
The Execution Model of APZ/PLEX

-An Informal Description

Johan Erikson and Bo Lindell
{johan.erikson, bo.lindell}@idt.mdh.se

Department of Computer Science and Engineering
Mälardalen University, Västerås, Sweden

Abstract

Programming Language for EXchanges, PLEX, is a pseudo-
parallel and event-driven real-time language developed by Erics-
son. The language is designed for, and used in, central parts of the
AXE telephone switching system. The language has a signal par-
adigm as its top execution level, and it is event-based in the sense
that only events, encoded as signals, can trigger code execution.
Due to the fact that a PLEX program file consist of several in-
dependent subprograms, in combination with an execution model
where new jobs are spawned and put in queues, we also classify
the language as pseudo-parallel.

The language PLEX and the AXE system has been the subject
of study both in a number of master thesis projects and in several
other publications. However, only brief descriptions of the execu-
tion model of PLEX have been presented in these works.

The language and its execution model are tightly connected
and it is not possible to separate one from the other. This report
presents a thorough description of fundamental parts of the lan-
guage and it also serves as a detailed introduction to the execution
model of PLEX.

i

Contents

1 Introduction 1

2 The AXE System 1
2.1 Central- and Regional Processors 2
2.2 The Application Modularity (AM) Concept 4
2.3 Input and Output statements 5
2.4 Load, Reload and Dump . 7

3 Programming Language for EXchanges 8
3.1 The structure of a PLEX program 9
3.2 Records, Files and Pointers 11
3.3 Variables . 12
3.4 Data Encapsulation . 15

4 The Execution Model 15
4.1 PLEX structure and OS requirements 16
4.2 Software Units . 16
4.3 Function Blocks . 18
4.4 Application System . 18

5 Program Interwork - Signals 18
5.1 Direct and buffered signals 20
5.2 Unique and multiple signals 21
5.3 Single and combined signals 22
5.4 Local and Non-local signals 24
5.5 Signals and Priorities . 24
5.6 Signals and Data . 24

6 Jobs, Signal Buffers and Job Handling 24
6.1 What is a Job? . 25
6.2 Signal Buffers . 25
6.3 Job Handling . 27
6.4 Execution Time Limits . 31

7 Linking Encapsulation 31
7.1 Addressing a Program Sequence 32

7.1.1 Addressing in DS . 35

ii

8 Software Recovery 35
8.1 Forlopp . 37
8.2 System Restart . 37
8.3 Forlopp Release or a System Restart? 39
8.4 Variables and Software Recovery 41

A The Signal Description 43

1 INTRODUCTION 1

1 Introduction

The programming language PLEX (Programming Language for EXchan-
ges) is a pseudo-parallel and event-based real-time language developed
by Ericsson in the 1970’s. The language is designed for telephony sys-
tems and the dialect studied in this report, PLEX-C, is used in the Cen-
tral Processor1 (CP) of the AXE switching system from Ericsson. The
language has a signal2 paradigm as its top execution level, and it is
event-based in the sense that only events, encoded as signals, can trig-
ger code execution. The term pseudo-parallel has arisen due to the fact
that a PLEX program file consist of independent sub-programs (which
will be discussed in Section 5, and Fig. 13), in combination with an exe-
cution model (Fig. 21) where new jobs are spawned and put in different
queues, called job buffers, for later execution.

The language has been the subject of study in a number of mas-
ter thesis projects at Mälardalen University, [KO00, AGG99, AE00], as
well as in a number of research publications, e.g. [MH01, EFGL02].
However, only brief descriptions of the execution model of PLEX have
been presented in these works. This is probably due to space limitations
and/or the scope of the work in question.

The aim of this report is to give a more thorough description of fun-
damental parts of the language than the above mentioned works. It
also serves as a detailed introduction to the execution model of PLEX.
A second aim is to serve as a common basis for future investigations of
the language.

Since much of the material in this report is compiled together basi-
cally from different forms of internal Ericsson documents, we give these
references once and for all at the beginning. If other material is used,
these references will be given when used. The references used in this
report are [AB99, AB95a, AB98, AB95b, AB02].

2 The AXE System

The AXE telephone exchange system from Ericsson, developed in its
earliest version in the beginning of the 1970s, is structured in a modular

1The different kind of processors are covered in Section 2.1.
2Signals are covered in Section 5.

2 THE AXE SYSTEM 2

and hierarchical way. It consists of the two main parts:

APT: The telephony or switching part

APZ: The control part including central and regional processors

which both consist of hardware and software. The two main parts are
divided into subsystems.

A subsystem is divided in function blocks. Function blocks consist
of function units which is either a central software unit or a hardware
unit, a regional software unit and a central software unit. The original
structure of the system is shown in Fig 1.

