks [54, 55].

ranking information of the previous candidates to obtain a set of new candi-
date architectures. After terminating the search process, the most promising
network architecture is delivered to the user as the final optimal architecture.
In the following, the functionality of each NAS stage is described.

Search Space

Search
Strategy

Candidate
Architecture

Evaluation
Strategy

Optimal
Architecture

Training and Rank

Select
Performance
Evaluation

Figure 2.4: The overview of the NAS framework.

2.2.1 Search Space

We classify the search spaces into two essential categories: discrete and con-
tinuous. Discrete NAS search strategies are mainly categorized as macro NAS
and micro NAS [52].

• Macro NAS strategies directly search the entire neural network architec-
ture. In other words, NAS finds an optimal network architecture within
a huge search space with the granularity of operations. Although the
macro NAS strategies yield a flexible search space, larger search spaces
enforce higher search costs. Figure 2.5 illustrates examples of two com-
mon macro NAS search spaces with a chain-based connection structure.
Figure 2.5.a shows a simple example of a chain-based architecture. Fig-
ure 2.5.b shows a chain-based architecture with supporting skip connec-
tions to provide more diversity.

• Micro NAS strategies, so-called cell-based NAS, use pre-learned neural
cells, where each cell is usually well-optimized for comparatively proxy
tasks. Figure 2.6 shows an example of NASNet [53] as one of the first
studies using this micro NAS idea. Micro NAS strategies try to find the
optimal interconnection among neural cells by stacking many copies of
the cells. Although micro NAS strategies drastically decrease the search
time, they might not be optimal for unseen tasks [54, 55].

36

2.2 Neural Architecture Search (NAS) 17

Input

Output

Input

Output

O1

O2

On

O1

O2

O3

Softmax Softmax

Z(1)

Z(2)

Z(n)

Z(1)

Z(2)

Z(n)

Z(1)

Z(2)

(a) (b)

Figure 2.5: (a) A simple example of a chain-based architecture. Oi is an operation and
the ith operation in the architecture and z(i) is the oi output feature map. (b) Extend
the example by adding skip connections to provide more diversity. The input passes a
series of operations to obtain the final output.

Input

Output

normal cell

reduction cell

normal cell xn

reduction cell

normal cell

xn

xn

add

identiySep
3x3

add

Sep
3x3

Sep
5x5

add

identiySep
5x5

add

Avg.
3x3

Avg.
3x3

Concatination

celli+1

celli-1

celli-2

add

Sep
3x3

Sep
5x5

celli

Figure 2.6: The structure of the search space leveraged in NASNet [53]. The search
space is based on two cells, including normal and reduction cells. Normal cell extracts
advanced features without changing the spatial resolution. The reduction cell reduces
the spatial resolution. Multiple normal cells are connected to a reduction cell to design
the final architecture, and this structure is repeated multiple times.

2.2 Neural Architecture Search (NAS) 17

Input

Output

Input

Output

O1

O2

On

O1

O2

O3

Softmax Softmax

Z(1)

Z(2)

Z(n)

Z(1)

Z(2)

Z(n)

Z(1)

Z(2)

(a) (b)

Figure 2.5: (a) A simple example of a chain-based architecture. Oi is an operation and
the ith operation in the architecture and z(i) is the oi output feature map. (b) Extend
the example by adding skip connections to provide more diversity. The input passes a
series of operations to obtain the final output.

Input

Output

normal cell

reduction cell

normal cell xn

reduction cell

normal cell

xn

xn

add

identiySep
3x3

add

Sep
3x3

Sep
5x5

add

identiySep
5x5

add

Avg.
3x3

Avg.
3x3

Concatination

celli+1

celli-1

celli-2

add

Sep
3x3

Sep
5x5

celli

Figure 2.6: The structure of the search space leveraged in NASNet [53]. The search
space is based on two cells, including normal and reduction cells. Normal cell extracts
advanced features without changing the spatial resolution. The reduction cell reduces
the spatial resolution. Multiple normal cells are connected to a reduction cell to design
the final architecture, and this structure is repeated multiple times.

37

On the other hand, we have continuous search spaces which are mainly op-
timized by the stochastic gradient descent (SGD) algorithm [56, 57]. DARTS
[58] as one of the earliest implementations of the continuous search space,
tries to relax a discrete search space continuously. DARTS uses gradients to
optimize the search space efficiently. DARTS utilize the NASNet cell-based
search space [53]. DARTS learns a neural cell as the key building block of the
final architecture. The learned cells are stacked to form either a convolutional
network.

The search space is represented by a directed acyclic graph (DAG) con-
structed by N sequentially connected nodes. DARTS assumes each cell has
two input nodes and one output node. To construct a convolutional cell, the
input nodes are the output of the cells in the previous two layers. To con-
struct a recurrent cell, one input is from the current time step, and the other
input is feed-backed from the previous time step. The output of the cell is cal-
culated by applying a concatenation operation to all intermediate nodes. For
a discrete search space, each intermediate node can be expressed as x(j) =∑

i<j o
(i,j)(x(i)) where x(j) is a potential feature representation in the cell,

and x(i) is previous intermediate node x(i) through a directed edge operation
o(i,j). Therefore, to learn the cell architecture, operations on the DAG edges
should be learned. DARTS makes the discrete search space continuous by
relaxing the selection of candidate operations to a softmax of all possible op-
erations. Figure 2.7 presents continuous relaxation and discretization of search
space in DARTS [58].

2.2.2 Search Method

Recently, different search methods have been proposed to explore the space
of neural architectures. Random search, Bayesian optimization, evolutionary
optimization, reinforcement learning (RL), and gradient-based algorithms are
the most popular search methods in the community. In the following, these
search methods are briefly described.

• Random Search. Random search randomly selects a specific number
of candidate architectures (a sample size) from the architectural space.
Random search evaluates the selected candidate architectures (e.g., by
calculating accuracy). Then, it identifies the best architecture in the sam-
ple, stores it in memory, and repeats this process. If the new architecture

On the other hand, we have continuous search spaces which are mainly op-
timized by the stochastic gradient descent (SGD) algorithm [56, 57]. DARTS
[58] as one of the earliest implementations of the continuous search space,
tries to relax a discrete search space continuously. DARTS uses gradients to
optimize the search space efficiently. DARTS utilize the NASNet cell-based
search space [53]. DARTS learns a neural cell as the key building block of the
final architecture. The learned cells are stacked to form either a convolutional
network.

The search space is represented by a directed acyclic graph (DAG) con-
structed by N sequentially connected nodes. DARTS assumes each cell has
two input nodes and one output node. To construct a convolutional cell, the
input nodes are the output of the cells in the previous two layers. To con-
struct a recurrent cell, one input is from the current time step, and the other
input is feed-backed from the previous time step. The output of the cell is cal-
culated by applying a concatenation operation to all intermediate nodes. For
a discrete search space, each intermediate node can be expressed as x(j) =∑

i<j o
(i,j)(x(i)) where x(j) is a potential feature representation in the cell,

and x(i) is previous intermediate node x(i) through a directed edge operation
o(i,j). Therefore, to learn the cell architecture, operations on the DAG edges
should be learned. DARTS makes the discrete search space continuous by
relaxing the selection of candidate operations to a softmax of all possible op-
erations. Figure 2.7 presents continuous relaxation and discretization of search
space in DARTS [58].

2.2.2 Search Method

Recently, different search methods have been proposed to explore the space
of neural architectures. Random search, Bayesian optimization, evolutionary
optimization, reinforcement learning (RL), and gradient-based algorithms are
the most popular search methods in the community. In the following, these
search methods are briefly described.

• Random Search. Random search randomly selects a specific number
of candidate architectures (a sample size) from the architectural space.
Random search evaluates the selected candidate architectures (e.g., by
calculating accuracy). Then, it identifies the best architecture in the sam-
ple, stores it in memory, and repeats this process. If the new architecture

38

2.2 Neural Architecture Search (NAS) 19

0

1

2

3

?

?

?

? ?

?

0

1

2

3

0

1

2

3

0

1

2

3

(a) Connection to
be determined

(b) Connection
relaxation

(c) Joint
optimization

(d) Final
Architecture

Figure 2.7: (a) The structure of a cell that aims to be learned. The operations on edges
are unknown. (b) Illustrating the continuous relaxation of the cell-based search space.
Each edge is a mixture of all candidate operations. (c) Joint optimizing the probabil-
ity of mixed operations and network weights with gradient descent method. (d) Final
network architecture.

is better than the previous one, the previous architecture will be replaced
by the new architecture. The search will be stopped after a pre-defined
number of iterations. Random search is proven to be a strong baseline
for hyper-parameter optimization [59].

• Bayesian Optimization (BO). Bayesian Optimization is one of the most
popular methods for hyper-parameter optimization [60, 61]. BO is based
on the Bayesian paradigm. BO sets a prior over the optimization func-
tion and collects the information from the previous sample to update the
posterior of the optimization function. A utility function selects the next
sample point to maximize the optimization function [62].

• Reinforcement Learning (RL). RL methods are useful for modeling se-
quential Markov decision processes where an agent interacts with an en-
vironment to maximize its future benefit. To use RL for NAS problems,
the design of a CNN architecture can be considered as the agent’s action,
with the action space identical to the search space. The agent’s reward is
the estimate of the performance of the trained architecture on test data.

• Evolutionary Methods. Evolutionary methods are an alternative to RL
approaches by using evolutionary algorithms for optimizing the neural
architecture. Evolutionary algorithms consist of the following key oper-
ators, including initialization, random parent selection, cross-over, muta-

2.2 Neural Architecture Search (NAS) 19

0

1

2

3

?

?

?

? ?

?

0

1

2

3

0

1

2

3

0

1

2

3

(a) Connection to
be determined

(b) Connection
relaxation

(c) Joint
optimization

(d) Final
Architecture

Figure 2.7: (a) The structure of a cell that aims to be learned. The operations on edges
are unknown. (b) Illustrating the continuous relaxation of the cell-based search space.
Each edge is a mixture of all candidate operations. (c) Joint optimizing the probabil-
ity of mixed operations and network weights with gradient descent method. (d) Final
network architecture.

is better than the previous one, the previous architecture will be replaced
by the new architecture. The search will be stopped after a pre-defined
number of iterations. Random search is proven to be a strong baseline
for hyper-parameter optimization [59].

• Bayesian Optimization (BO). Bayesian Optimization is one of the most
popular methods for hyper-parameter optimization [60, 61]. BO is based
on the Bayesian paradigm. BO sets a prior over the optimization func-
tion and collects the information from the previous sample to update the
posterior of the optimization function. A utility function selects the next
sample point to maximize the optimization function [62].

• Reinforcement Learning (RL). RL methods are useful for modeling se-
quential Markov decision processes where an agent interacts with an en-
vironment to maximize its future benefit. To use RL for NAS problems,
the design of a CNN architecture can be considered as the agent’s action,
with the action space identical to the search space. The agent’s reward is
the estimate of the performance of the trained architecture on test data.

• Evolutionary Methods. Evolutionary methods are an alternative to RL
approaches by using evolutionary algorithms for optimizing the neural
architecture. Evolutionary algorithms consist of the following key oper-
ators, including initialization, random parent selection, cross-over, muta-

39

tion, and survivor selection. In general, evolutionary methods are highly
sensitive to the choices for cross-over, mutation, and the fitness function
that controls the behavior of the search process. Cross-over and mutation
operators guide the diversity trade-off in the population. Similarly, the
choice of fitness functions reflects the optimization objective.

• Gradient-Based Methods. While the methods above employ a discrete
search space, Liu et al. [58] propose DARTS, a continuous relaxation
to enable direct gradient-based optimization. DARTS optimizes both
the network architecture and the network weights by alternating gradient
descent steps on training data for weights and validation data for archi-
tectural parameters.

We need to note that it is essential to consider multiple search objectives
in practice, even with conflict. For example, the number of floating-point op-
erations and device-specific statistics such as latency and energy consumption
are popular objectives considered in some studies [17, 63, 54, 64]. The neu-
ral search problem is formulated as a multi-objective optimization problem to
consider the additional objectives. In general, multi-objective NAS separates
decision-making into two steps: first, a set of candidates is obtained without
considering any trade-offs between the different objectives, then the decision
for a superior solution is made in the second step.

2.2.3 Evaluation Strategy

In general, there exist four techniques to reduce the evaluation cost of candi-
dates during the search process:

1. Lower Fidelity Estimation: Reducing the training time is performed by
1 training with fewer epochs, 2 training on a subset of the dataset, 3

down-scale models, and 4 down-scale data. Although low-fidelity ap-
proximations remarkably reduce the computational cost, they also intro-
duce bias in the estimation by performance underestimation. This may
not be a problem if the search strategy only relies on ranking different
architectures and the relative ranking remains stable, and the difference
between the approximations and the full evaluation is not too big [65].

tion, and survivor selection. In general, evolutionary methods are highly
sensitive to the choices for cross-over, mutation, and the fitness function
that controls the behavior of the search process. Cross-over and mutation
operators guide the diversity trade-off in the population. Similarly, the
choice of fitness functions reflects the optimization objective.

• Gradient-Based Methods. While the methods above employ a discrete
search space, Liu et al. [58] propose DARTS, a continuous relaxation
to enable direct gradient-based optimization. DARTS optimizes both
the network architecture and the network weights by alternating gradient
descent steps on training data for weights and validation data for archi-
tectural parameters.

We need to note that it is essential to consider multiple search objectives
in practice, even with conflict. For example, the number of floating-point op-
erations and device-specific statistics such as latency and energy consumption
are popular objectives considered in some studies [17, 63, 54, 64]. The neu-
ral search problem is formulated as a multi-objective optimization problem to
consider the additional objectives. In general, multi-objective NAS separates
decision-making into two steps: first, a set of candidates is obtained without
considering any trade-offs between the different objectives, then the decision
for a superior solution is made in the second step.

2.2.3 Evaluation Strategy

In general, there exist four techniques to reduce the evaluation cost of candi-
dates during the search process:

1. Lower Fidelity Estimation: Reducing the training time is performed by
1 training with fewer epochs, 2 training on a subset of the dataset, 3

down-scale models, and 4 down-scale data. Although low-fidelity ap-
proximations remarkably reduce the computational cost, they also intro-
duce bias in the estimation by performance underestimation. This may
not be a problem if the search strategy only relies on ranking different
architectures and the relative ranking remains stable, and the difference
between the approximations and the full evaluation is not too big [65].

40

2.2 Neural Architecture Search (NAS) 21

2. Learning Curve Extrapolation: Reducing the training time by perfor-
mance extrapolation after just a few training epochs. Figure 2.8 shows
an example of an early training termination to predict the final accuracy
from the premature learning curve (solid line). This significantly reduces
the number of required training iterations.

3. Weight Inheritance/Network Morphisms: Initializing the weights of
new candidate architectures based on weights of other architectures that
have been trained before, e.g., a parent model, is another approach to
speed up performance estimation. This avoids training from scratch.

4. One-Shot Models/Weight Sharing: Treating all architectures as differ-
ent sub-graphs of a super-graph (the one-shot model) and sharing the
weights between architectures that have joint edges in the super-graph.
This significantly improves the performance estimation of architectures
since no training is required.

Figure 2.8: Example of early termination of the training strategy to accelerate the per-
formance of evaluations.

2.2 Neural Architecture Search (NAS) 21

2. Learning Curve Extrapolation: Reducing the training time by perfor-
mance extrapolation after just a few training epochs. Figure 2.8 shows
an example of an early training termination to predict the final accuracy
from the premature learning curve (solid line). This significantly reduces
the number of required training iterations.

3. Weight Inheritance/Network Morphisms: Initializing the weights of
new candidate architectures based on weights of other architectures that
have been trained before, e.g., a parent model, is another approach to
speed up performance estimation. This avoids training from scratch.

4. One-Shot Models/Weight Sharing: Treating all architectures as differ-
ent sub-graphs of a super-graph (the one-shot model) and sharing the
weights between architectures that have joint edges in the super-graph.
This significantly improves the performance estimation of architectures
since no training is required.

Figure 2.8: Example of early termination of the training strategy to accelerate the per-
formance of evaluations.

41

42

Chapter 3

Research Statement

3.1 Problem Statement

Starting with AlexNet’s win in the 2012 ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC), CNNs have changed the landscape by providing
superb capabilities in extracting high-dimensional structures from enormous
data volumes. Meanwhile, mobile embedded devices such as smartwatches
and medical tools have become ubiquitous. Therefore, there is a massive re-
quest for on-device Deep Learning (DL) services such as health monitoring,
object recognition, and language translation [66, 67, 68].

Although CNNs significantly increase the accuracy for image classifica-
tion, visual recognition, and many other tasks [10, 69, 70], state-of-the-art re-
sults are accompanied by increasing the size of CNNs. As shown in Figure 3.1,
the amount of computing power needed to train state-of-the-art CNNs is grow-
ing at a rate of 15× every two years. Consequently, tweaking CNN architec-
tures using NAS methods becomes costly due to requiring high-performance
clusters to train NAS candidates (e.g., [71] requires 3800 GPU days).

On the other hand, the nature of embedded devices imposes intrinsic
memory and computing bottlenecks that make the deployment of DL applica-
tions impossible in practice [7, 55, 73]. For example, An off-the-shelf ARM
CortexTM-A7 embedded device only has 256KB on-chip memory. It is impos-
sible to run CNNs such as ResNet-18 [74] on this device due to exceeding the
peak memory by 339×. Even the 2-bit quantized version of ResNet-18 still

23

Chapter 3

Research Statement

3.1 Problem Statement

Starting with AlexNet’s win in the 2012 ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC), CNNs have changed the landscape by providing
superb capabilities in extracting high-dimensional structures from enormous
data volumes. Meanwhile, mobile embedded devices such as smartwatches
and medical tools have become ubiquitous. Therefore, there is a massive re-
quest for on-device Deep Learning (DL) services such as health monitoring,
object recognition, and language translation [66, 67, 68].