System Level 1

System Level 2

Subsystem

Function Block

Function Unit

CPS NMS

LIC LIR LIUCJU

AXE

APZ APT

MAS FMS SSS GSS

CJ KR LI

 APT - Telephony/Switching part
 APZ - Control part including central and regional processors

as well as operating system
 CPS - Central Processor Subsystem
MAS - Maintenance Subsystem

AMAM . . .

Figure 1: The (original) hierarchical structure of the AXE system. (The
parts that will be of interest in this report is marked with bold text.)

Somewhere around 1994-95, the concept of Application Modularity
(AM) was integrated into the system. This will be discussed in Section
2.2

2.1 Central- and Regional Processors

The hardware aspects that is of interest in this report is the distinction
between Central- and Regional Processors. This is because different

2 THE AXE SYSTEM 3

forms of interwork is performed between different kinds of processors.
The distinctions are briefly discussed in this subsection and explained
in more detail in Section 5.

Regional Processor (RP): There are several regional processors in
an AXE system. The main task of a regional processor is to relieve
the central processor by handling small routine jobs like scanning
and filtering.

Central Processor (CP): This is the central control unit of the sys-
tem. All complex and non-trivial decisions are taken in the central
processor. This is the place for all forms of non-routine work. The
work of the processor can be separated into two specifically dis-
tinct parts, namely instruction execution and job administration.
Instruction execution means handling of uninterrupted sequences
of operations where the work consists of address table look-up and
calculations, plausibility checks, storage accesses and data manip-
ulations. The job administration mainly consists of signal han-
dling, signal conversion and signal buffer handling. The execution
of instructions is a single-stream work by nature, whereas the job
administration to a great extent is a question of prioritized job
queues (Section 6) and transfer of signal data.

The CP is always duplicated. The two sides work in parallel, per-
forming exactly the same operations. During normal operation,
one CP is executive and the other is stand-by. A continuous check
is made to ensure that both processors reach the same result -
If they don’t, some form of recovery action is performed (Section
8). The CP duplication also enables function changes (installation
of new software versions) while the exchange is in an operational
mode by first installing new software on the stand-by side and
then change the executive and stand-by order between the proces-
sors. As a last step, the new software is installed on the former
executive (now stand-by) side.

The CPs store all central software and data. The CP memory con-
sists of the register memory and the different stores. Programs
are stored in the program store (PS) and data is stored in the data
store (DS). The reference store contains information about where

2 THE AXE SYSTEM 4

to find the different programs and data, Fig. 2.

Program Store

PS

Reference Store

RS

Data Store

DS

Figure 2: Stores in the central processor (CP). (The interaction between
the different stores are covered in Section 7.)

2.2 The Application Modularity (AM) Concept

The AXE Source System is a number of hardware and software re-
sources developed to perform specific functions according to the cus-
tomer’s requirements. It can be thought of as a ”basket” containing
all the functionality available in the AXE system. Over the years, new
source systems has been developed by adding, updating or deleting func-
tions in the original source system. But in the 1980’s, the development
of the AXE system for different markets (US, UK, Sweden, Asia, etc.)
has led to parallel development of the source system since functionality
could not easily be ported between different markets.

The solution to this increasing divergence was the Application Mod-
ularity (AM) concept, which made fast adaption to customer require-
ments possible. The AM concept specifically targeted the following re-
quirements:

• the ability to freely combine applications in the system,

• quick implementation of requirements, and

• the reuse of existing equipment.

The basic idea is to gather related pieces of software (and hardware)
into something called Application Modules (AMs). Different telecom
applications, such as ISDN, PSTN (fixed telephony), and PLMN (Public
Land Mobile Network), are then constructed by combining the neces-
sary AMs. The idea is described in Fig. 3, where it is also shown that
different AMs can be used in more than one application.

2 THE AXE SYSTEM 5

AXE

APTAPZ

Separate
telecommucination
applications

Aplication Modules (AMs)
shared between different
applications

ISDN PSTN PLMN

AM AMAMAMAMAM

Figure 3: The AM concept incorporated into the AXE system.

The introduction of the AM concept ended the problem with parallel
development of different source systems. Instead, with AMs as building
blocks, the required exchange was constructed by combining the neces-
sary AMs into an exchange with the required functionality (i.e., with
the necessary applications).

2.3 Input and Output statements

An AXE exchange needs to communicate with its environment and its
operation and maintenance (O&M) staff. Some typical situations could
be the following:
- An exchange technician changes subscriber categories, replaces de-
vices or connects new subscribers.
- The exchange informs the O&M staff of important events, e.g., if an
RP is blocked due to a fault. In other words, the I/O statements are an
important part of the recovery mechanism. (See Section 8.)
- Input/output includes certain routine tasks to, e.g. dumping data on a
hard disk.
There is a large number of I/O devices used; alarm and hard copy print-
ers, display units, work stations and PC’s, magnetic tape drivers, hard

2 THE AXE SYSTEM 6

and flexible disks.
Before communicating with an I/O device, the PLEX program has

to seize the device. Likewise, the device has to be released when the
communication ends. This guarantees exclusive access to the device.
All I/O devices are connected to a support processor (SP), and function
blocks that receive or send information via the I/O system are called
user blocks. Fig. 4 shows the interaction between the I/O system and
a user block. When seizing an I/O device, the I/O system assigns a free

SP

Line Buffer
72 Characters

Analysis Buffer
144 Characters

I/O System

User
Block

2 Insert

3 Write

4 Read

1

1 Fetch
23

4

Program Store

I/O device

Figure 4: The I/O system and its communication with the environment.

line buffer and a free analysis buffer (see Fig. 4) to this device. These
buffers temporarily store the I/O text. The analysis buffer handles input
from the I/O device, and the line buffer handles output.

The basic (PLEX) statements for transferring information between
the buffers and the I/O device, and between the buffers and the user
blocks are:
- FETCH: transfer information from the analysis buffer to the user block.
- INSERT: transfer information from the user block to the line buffer.
- WRITE: orders the I/O system to print out the text in the line buffer to
an I/O device.
- READ: transfer information from the I/O device to the analysis buffer.
Again, see Fig. 4.

2 THE AXE SYSTEM 7

Typically, I/O communication starts with the operator entering a
command on an I/O device. The command is received by the I/O sys-
tem and delivered to the software unit where it has been defined by
the programmer. A command is received in a program (i.e., a software
unit) in the same way as a signal (Section 5) but the command receiving
statement must be preceded by the keyword COMMAND to indicate that
this is a statement used by the I/O system.

2.4 Load, Reload and Dump

An AXE exchange may exist for up to 40 years, which implies certain
requirements regarding the operation and maintenance of the software.
The terms Load, Reload and Dump are covered in this section since
they will be used in this report when we discuss variables (Section 3.3)
and software recovery (Section 8).

When all the software blocks have been written and compiled, the
programs and data, initial and exchange, are written, dumped, to a
magnetic tape which is loaded into the exchange. This process is called
initial loading. On loading of new blocks, or new revisions of existing
blocks, an incremental re-linking occurs, as well as an initialization of
data store variable values, if required according to their given variable
properties3. A DCI (Data Conversion Information) is written for each
block being loaded to specify the data initialization between the old (if
existing) and new blocks. During the function change process (Section
2.1) the new block can get its new value from either of the following
three ways:
- Get value from data sector4.
- Get value from DCI.
- Get value from existing software.

In the case of system failure where a system restart5 has been per-
formed, software backup copies are reloaded into the exchange. When
reloaded, some variables will receive reload values from the magnetic
tape, whereas other variables will not have values until the program

3Variable properties is covered in Section 3.3
4The data sector is mentioned in Section 3.1
5The system restart process is explained in Section 8

3 PROGRAMMING LANGUAGE FOR EXCHANGES 8

is executed by a signal6. Whether or not a variable receives a reload
value is determined by the variable properties set by the designer. This
is covered in Section 3.3.
Reloading means that the contents of DS (i.e., only RELOAD declared
variables) are reloaded into the exchange again. If a change has oc-
curred in PS and RS, they will be reloaded as well.

The contents of Program-, Reference- and Data store are regularly
saved to a hard disk (or a magnetic tape). This process is called dump
and enables the reload action described above.

3 Programming Language for EXchanges

Programming Language for EXchanges (PLEX) is designed by Ericsson
and used to program telephony systems. It lacks common statements
from other programming languages such as WHILE loops, negative nu-
meric values and real numbers. These are not needed in a telephony
exchange system. The language was designed and developed in its first
form in the 1970s and extended in 1983. The version under considera-
tion in this report, PLEX-C, is used in the AXE central processors (see
Section 2.1). Other languages used in the AXE system are shown in
Fig. 57. The reason for developing a new language for the AXE system
was that no other languages under consideration fulfilled Ericsson’s re-
quirements.

Some important characteristics of the language are listed below:

• PLEX is an event-based language with a signaling paradigm as
the top execution level. Only events can trigger code execution
and events are programmed as signals. A typical event is when a
subscriber lifts the phone to dial a number.
The execution model is described in Chapter 4 and signals in Sec-
tion 5.

• The signals are executed on one of four priority levels (explained
in Section 6), which results in very little overhead when a higher

6Signals are examined in Section 5
7As could be seen in Fig. 5, there is another dialect of PLEX (PLEX-M). However,

these dialects are similar, and when we talk about PLEX in this report, we mean the
dialect used in the central processors, i.e, the PLEX-C dialect.