Although CNNs significantly increase the accuracy for image classifica-
tion, visual recognition, and many other tasks [10, 69, 70], state-of-the-art re-
sults are accompanied by increasing the size of CNNs. As shown in Figure 3.1,
the amount of computing power needed to train state-of-the-art CNNs is grow-
ing at a rate of 15× every two years. Consequently, tweaking CNN architec-
tures using NAS methods becomes costly due to requiring high-performance
clusters to train NAS candidates (e.g., [71] requires 3800 GPU days).

On the other hand, the nature of embedded devices imposes intrinsic
memory and computing bottlenecks that make the deployment of DL applica-
tions impossible in practice [7, 55, 73]. For example, An off-the-shelf ARM
CortexTM-A7 embedded device only has 256KB on-chip memory. It is impos-
sible to run CNNs such as ResNet-18 [74] on this device due to exceeding the
peak memory by 339×. Even the 2-bit quantized version of ResNet-18 still

23

43

2,012 2,013 2,014 2,015 2,016 2,017 2,018 2,019 2,020

103

104

105

106 CNNs: 15×/2 yrs
Moore’s Law: 2×/2 yrs

Year

Tr
ai

ni
ng

C
om

pu
te

in
L

og
Sc

al
e

(P
FL

O
Ps

)

AlexNet

VGG-19

InceptionV3

ResNet152

Xception

ResNeXt101(64x4d)

DenseNet201
ELMo

MoCo ResNet50

Figure 3.1: The amount of computing power needed to train state-of-the-art CNNs,
measured in petaflops [72].

exceeds the memory limit by ≈22× [75], showing a significant gap between
the desired and available resources of tiny edge devices. As a consequence,
we have to deploy state-of-the-practice CNNs on the off-chip memory of AI
accelerators causing more energy consumption [63, 19]. Therefore, there is
a serious need to reduce the size and computational complexity of CNNs to
make their training and deployment feasible for resource-constrained devices.

Network quantization is a widely used technique that significantly reduces
the computational burden of CNNs. A ternary Neural Network (TNN) [76, 77,
78, 79, 29, 80], where both weights and/or activation functions are quantized to
ternary tensors ({-1, 0, +1}) is a variation of network quantization techniques
that comes with the benefits of model compression and operation accelera-
tion. TNNs are reported to have up to 16× memory compression ratio [76]
and 20× speed-up on FPGA [81], in comparison with full-precision networks.
However, TNNs still suffer from a substantial accuracy drop issue, hamper-
ing their widespread use in practice (up to ≈17% accuracy drop compared to
full-precision networks on ImageNet [82]).

In addition, Hardware-aware NAS methods are inefficient in practice due to
leveraging lower fidelity estimation methods to predict hardware performance
metrics such as FLOPs. Thus, developing cost-efficient search methods that
use accurate hardware performance estimators is essential. To accommodate
these requirements, we defined the following research questions;

2,012 2,013 2,014 2,015 2,016 2,017 2,018 2,019 2,020

103

104

105

106 CNNs: 15×/2 yrs
Moore’s Law: 2×/2 yrs

Year

Tr
ai

ni
ng

C
om

pu
te

in
L

og
Sc

al
e

(P
FL

O
Ps

)

AlexNet

VGG-19

InceptionV3

ResNet152

Xception

ResNeXt101(64x4d)

DenseNet201
ELMo

MoCo ResNet50

Figure 3.1: The amount of computing power needed to train state-of-the-art CNNs,
measured in petaflops [72].

exceeds the memory limit by ≈22× [75], showing a significant gap between
the desired and available resources of tiny edge devices. As a consequence,
we have to deploy state-of-the-practice CNNs on the off-chip memory of AI
accelerators causing more energy consumption [63, 19]. Therefore, there is
a serious need to reduce the size and computational complexity of CNNs to
make their training and deployment feasible for resource-constrained devices.

Network quantization is a widely used technique that significantly reduces
the computational burden of CNNs. A ternary Neural Network (TNN) [76, 77,
78, 79, 29, 80], where both weights and/or activation functions are quantized to
ternary tensors ({-1, 0, +1}) is a variation of network quantization techniques
that comes with the benefits of model compression and operation accelera-
tion. TNNs are reported to have up to 16× memory compression ratio [76]
and 20× speed-up on FPGA [81], in comparison with full-precision networks.
However, TNNs still suffer from a substantial accuracy drop issue, hamper-
ing their widespread use in practice (up to ≈17% accuracy drop compared to
full-precision networks on ImageNet [82]).

In addition, Hardware-aware NAS methods are inefficient in practice due to
leveraging lower fidelity estimation methods to predict hardware performance
metrics such as FLOPs. Thus, developing cost-efficient search methods that
use accurate hardware performance estimators is essential. To accommodate
these requirements, we defined the following research questions;

44

3.2 Research Goals 25

1. What is the best CNN architecture with the highest accuracy that is im-
plementable on a target resource-constrained (battery and memory) de-
vice?

2. How could we deal with the significant search cost of common NAS
methods?

3. How to develop accurate hardware performance estimation models?

4. How could we reduce the accuracy degradation of common quantization
methods?

3.2 Research Goals
To answer research questions, we research efficient NAS methods for design-
ing low latency and resource-efficient CNN architectures for a wide range of
devices such as Field Programmable Gate Arrays (FPGAs), embedded Graph-
ics Processing Unit (GPU), and Intel® Neural Compute Stick 2 (NCS2). Plus,
we accomplished a study on quantizing the weight and network activation func-
tions to achieve a higher level of memory saving. The output of our studies is
published in five papers (see Section 4). All in all, the overall goal of this thesis
is formulated as follows:

Overall goal: Developing an automated framework that deploys CNNs
into edge devices by (i) enabling scalable design of complex CNNs for a di-
verse set of edge devices with minimal cost; and (ii) quantizing CNNs with
minimal accuracy degradation compared to floating-point counterparts. For
more clarification, the overall goal is divided into the five following subgoals:

• Subgoal 1: Analyzing the characteristics of CNNs by focusing on com-
puting potential in order to identify performance bottlenecks.

• Subgoal 2: Design of accurate latency estimation models for various
edge devices to improve NAS search efficiency.

• Subgoal 3: Devising novel optimization techniques to search large-scale
design spaces in a short time. We can leverage the latency estimator
designed in the subgoal 2 to efficiently run more intelligent optimization
techniques.

3.2 Research Goals 25

1. What is the best CNN architecture with the highest accuracy that is im-
plementable on a target resource-constrained (battery and memory) de-
vice?

2. How could we deal with the significant search cost of common NAS
methods?

3. How to develop accurate hardware performance estimation models?

4. How could we reduce the accuracy degradation of common quantization
methods?

3.2 Research Goals
To answer research questions, we research efficient NAS methods for design-
ing low latency and resource-efficient CNN architectures for a wide range of
devices such as Field Programmable Gate Arrays (FPGAs), embedded Graph-
ics Processing Unit (GPU), and Intel® Neural Compute Stick 2 (NCS2). Plus,
we accomplished a study on quantizing the weight and network activation func-
tions to achieve a higher level of memory saving. The output of our studies is
published in five papers (see Section 4). All in all, the overall goal of this thesis
is formulated as follows:

Overall goal: Developing an automated framework that deploys CNNs
into edge devices by (i) enabling scalable design of complex CNNs for a di-
verse set of edge devices with minimal cost; and (ii) quantizing CNNs with
minimal accuracy degradation compared to floating-point counterparts. For
more clarification, the overall goal is divided into the five following subgoals:

• Subgoal 1: Analyzing the characteristics of CNNs by focusing on com-
puting potential in order to identify performance bottlenecks.

• Subgoal 2: Design of accurate latency estimation models for various
edge devices to improve NAS search efficiency.

• Subgoal 3: Devising novel optimization techniques to search large-scale
design spaces in a short time. We can leverage the latency estimator
designed in the subgoal 2 to efficiently run more intelligent optimization
techniques.

45

• Subgoal 4: Decreasing the computational cost and memory footprint of
CNNs by proposing a novel NAS method that designs ternarized CNNs
while providing higher level of accuracy.

• Subgoal 5: Evaluating how the proposed solutions improve the classifi-
cation accuracy while decreasing the high computing cost and memory
footprint of CNNs.

3.3 Research Challenges

According to NAS algorithms (Section 2.2), designing the CNN architecture
involves three essential challenges. In the rest of this section, we address the
main barriers to designing CNN architecture and our proposed solutions to
tackle these challenges. The main NAS challenges are:

1. Properly defining search space and involved hyper-parameters. The
search space is defined by the predefined architectural hyper-parameters
and the corresponding operation set. For example, architectural tem-
plate, kernel size, the number of channels of the convolutional layer,
and the connectivity method of operations are among the most impor-
tant search space parameters. The impact of the search space parame-
ters on the final NAS performance is significant since these parameters
determine which architectures can be searched by the NAS [56]. The
selection of the search space is therefore critical since it has a substantial
influence on the search cost and the quality of results.

2. Properly selecting the search method. The search method determines
how to explore the search space, which is often large or even unbounded.
It is desirable to quickly find well-performing neural architectures while
avoiding being converged to a region of sub-optimal solutions. In
other words, selecting the most suitable search method balancing the
exploration-exploitation trade-off is critical.

3. Properly selecting the evaluation strategy. NAS methods try to find
a neural architecture that maximizes some performance measurements,
such as accuracy. Thus, there is a need to evaluate the performance of

• Subgoal 4: Decreasing the computational cost and memory footprint of
CNNs by proposing a novel NAS method that designs ternarized CNNs
while providing higher level of accuracy.

• Subgoal 5: Evaluating how the proposed solutions improve the classifi-
cation accuracy while decreasing the high computing cost and memory
footprint of CNNs.

3.3 Research Challenges

According to NAS algorithms (Section 2.2), designing the CNN architecture
involves three essential challenges. In the rest of this section, we address the
main barriers to designing CNN architecture and our proposed solutions to
tackle these challenges. The main NAS challenges are:

1. Properly defining search space and involved hyper-parameters. The
search space is defined by the predefined architectural hyper-parameters
and the corresponding operation set. For example, architectural tem-
plate, kernel size, the number of channels of the convolutional layer,
and the connectivity method of operations are among the most impor-
tant search space parameters. The impact of the search space parame-
ters on the final NAS performance is significant since these parameters
determine which architectures can be searched by the NAS [56]. The
selection of the search space is therefore critical since it has a substantial
influence on the search cost and the quality of results.

2. Properly selecting the search method. The search method determines
how to explore the search space, which is often large or even unbounded.
It is desirable to quickly find well-performing neural architectures while
avoiding being converged to a region of sub-optimal solutions. In
other words, selecting the most suitable search method balancing the
exploration-exploitation trade-off is critical.

3. Properly selecting the evaluation strategy. NAS methods try to find
a neural architecture that maximizes some performance measurements,
such as accuracy. Thus, there is a need to evaluate the performance of

46

3.4 Research Methodology 27

candidate architectures. The simplest way is to train the candidate ar-
chitecture on training data and evaluate its performance on validation
data. However, training each architecture requires extensive computing
capacity, which is the main bottleneck of NAS methods. For example,
NASNet [53] used Reinforcement Learning (RL) to spend 2000 GPU
days to design the best architecture for CIFAR-10 [83] and ImageNet
[84]. Similarly, AmoebaNet [85] needs 3150 GPU days using an evo-
lutionary algorithm. This naturally raises the need for some methods
for accelerating performance evaluation. State-of-the-art studies propose
performance estimation models to estimate accuracy and/or latency of
CNNs. In this thesis, we only utilize latency estimation models (Paper
D). It is worth mentioning that maximizing the accuracy of performance
estimators for a given pair of hardware-dataset is a time-consuming task.

Here, the imminent question is - which NAS configuration is superior? In
general, there is no clear answer to this question since it depends on the task,
the size of the dataset, user constraints, search objectives, available computing
power, etc. Table 3.1 summarizes NAS configurations used in our research
papers.

Table 3.1: Summarizing the thesis contributions regarding the NAS structure.

Search Space Search method Evaluation Strategy Optimization Objective
Paper A Discrete / macro NAS NSGA-II [86] Lower Fidelity Estimation Accuracy and # Network Parameters
Paper B Discrete / macro NAS Genetic Algorithm Lower Fidelity Estimation Accuracy
Paper C Continuous / micro NAS SGD Full-training Accuracy
Paper D Discrete / macro NAS Meta-heuristic Full-training & Latency Estimator Accuracy and Latency
Paper E Continuous / micro NAS SGD Full-training Accuracy

3.4 Research Methodology
For doing scientific research and walking on the right path toward preparing
a concrete thesis, leveraging research methodology is critical. The scientific
method [87] provides how to facilitate new questions and formulate problems.
Holz et al. [88] discuss the four major steps, including problem formulation,
proposing a solution, implementation, and evaluation. Even though there was
no solid research methodology at the beginning of the Ph.D. program, we fol-
lowed Holz’s research methodology in our research. We started with a litera-
ture review on similar methods aiming to tackle the problem; then, we contin-

3.4 Research Methodology 27

candidate architectures. The simplest way is to train the candidate ar-
chitecture on training data and evaluate its performance on validation
data. However, training each architecture requires extensive computing
capacity, which is the main bottleneck of NAS methods. For example,
NASNet [53] used Reinforcement Learning (RL) to spend 2000 GPU
days to design the best architecture for CIFAR-10 [83] and ImageNet
[84]. Similarly, AmoebaNet [85] needs 3150 GPU days using an evo-
lutionary algorithm. This naturally raises the need for some methods
for accelerating performance evaluation. State-of-the-art studies propose
performance estimation models to estimate accuracy and/or latency of
CNNs. In this thesis, we only utilize latency estimation models (Paper
D). It is worth mentioning that maximizing the accuracy of performance
estimators for a given pair of hardware-dataset is a time-consuming task.

Here, the imminent question is - which NAS configuration is superior? In
general, there is no clear answer to this question since it depends on the task,
the size of the dataset, user constraints, search objectives, available computing
power, etc. Table 3.1 summarizes NAS configurations used in our research
papers.

Table 3.1: Summarizing the thesis contributions regarding the NAS structure.

Search Space Search method Evaluation Strategy Optimization Objective
Paper A Discrete / macro NAS NSGA-II [86] Lower Fidelity Estimation Accuracy and # Network Parameters
Paper B Discrete / macro NAS Genetic Algorithm Lower Fidelity Estimation Accuracy
Paper C Continuous / micro NAS SGD Full-training Accuracy
Paper D Discrete / macro NAS Meta-heuristic Full-training & Latency Estimator Accuracy and Latency
Paper E Continuous / micro NAS SGD Full-training Accuracy

3.4 Research Methodology
For doing scientific research and walking on the right path toward preparing
a concrete thesis, leveraging research methodology is critical. The scientific
method [87] provides how to facilitate new questions and formulate problems.
Holz et al. [88] discuss the four major steps, including problem formulation,
proposing a solution, implementation, and evaluation. Even though there was
no solid research methodology at the beginning of the Ph.D. program, we fol-
lowed Holz’s research methodology in our research. We started with a litera-
ture review on similar methods aiming to tackle the problem; then, we contin-

47

ued with working on our idea to cover the weaknesses of the proposed solution.
The implementation and evaluation phases were the last steps in our research
journey. Figure 8.2 illustrates the research methodology used in our research.

Research	Outcomes

Research	Methodology

Problem
Formulation

Evaluation

Consolidate
 an Idea

Implementation

WiP Papers

Journal
Papers

WiP Papers

Conference
Papers

Figure 3.2: Research Methodology.

3.4.1 Problem definition

To initiate our research, we have examined state-of-the-art and state-of-the-
practice studies. We first investigated prestigious computer architecture, com-
puter vision, and machine learning venues such as ISCA, DATE, DAC, MI-
CRO, FCCM, ECCV, CVPR, ICCV, ICLR, ICML, etc. After that, we discussed
our findings with other researchers and our industrial partners. The research
goals were formulated as an outcome of the problem formulation step. Plus,
we found some ideas for the subgoals.

3.4.2 Consolidate an idea

After the literature review, we consolidated our ideas by focusing on the papers
that showed remarkable results. Then, we summarized subgoals as a subgoal.
Paper A and Paper D propose new methods to improve the current state-of-the-
art by considering the second optimization objective. In Paper C, we extended

ued with working on our idea to cover the weaknesses of the proposed solution.
The implementation and evaluation phases were the last steps in our research
journey. Figure 8.2 illustrates the research methodology used in our research.

Research	Outcomes

Research	Methodology

Problem
Formulation

Evaluation

Consolidate
 an Idea

Implementation

WiP Papers

Journal
Papers

WiP Papers

Conference
Papers

Figure 3.2: Research Methodology.

3.4.1 Problem definition

To initiate our research, we have examined state-of-the-art and state-of-the-
practice studies. We first investigated prestigious computer architecture, com-
puter vision, and machine learning venues such as ISCA, DATE, DAC, MI-
CRO, FCCM, ECCV, CVPR, ICCV, ICLR, ICML, etc. After that, we discussed
our findings with other researchers and our industrial partners. The research
goals were formulated as an outcome of the problem formulation step. Plus,
we found some ideas for the subgoals.

3.4.2 Consolidate an idea

After the literature review, we consolidated our ideas by focusing on the papers
that showed remarkable results. Then, we summarized subgoals as a subgoal.
Paper A and Paper D propose new methods to improve the current state-of-the-
art by considering the second optimization objective. In Paper C, we extended

48

3.4 Research Methodology 29

the essential idea of Paper B. In addition, Paper D extends the idea of Paper A.
Finally, Paper E uses a one-shot NAS method to classify an important patho-
logical sign of ECG signal for Paroxysmal Atrial Fibrillation (PxAF).