3 PROGRAMMING LANGUAGE FOR EXCHANGES 9

level interrupts a lower since each priority level has its own regis-
ter set.

• Jobs (Section 6.1) at the same level are ”atomic” and can never
interrupt each other.

EMRPD

EMRP

EM

RPG

CP

STR STC RPD RP

GARP

C/C++

Plex-M
ASM 6809

ASM 6809 ASM 6809 C/C++

ASA 21R
ASA 210R

Plex-C
ASA 210C

 EMRPD - Extension Module Regional Processor Digital
 EMRP - Extension Module Regional Processor
 STR - Signaling Terminal Remote
 STC - Signaling Terminal Central
 RPD - Regional Processon Digital
 RP - Regional Processon
 CP - Central Processon
 EM - Extension Module
 RPG - RP with group switch interface
 GARP - Generic Application RP

C/C++

C/C++

Figure 5: The different languages used in different parts of the AXE
system

3.1 The structure of a PLEX program

When we talk about a PLEX program, or a PLEX program file, we mean
the PLEX file that specifies a function unit (Section 4.3). This document,
the Source Program Information (SPI), shown in Fig. 6, consists of the
following main parts:

3 PROGRAMMING LANGUAGE FOR EXCHANGES 10

• The Declare sector, which contains the variable and constant dec-
larations that are used in the program sector. Variables with the
property DS, Data Store, (Section 3.3) will exist beyond the execu-
tion of subprograms.

• The Parameter sector, where specific AXE parameters are placed.
These parameters are not local to a block, and permit global access
from all parts of the exchange. They can be changed by customers
since they are placed in an SQL database.

• The Program sector contains the executable statements, i.e., the
PLEX source code that will run in the exchange. This sector is
normally divided in several subprograms (explained in Section 5
and Fig. 13).

• The Data sector: Some variables, i.e. Data Store variables, needs
to have initial values when the program (i.e., the SPI) is loaded
into the exchange8. These initial values can be provided in the
data sector. Also, the position, i.e. the base address, of stored vari-
ables in memory can be allocated in the data sector. This enables
a faster function change (briefly described in Section 2.1).

• The ID sector is used for internal documentation only.

The SPI is compiled together with the following documents9:
- The Signal Survey, SS, which is a list of all the different signals that
one function unit (i.e., the function unit specified in the SPI) receives
and sends. There is one SS per function unit. There is no information
about senders and receivers in the SS, this information is added later
during loading.
- The Signal Description, SD. The function blocks and function units
communicate with signals (Section 5). The SD describes the purpose,
type and data of one signal. SDs are stored in separate signal handling
libraries.

8The initial loading is described in Section 2.4.
9The different steps of the compilation process, as well as the PLEX compiler, is

described in [AE00]

3 PROGRAMMING LANGUAGE FOR EXCHANGES 11

 DOCUMENT KRUPROGRAM;
 DECLARE;
 :
 :
 END DECLARE;
 PARAMETER;
 :
 :
 END PARAMETER;
 PROGRAM; PLEX;
 :
 :
 END PROGRAM;
 DATA;
 :
 :
 END DATA;
 END DOCUMENT;
 ID KRUPROGRAM TYPE DOCUMENT;
 :
 :
 END ID;

Figure 6: Structure of the SPI, i.e., a PLEX program file.

3.2 Records, Files and Pointers

Records collect variables that describe properties of a group of items,
for instance, calls or subscribers10. Record variables may be stored field,
symbol or string variables (Section 3.3). Variables in a record may be in-
dexed or structured, and they are called individual variables. DS (Data
Store, described in Section 3.3) variables that are not part of a record,
are known as common variables.

A File is a set of records. One file consist of one or more records, all
with the same individual variables.

Pointers address the relevant record in a file. In PLEX, pointers
are simply record numbers. The records in a file are numbered, and
the value of the pointer is the number of the current record. In other
words, pointers in PLEX are not similar to pointers in C and can not
be manipulated in the same way. Fig. 7 shows an example file with
its records and a pointer. The number of records in a file may be fixed
or changeable. A fixed size is specified in the Data sector of the SPI
(Section 3.1), while alterable file sizes are set by commands (Section
2.3).

10A (PLEX) record is similar to a struct in C.

3 PROGRAMMING LANGUAGE FOR EXCHANGES 12

n

4
3

2
1

SUBNUMBER

NAME

STATE

0
POINTER

Figure 7: An example file with n records and a pointer with the current
value 2.

3.3 Variables

Depending on how variables is to be treated at a software error and a
following recovery action, the PLEX designer can assign different prop-
erties to the variables. This is to be covered in this section.

There are three different data types in PLEX:
- Field variables for numeric information. They contain non-negative
integers only. (Negative integers are not needed in the AXE system.)
- Symbol variables for symbol information, e.g., IDLE, BLOCKED, BUSY,
etc.
- String variables store text strings.
These data types (variables) can be stored or temporary.

• The value of a temporary variable exists only in the Register Mem-
ory (RM - internal CP registers) and only while its corresponding
software is being executed. Variables are by default temporary.

• Stored variables are stored in the Data Store (Fig. 2), loaded into a
register in the RM for processing and then written back to the DS.
Thus, its value is never lost, even if the program is exited and re-
entered later. DS variables are also a natural way to communicate
between different forlopps11.

11Forlopps are explained in Section 8.1

3 PROGRAMMING LANGUAGE FOR EXCHANGES 13

It is the stored variables that may be assigned the different properties
already described. These properties are DS, CLEAR, RELOAD, DUMP,

STATIC, BUFFER and COMMUNICATION BUFFER. The properties will
all be described in this section.

From a storage point of view, the variables can be divided into the
following types: Temporary and stored have been described above. The
third category is the buffers. Buffer variables12 are allocated dynami-
cally in an area reserved for dynamic buffers by using an allocate state-
ment. The size of the buffers can be specified static (COMMUNICATION
BUFFER) or dynamic BUFFER. The fixed size is specified in the Declare
sector (Section 3.1) while the dynamic size can be set in the Program
sector. The dynamic buffers are slower than the static since they must
be administered dynamically. These categories are pictured in Fig. 8
together with its properties.

Under normal circumstances, the exchange starts the (application)
software and it never stops. After serious errors, however, the APZ (i.e.,
the operating system part) stops the program execution and restarts
the software. The following properties describe the variable behavior at
start or restart:

• CLEAR - ”Clearing at start/restart”
Field variables are set to zero; symbol variables to the first value
in their declaration list.

• RELOAD - Loading at ”restart with reload”
The variable value is reloaded from tape/hard disk to ensure that
the values before and after the ”restart with reload” are the same.

• DUMP - ”Dumping at restart”.
This property is used for testing and tracing purposes.

• STATIC - When a software unit in an operating exchange is to be
updated, a function change takes place. Remember from Section
2.1 that the CP is always duplicated. This means that new soft-
ware can be installed while the exchange is running. A STATIC

declared variable means that the variable value is not updated
with a new software version.

12Buffer variables are similar to the array structure in C.

3 PROGRAMMING LANGUAGE FOR EXCHANGES 14

VARIABLES

 REGISTER-ALLOCATED
 VARIABLES
(Temporary variables)

 MEMORY-ALLOCATED
 VARIABLES
(DS & BUFFER)

 PERMANENTLY
ALLOCATED
 VARIABLES (DS)

 DYNAMICALLY
ALLOCATED
 VARIABLES (BUFFER)

STATIC

CLEAR

RELOAD

DUMP

F
i
e
l
d

V
a
r

V
a
r

S
y
m
b
o
l

V
a
r

S
t
r
i
n
g

DUMP

F
i
e
l
d

V
a
r

Figure 8: Variables and properties (from a storage point of view).

4 THE EXECUTION MODEL 15

Not all combinations of the variable properties are possible (i.e., legal).
Fig. 9 contains a table listing all valid combinations of variables and
properties.

 Field
 Variable

 String
 Variable

 Symbol
 Variable

 DS
 DS DUMP
 DS STATIC
 DS RELOAD
 DS RELOAD DUMP
 DS RELOAD STATIC

 DS CLEAR
 DS CLEAR DUMP

BUFFER
 BUFFER DUMP

 Temporary

Yes

Yes

Yes No

NoYes
(1)

Yes No

 (1) Except for one- and two-dimensional arrays

Figure 9: Permitted combinations of variable properties and variable
types.

3.4 Data Encapsulation

All variables and constants declared in the Declare sector of the SPI,
see Section 3.1, have their scope inside the software unit specified. All
subprograms (Section 5) of that SPI can access these variables and con-
stants. Subprograms not part of that function unit cannot access these
variables and constants.

4 The Execution Model

A brief discussion of the execution model has already been given in Sec-
tion 3 and we continue and deepen the discussion in this section. We
first briefly discuss PLEX structure, operating system requirements,
function blocks and application system before we look deeper at pro-
gram interwork (i.e, signals), Section 5, and job buffers, Section 6, both
central concepts in the PLEX/APZ environment.

4 THE EXECUTION MODEL 16

Signal
ENTRY 1

Signal
ENTRY 2

Signal
ENTRY 3

Signal
ENTRY 4

...
Signal

ENTRY n

Variable A

DATA
Common Data Storage
for all Variables in all
entries of the whole

Block

Figure 10: The structure of a software unit (block). The possibility of
several sub-programs accessing the same data within the block is shown.
All sub-programs (signal entries) can access all DS variables inside the
same block (except for individuals that are DS variables inside a record).
This conveys a DS variable can be used as a communication channel
between all sub-programs inside the same software unit.