3.4.3 Implementation

The implementation results on a wide range of resource-constrained devices
are presented based on either hardware implementation (Papers A, C, D) or
software implementation (Papers B, E). Measurements based on practical ex-
perience helped us understand our proposed solutions’ actual impact.

3.4.4 Evaluation

In the evaluation step, comparative studies using the introduced metrics are
considered. Depending on the results of the evaluation step, the problem for-
mulation and proposed solution could be revised and continued with the later
steps. This process is repeated until the results are acceptable. The results/out-
comes of each step could be presented as papers, reports, and presentations in
work-in-progress sessions, workshops, conferences, and journals.

3.4 Research Methodology 29

the essential idea of Paper B. In addition, Paper D extends the idea of Paper A.
Finally, Paper E uses a one-shot NAS method to classify an important patho-
logical sign of ECG signal for Paroxysmal Atrial Fibrillation (PxAF).

3.4.3 Implementation

The implementation results on a wide range of resource-constrained devices
are presented based on either hardware implementation (Papers A, C, D) or
software implementation (Papers B, E). Measurements based on practical ex-
perience helped us understand our proposed solutions’ actual impact.

3.4.4 Evaluation

In the evaluation step, comparative studies using the introduced metrics are
considered. Depending on the results of the evaluation step, the problem for-
mulation and proposed solution could be revised and continued with the later
steps. This process is repeated until the results are acceptable. The results/out-
comes of each step could be presented as papers, reports, and presentations in
work-in-progress sessions, workshops, conferences, and journals.

49

50

Chapter 4

Research Contribution

In this section, we present our contributions (Papers A-E) to achieve the re-
search goals (Section 3.2).

4.1 Contributions Addressing the Research Goals

4.1.1 Contribution of subgoal 1

We need to analyze the characteristics of CNNs to find bottlenecks in the way
of accuracy and computing efficiency. As a result, we figured out CNNs are
complex models with a significant memory footprint (Paper A and Paper B).
Plus, the distribution of weights has a remarkable impact on the performance of
TNNs (Paper C). Moreover, the backbone architecture of TNNs is not efficient
for quantizing weights and/or activation functions (Paper C). Last but not least,
the results represented in Paper D indicate the total number of network floating-
point operations and neural network parameters have a low correlation with
network inference time (latency) for large-scale datasets.

4.1.2 Contribution of subgoal 2

NAS should be hardware-aware for real-world applications to satisfy device-
specific constraints (e.g., memory usage or latency). Existing hardware-aware
NAS methods leverage network FLOPs as a proxy for hardware performance.

31

Chapter 4

Research Contribution

In this section, we present our contributions (Papers A-E) to achieve the re-
search goals (Section 3.2).

4.1 Contributions Addressing the Research Goals

4.1.1 Contribution of subgoal 1

We need to analyze the characteristics of CNNs to find bottlenecks in the way
of accuracy and computing efficiency. As a result, we figured out CNNs are
complex models with a significant memory footprint (Paper A and Paper B).
Plus, the distribution of weights has a remarkable impact on the performance of
TNNs (Paper C). Moreover, the backbone architecture of TNNs is not efficient
for quantizing weights and/or activation functions (Paper C). Last but not least,
the results represented in Paper D indicate the total number of network floating-
point operations and neural network parameters have a low correlation with
network inference time (latency) for large-scale datasets.

4.1.2 Contribution of subgoal 2

NAS should be hardware-aware for real-world applications to satisfy device-
specific constraints (e.g., memory usage or latency). Existing hardware-aware
NAS methods leverage network FLOPs as a proxy for hardware performance.

31

51

However, FLOPs is a highly inaccurate proxy since the latency of a CNN archi-
tecture could differ based on its degree of parallelism and memory access cost.
Thus, neglecting hardware details will undoubtedly lead to inefficient search
results. To address this challenge, we propose to (i) design a fully learning-
based latency estimator for a target device; and (ii) integrate it in the search
process to directly design a CNN architecture for a target device. Paper D
covers subgoal 2.

4.1.3 Contribution of subgoal 3

Different optimization techniques have been proposed to design the architec-
ture of CNNs, such as RL, random search, Bayesian optimization, and evolu-
tionary methods. However, the inefficient exploration of the design space of
architectural parameters is the main problem of prior works. Plus, most of the
prior studies suffer from significant search costs. Based on the achievements
of subgoal 1, subgoal 2, and literature review, we proposed fast search methods
that find near-optimal solutions. In Papers C and E, we leverage a cell-based
one-shot NAS method to design accurate neural architectures in a short time.
In Paper D, we utilize a multi-stage meta-heuristic optimization method to pro-
vide a guided exploration scheme. Papers C, D, and E cover subgoal 3.

4.1.4 Contribution of subgoal 4

Based on the achievements of subgoal 1 and literature review, we proposed a
novel NAS method that designs ternarized CNNs, dubbed TAS. TAS is a po-
tential method that reduces the computing cost and memory footprint of CNNs
while keeping accuracy at a safe margin. Recently, many proposed studies (see
Section 5) addressed these issues. Although they have significantly decreased
the computational load of CNNs, they have suffered from accuracy degrada-
tion, especially for large datasets. On the other hand, TAS is a gradient-based
NAS method that efficiently reduces the accuracy gap between ternary and full-
precision counterparts. TAS is the first to (i) simultaneously ternarize and de-
sign neural architectures; (ii) propose a new cell template for ternary networks
with maximum gradient propagation; and (iii) provide a novel learnable quan-
tizer that adaptively relaxes the ternarization mechanism from the data (kernel
weights and activation functions) distribution. As the second contribution, we

However, FLOPs is a highly inaccurate proxy since the latency of a CNN archi-
tecture could differ based on its degree of parallelism and memory access cost.
Thus, neglecting hardware details will undoubtedly lead to inefficient search
results. To address this challenge, we propose to (i) design a fully learning-
based latency estimator for a target device; and (ii) integrate it in the search
process to directly design a CNN architecture for a target device. Paper D
covers subgoal 2.

4.1.3 Contribution of subgoal 3

Different optimization techniques have been proposed to design the architec-
ture of CNNs, such as RL, random search, Bayesian optimization, and evolu-
tionary methods. However, the inefficient exploration of the design space of
architectural parameters is the main problem of prior works. Plus, most of the
prior studies suffer from significant search costs. Based on the achievements
of subgoal 1, subgoal 2, and literature review, we proposed fast search methods
that find near-optimal solutions. In Papers C and E, we leverage a cell-based
one-shot NAS method to design accurate neural architectures in a short time.
In Paper D, we utilize a multi-stage meta-heuristic optimization method to pro-
vide a guided exploration scheme. Papers C, D, and E cover subgoal 3.

4.1.4 Contribution of subgoal 4

Based on the achievements of subgoal 1 and literature review, we proposed a
novel NAS method that designs ternarized CNNs, dubbed TAS. TAS is a po-
tential method that reduces the computing cost and memory footprint of CNNs
while keeping accuracy at a safe margin. Recently, many proposed studies (see
Section 5) addressed these issues. Although they have significantly decreased
the computational load of CNNs, they have suffered from accuracy degrada-
tion, especially for large datasets. On the other hand, TAS is a gradient-based
NAS method that efficiently reduces the accuracy gap between ternary and full-
precision counterparts. TAS is the first to (i) simultaneously ternarize and de-
sign neural architectures; (ii) propose a new cell template for ternary networks
with maximum gradient propagation; and (iii) provide a novel learnable quan-
tizer that adaptively relaxes the ternarization mechanism from the data (kernel
weights and activation functions) distribution. As the second contribution, we

52

4.2 Overview of the Included Papers 33

propose a novel piece-wise activation function and optimized learning rate for
different datasets to improve the accuracy of ternarized neural networks. Paper
B and Paper C cover subgoal 4.

4.1.5 Contribution of subgoal 5

Once we figured out the fundamental behavior of CNNs and proposed opti-
mization solutions which are based on network architecture optimization and
network ternarization, the evaluation between the state-of-the-art and the pro-
posed solutions is conducted. In this subgoal, we consider several metrics to
verify the functionalities of the proposed methods, including accuracy, network
compression rate, computing performance (latency), search cost, reproducibil-
ity of results, etc. To evaluate the hardware performance, we consider a wide
range of edge devices, including Xilinx Zynq FPGA, NVIDIA GPU, Intel®

NCS 2, and ARM Processor. As a result, we confirm a notable decrease in
the computational complexity in Papers A, B, C, and D. In addition, Paper
E provides higher PxAF classification accuracy compared to widely-accepted
baseline methods including ResNet-18 [74] and Auto-Sklearn [89].

4.2 Overview of the Included Papers

The main contributions of the thesis are organized and presented in the form of
a collection of papers. Additional papers listed at the beginning of the thesis
also strengthen the contributions of the thesis. A summary of the included
papers is as follows:

4.2.1 Paper A

DeepMaker: A multi-objective optimization framework for deep neural
networks in embedded systems [90].

Abstract. Deep Neural Networks (DNNs) are compute-intensive learning
models with growing applicability in a wide range of domains. Due to their
computational complexity, DNNs demand implementations that utilize custom
hardware accelerators to meet performance and response time as well as
classification accuracy constraints. In this paper, DeepMaker framework is

4.2 Overview of the Included Papers 33

propose a novel piece-wise activation function and optimized learning rate for
different datasets to improve the accuracy of ternarized neural networks. Paper
B and Paper C cover subgoal 4.

4.1.5 Contribution of subgoal 5

Once we figured out the fundamental behavior of CNNs and proposed opti-
mization solutions which are based on network architecture optimization and
network ternarization, the evaluation between the state-of-the-art and the pro-
posed solutions is conducted. In this subgoal, we consider several metrics to
verify the functionalities of the proposed methods, including accuracy, network
compression rate, computing performance (latency), search cost, reproducibil-
ity of results, etc. To evaluate the hardware performance, we consider a wide
range of edge devices, including Xilinx Zynq FPGA, NVIDIA GPU, Intel®

NCS 2, and ARM Processor. As a result, we confirm a notable decrease in
the computational complexity in Papers A, B, C, and D. In addition, Paper
E provides higher PxAF classification accuracy compared to widely-accepted
baseline methods including ResNet-18 [74] and Auto-Sklearn [89].

4.2 Overview of the Included Papers

The main contributions of the thesis are organized and presented in the form of
a collection of papers. Additional papers listed at the beginning of the thesis
also strengthen the contributions of the thesis. A summary of the included
papers is as follows:

4.2.1 Paper A

DeepMaker: A multi-objective optimization framework for deep neural
networks in embedded systems [90].

Abstract. Deep Neural Networks (DNNs) are compute-intensive learning
models with growing applicability in a wide range of domains. Due to their
computational complexity, DNNs demand implementations that utilize custom
hardware accelerators to meet performance and response time as well as
classification accuracy constraints. In this paper, DeepMaker framework is

53

proposed, which aims to automatically design a highly robust DNN archi-
tecture for embedded devices as the closest processing unit to the sensors.
DeepMaker explores and prunes the design space to find improved neural
architectures. Our proposed framework takes advantage of a multi-objective
evolutionary approach, which exploits a pruned design space inspired by a
dense architecture. Unlike recent works that mainly have tried to generate
highly accurate networks, DeepMaker also considers the network size factor
as the second objective to build a highly optimized network fitting with limited
computational resource budgets while delivers comparable accuracy level.
In comparison with the best result on CIFAR-10 and CIFAR-100 dataset,
a generated network by DeepMaker presents up to 26.4 compression rate
while loses only 4% accuracy. In addition, DeepMaker maps the generated
CNN on the commodity programmable devices including ARM Processor,
High-Performance CPU, GPU, and FPGA.

Personal Contribution. I am the initiator, the main driver and the author
of all parts in this paper. Mr. Ali Zoljodi helped us in preparing the results of
network pruning algorithm. Ms. Sima Sinaei helped us with a nice review and
reorganize the presentation structure of this paper. The other co-authors have
contributed with valuable reviews.

4.2.2 Paper B

TOT-Net: An Endeavour Toward Optimizing Ternary Neural Net-
works [77].

Abstract. High computation demands and big memory resources are the
major implementation challenges of Convolutional Neural Networks (CNNs)
especially for low-power and resource-limited embedded devices. Many bina-
rized neural networks are recently proposed to address these issues. Although
they have significantly decreased computation and memory-footprint, they
have suffered from accuracy loss especially for large datasets. In this paper,
we propose TOT-Net, a ternarized neural network with [-1, 0, 1] values for
both weights and activation functions that has simultaneously achieved a
higher level of accuracy and less computational load. In fact, first, TOT-Net

proposed, which aims to automatically design a highly robust DNN archi-
tecture for embedded devices as the closest processing unit to the sensors.
DeepMaker explores and prunes the design space to find improved neural
architectures. Our proposed framework takes advantage of a multi-objective
evolutionary approach, which exploits a pruned design space inspired by a
dense architecture. Unlike recent works that mainly have tried to generate
highly accurate networks, DeepMaker also considers the network size factor
as the second objective to build a highly optimized network fitting with limited
computational resource budgets while delivers comparable accuracy level.
In comparison with the best result on CIFAR-10 and CIFAR-100 dataset,
a generated network by DeepMaker presents up to 26.4 compression rate
while loses only 4% accuracy. In addition, DeepMaker maps the generated
CNN on the commodity programmable devices including ARM Processor,
High-Performance CPU, GPU, and FPGA.

Personal Contribution. I am the initiator, the main driver and the author
of all parts in this paper. Mr. Ali Zoljodi helped us in preparing the results of
network pruning algorithm. Ms. Sima Sinaei helped us with a nice review and
reorganize the presentation structure of this paper. The other co-authors have
contributed with valuable reviews.

4.2.2 Paper B

TOT-Net: An Endeavour Toward Optimizing Ternary Neural Net-
works [77].

Abstract. High computation demands and big memory resources are the
major implementation challenges of Convolutional Neural Networks (CNNs)
especially for low-power and resource-limited embedded devices. Many bina-
rized neural networks are recently proposed to address these issues. Although
they have significantly decreased computation and memory-footprint, they
have suffered from accuracy loss especially for large datasets. In this paper,
we propose TOT-Net, a ternarized neural network with [-1, 0, 1] values for
both weights and activation functions that has simultaneously achieved a
higher level of accuracy and less computational load. In fact, first, TOT-Net

54

4.2 Overview of the Included Papers 35

introduces a simple bitwise logic for convolution computations to reduce
the cost of multiply operations. To improve the accuracy, selecting proper
activation function and learning rate are influential, but also difficult. As the
second contribution, we propose a novel piece-wise activation function, and
optimized learning rate for different datasets. Our findings first reveal that
0.01 is a preferable learning rate for the studied datasets. Third, by using an
evolutionary optimization approach, we found novel piece-wise activation
functions customized for TOT-Net. According to the experimental results,
TOT-Net achieves 2.15%, 8.77%, and 5.7/5.52% better accuracy compared to
XNOR-Net on CIFAR-10, CIFAR-100, and ImageNet top-5/top-1 datasets,
respectively.

Personal Contribution. Ms. Najme Nazari is the initiator and the main
driver in this paper. I have done the optimization part with the evolutionary
method, obtaining the experiments, and I was responsible for writing the
paper. Other co-authors have contributed with valuable discussion and reviews.

4.2.3 Paper C

TAS: Ternarized Neural Architecture Search for Resource-Constrained
Edge Devices [75].

Abstract. Ternary Neural Networks (TNNs) compress network weights
and activation functions into 2-bit representation resulting in remarkable net-
work compression and energy efficiency. However, there remains a significant
gap in accuracy between TNNs and full-precision counterparts. Recent ad-
vances in Neural Architectures Search (NAS) promise opportunities in auto-
mated optimization for various deep learning tasks. Unfortunately, this area is
unexplored for optimizing TNNs. This paper proposes TAS, a framework that
drastically reduces the accuracy gap between TNNs and their full-precision
counterparts by integrating quantization into the network design. We expe-
rienced that directly applying NAS to the ternary domain provides accuracy
degradation as the search settings are customized for full-precision networks.
To address this problem, we propose (i) a new cell template for ternary net-
works with maximum gradient propagation; and (ii) a novel learnable quan-

4.2 Overview of the Included Papers 35

introduces a simple bitwise logic for convolution computations to reduce
the cost of multiply operations. To improve the accuracy, selecting proper
activation function and learning rate are influential, but also difficult. As the
second contribution, we propose a novel piece-wise activation function, and
optimized learning rate for different datasets. Our findings first reveal that
0.01 is a preferable learning rate for the studied datasets. Third, by using an
evolutionary optimization approach, we found novel piece-wise activation
functions customized for TOT-Net. According to the experimental results,
TOT-Net achieves 2.15%, 8.77%, and 5.7/5.52% better accuracy compared to
XNOR-Net on CIFAR-10, CIFAR-100, and ImageNet top-5/top-1 datasets,
respectively.

Personal Contribution. Ms. Najme Nazari is the initiator and the main
driver in this paper. I have done the optimization part with the evolutionary
method, obtaining the experiments, and I was responsible for writing the
paper. Other co-authors have contributed with valuable discussion and reviews.

4.2.3 Paper C

TAS: Ternarized Neural Architecture Search for Resource-Constrained
Edge Devices [75].