4.1 PLEX structure and OS requirements

PLEX is an asynchronous concurrent event based real-time language
and, as stated in Section 3, it has a signaling paradigm as the top ex-
ecution level which means that only events can trigger code execution
and these events are programmed as signals. Signals will be further
explored in Section 5. The main task of an operating system that is to
run PLEX, is to buffer incoming signals and start their execution in the
right signal entry statement.

4.2 Software Units

In large software systems, such as a telecommunication system, there
is a need to group code into modules, for example, to control a certain
hardware, or to implement in software add-on functionality. A Software
Unit is a quantity of PLEX code for the different jobs13 needed for such
a module, called a function. A Unit can not access data in another unit,
i.e, a unit has data encapsulation (see Section 3.4).

13Jobs are covered in Section 6.1.

4 THE EXECUTION MODEL 17

Event

Hardware

Hardware

RP(D)

EMRP(D)

unit structure

function block

RP-CP signal

SST

SDT
DATAunit }

}

code

enter

exit
send

effect

aptapz signal interface

forlopp

forlopp
manager

restart
code

restart
 signal

cp-cp
signal

apz

apt

Central Processor (CP)

APT
application
system

APZ
platform
system

Figure 11: APT Application system.

5 PROGRAM INTERWORK - SIGNALS 18

4.3 Function Blocks

A function block is a software unit by itself or a software unit in the
CP with the associated software unit in the EMRP or RP and possibly
associated hardware needed to implement a function.

If we relate the function blocks to the AM concept, described in Sec-
tion 2.2, it should be pointed out that an AM is not a PLEX language
construct. From a PLEX language point of view, each AM and the com-
mon resources can be seen as a collection of blocks. Signals between
AMs and to/from the common resources are gathered into standard in-
terfaces.

4.4 Application System

An application system is a group of function blocks that interwork to-
gether to form a complete application, such as the control of a certain
telephone exchange, see Fig. 11. All the signals and units of the part
of the application system hosted on a certain processor take part in a
”linking” process. (For units written in PLEX-C, the host is the CP.)
The linking process resolves that signals sent from a certain unit are
directed to the right entry point in the right unit.

5 Program Interwork - Signals

A signal is an externally defined language element in PLEX for the in-
terwork between software units. A signal can be described as a message
within one or between two software units or as an asynchronous (one
way) function call, i.e., it is signals that perform the communication
between different function units. Signals can be classified in numerous
ways (Section 5.1, 5.2, 5.3 and 5.4) but the main distinction is between
direct and buffered signals (Section 5.1). A direct signal is similar to a
jump from one function unit or program to another, whereas a buffered
signal is more like a fork14 system call except that the execution con-
tinues in the ”parent process” whereas the ”child process” is put in the

14fork is a nonANSI C function that ”copies the current process and begins executing
it concurrently”, [KP96]. The execution will then continue in this newly created ”child-
process”.

5 PROGRAM INTERWORK - SIGNALS 19

job queue (Section 6) for later execution. In this way, after the sending
of the buffered signal, the two execution paths are independent parallel
threads, unsynchronized with each other. The difference is explained in
more detail in Section 5.1, but we already state that buffered signals is
the ”norm” and that the classification referred to only applies to CP-CP
signals. CP-RP and RP-CP signals are always buffered.

As shown in Fig. 12, signals are sent between software executing on
the different processor types described in Section 2.1.

RP - CP CP - RP RP - CPCP - RP

CP - CP

CP - CP

Function Block A Function Block B

Hardware

Regional
Software

Central
Software

H
A

R
D

W
A

R
E

S
O

F
T

W
A

R
E

Figure 12: The different types of software signals.

Most signals could be seen as a jump from a signal-sending state-
ment in one program to a signal-receiving statement in another pro-
gram (even if buffered signals first go through a buffer). This implies
that the code in a PLEX program unit15 never executes from the begin-
ning to the end (i.e., from the beginning of the program file to the end of
the program file), but from a signal receiving statement (e.g., ENTER), to
either a direct signal-sending statement (e.g., SEND) or an EXIT state-
ment. In PLEX, a subprogram is the code sequence from ENTER to
EXIT. It is possible to leave a subprogram with an EXIT without a pre-
vious signal sending statement, but it is also possible to send several
buffered signals before an EXIT statement. Fig. 13 illustrates a general
program divided into subprograms. Note that since programs written in
PLEX do not normally execute from start to end, or in any order, it can
not be assumed that the program in Fig. 13 receives SIGNAL1 before or

15A PLEX program unit = a PLEX source code file

5 PROGRAM INTERWORK - SIGNALS 20

after SIGNAL3, or SIGNAL4 before or after SIGNAL6. This can result
in unpredictable values of stored variables.

PROGRAM; PLEX;
 ENTER SIGNAL1;

 SEND BUFFERED SIGNAL2;

 EXIT;

 ENTER SIGNAL3;

 SEND DIRECT SIGNAL4;

 CUSELESS = 0;

 ENTER SIGNAL5;

 SEND BUFFERED SIGNAL6;

 SEND DIRECT SIGNAL7;

 ENTER SIGNAL8;

 EXIT;

 END PROGRAM;

a subprogram

a subprogram

a subprogram

a subprogram

Figure 13: A PLEX program file divided in subprograms. Note that
the assignment CUSELESS = 0; will never be executed since it is placed
between an exit and an enter statement. (See also Fig. 6 where a complete
program file is described.)

Since the exchange handles several calls simultaneously while the
CP can only execute one program at a time, the CP must queue the
signals somewhere. This is done in job buffers, a job table or in time
queues and this will be explored in Section 6.

As was said earlier there are different parameters that describe the
signal properties of a CP-CP signal. Three groups classify these prop-
erties and each signal has one property from each group. Each group is
described below and all possible combinations is shown in Fig. 17.

5.1 Direct and buffered signals

As was stated in Section 5, the main distinction between (CP-CP) sig-
nals is whether they are direct or buffered. Buffered signals start a new

5 PROGRAM INTERWORK - SIGNALS 21

job, whereas direct signals continue the current job. (Jobs are covered
in Section 6.1). That is, they are handled differently in the execution
model.

Direct signals reach the receiving block immediately, they could be
seen as direct jumps to another unit. By using direct signals, other
signals have no possibility of coming-in-between, i.e., the programmer
retains control over the execution. However, direct signals are normally
only allowed to be used in very time-critical program sequences, such as
call set-up routines.

With buffered signals, it is not predictable when the signal reaches
the receiving block. Direct and buffered signals are illustrated in Fig.
14.

Unit A Unit B

A Direct Signal

Unit A Unit B

A Buffered Signal

Job Buffer

Figure 14: Direct and buffered signals.

5.2 Unique and multiple signals

This distinction concerns the number of receivers of the signal. A unique
signal can only be received in one particular block, while a multiple
signal can go to any block as shown in Fig. 15. However, it is not possible
to send a multiple signal to more than one block simultaneously which
means that a multiple signal does not perform multicast16. But even
if a multiple signal can go to any of the receiving blocks specified in the
Signal Survey17, the signal sending statement must always contain one
(and only one) receiver of the multiple signal.

16Multicast: Send once - received by all
17The Signal Survey is described in Section 3.1

5 PROGRAM INTERWORK - SIGNALS 22

Unit A Unit B

A Unique Signal

Unit D

Unit C

Unit B

Unit A

A Multiple Signal

Figure 15: Unique and multiple signals.

5.3 Single and combined signals

The third distinction concerns whether the sending block expects an
answer. Combined signals demand an immediate answer, while single
signals do not require such feedback. For this reason, combined signals
can never be buffered (as shown in Fig. 17). Instead, they behave
like direct jumps from one unit to another. When the execution in the
other unit (the receiver of the signal) finishes, execution jumps back to
the originating unit. Combined signals are always direct signals, which
means that execution continues without interrupt and all other signals
have to wait. Fig. 16 illustrates these kind of signals.

When discussing the sending and receiving of combined signals, one
will also mention forward and backward signals. A communication be-
tween two parts18 is always initiated by one of the parts. The initiating
part is sending the forward signal whereas the part that replies to the
call is sending the backward signal. This is pictured in Fig. 18.

18Which, in our target domain, is the sending and receiving of signals between func-
tion blocks.

5 PROGRAM INTERWORK - SIGNALS 23

Unit A Unit B

A Single Signal

Unit A Unit B

Combined Signals

Figure 16: Single and combined signals.

Signal Type BufferedDirect

 Single

 Combined

 unique

 multiple

 unique

 multiple

X

X

X

X

X

X

Figure 17: Possible properties for CP-CP signals. X indicates a le-
gal/possible combination, shaded with Grey indicates an illegal alter-
native. NOTE: A combined backward signal can not be multiple since
this signal is an answer (i.e., an acknowledgment) to a ”caller” and must
therefore return to the ”caller” and nobody else.

SEND Signal-A
(Forward)

RETRIEVE Signal-A
(Backward)

RECEIVE Signal-B
(Forward)

RETURN Signal-B
(Backward)

Block A

RECEIVE Signal-A
(Forward)

RETURN Signal-A
(Backward)

SEND Signal-B
(Forward)

RETRIEVE Signal-B
(Backward)

Block B Time

Figure 18: Forward and Backward signals.