Abstract. Ternary Neural Networks (TNNs) compress network weights
and activation functions into 2-bit representation resulting in remarkable net-
work compression and energy efficiency. However, there remains a significant
gap in accuracy between TNNs and full-precision counterparts. Recent ad-
vances in Neural Architectures Search (NAS) promise opportunities in auto-
mated optimization for various deep learning tasks. Unfortunately, this area is
unexplored for optimizing TNNs. This paper proposes TAS, a framework that
drastically reduces the accuracy gap between TNNs and their full-precision
counterparts by integrating quantization into the network design. We expe-
rienced that directly applying NAS to the ternary domain provides accuracy
degradation as the search settings are customized for full-precision networks.
To address this problem, we propose (i) a new cell template for ternary net-
works with maximum gradient propagation; and (ii) a novel learnable quan-

55

tizer that adaptively relaxes the ternarization mechanism from the distribution
of the weights and activation functions. Experimental results reveal that TAS
delivers 2.64% higher accuracy and ≈2.8× memory saving over competing
methods with the same bit-width resolution on the CIFAR-10 dataset. These
results suggest that TAS is an effective method that paves the way for the effi-
cient design of the next generation of quantized neural networks.

Personal Contribution. I am the initiator, the main driver, and the author
of all parts of this paper. Mr. Hamid Mousavi did the implementation parts.
Mr. Mohammad Riazati was responsible for implementing the best models on
FPGA and reviewing the paper. The other co-authors have contributed with
valuable reviews.

4.2.4 Paper D

FastStereoNet: A Fast Neural Architecture Search for Improving the
Inference of Disparity Estimation on Resource-Limited Platforms [7].

Abstract. Convolutional Neural Networks (CNNs) provide the best
accuracy for disparity estimation. However, CNNs are computationally ex-
pensive, making them unfavorable for resource-limited devices with real-time
constraints. Recent advances in Neural Architectures Search (NAS) promise
opportunities in automated optimization for disparity estimation [91, 54].
However, the main challenge of the NAS methods is the significant amount
of computing time to explore a vast search space (e.g., 1.6 × 1029 [92])
and costly training candidates. To reduce the NAS computational demand,
many proxy-based NAS methods have been proposed. Despite their success,
most of them are designed for comparatively small-scale learning tasks. In
this paper, we propose a fast NAS method, called FastStereoNet, to enable
resource-aware NAS within an intractably large search space. FastStereoNet
automatically searches for hardware-friendly CNN architectures based on Late
Acceptance Hill Climbing (LAHC), followed by Simulated Annealing (SA).
FastStereoNet also employs a fine-tuning with transferred weights mechanism
to improve the convergence of the search process. Collection of these ideas
provides competitive results in terms of search time and strikes a balance
between accuracy and efficiency. Compared to the state-of-the-art [91],

tizer that adaptively relaxes the ternarization mechanism from the distribution
of the weights and activation functions. Experimental results reveal that TAS
delivers 2.64% higher accuracy and ≈2.8× memory saving over competing
methods with the same bit-width resolution on the CIFAR-10 dataset. These
results suggest that TAS is an effective method that paves the way for the effi-
cient design of the next generation of quantized neural networks.

Personal Contribution. I am the initiator, the main driver, and the author
of all parts of this paper. Mr. Hamid Mousavi did the implementation parts.
Mr. Mohammad Riazati was responsible for implementing the best models on
FPGA and reviewing the paper. The other co-authors have contributed with
valuable reviews.

4.2.4 Paper D

FastStereoNet: A Fast Neural Architecture Search for Improving the
Inference of Disparity Estimation on Resource-Limited Platforms [7].

Abstract. Convolutional Neural Networks (CNNs) provide the best
accuracy for disparity estimation. However, CNNs are computationally ex-
pensive, making them unfavorable for resource-limited devices with real-time
constraints. Recent advances in Neural Architectures Search (NAS) promise
opportunities in automated optimization for disparity estimation [91, 54].
However, the main challenge of the NAS methods is the significant amount
of computing time to explore a vast search space (e.g., 1.6 × 1029 [92])
and costly training candidates. To reduce the NAS computational demand,
many proxy-based NAS methods have been proposed. Despite their success,
most of them are designed for comparatively small-scale learning tasks. In
this paper, we propose a fast NAS method, called FastStereoNet, to enable
resource-aware NAS within an intractably large search space. FastStereoNet
automatically searches for hardware-friendly CNN architectures based on Late
Acceptance Hill Climbing (LAHC), followed by Simulated Annealing (SA).
FastStereoNet also employs a fine-tuning with transferred weights mechanism
to improve the convergence of the search process. Collection of these ideas
provides competitive results in terms of search time and strikes a balance
between accuracy and efficiency. Compared to the state-of-the-art [91],

56

4.2 Overview of the Included Papers 37

FastStereoNet provides 5.25× reduction in search time and 44.4× reduction
in model size. This benefits are attained while yielding a comparable accuracy
that enables seamless deployment of disparity estimation on resource-limited
devices. Finally, FastStereoNet significantly improves the perception quality
of disparity estimation deployed on FPGA and Intel® NCS2 accelerator in a
significantly less onerous manner.

Personal Contribution. I am the initiator, the main driver, and the author
of all parts of this paper. I also perform the hardware implementation parts.
Mr. Ali Zoljodi did the implementation parts. Dr. Amin Majd analyzed the
search complexity, and the other co-authors have contributed with valuable
reviews.

4.2.5 Paper E

NAS-PxAF: Neural Architecture Search for Accurate Detecting Paroxys-
mal Atrial Fibrillation. (Under Review)

Abstract. This paper presents a novel application of the Neural Archi-
tecture Search (NAS) method: classification of Paroxysmal Atrial Fibrillation
(PxAF) from electrocardiogram (ECG) signal. PxAF is a pathological char-
acteristic of ECG that can lead to fatal conditions such as heart attack and
therefore requires special attention. The paper proposes an innovative method
for ECG classification by integrating an especial signal processing phase with
a convolutional neural network where NAS finds the optimal classification ar-
chitecture. Experimental results show that the proposed NAS-based method
not only enhances state-of-the-art, but also improves the classification perfor-
mance of the two widely-accepted baseline methods, ResNet-18, and the Auto-
Sklearn, by 3.4% and 10.6%, respectively.

Personal Contribution. I am the initiator, and the author of all parts
of this paper. Mr. Mehdi Asadi did the implementation parts. Prof. Arash
Gharehbaghi helped us with designing the signal processing pipeline and
reviewing the paper. The other co-authors have contributed with valuable
reviews.

4.2 Overview of the Included Papers 37

FastStereoNet provides 5.25× reduction in search time and 44.4× reduction
in model size. This benefits are attained while yielding a comparable accuracy
that enables seamless deployment of disparity estimation on resource-limited
devices. Finally, FastStereoNet significantly improves the perception quality
of disparity estimation deployed on FPGA and Intel® NCS2 accelerator in a
significantly less onerous manner.

Personal Contribution. I am the initiator, the main driver, and the author
of all parts of this paper. I also perform the hardware implementation parts.
Mr. Ali Zoljodi did the implementation parts. Dr. Amin Majd analyzed the
search complexity, and the other co-authors have contributed with valuable
reviews.

4.2.5 Paper E

NAS-PxAF: Neural Architecture Search for Accurate Detecting Paroxys-
mal Atrial Fibrillation. (Under Review)

Abstract. This paper presents a novel application of the Neural Archi-
tecture Search (NAS) method: classification of Paroxysmal Atrial Fibrillation
(PxAF) from electrocardiogram (ECG) signal. PxAF is a pathological char-
acteristic of ECG that can lead to fatal conditions such as heart attack and
therefore requires special attention. The paper proposes an innovative method
for ECG classification by integrating an especial signal processing phase with
a convolutional neural network where NAS finds the optimal classification ar-
chitecture. Experimental results show that the proposed NAS-based method
not only enhances state-of-the-art, but also improves the classification perfor-
mance of the two widely-accepted baseline methods, ResNet-18, and the Auto-
Sklearn, by 3.4% and 10.6%, respectively.

Personal Contribution. I am the initiator, and the author of all parts
of this paper. Mr. Mehdi Asadi did the implementation parts. Prof. Arash
Gharehbaghi helped us with designing the signal processing pipeline and
reviewing the paper. The other co-authors have contributed with valuable
reviews.

57

4.2.6 Mapping Contributions to Subgoals

Mapping of the research subgoals to the contributed papers are shown in Ta-
ble 4.1.

Table 4.1: Mapping of the research goals to the contributions.

subgoal 1 subgoal 2 subgoal 3 subgoal 4 subgoal 5
Paper A ✓ ✓
Paper B ✓ ✓ ✓
Paper C ✓ ✓ ✓ ✓
Paper D ✓ ✓ ✓ ✓
Paper E ✓ ✓

4.2.6 Mapping Contributions to Subgoals

Mapping of the research subgoals to the contributed papers are shown in Ta-
ble 4.1.

Table 4.1: Mapping of the research goals to the contributions.

subgoal 1 subgoal 2 subgoal 3 subgoal 4 subgoal 5
Paper A ✓ ✓
Paper B ✓ ✓ ✓
Paper C ✓ ✓ ✓ ✓
Paper D ✓ ✓ ✓ ✓
Paper E ✓ ✓

58

Chapter 5

Related Work

In this section, we review the most significant related studies in the areas of
automatic design of CNN architectures and CNN Quantization techniques, re-
spectively.

5.1 Neural Architecture Search
To enable more accurate learning results, selecting the architectural param-
eters of CNNs is crucial since the network architecture strongly affects the
inference time, memory footprint, accuracy, and network generalization profi-
ciency. However, the manual design of CNNs is overwhelming due to requir-
ing a lot of trial-and-error and deep expertise. Therefore, NAS methods have
emerged as a potential alternative to decrease efficiency risk and design cost.
Inspired by [52], we first categorized NAS methods as macro NAS and micro
NAS. Then, we review recent papers that utilize proxy tasks to improve NAS
efficiency since dealing with the time-consuming evaluation and huge search
space are the main NAS difficulties [85, 53].

5.1.1 Macro NAS

Macro NAS methods try to directly design the entire neural network archi-
tecture from scratch [93, 94, 95, 55]. In other words, NAS finds an optimal
architecture within a huge search space with the granularity of operations. It

39

Chapter 5

Related Work

In this section, we review the most significant related studies in the areas of
automatic design of CNN architectures and CNN Quantization techniques, re-
spectively.

5.1 Neural Architecture Search
To enable more accurate learning results, selecting the architectural param-
eters of CNNs is crucial since the network architecture strongly affects the
inference time, memory footprint, accuracy, and network generalization profi-
ciency. However, the manual design of CNNs is overwhelming due to requir-
ing a lot of trial-and-error and deep expertise. Therefore, NAS methods have
emerged as a potential alternative to decrease efficiency risk and design cost.
Inspired by [52], we first categorized NAS methods as macro NAS and micro
NAS. Then, we review recent papers that utilize proxy tasks to improve NAS
efficiency since dealing with the time-consuming evaluation and huge search
space are the main NAS difficulties [85, 53].

5.1.1 Macro NAS

Macro NAS methods try to directly design the entire neural network archi-
tecture from scratch [93, 94, 95, 55]. In other words, NAS finds an optimal
architecture within a huge search space with the granularity of operations. It

39

59

provides a highly flexible search space. However, the larger search space en-
forces more search costs.

Several search methods have been proposed to find the optimal solution
effectively. Using the random search method is challenging due to extremely
random sampling in the search space [12]. On the other hand, Bayesian-based
methods suffer from immense computational cost, are suitable only for search-
ing architectures with a fixed-length space, and focus on low-dimensional con-
tinuous problems [17]. Reinforcement learning (RL) is a popular approach
for updating the network generator weights [95, 55, 92, 93]. [95] proposed
an LSTM-based controller to configure the CNN descriptions, then trains this
LSTM with RL to maximize the classification accuracy. [92] proposes ENAS,
an efficient NAS trying to search an optimal sub-graph within a large com-
putational graph by employing a meta-controller. In macro NAS, the size of
search space exponentially growth by increasing the depth of network [93, 95],
e.g., a network with less than 12 layers results in 1.6 × 1029 distinct architec-
tures [92]. It is not widely feasible to efficiently search such a large space in
a reasonable time (requiring thousand GPU hours). Thus, [92, 93, 95] prune
the search space by limiting the depth of CNNs causing limited achievable ac-
curacy [52]. Alternatively, a group of research studies relies on evolutionary
search methods where the best architecture is designed by iteratively refining
a population of candidate architectures [96, 90, 85, 97, 98]. However, all these
methods are costly, requiring hundreds of GPU days. In contrast, we propose
a fast search method that designs efficient CNNs from scratch.

5.1.2 Micro NAS

Micro NAS methods search the inner architecture of learning cells, while the
interconnection among neural cells is defined by stacking several copies of
the discovered cells [85, 92, 58, 53, 91, 52]. Although micro NAS methods
highly decrease the search time, they might not be optimal for any unseen
tasks since each cell is usually well-optimized for comparatively proxy tasks.
For example, most of them are optimized for the CIFAR-10 dataset [53, 92],
which do not guarantee to be optimal for large-scale datasets [91, 55].

provides a highly flexible search space. However, the larger search space en-
forces more search costs.

Several search methods have been proposed to find the optimal solution
effectively. Using the random search method is challenging due to extremely
random sampling in the search space [12]. On the other hand, Bayesian-based
methods suffer from immense computational cost, are suitable only for search-
ing architectures with a fixed-length space, and focus on low-dimensional con-
tinuous problems [17]. Reinforcement learning (RL) is a popular approach
for updating the network generator weights [95, 55, 92, 93]. [95] proposed
an LSTM-based controller to configure the CNN descriptions, then trains this
LSTM with RL to maximize the classification accuracy. [92] proposes ENAS,
an efficient NAS trying to search an optimal sub-graph within a large com-
putational graph by employing a meta-controller. In macro NAS, the size of
search space exponentially growth by increasing the depth of network [93, 95],
e.g., a network with less than 12 layers results in 1.6 × 1029 distinct architec-
tures [92]. It is not widely feasible to efficiently search such a large space in
a reasonable time (requiring thousand GPU hours). Thus, [92, 93, 95] prune
the search space by limiting the depth of CNNs causing limited achievable ac-
curacy [52]. Alternatively, a group of research studies relies on evolutionary
search methods where the best architecture is designed by iteratively refining
a population of candidate architectures [96, 90, 85, 97, 98]. However, all these
methods are costly, requiring hundreds of GPU days. In contrast, we propose
a fast search method that designs efficient CNNs from scratch.

5.1.2 Micro NAS

Micro NAS methods search the inner architecture of learning cells, while the
interconnection among neural cells is defined by stacking several copies of
the discovered cells [85, 92, 58, 53, 91, 52]. Although micro NAS methods
highly decrease the search time, they might not be optimal for any unseen
tasks since each cell is usually well-optimized for comparatively proxy tasks.
For example, most of them are optimized for the CIFAR-10 dataset [53, 92],
which do not guarantee to be optimal for large-scale datasets [91, 55].

60

5.2 Network Ternarization 41

5.1.3 Improving NAS Efficiency

In general, NAS is a time-consuming process. This results from: (i) candi-
dates’ notorious training time (e.g., [71] needs 3800 GPU days); and (ii) huge
search space. To improve NAS speed and to reduce the NAS computational
cost, a variety of techniques have been proposed to utilize proxy tasks [12].
HyperNet generates weights for candidate networks and evaluates them with-
out full training from scratch [94]. [63, 99] use partial training for accuracy
prediction at the cost of noisy evaluations. Plus, using a proxy for accuracy in-
troduces estimation bias since accuracy will typically be underestimated [65].
We did not use accuracy predictors in this thesis. Sharing weights among po-
tential networks decreases the search time by two orders of magnitude [92].
[93, 100, 101] use network to network transformation for reusing weights of
previously discovered networks to amortize the training cost.

5.2 Network Ternarization

Network quantization is an effective solution that enables deploying CNNs
onto edge devices. Some recent researches [102, 103, 104] surpass quantized
neural networks and have aggressively reduced precision even to 1-bit to con-
struct binarized neural networks (BNNs). However, BNNs suffer from accu-
racy loss, especially for large datasets. [105] tried to address this issue for
BNNs by proposing an efficient training strategy. BinaryConnect [104] elimi-
nates multiplication in the forward pass by substituting full-precision weights
with -1 and 1 values. Some works such as [106] and [107] applied reduced
precision to reduce memory storage and computation. However, they still re-
quire computation-intensive MAC operations to perform the convolutional op-
erations, hence, suffer from heavy operations.

Ternary neural networks (TNNs) provide a fair trade-off between accuracy
and complexity [76, 82]. TWN [76], known as one of the earliest ternarization
efforts, proposed {-1, 0, +1} as quantization values to improve the accuracy of
binary networks. TWN utilized two symmetric thresholds (∆) alongside a scal-
ing factor (α) for each layer to quantize into {-∆, +∆}. However, there remains
a significant performance gap between TWN and the full-precision counter-
parts for large-scale datasets (7.5% accuracy loss on ImageNet for ResNet-18)
due to using symmetric thresholds. To solve this problem, TTQ uses two full-

5.2 Network Ternarization 41

5.1.3 Improving NAS Efficiency

In general, NAS is a time-consuming process. This results from: (i) candi-
dates’ notorious training time (e.g., [71] needs 3800 GPU days); and (ii) huge
search space. To improve NAS speed and to reduce the NAS computational
cost, a variety of techniques have been proposed to utilize proxy tasks [12].
HyperNet generates weights for candidate networks and evaluates them with-
out full training from scratch [94]. [63, 99] use partial training for accuracy
prediction at the cost of noisy evaluations. Plus, using a proxy for accuracy in-
troduces estimation bias since accuracy will typically be underestimated [65].
We did not use accuracy predictors in this thesis. Sharing weights among po-
tential networks decreases the search time by two orders of magnitude [92].
[93, 100, 101] use network to network transformation for reusing weights of
previously discovered networks to amortize the training cost.

5.2 Network Ternarization

Network quantization is an effective solution that enables deploying CNNs
onto edge devices. Some recent researches [102, 103, 104] surpass quantized
neural networks and have aggressively reduced precision even to 1-bit to con-
struct binarized neural networks (BNNs). However, BNNs suffer from accu-
racy loss, especially for large datasets. [105] tried to address this issue for
BNNs by proposing an efficient training strategy. BinaryConnect [104] elimi-
nates multiplication in the forward pass by substituting full-precision weights
with -1 and 1 values. Some works such as [106] and [107] applied reduced
precision to reduce memory storage and computation. However, they still re-
quire computation-intensive MAC operations to perform the convolutional op-
erations, hence, suffer from heavy operations.

Ternary neural networks (TNNs) provide a fair trade-off between accuracy
and complexity [76, 82]. TWN [76], known as one of the earliest ternarization
efforts, proposed {-1, 0, +1} as quantization values to improve the accuracy of
binary networks. TWN utilized two symmetric thresholds (∆) alongside a scal-
ing factor (α) for each layer to quantize into {-∆, +∆}. However, there remains
a significant performance gap between TWN and the full-precision counter-
parts for large-scale datasets (7.5% accuracy loss on ImageNet for ResNet-18)
due to using symmetric thresholds. To solve this problem, TTQ uses two full-

61

precision scaling factors (αn, αp) for positive and negative values [82]. LQ-
Nets [29] applies proper quantization bits by a learnable quantizer, and ReLeQ
[30] automates CNN quantization based on a Reinforcement Learning (RL)
algorithm, respectively. TRQ [79] claimed that the existing thresholding al-
gorithms are not accurate enough to map the full precision to ternary values.
Therefore, TRQ introduced a recursive ternary quantization on full-precision
weights for a refined reconstruction rather than directly thresholding. In ad-
dition to designing the ternarization mechanisms, several hardware compilers
have been proposed [78, 108, 81] to expedite the ternarized network on energy-
efficient edge devices. Although prior studies have improved the ternarization
mechanism, they all have a naı̈ve assumption on the distribution of the weights
and/or activation functions.

precision scaling factors (αn, αp) for positive and negative values [82]. LQ-
Nets [29] applies proper quantization bits by a learnable quantizer, and ReLeQ
[30] automates CNN quantization based on a Reinforcement Learning (RL)
algorithm, respectively. TRQ [79] claimed that the existing thresholding al-
gorithms are not accurate enough to map the full precision to ternary values.
Therefore, TRQ introduced a recursive ternary quantization on full-precision
weights for a refined reconstruction rather than directly thresholding. In ad-
dition to designing the ternarization mechanisms, several hardware compilers
have been proposed [78, 108, 81] to expedite the ternarized network on energy-
efficient edge devices. Although prior studies have improved the ternarization
mechanism, they all have a naı̈ve assumption on the distribution of the weights
and/or activation functions.

62

Chapter 6

Discussion, Conclusion and
Future Work

In this chapter, we first discuss a summary of experimental results and conclude
the thesis. Finally, we present a list of potential future research directions.

6.1 Discussion and Conclusion

According to the literature review, we identified room for developing Neural
Architecture Search (NAS) and network quantization to tackle the challenges
of deploying large-scale CNNs on embedded mobile devices. NAS is a pow-
erful tool to accomplish the intended aims in this area. Nonetheless, there
is no well-detailed solution that gives the maximum accuracy for any unseen
task. In other words, many NAS specifications such as fitness function, design
space operations, and termination condition depend on the task under study
and the user’s constraints. In addition, NAS is a time-consuming process that
requires a high-performance system because of the enormous cost of training
candidates. Finally, network FLOPs or network parameters cannot be reliable
search objectives due to low correlation with network latency or power con-
sumption. The second technique utilized in this thesis is network quantization,
a popular method for reducing the computational cost and memory footprint of
CNNs. Despite providing remarkable computing cost alleviation, quantization

43

Chapter 6

Discussion, Conclusion and
Future Work

In this chapter, we first discuss a summary of experimental results and conclude
the thesis. Finally, we present a list of potential future research directions.

6.1 Discussion and Conclusion

According to the literature review, we identified room for developing Neural
Architecture Search (NAS) and network quantization to tackle the challenges
of deploying large-scale CNNs on embedded mobile devices. NAS is a pow-
erful tool to accomplish the intended aims in this area. Nonetheless, there
is no well-detailed solution that gives the maximum accuracy for any unseen
task. In other words, many NAS specifications such as fitness function, design
space operations, and termination condition depend on the task under study
and the user’s constraints. In addition, NAS is a time-consuming process that
requires a high-performance system because of the enormous cost of training
candidates. Finally, network FLOPs or network parameters cannot be reliable
search objectives due to low correlation with network latency or power con-
sumption. The second technique utilized in this thesis is network quantization,
a popular method for reducing the computational cost and memory footprint of
CNNs. Despite providing remarkable computing cost alleviation, quantization

43

63

techniques suffer from significant accuracy loss.

6.1.1 Thesis Storyline.

In this Section, we present the storyline of included publications.

• DeepMaker [90] introduces a multi-objective Neural Architecture
Search (NAS) algorithm by leveraging the NSGA-II algorithm [86] to
design hardware-friendly architectures (Paper A).

• In Paper D, we introduce a multi-objective Neural Architecture Search
(NAS) algorithm that combines Late Acceptance Hill Climbing followed
by Simulated Annealing [7]. We devise a latency estimator to accurately
estimate the inference time of the candidate neural architectures on a
range of target devices. We also integrate a transferred weights mech-
anism to reuse the weights of ancestors to expedite the overall search
speed.

• In Paper E, we introduce a novel combination of time-frequency analysis
in conjunction with the NAS method for classifying an important patho-
logical sign of ECG signal: Paroxysmal Atrial Fibrillation (PxAF). The
method used the wavelet transform along with the recurrence images of
the transformed signal to constitute input images to a CNN. The archi-
tecture of CNN was optimized by using a gradient-based NAS method.

• Paper B proposes the TOT-Net framework [77], a solution for ternarizing
CNNs with [-1, 0, 1] values for both weights and activation functions.
TOT-Net introduces a simple bit-wise logic for convolutional layers to
reduce the cost of multiply operations. TOT-Net proposes a novel piece-
wise activation function and optimized learning rate for different datasets
to improve the classification accuracy.

• Paper C proposes TAS, a gradient-based NAS method that efficiently
reduces the accuracy gap between ternary and full-precision architec-
tures while providing a significant compression ratio. TAS is robust to
quantization error by adding inter-cell skip connections to the DARTS
cell template to convey gradient propagation effectively. To our knowl-
edge, TAS [75] is the first method that designs accurate ternary neural
networks.

techniques suffer from significant accuracy loss.

6.1.1 Thesis Storyline.

In this Section, we present the storyline of included publications.

• DeepMaker [90] introduces a multi-objective Neural Architecture
Search (NAS) algorithm by leveraging the NSGA-II algorithm [86] to
design hardware-friendly architectures (Paper A).

• In Paper D, we introduce a multi-objective Neural Architecture Search
(NAS) algorithm that combines Late Acceptance Hill Climbing followed
by Simulated Annealing [7]. We devise a latency estimator to accurately
estimate the inference time of the candidate neural architectures on a
range of target devices. We also integrate a transferred weights mech-
anism to reuse the weights of ancestors to expedite the overall search
speed.

• In Paper E, we introduce a novel combination of time-frequency analysis
in conjunction with the NAS method for classifying an important patho-
logical sign of ECG signal: Paroxysmal Atrial Fibrillation (PxAF). The
method used the wavelet transform along with the recurrence images of
the transformed signal to constitute input images to a CNN. The archi-
tecture of CNN was optimized by using a gradient-based NAS method.

• Paper B proposes the TOT-Net framework [77], a solution for ternarizing
CNNs with [-1, 0, 1] values for both weights and activation functions.
TOT-Net introduces a simple bit-wise logic for convolutional layers to
reduce the cost of multiply operations. TOT-Net proposes a novel piece-
wise activation function and optimized learning rate for different datasets
to improve the classification accuracy.

• Paper C proposes TAS, a gradient-based NAS method that efficiently
reduces the accuracy gap between ternary and full-precision architec-
tures while providing a significant compression ratio. TAS is robust to
quantization error by adding inter-cell skip connections to the DARTS
cell template to convey gradient propagation effectively. To our knowl-
edge, TAS [75] is the first method that designs accurate ternary neural
networks.

64

6.1 Discussion and Conclusion 45

Regarding the involved issues in deploying CNNs on embedded platforms
using NAS and quantization, a summary of the results is presented in the fol-
lowing.

6.1.2 Disparity Estimating Performance

Table 6.1 compares the proposed method in Paper D with the other cutting-
edge architectures regarding the D1-all accuracy, Intel® NCS2 inference time,
FLOPs, and the search cost evaluation metrics. We consider end-to-end latency
(data transfer time + computation time) as the evaluation inference metric.
Batch size is equal to 1 in all the experiments. We believe taking inference time,
represented in second(s), is not reliable as the only metric for comparing the
implementation efficiency of two different networks. The reasons come from
the fact that the inference time even on the same device depends on various
factors, such as the learning API (Torch [109], TensorFlow [110], etc.), com-
piler settings, and hardware acceleration libraries (NVIDIA® cuDNN, Intel®

OpenVINO™, etc.); and Therefore, we also report network compression rate,
Accuracy
FLOPs , and NID = Accuracy

NetworkParameters in Table 6.1 as three hardware-
independent alternative metrics.

Table 6.1: Comparing the FastStereoNet results (Paper D) with state-of-the-art methods
on KITTI 2015. Unsuccessful implementation are shown in the red cells (mainly due to
the limited on-chip memory or OpenVINO™ limited supporting operations).

Architecture FLOPs Search Network Compression NID Accuracy
FLOPs Search Cost Error (%) Intel® NCS2

(×106) Method Rate(×)† (×106) (×106) (GPU Days)▷◁ Without Quantization Inference Time (Sec.)∗
DenseDisp [54] 1.56 Meta-heuristic 102 89.3 58.98 2 7.99 (D1-all) 0.626 (0.017̸=)
AutoDispNet-BOHB-CSS-ft† [91] 160 RL 1 0.88 - 42 OUT OF MEMORY‡
DenseMapNet [111] - Hand-Crafted - - - - 2.52 (EPE) 0.45
Vid2Depth [112] - Hand-Crafted - - - - 0.163 (Abs. Rel.) 0.276
GC-Net [113] - Hand-Crafted - 27.75 - - OUT OF MEMORY‡
Content-CNN [114] 2 Hand-Crafted 80 13.6 47.73 - 4.54 (D1-all) 0.7
GA-Net-deep [115] - Hand-Crafted - - - - OUT OF MEMORY‡
PSM-Net [116] 30 Hand-Crafted 5.3 6.1 - - OUT OF MEMORY‡
DispNet-CSS-ft∓ [117] 195 Hand-Crafted 0.8 0.84 - - OUT OF MEMORY‡
FastStereoNet (FLOPs) 2.08 Meta-heuristic 76.9 68.24 44.94 8 6.51 (D1-all) 0.64 (0.028̸=)
FastStereoNet (NCS2) 3.6 Meta-heuristic 44.4 40.07 26.6 8 4.22 (D1-all) 0.64 (0.028̸=)

† The baseline for comparing the compressing rate over the FLOPs metric.
∓ Reported in [91].

∗ The results are compiled with Intel® OpenVINO™.
‡ Undesired state which happens whenever the Intel® NCS2 on-chip memory cannot be allocated due to the huge network size.

▷◁ All the methods used 1× NVIDIA® GTX 1080ti for evaluating the candidates.
̸= Average computation time (kernel time) for 10000 times re-running network inference.

FastStereoNet obtains 95.78% accuracy with 640ms total inference time on
the Intel® NCS2 accelerator, 2.39M parameters, and 3.6M FLOPs. In compari-
son with the AutoDispNet-BOHB-CSS-ft NAS method, FastStereoNet presents
44.4× more network compression rate while delivering a comparable accuracy

6.1 Discussion and Conclusion 45

Regarding the involved issues in deploying CNNs on embedded platforms
using NAS and quantization, a summary of the results is presented in the fol-
lowing.

6.1.2 Disparity Estimating Performance

Table 6.1 compares the proposed method in Paper D with the other cutting-
edge architectures regarding the D1-all accuracy, Intel® NCS2 inference time,
FLOPs, and the search cost evaluation metrics. We consider end-to-end latency
(data transfer time + computation time) as the evaluation inference metric.
Batch size is equal to 1 in all the experiments. We believe taking inference time,
represented in second(s), is not reliable as the only metric for comparing the
implementation efficiency of two different networks. The reasons come from
the fact that the inference time even on the same device depends on various
factors, such as the learning API (Torch [109], TensorFlow [110], etc.), com-
piler settings, and hardware acceleration libraries (NVIDIA® cuDNN, Intel®

OpenVINO™, etc.); and Therefore, we also report network compression rate,
Accuracy
FLOPs , and NID = Accuracy

NetworkParameters in Table 6.1 as three hardware-
independent alternative metrics.

Table 6.1: Comparing the FastStereoNet results (Paper D) with state-of-the-art methods
on KITTI 2015. Unsuccessful implementation are shown in the red cells (mainly due to
the limited on-chip memory or OpenVINO™ limited supporting operations).

Architecture FLOPs Search Network Compression NID Accuracy
FLOPs Search Cost Error (%) Intel® NCS2

(×106) Method Rate(×)† (×106) (×106) (GPU Days)▷◁ Without Quantization Inference Time (Sec.)∗
DenseDisp [54] 1.56 Meta-heuristic 102 89.3 58.98 2 7.99 (D1-all) 0.626 (0.017̸=)
AutoDispNet-BOHB-CSS-ft† [91] 160 RL 1 0.88 - 42 OUT OF MEMORY‡
DenseMapNet [111] - Hand-Crafted - - - - 2.52 (EPE) 0.45
Vid2Depth [112] - Hand-Crafted - - - - 0.163 (Abs. Rel.) 0.276
GC-Net [113] - Hand-Crafted - 27.75 - - OUT OF MEMORY‡
Content-CNN [114] 2 Hand-Crafted 80 13.6 47.73 - 4.54 (D1-all) 0.7
GA-Net-deep [115] - Hand-Crafted - - - - OUT OF MEMORY‡
PSM-Net [116] 30 Hand-Crafted 5.3 6.1 - - OUT OF MEMORY‡
DispNet-CSS-ft∓ [117] 195 Hand-Crafted 0.8 0.84 - - OUT OF MEMORY‡
FastStereoNet (FLOPs) 2.08 Meta-heuristic 76.9 68.24 44.94 8 6.51 (D1-all) 0.64 (0.028̸=)
FastStereoNet (NCS2) 3.6 Meta-heuristic 44.4 40.07 26.6 8 4.22 (D1-all) 0.64 (0.028̸=)

† The baseline for comparing the compressing rate over the FLOPs metric.
∓ Reported in [91].

∗ The results are compiled with Intel® OpenVINO™.
‡ Undesired state which happens whenever the Intel® NCS2 on-chip memory cannot be allocated due to the huge network size.

▷◁ All the methods used 1× NVIDIA® GTX 1080ti for evaluating the candidates.
̸= Average computation time (kernel time) for 10000 times re-running network inference.

FastStereoNet obtains 95.78% accuracy with 640ms total inference time on
the Intel® NCS2 accelerator, 2.39M parameters, and 3.6M FLOPs. In compari-
son with the AutoDispNet-BOHB-CSS-ft NAS method, FastStereoNet presents
44.4× more network compression rate while delivering a comparable accuracy

65

(less than 2.05% accuracy loss). Also, FastStereoNet can be successfully im-
plemented on the Intel® NCS2 accelerator, while AutoDispNet-BOHB-CSS-ft
fails to be implemented in the Intel® NCS2 accelerator due to huge memory
footprint. In terms of search time, although FastStereoNet directly searches
a huge space with the minimum size of 2 × 2410 candidates, FastStereoNet
is still 5.25× faster than AutoDispNet which is a cell-based search that usually
takes a shorter time to find a solution. Compared to DenseDisp [54], FastStere-
oNet provides 3.77% higher accuracy as it uses a more complex design space.
DenseDisp yields 4× faster search compared to FastStereoNet. However, this
comes from the fact that DenseDisp trains the candidate architectures for few
epochs to estimate the accuracy while FastStereoNet fully trains the network
for all candidates.

Reporting the inference time on the Intel® NCS2 accelerator is motivated
by the following three observations: 1) some real-time neural architectures
such as DispNet cannot be deployed on some of the resource-limited devices
due to their high memory footprint; 2) the cutting-edge learning models use
complex operations which are not usually supported by commodity embed-
ded devices, e.g., Intel® NCS2 does not support GatherNd operation used
by MADNet [118]; and 3) Most of the resource-limited devices only support
quantized operations such as 8-bit floating-point (FP8) or 16-bit floating-point
(FP16). However, despite our expectation, the 16-bit quantization decreases
the accuracy significantly compared to the full precision implementation (float)
as illustrated in Fig. 10.6.c. As such, the models tailored to high-performance
GPUs may not be helpful for any resource-constrained devices. To the best
of our knowledge, FastStereoNet is the only solution that tackles all the chal-
lenges mentioned above by providing a clear perception (Fig. 10.6.h) on the
Intel® NCS2 accelerator. FastStereoNet achieves the clear perception with low
latency by: (i) considering network inference time as the second search ob-
jective yields highly customized architectures for a given target device; and
(ii) utilizing an independent disparity refinement which is not quantized during
hardware implementation; thus, it refines quantization drawbacks.

6.1.3 Ternary Neural Networks (TNNs) Performance

Table 6.2 compares the results of TAS proposed by Paper C against state-of-
the-art approaches on the CIFAR-10 dataset. Note that the compression ratio is

(less than 2.05% accuracy loss). Also, FastStereoNet can be successfully im-
plemented on the Intel® NCS2 accelerator, while AutoDispNet-BOHB-CSS-ft
fails to be implemented in the Intel® NCS2 accelerator due to huge memory
footprint. In terms of search time, although FastStereoNet directly searches
a huge space with the minimum size of 2 × 2410 candidates, FastStereoNet
is still 5.25× faster than AutoDispNet which is a cell-based search that usually
takes a shorter time to find a solution. Compared to DenseDisp [54], FastStere-
oNet provides 3.77% higher accuracy as it uses a more complex design space.
DenseDisp yields 4× faster search compared to FastStereoNet. However, this
comes from the fact that DenseDisp trains the candidate architectures for few
epochs to estimate the accuracy while FastStereoNet fully trains the network
for all candidates.

Reporting the inference time on the Intel® NCS2 accelerator is motivated
by the following three observations: 1) some real-time neural architectures
such as DispNet cannot be deployed on some of the resource-limited devices
due to their high memory footprint; 2) the cutting-edge learning models use
complex operations which are not usually supported by commodity embed-
ded devices, e.g., Intel® NCS2 does not support GatherNd operation used
by MADNet [118]; and 3) Most of the resource-limited devices only support
quantized operations such as 8-bit floating-point (FP8) or 16-bit floating-point
(FP16). However, despite our expectation, the 16-bit quantization decreases
the accuracy significantly compared to the full precision implementation (float)
as illustrated in Fig. 10.6.c. As such, the models tailored to high-performance
GPUs may not be helpful for any resource-constrained devices. To the best
of our knowledge, FastStereoNet is the only solution that tackles all the chal-
lenges mentioned above by providing a clear perception (Fig. 10.6.h) on the
Intel® NCS2 accelerator. FastStereoNet achieves the clear perception with low
latency by: (i) considering network inference time as the second search ob-
jective yields highly customized architectures for a given target device; and
(ii) utilizing an independent disparity refinement which is not quantized during
hardware implementation; thus, it refines quantization drawbacks.

6.1.3 Ternary Neural Networks (TNNs) Performance

Table 6.2 compares the results of TAS proposed by Paper C against state-of-
the-art approaches on the CIFAR-10 dataset. Note that the compression ratio is

66

6.1 Discussion and Conclusion 47

determined by measuring memory utilization. Consider q is quantization reso-
lution (q-bit) of layer l, L is the maximum number of layers in each network,
#Wl and #W t

l are the number of weights in layer l for full-precision (32-bit)
and ternary networks, respectively. Hence, the compression ratio is expressed
as

∑L
l=1 #Wl×32∑L
l=1 #W t

l ×q
. ResNet-18 [74] is selected as the compression ratio baseline

in our experiments.
TAS significantly outperforms all existing methods in terms of accuracy

and compression ratio. TAS obtains a 0.94% accuracy improvement with a
45.73× higher compression ratio than full-precision ResNet-18. In comparison
with TRQ [79] with the same quantization resolution, TAS achieves 2.64%
accuracy improvement with 2.84× higher compression ratio. We can see that
trivially extending DARTS to design TNNs (DARTS+Ternarization) results in
a 6.04% accuracy degradation. Compared to binary NAS [119], TAS provides
1.28% higher accuracy without compromising memory saving.

6.1.4 Paroxysmal Atrial Fibrillation Classification Perfor-
mance

Paper E presents a novel application of the Neural Architecture Search (NAS)
method: classification of Paroxysmal Atrial Fibrillation (PxAF) from electro-
cardiogram (ECG) signal. We propose an innovative method for ECG classi-
fication by integrating an especial signal processing phase with convolutional
neural network where NAS finds the optimal classification architecture. Ta-
ble 11.2 compares the results of the proposed method in Paper E with the state-
of-the-art and state-of-practice classification methods. Results show that our
proposed method provides the most accurate classification result compared to
all counterparts.

6.1 Discussion and Conclusion 47

determined by measuring memory utilization. Consider q is quantization reso-
lution (q-bit) of layer l, L is the maximum number of layers in each network,
#Wl and #W t

l are the number of weights in layer l for full-precision (32-bit)
and ternary networks, respectively. Hence, the compression ratio is expressed
as

∑L
l=1 #Wl×32∑L
l=1 #W t

l ×q
. ResNet-18 [74] is selected as the compression ratio baseline

in our experiments.
TAS significantly outperforms all existing methods in terms of accuracy

and compression ratio. TAS obtains a 0.94% accuracy improvement with a
45.73× higher compression ratio than full-precision ResNet-18. In comparison
with TRQ [79] with the same quantization resolution, TAS achieves 2.64%
accuracy improvement with 2.84× higher compression ratio. We can see that
trivially extending DARTS to design TNNs (DARTS+Ternarization) results in
a 6.04% accuracy degradation. Compared to binary NAS [119], TAS provides
1.28% higher accuracy without compromising memory saving.

6.1.4 Paroxysmal Atrial Fibrillation Classification Perfor-
mance

Paper E presents a novel application of the Neural Architecture Search (NAS)
method: classification of Paroxysmal Atrial Fibrillation (PxAF) from electro-
cardiogram (ECG) signal. We propose an innovative method for ECG classi-
fication by integrating an especial signal processing phase with convolutional
neural network where NAS finds the optimal classification architecture. Ta-
ble 11.2 compares the results of the proposed method in Paper E with the state-
of-the-art and state-of-practice classification methods. Results show that our
proposed method provides the most accurate classification result compared to
all counterparts.

67

(a) Left Image (b) Right Image

(c) DenseMapNet (FP16 @ NCS2) (d) Vid2Depth (FP16 @ NCS2)

(e) DispNet (float @ CPU @ TensorFlow) (f) DispNet (float @ CPU @ OpenVINO™)

(g) GC-Net (float @ CPU) (h) FastStereoNet (FP16 @ NCS2)

Figure 6.1: Illustrating the output of different studied disparity estimators: (a) left
image, (b) right image,(c) DenseMapNet (FP16 @ NCS2), (d) Vid2Depth (FP16 @
NCS2), (e) DispNet (float @ CPU @ TensorFlow), (f) DispNet (float @ CPU @
OpenVINO™), (g) GC-Net (float @ CPU), and (h) FastStereoNet (FP16 @ NCS2).
FastStereoNet is the only solution that yields clear disparity perception on Intel® NCS2.

(a) Left Image (b) Right Image

(c) DenseMapNet (FP16 @ NCS2) (d) Vid2Depth (FP16 @ NCS2)

(e) DispNet (float @ CPU @ TensorFlow) (f) DispNet (float @ CPU @ OpenVINO™)

(g) GC-Net (float @ CPU) (h) FastStereoNet (FP16 @ NCS2)

Figure 6.1: Illustrating the output of different studied disparity estimators: (a) left
image, (b) right image,(c) DenseMapNet (FP16 @ NCS2), (d) Vid2Depth (FP16 @
NCS2), (e) DispNet (float @ CPU @ TensorFlow), (f) DispNet (float @ CPU @
OpenVINO™), (g) GC-Net (float @ CPU), and (h) FastStereoNet (FP16 @ NCS2).
FastStereoNet is the only solution that yields clear disparity perception on Intel® NCS2.

68

6.1 Discussion and Conclusion 49

Table 6.2: Comparing the TAS results with state-of-the-art methods on CIFAR-10
dataset.

Method # bits Compression Top-1 Accuracy
(Backbone Arch.) (W/A)‡ Ratio (×)† (%)

Full-precision (ResNet-18) [74] 32/32 1 91.0
TBN (VGG-7) [80] 2/32 1.33 90.85

TWN (ResNet-18) [76] 2/32 16.06 92.56
TRQ (ResNet-18) [79] 2/2 16.06 89.3
Binary NAS (A) [119] 1/1 45.73 90.66∗

DARTS+Ternarization [58] 2/32 - 85.9
TAS (Ours) 2/2 45.73 91.94

† The baseline for comparing the compressing ratio is ResNet-18.
‡ (Weights/Activation Function).

∗ Experiments obtained by re-running the official implementation.

Table 6.3: Comparing the results of Paper E with state-of-the-art and state-of-the-
practice methods.

Method Accuracy (%) Search Method
Random Search [74] 95.1 Random Search†

Pourbabaee et al. [120]‡ 91.0 Manual
ResNet-18 [74] 94.3 Manual

Auto Sklearn [89] 87.15 Bayesian Optimization
Paper E (Ours) 97.7 SGD

† Using the same search space as DARTS [58].
‡ Reporting the best results by CNN architecture with a K-nearest neighbor (KNN) classifier.

6.1 Discussion and Conclusion 49

Table 6.2: Comparing the TAS results with state-of-the-art methods on CIFAR-10
dataset.

Method # bits Compression Top-1 Accuracy
(Backbone Arch.) (W/A)‡ Ratio (×)† (%)

Full-precision (ResNet-18) [74] 32/32 1 91.0
TBN (VGG-7) [80] 2/32 1.33 90.85

TWN (ResNet-18) [76] 2/32 16.06 92.56
TRQ (ResNet-18) [79] 2/2 16.06 89.3
Binary NAS (A) [119] 1/1 45.73 90.66∗

DARTS+Ternarization [58] 2/32 - 85.9
TAS (Ours) 2/2 45.73 91.94

† The baseline for comparing the compressing ratio is ResNet-18.
‡ (Weights/Activation Function).

∗ Experiments obtained by re-running the official implementation.

Table 6.3: Comparing the results of Paper E with state-of-the-art and state-of-the-
practice methods.

Method Accuracy (%) Search Method
Random Search [74] 95.1 Random Search†

Pourbabaee et al. [120]‡ 91.0 Manual
ResNet-18 [74] 94.3 Manual

Auto Sklearn [89] 87.15 Bayesian Optimization
Paper E (Ours) 97.7 SGD

† Using the same search space as DARTS [58].
‡ Reporting the best results by CNN architecture with a K-nearest neighbor (KNN) classifier.

69

6.2 Future Work
In the rest of the research journey, we mainly aim to leverage the idea of meta-
learning to reduce the cost of designing hardware performance estimation mod-
els. In addition, considering other hardware constraints such as energy and sil-
icon footprints (on FPGAs) is one of our interests. We also identify room for
some research directions on optimizing the architecture of time-based classi-
fiers such as transformers. Therefore, we can extend our proposed method to
support designing the optimal architecture for transformers. Language transla-
tion, speech recognition, and market analysis are among the applications that
can benefit from optimized transformers.

6.2 Future Work
In the rest of the research journey, we mainly aim to leverage the idea of meta-
learning to reduce the cost of designing hardware performance estimation mod-
els. In addition, considering other hardware constraints such as energy and sil-
icon footprints (on FPGAs) is one of our interests. We also identify room for
some research directions on optimizing the architecture of time-based classi-
fiers such as transformers. Therefore, we can extend our proposed method to
support designing the optimal architecture for transformers. Language transla-
tion, speech recognition, and market analysis are among the applications that
can benefit from optimized transformers.

70

Bibliography

[1] Nasser M Nasrabadi. Pattern recognition and machine learning. Journal
of electronic imaging, 16(4):049901, 2007.

[2] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image processing, anal-
ysis, and machine vision. Cengage Learning, 2014.

[3] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
MIT press, 2016.

[4] Dong Yu and Li Deng. AUTOMATIC SPEECH RECOGNITION.
Springer, 2016.

[5] Li Deng and Yang Liu. Deep Learning in Natural Language Processing.
Springer, 2018.

[6] Li Deng and Dong Yu. Deep learning for signal and information pro-
cessing. Microsoft Research Monograph, 2013.

[7] Mohammad Loni, Ali Zoljodi, Amin Majd, Byung Hoon Ahn, Masoud
Daneshtalab, Mikael Sjödin, and Hadi Esmaeilzadeh. Faststereonet: A
fast neural architecture search for improving the inference of disparity
estimation on resource-limited platforms. IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, 2021.

[8] Najda Vidimlic, Alexandra Levin, Mohammad Loni, and Masoud
Daneshtalab. Image synthesisation and data augmentation for safe ob-
ject detection in aircraft auto-landing system. In 16th International Joint

51

Bibliography

[1] Nasser M Nasrabadi. Pattern recognition and machine learning. Journal
of electronic imaging, 16(4):049901, 2007.

[2] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image processing, anal-
ysis, and machine vision. Cengage Learning, 2014.

[3] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
MIT press, 2016.

[4] Dong Yu and Li Deng. AUTOMATIC SPEECH RECOGNITION.
Springer, 2016.

[5] Li Deng and Yang Liu. Deep Learning in Natural Language Processing.
Springer, 2018.

[6] Li Deng and Dong Yu. Deep learning for signal and information pro-
cessing. Microsoft Research Monograph, 2013.

[7] Mohammad Loni, Ali Zoljodi, Amin Majd, Byung Hoon Ahn, Masoud
Daneshtalab, Mikael Sjödin, and Hadi Esmaeilzadeh. Faststereonet: A
fast neural architecture search for improving the inference of disparity
estimation on resource-limited platforms. IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, 2021.

[8] Najda Vidimlic, Alexandra Levin, Mohammad Loni, and Masoud
Daneshtalab. Image synthesisation and data augmentation for safe ob-
ject detection in aircraft auto-landing system. In 16th International Joint

51

71

Conference on Computer Vision, Imaging and Computer Graphics The-
ory and Applications, VISIGRAPP 2021, 8 February 2021 through 10
February 2021, volume 5, pages 123–135. SciTePress, 2021.

[9] JT Thirukrishna, Sanda Reddy Sai Krishna, Policherla Shashank,
S Srikanth, and V Raghu. Survey on diagnosing corona virus from
radiography chest x-ray images using convolutional neural networks.
Wireless Personal Communications, pages 1–10, 2022.

[10] Zahra Ebrahimi, Mohammad Loni, Masoud Daneshtalab, and Arash
Gharehbaghi. A review on deep learning methods for ecg arrhythmia
classification. Expert Systems with Applications: X, page 100033, 2020.

[11] Truc Nguyen and Franz Pernkopf. Lung sound classification using snap-
shot ensemble of convolutional neural networks. In 2020 42nd Annual
International Conference of the IEEE Engineering in Medicine & Biol-
ogy Society (EMBC), pages 760–763. IEEE, 2020.

[12] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural archi-
tecture search: A survey. arXiv preprint arXiv:1808.05377, 2018.

[13] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong
Yang, Zhongzhi Luan, Lin Gan, Guangwen Yang, and Depei Qian. The
deep learning compiler: A comprehensive survey. IEEE Transactions
on Parallel and Distributed Systems, 32(3):708–727, 2020.

[14] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green
ai. Communications of the ACM, 63(12):54–63, 2020.

[15] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy
and policy considerations for deep learning in nlp. arXiv preprint
arXiv:1906.02243, 2019.

[16] Philip Smith and Nicolas Howe. Climate change as social drama:
Global warming in the public sphere. Cambridge University Press,
2015.

[17] Mohammad Loni, Masoud Daneshtalab, and Mikael Sjödin. Adonn:
Adaptive design of optimized deep neural networks for embedded sys-
tems. In 2018 21st Euromicro Conference on Digital System Design
(DSD), pages 397–404. IEEE, 2018.

Conference on Computer Vision, Imaging and Computer Graphics The-
ory and Applications, VISIGRAPP 2021, 8 February 2021 through 10
February 2021, volume 5, pages 123–135. SciTePress, 2021.

[9] JT Thirukrishna, Sanda Reddy Sai Krishna, Policherla Shashank,
S Srikanth, and V Raghu. Survey on diagnosing corona virus from
radiography chest x-ray images using convolutional neural networks.
Wireless Personal Communications, pages 1–10, 2022.

[10] Zahra Ebrahimi, Mohammad Loni, Masoud Daneshtalab, and Arash
Gharehbaghi. A review on deep learning methods for ecg arrhythmia
classification. Expert Systems with Applications: X, page 100033, 2020.

[11] Truc Nguyen and Franz Pernkopf. Lung sound classification using snap-
shot ensemble of convolutional neural networks. In 2020 42nd Annual
International Conference of the IEEE Engineering in Medicine & Biol-
ogy Society (EMBC), pages 760–763. IEEE, 2020.

[12] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural archi-
tecture search: A survey. arXiv preprint arXiv:1808.05377, 2018.

[13] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong
Yang, Zhongzhi Luan, Lin Gan, Guangwen Yang, and Depei Qian. The
deep learning compiler: A comprehensive survey. IEEE Transactions
on Parallel and Distributed Systems, 32(3):708–727, 2020.

[14] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green
ai. Communications of the ACM, 63(12):54–63, 2020.

[15] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy
and policy considerations for deep learning in nlp. arXiv preprint
arXiv:1906.02243, 2019.

[16] Philip Smith and Nicolas Howe. Climate change as social drama:
Global warming in the public sphere. Cambridge University Press,
2015.

[17] Mohammad Loni, Masoud Daneshtalab, and Mikael Sjödin. Adonn:
Adaptive design of optimized deep neural networks for embedded sys-
tems. In 2018 21st Euromicro Conference on Digital System Design
(DSD), pages 397–404. IEEE, 2018.

72

Bibliography 53

[18] David Reinsel-John Gantz-John Rydning. The digitization of the world
from edge to core. Framingham: International Data Corporation,
page 16, 2018.

[19] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro,
Joon Kyung Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh.
From high-level deep neural models to fpgas. In The 49th Annual
IEEE/ACM International Symposium on Microarchitecture, page 17.
IEEE Press, 2016.

[20] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architec-
ture for energy-efficient dataflow for convolutional neural networks. In
ACM SIGARCH Computer Architecture News, volume 44, pages 367–
379. IEEE Press, 2016.

[21] Francesco Conti, Pasquale Davide Schiavone, and Luca Benini. Xnor
neural engine: A hardware accelerator ip for 21.6-fj/op binary neural
network inference. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(11):2940–2951, 2018.

[22] Song Han, Jeff Pool, John Tran, and William Dally. Learning both
weights and connections for efficient neural network. In Advances in
neural information processing systems, pages 1135–1143, 2015.

[23] Song Han, Huizi Mao, and William J Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[24] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-
efficient convolutional neural networks using energy-aware pruning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5687–5695, 2017.

[25] Gintare Karolina Dziugaite and Daniel M Roy. Neural network matrix
factorization. arXiv preprint arXiv:1511.06443, 2015.

[26] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up
convolutional neural networks with low rank expansions. arXiv preprint
arXiv:1405.3866, 2014.

Bibliography 53

[18] David Reinsel-John Gantz-John Rydning. The digitization of the world
from edge to core. Framingham: International Data Corporation,
page 16, 2018.

[19] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro,
Joon Kyung Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh.
From high-level deep neural models to fpgas. In The 49th Annual
IEEE/ACM International Symposium on Microarchitecture, page 17.
IEEE Press, 2016.

[20] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architec-
ture for energy-efficient dataflow for convolutional neural networks. In
ACM SIGARCH Computer Architecture News, volume 44, pages 367–
379. IEEE Press, 2016.

[21] Francesco Conti, Pasquale Davide Schiavone, and Luca Benini. Xnor
neural engine: A hardware accelerator ip for 21.6-fj/op binary neural
network inference. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(11):2940–2951, 2018.

[22] Song Han, Jeff Pool, John Tran, and William Dally. Learning both
weights and connections for efficient neural network. In Advances in
neural information processing systems, pages 1135–1143, 2015.

[23] Song Han, Huizi Mao, and William J Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[24] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-
efficient convolutional neural networks using energy-aware pruning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5687–5695, 2017.

[25] Gintare Karolina Dziugaite and Daniel M Roy. Neural network matrix
factorization. arXiv preprint arXiv:1511.06443, 2015.

[26] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up
convolutional neural networks with low rank expansions. arXiv preprint
arXiv:1405.3866, 2014.

73

[27] Samuel Cahyawijaya, Genta Indra Winata, Holy Lovenia, Bryan Wilie,
Wenliang Dai, Etsuko Ishii, and Pascale Fung. Greenformer: Fac-
torization toolkit for efficient deep neural networks. arXiv preprint
arXiv:2109.06762, 2021.

[28] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson
Chau, Vikas Chandra, and Hadi Esmaeilzadeh. Bit fusion: Bit-level
dynamically composable architecture for accelerating deep neural net-
works. In Proceedings of the 45th Annual International Symposium on
Computer Architecture, pages 764–775. IEEE Press, 2018.

[29] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-
nets: Learned quantization for highly accurate and compact deep neural
networks. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 365–382, 2018.

[30] Amir Yazdanbakhsh, Ahmed T Elthakeb, Prannoy Pilligundla, and Fate-
mehSadat Mireshghallah Hadi Esmaeilzadeh. Releq: An automatic re-
inforcement learning approach for deep quantization of neural networks.
arXiv preprint arXiv:1811.01704, 2018.

[31] Lei Deng, Peng Jiao, Jing Pei, Zhenzhi Wu, and Guoqi Li. Gxnor-
net: Training deep neural networks with ternary weights and activations
without full-precision memory under a unified discretization framework.
Neural Networks, 100:49–58, 2018.

[32] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-
berger. Densely connected convolutional networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
4700–4708, 2017.

[33] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv
preprint arXiv:1312.4400, 2013.

[34] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[27] Samuel Cahyawijaya, Genta Indra Winata, Holy Lovenia, Bryan Wilie,
Wenliang Dai, Etsuko Ishii, and Pascale Fung. Greenformer: Fac-
torization toolkit for efficient deep neural networks. arXiv preprint
arXiv:2109.06762, 2021.

[28] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson
Chau, Vikas Chandra, and Hadi Esmaeilzadeh. Bit fusion: Bit-level
dynamically composable architecture for accelerating deep neural net-
works. In Proceedings of the 45th Annual International Symposium on
Computer Architecture, pages 764–775. IEEE Press, 2018.

[29] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-
nets: Learned quantization for highly accurate and compact deep neural
networks. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 365–382, 2018.

[30] Amir Yazdanbakhsh, Ahmed T Elthakeb, Prannoy Pilligundla, and Fate-
mehSadat Mireshghallah Hadi Esmaeilzadeh. Releq: An automatic re-
inforcement learning approach for deep quantization of neural networks.
arXiv preprint arXiv:1811.01704, 2018.

[31] Lei Deng, Peng Jiao, Jing Pei, Zhenzhi Wu, and Guoqi Li. Gxnor-
net: Training deep neural networks with ternary weights and activations
without full-precision memory under a unified discretization framework.
Neural Networks, 100:49–58, 2018.

[32] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-
berger. Densely connected convolutional networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
4700–4708, 2017.

[33] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv
preprint arXiv:1312.4400, 2013.

[34] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

74

Bibliography 55

[35] Howard B Demuth, Mark H Beale, Orlando De Jess, and Martin T Ha-
gan. Neural network design. Martin Hagan, 2014.

[36] Wlodzislaw Duch and Norbert Jankowski. Survey of neural transfer
functions. Neural Computing Surveys, 2(1):163–212, 1999.

[37] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen
Marshall. Activation functions: Comparison of trends in practice and
research for deep learning. arXiv preprint arXiv:1811.03378, 2018.

[38] Mina Basirat and Peter M Roth. Learning task-specific activation func-
tions using genetic programming. In VISIGRAPP (5: VISAPP), pages
533–540, 2019.

[39] Avinash Sharma V. Understanding activation functions in neural net-
works, 2017. accessed: 20 May 2020.

[40] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international
conference on machine learning (ICML-10), pages 807–814, 2010.

[41] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier non-
linearities improve neural network acoustic models. In Proc. icml, vol-
ume 30, page 3, 2013.

[42] Sagar Sharma. Epoch vs batch size vs iterations, 2017. accessed: 20
May 2020.

[43] J.Brownlee. A gentle introduction to the challenge of training deep
learning neural network models, 2019. accessed: 20 May 2020.

[44] J.Torres. Learning process of a neural network, 2018. accessed: 20 May
2020.

[45] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data
augmentation for deep learning. Journal of Big Data, 6(1):60, 2019.

[46] Haotian Zhang, Lin Zhang, and Yuan Jiang. Overfitting and underfitting
analysis for deep learning based end-to-end communication systems. In
2019 11th International Conference on Wireless Communications and
Signal Processing (WCSP), pages 1–6. IEEE, 2019.

Bibliography 55

[35] Howard B Demuth, Mark H Beale, Orlando De Jess, and Martin T Ha-
gan. Neural network design. Martin Hagan, 2014.

[36] Wlodzislaw Duch and Norbert Jankowski. Survey of neural transfer
functions. Neural Computing Surveys, 2(1):163–212, 1999.

[37] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen
Marshall. Activation functions: Comparison of trends in practice and
research for deep learning. arXiv preprint arXiv:1811.03378, 2018.

[38] Mina Basirat and Peter M Roth. Learning task-specific activation func-
tions using genetic programming. In VISIGRAPP (5: VISAPP), pages
533–540, 2019.

[39] Avinash Sharma V. Understanding activation functions in neural net-
works, 2017. accessed: 20 May 2020.

[40] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international
conference on machine learning (ICML-10), pages 807–814, 2010.

[41] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier non-
linearities improve neural network acoustic models. In Proc. icml, vol-
ume 30, page 3, 2013.

[42] Sagar Sharma. Epoch vs batch size vs iterations, 2017. accessed: 20
May 2020.

[43] J.Brownlee. A gentle introduction to the challenge of training deep
learning neural network models, 2019. accessed: 20 May 2020.

[44] J.Torres. Learning process of a neural network, 2018. accessed: 20 May
2020.

[45] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data
augmentation for deep learning. Journal of Big Data, 6(1):60, 2019.

[46] Haotian Zhang, Lin Zhang, and Yuan Jiang. Overfitting and underfitting
analysis for deep learning based end-to-end communication systems. In
2019 11th International Conference on Wireless Communications and
Signal Processing (WCSP), pages 1–6. IEEE, 2019.

75

[47] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. The journal of machine learning research,
15(1):1929–1958, 2014.

[48] Sungheon Park and Nojun Kwak. Analysis on the dropout effect in
convolutional neural networks. In Asian conference on computer vision,
pages 189–204. Springer, 2016.

[49] Lorien Y Pratt. Discriminability-based transfer between neural net-
works. In Advances in neural information processing systems, pages
204–211, 1993.

[50] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How trans-
ferable are features in deep neural networks? Advances in neural infor-
mation processing systems, 27, 2014.

[51] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Man-
zagol, Pascal Vincent, and Samy Bengio. Why does unsupervised pre-
training help deep learning? Journal of Machine Learning Research,
11(Feb):625–660, 2010.

[52] Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in
four gpu hours. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1761–1770, 2019.

[53] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learn-
ing transferable architectures for scalable image recognition. In Pro-
ceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 8697–8710, 2018.

[54] Mohammad Loni, Ali Zoljodi, Daniel Maier, Amin Majd, Masoud
Daneshtalab, Mikael Sjödin, Ben Juurlink, and Reza Akbari. Densedisp:
Resource-aware disparity map estimation by compressing siamese neu-
ral architecture. In IEEE World Congress On Computational Intelli-
gence (WCCI) 2020, July 2020.

[55] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural archi-
tecture search on target task and hardware. In 7th International Confer-
ence on Learning Representations, ICLR 2019, 2019.

[47] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. The journal of machine learning research,
15(1):1929–1958, 2014.

[48] Sungheon Park and Nojun Kwak. Analysis on the dropout effect in
convolutional neural networks. In Asian conference on computer vision,
pages 189–204. Springer, 2016.

[49] Lorien Y Pratt. Discriminability-based transfer between neural net-
works. In Advances in neural information processing systems, pages
204–211, 1993.

[50] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How trans-
ferable are features in deep neural networks? Advances in neural infor-
mation processing systems, 27, 2014.

[51] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Man-
zagol, Pascal Vincent, and Samy Bengio. Why does unsupervised pre-
training help deep learning? Journal of Machine Learning Research,
11(Feb):625–660, 2010.

[52] Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in
four gpu hours. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1761–1770, 2019.

[53] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learn-
ing transferable architectures for scalable image recognition. In Pro-
ceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 8697–8710, 2018.

[54] Mohammad Loni, Ali Zoljodi, Daniel Maier, Amin Majd, Masoud
Daneshtalab, Mikael Sjödin, Ben Juurlink, and Reza Akbari. Densedisp:
Resource-aware disparity map estimation by compressing siamese neu-
ral architecture. In IEEE World Congress On Computational Intelli-
gence (WCCI) 2020, July 2020.

[55] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural archi-
tecture search on target task and hardware. In 7th International Confer-
ence on Learning Representations, ICLR 2019, 2019.

76

Bibliography 57

[56] Martin Wistuba, Ambrish Rawat, and Tejaswini Pedapati. A survey on
neural architecture search. arXiv preprint arXiv:1905.01392, 2019.

[57] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural
architecture optimization. In Advances in neural information processing
systems, pages 7816–7827, 2018.

[58] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055, 2018.

[59] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Math-
ieu Salzmann. Evaluating the search phase of neural architecture search.
arXiv preprint arXiv:1902.08142, 2019.

[60] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André
Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass,
and Frank Hutter. Smac3: A versatile bayesian optimization package for
hyperparameter optimization. Journal of Machine Learning Research,
23(54):1–9, 2022.

[61] Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob
Richter, Stefan Coors, Janek Thomas, Theresa Ullmann, Marc Becker,
Anne-Laure Boulesteix, et al. Hyperparameter optimization: Founda-
tions, algorithms, best practices and open challenges. arXiv preprint
arXiv:2107.05847, 2021.

[62] Jia Wu, Xiu-Yun Chen, Hao Zhang, Li-Dong Xiong, Hang Lei, and Si-
Hao Deng. Hyperparameter optimization for machine learning models
based on bayesian optimization. Journal of Electronic Science and Tech-
nology, 17(1):26–40, 2019.

[63] Mohammad Loni, Ali Zoljodi, Sima Sinaei, Masoud Daneshtalab, and
Mikael Sjödin. Neuropower: Designing energy efficient convolutional
neural network architecture for embedded systems. In International
Conference on Artificial Neural Networks, pages 208–222. Springer,
2019.

[64] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyan-
moy Deb, Erik Goodman, and Wolfgang Banzhaf. Nsga-net: a multi-

Bibliography 57

[56] Martin Wistuba, Ambrish Rawat, and Tejaswini Pedapati. A survey on
neural architecture search. arXiv preprint arXiv:1905.01392, 2019.

[57] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural
architecture optimization. In Advances in neural information processing
systems, pages 7816–7827, 2018.

[58] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055, 2018.

[59] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Math-
ieu Salzmann. Evaluating the search phase of neural architecture search.
arXiv preprint arXiv:1902.08142, 2019.

[60] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André
Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass,
and Frank Hutter. Smac3: A versatile bayesian optimization package for
hyperparameter optimization. Journal of Machine Learning Research,
23(54):1–9, 2022.

[61] Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob
Richter, Stefan Coors, Janek Thomas, Theresa Ullmann, Marc Becker,
Anne-Laure Boulesteix, et al. Hyperparameter optimization: Founda-
tions, algorithms, best practices and open challenges. arXiv preprint
arXiv:2107.05847, 2021.

[62] Jia Wu, Xiu-Yun Chen, Hao Zhang, Li-Dong Xiong, Hang Lei, and Si-
Hao Deng. Hyperparameter optimization for machine learning models
based on bayesian optimization. Journal of Electronic Science and Tech-
nology, 17(1):26–40, 2019.

[63] Mohammad Loni, Ali Zoljodi, Sima Sinaei, Masoud Daneshtalab, and
Mikael Sjödin. Neuropower: Designing energy efficient convolutional
neural network architecture for embedded systems. In International
Conference on Artificial Neural Networks, pages 208–222. Springer,
2019.

[64] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyan-
moy Deb, Erik Goodman, and Wolfgang Banzhaf. Nsga-net: a multi-

77

objective genetic algorithm for neural architecture search. arXiv preprint
arXiv:1810.03522, 2018.

[65] Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hutter. Towards
automated deep learning: Efficient joint neural architecture and hyper-
parameter search. arXiv preprint arXiv:1807.06906, 2018.

[66] Bokai Cao, Lei Zheng, Chenwei Zhang, Philip S Yu, Andrea Piscitello,
John Zulueta, Olu Ajilore, Kelly Ryan, and Alex D Leow. Deepmood:
modeling mobile phone typing dynamics for mood detection. In Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 747–755, 2017.

[67] Lichao Sun, Yuqi Wang, Bokai Cao, S Yu Philip, Witawas Srisa-An, and
Alex D Leow. Sequential keystroke behavioral biometrics for mobile
user identification via multi-view deep learning. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases,
pages 228–240. Springer, 2017.

[68] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask
r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 2961–2969, 2017.

[69] Rikiya Yamashita, Mizuho Nishio, Richard Kinh Gian Do, and Kaori
Togashi. Convolutional neural networks: an overview and application
in radiology. Insights into imaging, 9(4):611–629, 2018.

[70] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
{GAZELLE}: A low latency framework for secure neural network in-
ference. In 27th {USENIX} Security Symposium ({USENIX} Security
18), pages 1651–1669, 2018.

[71] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark San-
dler, Andrew Howard, and Quoc V Le. Mnasnet: Platform-aware neural
architecture search for mobile. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 2820–2828,
2019.

[72] Amir Gholami, Zhewei Yao, Sehoon Kim, Michael W Mahoney, and
Kurt Keutzer. Ai and memory wall. RiseLab Medium Post, 2021.

objective genetic algorithm for neural architecture search. arXiv preprint
arXiv:1810.03522, 2018.

[65] Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hutter. Towards
automated deep learning: Efficient joint neural architecture and hyper-
parameter search. arXiv preprint arXiv:1807.06906, 2018.

[66] Bokai Cao, Lei Zheng, Chenwei Zhang, Philip S Yu, Andrea Piscitello,
John Zulueta, Olu Ajilore, Kelly Ryan, and Alex D Leow. Deepmood:
modeling mobile phone typing dynamics for mood detection. In Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 747–755, 2017.

[67] Lichao Sun, Yuqi Wang, Bokai Cao, S Yu Philip, Witawas Srisa-An, and
Alex D Leow. Sequential keystroke behavioral biometrics for mobile
user identification via multi-view deep learning. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases,
pages 228–240. Springer, 2017.

[68] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask
r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 2961–2969, 2017.

[69] Rikiya Yamashita, Mizuho Nishio, Richard Kinh Gian Do, and Kaori
Togashi. Convolutional neural networks: an overview and application
in radiology. Insights into imaging, 9(4):611–629, 2018.

[70] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
{GAZELLE}: A low latency framework for secure neural network in-
ference. In 27th {USENIX} Security Symposium ({USENIX} Security
18), pages 1651–1669, 2018.

[71] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark San-
dler, Andrew Howard, and Quoc V Le. Mnasnet: Platform-aware neural
architecture search for mobile. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 2820–2828,
2019.

[72] Amir Gholami, Zhewei Yao, Sehoon Kim, Michael W Mahoney, and
Kurt Keutzer. Ai and memory wall. RiseLab Medium Post, 2021.

78

Bibliography 59

[73] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song
Han. Mcunet: Tiny deep learning on iot devices. arXiv preprint
arXiv:2007.10319, 2020.

[74] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 770–778, 2016.

[75] Mohammad Loni, Hamid Mousavi, Mohammad Riazati, Masoud
Daneshtalab, and Mikael Sjödin. Tas: Ternarized neural architecture
search for resource-constrained edge devices. In Design, Automation
& Test in Europe Conference & Exhibition DATE’22, 14 March 2022,
Antwerp, Belgium. IEEE, March 2022.

[76] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv
preprint arXiv:1605.04711, 2016.

[77] Najmeh Nazari, Mohammad Loni, Mostafa E. Salehi, Masoud Danesh-
talab, and Mikael Sjödin. Tot-net: An endeavour toward optimizing
ternary neural networks. In 2019 22st Euromicro Conference on Digital
System Design (DSD). IEEE, 2019.

[78] Peng Chen, Bohan Zhuang, and Chunhua Shen. Fatnn: Fast and accurate
ternary neural networks. arXiv preprint arXiv:2008.05101, 2020.

[79] Yue Li, Wenrui Ding, Chunlei Liu, Baochang Zhang, and Guodong Guo.
Trq: Ternary neural networks with residual quantization. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 35, pages
8538–8546, 2021.

[80] Diwen Wan, Fumin Shen, Li Liu, Fan Zhu, Jie Qin, Ling Shao, and
Heng Tao Shen. Tbn: Convolutional neural network with ternary inputs
and binary weights. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 315–332, 2018.

[81] Yao Chen, Kai Zhang, Cheng Gong, Cong Hao, Xiaofan Zhang, Tao
Li, and Deming Chen. T-dla: An open-source deep learning accelerator
for ternarized dnn models on embedded fpga. In 2019 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), pages 13–18. IEEE, 2019.

Bibliography 59

[73] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song
Han. Mcunet: Tiny deep learning on iot devices. arXiv preprint
arXiv:2007.10319, 2020.

[74] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 770–778, 2016.

[75] Mohammad Loni, Hamid Mousavi, Mohammad Riazati, Masoud
Daneshtalab, and Mikael Sjödin. Tas: Ternarized neural architecture
search for resource-constrained edge devices. In Design, Automation
& Test in Europe Conference & Exhibition DATE’22, 14 March 2022,
Antwerp, Belgium. IEEE, March 2022.

[76] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv
preprint arXiv:1605.04711, 2016.

[77] Najmeh Nazari, Mohammad Loni, Mostafa E. Salehi, Masoud Danesh-
talab, and Mikael Sjödin. Tot-net: An endeavour toward optimizing
ternary neural networks. In 2019 22st Euromicro Conference on Digital
System Design (DSD). IEEE, 2019.

[78] Peng Chen, Bohan Zhuang, and Chunhua Shen. Fatnn: Fast and accurate
ternary neural networks. arXiv preprint arXiv:2008.05101, 2020.

[79] Yue Li, Wenrui Ding, Chunlei Liu, Baochang Zhang, and Guodong Guo.
Trq: Ternary neural networks with residual quantization. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 35, pages
8538–8546, 2021.

[80] Diwen Wan, Fumin Shen, Li Liu, Fan Zhu, Jie Qin, Ling Shao, and
Heng Tao Shen. Tbn: Convolutional neural network with ternary inputs
and binary weights. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 315–332, 2018.

[81] Yao Chen, Kai Zhang, Cheng Gong, Cong Hao, Xiaofan Zhang, Tao
Li, and Deming Chen. T-dla: An open-source deep learning accelerator
for ternarized dnn models on embedded fpga. In 2019 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), pages 13–18. IEEE, 2019.

79

[82] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained
ternary quantization. arXiv preprint arXiv:1612.01064, 2016.

[83] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10
dataset. online: http://www. cs. toronto. edu/kriz/cifar. html, 55, 2014.

[84] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[85] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regu-
larized evolution for image classifier architecture search. In Proceedings
of the aaai conference on artificial intelligence, volume 33, pages 4780–
4789, 2019.

[86] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyari-
van. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE
transactions on evolutionary computation, 6(2):182–197, 2002.

[87] G Dodig-Crnkovic. Scientific methods in computer science:[]/gordana
dodig-crnkovic. In Conference for the Promotion of Research in IT at
New Universities and at University Colleges in Sweden, Skövde, 2002.

[88] Hilary J Holz, Anne Applin, Bruria Haberman, Donald Joyce, Helen
Purchase, and Catherine Reed. Research methods in computing: what
are they, and how should we teach them? ACM SIGCSE Bulletin,
38(4):96–114, 2006.

[89] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lin-
dauer, and Frank Hutter. Auto-sklearn 2.0: Hands-free automl via meta-
learning. arXiv:2007.04074 [cs.LG], 2020.

[90] Mohammad Loni, Sima Sinaei, Ali Zoljodi, Masoud Daneshtalab, and
Mikael Sjödin. Deepmaker: A multi-objective optimization framework
for deep neural networks in embedded systems. Microprocessors and
Microsystems, 73:102989, 2020.

[91] Tonmoy Saikia, Yassine Marrakchi, Arber Zela, Frank Hutter, and
Thomas Brox. Autodispnet: Improving disparity estimation with au-
toml. arXiv preprint arXiv:1905.07443, 2019.

[82] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained
ternary quantization. arXiv preprint arXiv:1612.01064, 2016.

[83] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10
dataset. online: http://www. cs. toronto. edu/kriz/cifar. html, 55, 2014.

[84] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[85] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regu-
larized evolution for image classifier architecture search. In Proceedings
of the aaai conference on artificial intelligence, volume 33, pages 4780–
4789, 2019.

[86] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyari-
van. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE
transactions on evolutionary computation, 6(2):182–197, 2002.

[87] G Dodig-Crnkovic. Scientific methods in computer science:[]/gordana
dodig-crnkovic. In Conference for the Promotion of Research in IT at
New Universities and at University Colleges in Sweden, Skövde, 2002.

[88] Hilary J Holz, Anne Applin, Bruria Haberman, Donald Joyce, Helen
Purchase, and Catherine Reed. Research methods in computing: what
are they, and how should we teach them? ACM SIGCSE Bulletin,
38(4):96–114, 2006.

[89] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lin-
dauer, and Frank Hutter. Auto-sklearn 2.0: Hands-free automl via meta-
learning. arXiv:2007.04074 [cs.LG], 2020.

[90] Mohammad Loni, Sima Sinaei, Ali Zoljodi, Masoud Daneshtalab, and
Mikael Sjödin. Deepmaker: A multi-objective optimization framework
for deep neural networks in embedded systems. Microprocessors and
Microsystems, 73:102989, 2020.

[91] Tonmoy Saikia, Yassine Marrakchi, Arber Zela, Frank Hutter, and
Thomas Brox. Autodispnet: Improving disparity estimation with au-
toml. arXiv preprint arXiv:1905.07443, 2019.

80

Bibliography 61

[92] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Effi-
cient neural architecture search via parameters sharing. In International
Conference on Machine Learning, pages 4095–4104. PMLR, 2018.

[93] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Ef-
ficient architecture search by network transformation. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[94] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston.
Smash: one-shot model architecture search through hypernetworks.
arXiv preprint arXiv:1708.05344, 2017.

[95] Barret Zoph and Quoc V. Le. Neural architecture search with reinforce-
ment learning. In 5th International Conference on Learning Represen-
tations, ICLR 2017 - Conference Track Proceedings, 2017.

[96] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal,
Daniel Fink, Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak
Navruzyan, Nigel Duffy, et al. Evolving deep neural networks. In Arti-
ficial Intelligence in the Age of Neural Networks and Brain Computing,
pages 293–312. Elsevier, 2019.

[97] Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Jiancheng Lv.
Automatically designing cnn architectures using the genetic algorithm
for image classification. IEEE Transactions on Cybernetics, 2020.

[98] Masanori Suganuma, Masayuki Kobayashi, Shinichi Shirakawa, and
Tomoharu Nagao. Evolution of deep convolutional neural networks
using cartesian genetic programming. Evolutionary Computation,
28(1):141–163, 2020.

[99] Mohammad Loni, Amin Majd, Abdolah Loni, Masoud Daneshtalab,
Mikael Sjödin, and Elena Troubitsyna. Designing compact convolu-
tional neural network for embedded stereo vision systems. In 2018
IEEE 12th International Symposium on Embedded Multicore/Many-
core Systems-on-Chip (MCSoC), pages 244–251. IEEE, 2018.

[100] Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-
level network transformation for efficient architecture search. In In-

Bibliography 61

[92] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Effi-
cient neural architecture search via parameters sharing. In International
Conference on Machine Learning, pages 4095–4104. PMLR, 2018.

[93] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Ef-
ficient architecture search by network transformation. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[94] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston.
Smash: one-shot model architecture search through hypernetworks.
arXiv preprint arXiv:1708.05344, 2017.

[95] Barret Zoph and Quoc V. Le. Neural architecture search with reinforce-
ment learning. In 5th International Conference on Learning Represen-
tations, ICLR 2017 - Conference Track Proceedings, 2017.

[96] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal,
Daniel Fink, Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak
Navruzyan, Nigel Duffy, et al. Evolving deep neural networks. In Arti-
ficial Intelligence in the Age of Neural Networks and Brain Computing,
pages 293–312. Elsevier, 2019.

[97] Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Jiancheng Lv.
Automatically designing cnn architectures using the genetic algorithm
for image classification. IEEE Transactions on Cybernetics, 2020.

[98] Masanori Suganuma, Masayuki Kobayashi, Shinichi Shirakawa, and
Tomoharu Nagao. Evolution of deep convolutional neural networks
using cartesian genetic programming. Evolutionary Computation,
28(1):141–163, 2020.

[99] Mohammad Loni, Amin Majd, Abdolah Loni, Masoud Daneshtalab,
Mikael Sjödin, and Elena Troubitsyna. Designing compact convolu-
tional neural network for embedded stereo vision systems. In 2018
IEEE 12th International Symposium on Embedded Multicore/Many-
core Systems-on-Chip (MCSoC), pages 244–251. IEEE, 2018.

[100] Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-
level network transformation for efficient architecture search. In In-

81

ternational Conference on Machine Learning, pages 678–687. PMLR,
2018.

[101] Thomas Elsken, Frank Hutter, and Jan Hendrik Metzen. Efficient multi-
objective neural architecture search via Lamarckian evolution. In 7th In-
ternational Conference on Learning Representations, ICLR 2019, 2019.

[102] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks. In Advances in neural in-
formation processing systems, pages 4107–4115, 2016.

[103] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. Xnor-net: Imagenet classification using binary convolutional
neural networks. In European Conference on Computer Vision, pages
525–542. Springer, 2016.

[104] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Bina-
ryconnect: Training deep neural networks with binary weights during
propagations. In Advances in neural information processing systems,
pages 3123–3131, 2015.

[105] Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary
neural network with high accuracy? In Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

[106] Yufei Ma, Naveen Suda, Yu Cao, Jae-sun Seo, and Sarma Vrudhula.
Scalable and modularized rtl compilation of convolutional neural net-
works onto fpga. In 2016 26th International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 1–8. IEEE, 2016.

[107] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M Aamodt, and
Andreas Moshovos. Stripes: Bit-serial deep neural network computing.
In 2016 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 1–12. IEEE, 2016.

[108] Adrien Prost-Boucle, Alban Bourge, Frédéric Pétrot, Hande Alemdar,
Nicholas Caldwell, and Vincent Leroy. Scalable high-performance ar-
chitecture for convolutional ternary neural networks on fpga. In 2017
27th International Conference on Field Programmable Logic and Ap-
plications (FPL), pages 1–7. IEEE, 2017.

ternational Conference on Machine Learning, pages 678–687. PMLR,
2018.

[101] Thomas Elsken, Frank Hutter, and Jan Hendrik Metzen. Efficient multi-
objective neural architecture search via Lamarckian evolution. In 7th In-
ternational Conference on Learning Representations, ICLR 2019, 2019.

[102] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks. In Advances in neural in-
formation processing systems, pages 4107–4115, 2016.

[103] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. Xnor-net: Imagenet classification using binary convolutional
neural networks. In European Conference on Computer Vision, pages
525–542. Springer, 2016.

[104] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Bina-
ryconnect: Training deep neural networks with binary weights during
propagations. In Advances in neural information processing systems,
pages 3123–3131, 2015.

[105] Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary
neural network with high accuracy? In Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

[106] Yufei Ma, Naveen Suda, Yu Cao, Jae-sun Seo, and Sarma Vrudhula.
Scalable and modularized rtl compilation of convolutional neural net-
works onto fpga. In 2016 26th International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 1–8. IEEE, 2016.

[107] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M Aamodt, and
Andreas Moshovos. Stripes: Bit-serial deep neural network computing.
In 2016 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 1–12. IEEE, 2016.

[108] Adrien Prost-Boucle, Alban Bourge, Frédéric Pétrot, Hande Alemdar,
Nicholas Caldwell, and Vincent Leroy. Scalable high-performance ar-
chitecture for convolutional ternary neural networks on fpga. In 2017
27th International Conference on Field Programmable Logic and Ap-
plications (FPL), pages 1–7. IEEE, 2017.

82

Bibliography 63

[109] Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. Torch: a mod-
ular machine learning software library. Technical report, Idiap, 2002.

[110] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16), pages 265–283, 2016.

[111] Rowel Atienza. Fast disparity estimation using dense networks. In 2018
IEEE International Conference on Robotics and Automation (ICRA),
pages 3207–3212. IEEE, 2018.

[112] Reza Mahjourian, Martin Wicke, and Anelia Angelova. Unsupervised
learning of depth and ego-motion from monocular video using 3d geo-
metric constraints. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5667–5675, 2018.

[113] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry,
Ryan Kennedy, Abraham Bachrach, and Adam Bry. End-to-end learn-
ing of geometry and context for deep stereo regression. In Proceedings
of the IEEE International Conference on Computer Vision, pages 66–75,
2017.

[114] Wenjie Luo, Alexander G Schwing, and Raquel Urtasun. Efficient deep
learning for stereo matching. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5695–5703, 2016.

[115] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and Philip HS Torr. Ga-
net: Guided aggregation net for end-to-end stereo matching. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 185–194, 2019.

[116] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo matching net-
work. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5410–5418, 2018.

[117] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cre-
mers, Alexey Dosovitskiy, and Thomas Brox. A large dataset to train

Bibliography 63

[109] Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. Torch: a mod-
ular machine learning software library. Technical report, Idiap, 2002.

[110] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16), pages 265–283, 2016.

[111] Rowel Atienza. Fast disparity estimation using dense networks. In 2018
IEEE International Conference on Robotics and Automation (ICRA),
pages 3207–3212. IEEE, 2018.

[112] Reza Mahjourian, Martin Wicke, and Anelia Angelova. Unsupervised
learning of depth and ego-motion from monocular video using 3d geo-
metric constraints. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5667–5675, 2018.

[113] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry,
Ryan Kennedy, Abraham Bachrach, and Adam Bry. End-to-end learn-
ing of geometry and context for deep stereo regression. In Proceedings
of the IEEE International Conference on Computer Vision, pages 66–75,
2017.

[114] Wenjie Luo, Alexander G Schwing, and Raquel Urtasun. Efficient deep
learning for stereo matching. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5695–5703, 2016.

[115] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and Philip HS Torr. Ga-
net: Guided aggregation net for end-to-end stereo matching. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 185–194, 2019.

[116] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo matching net-
work. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5410–5418, 2018.

[117] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cre-
mers, Alexey Dosovitskiy, and Thomas Brox. A large dataset to train

83

convolutional networks for disparity, optical flow, and scene flow esti-
mation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4040–4048, 2016.

[118] Alessio Tonioni, Fabio Tosi, Matteo Poggi, Stefano Mattoccia, and
Luigi Di Stefano. Real-time self-adaptive deep stereo. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 195–204, 2019.

[119] Dahyun Kim, Kunal Pratap Singh, and Jonghyun Choi. Learning ar-
chitectures for binary networks. In European Conference on Computer
Vision, pages 575–591. Springer, 2020.

[120] Bahareh Pourbabaee, Mehrsan Javan Roshtkhari, and Khashayar Kho-
rasani. Deep convolutional neural networks and learning ecg features
for screening paroxysmal atrial fibrillation patients. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 48(12):2095–2104, 2018.

convolutional networks for disparity, optical flow, and scene flow esti-
mation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4040–4048, 2016.

[118] Alessio Tonioni, Fabio Tosi, Matteo Poggi, Stefano Mattoccia, and
Luigi Di Stefano. Real-time self-adaptive deep stereo. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 195–204, 2019.

[119] Dahyun Kim, Kunal Pratap Singh, and Jonghyun Choi. Learning ar-
chitectures for binary networks. In European Conference on Computer
Vision, pages 575–591. Springer, 2020.

[120] Bahareh Pourbabaee, Mehrsan Javan Roshtkhari, and Khashayar Kho-
rasani. Deep convolutional neural networks and learning ecg features
for screening paroxysmal atrial fibrillation patients. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 48(12):2095–2104, 2018.

84

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 28.35 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1044
 305
 None
 Up
 0.0000
 0.0000

 Both
 180
 AllDoc
 184

 CurrentAVDoc

 Smaller
 28.3465
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 28.35 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1044
 305
 None
 Up
 0.0000
 0.0000

 Both
 180
 AllDoc
 184

 CurrentAVDoc

 Smaller
 28.3465
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut top edge by 28.35 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1044
 305
 None
 Up
 0.0000
 0.0000

 Both
 180
 AllDoc
 184

 CurrentAVDoc

 Smaller
 28.3465
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 555.59 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1044
 305

 None
 Up
 0.0000
 0.0000

 Both
 180
 AllDoc
 184

 CurrentAVDoc

 Smaller
 555.5906
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryList_V1
 qi2base