6 JOBS, SIGNAL BUFFERS AND JOB HANDLING 24

5.4 Local and Non-local signals

In the beginning of Section 5, we said that signals are used ”for the
interwork between software units”. But signals can also be used for
the interwork between different parts of the same software unit. These
signals are called local signals, since they are local to the software unit
they belong to. I.e., the recipient resides in the same software unit.
(Consequently, all other signals are called non-local signals.

The behavior of a local signal is similar to that of a GOTO statement
since they result in direct jumps to the recipient. (And in that sense,
they can be regarded as direct signals.)

Whether a signal is local or not, is specified in the Signal Description
(which was briefly explained in Section 3.1, and covered in more detail
in Appendix A). The distinction between local and non-local signals is
of importance in, for instance a semantic framework for PLEX.

5.5 Signals and Priorities

Every signal that is sent in the system is assigned a priority level, A -
D. The priority level is of importance when the signal is to be buffered
(Section 6), and it tells the ”importance” of the source code that is trig-
gered to execution by the signal. The priority of each signal is specified
in the corresponding Signal Description.

5.6 Signals and Data

Signal Data are variable values sent with a signal19. The data may
consist of field variables, symbol variables, pointers, numerals, string
objects, buffer variables and field expressions. For single and combined
signals, it is possible to send 25 signal data. The data is loaded to the
register memory in the central processor (see Section 2.1) if the signal
is direct, or to the job buffer if the signal is to be buffered.

6 Jobs, Signal Buffers and Job Handling

In the following sub-sections, we will discuss the definition of a job (Sec-
tion 6.1), the different ways of delaying/buffering a signal (Section 6.2)

19This is similar to a call by value function call.

6 JOBS, SIGNAL BUFFERS AND JOB HANDLING 25

and, finally, how jobs are handled at runtime (Section 6.3).

6.1 What is a Job?

A job is a continuous sequence of statements executed in the processor.
A job begins with an ENTER statement for a buffered signal and ends
with an EXIT statement.

Between the ENTER and the EXIT statement, several buffered sig-
nals (or no signals at all) may be sent. A job is not limited to one CP
software unit, several units and blocks can take part in a job.

A job does always have a single entry point but it may have multiple
exit points.

In Section 5.5 we discussed the priority of a signal. In the following
subsections, we will instead talk about the priority of a job. This make
sense since it is more natural to look at whole jobs when discussing
execution of PLEX code, than it is to look at a single20 signal. The
reason is that a job includes the actual PLEX code that is triggered to
execution by the signal, as well as the signal itself.

6.2 Signal Buffers

Some jobs in the AXE system are not time-critical and can wait to be
executed, while others need to be executed immediately. The first case
holds for administrative jobs and the second case for jobs related to traf-
fic handling (i.e., telephone calls21) and CP faults.

Buffered signals (which could be read as ”the start of a new job”)
may be delayed using one of the following methods:

• Job Buffer: delays a signal until all ”older” jobs have been processed

• Job Table: sends signals at short periodic intervals

• Time Queue: delays signals by relative or absolute time

We will look further to these different ways of delaying a signal.
20By single signals, we do not mean single signals as described in Section 5.3.
21A normal load on the system is 200 telephone calls that is to be handled every

second. These jobs are all time critical and have the same priority, but the performance
would not be acceptable with a ”first-come-first-served” approach. A solutions is to use
buffered signals as a ”time sharing” mechanism.

6 JOBS, SIGNAL BUFFERS AND JOB HANDLING 26

Job Buffers: Job buffers are queues with a FIFO-semantics22. There
are four buffers for CP-CP and RP-CP signals and one for CP-RP
signals; Job Buffer A, Job Buffer B, Job Buffer C and Job Buffer
D, all for CP-CP and RP-CP signals, where Job Buffer A has the
highest priority. Job Buffer R is the buffer for CP-RP signals.

The buffers carry the following type of tasks:
Job Buffer A - urgent tasks of the operating system; preferential
jobs, e.g., errors in traffic equipment.
Job Buffer B - telephone traffic.
Job Buffer C - I/O communication. The command statement de-
scribed in Section 2.3 is handled at this level.
Job Buffer D - APZ routine self-tests.
Job Buffer R - CP-RP signals queue in JBR, a buffer for signals
sent from the CP to a RP.

The Job Table: The job table contains jobs executed at short periodic
intervals, for instance, incrementing clocks for time supervision.
The job table has higher priority than any of the job buffers. Since
the possible execution time after a job table signal is very short,
this signal only initiates a program sequence in the receiving block,
which inserts a buffered signal in one of the job buffers. The
buffered signal initiates the ”real” work in the program which from
an application point of view, has the priority of the buffer it is in-
serted in.

Time Queues: Time queues delay periodic and other jobs at longer in-
tervals than the job table. There is one absolute time queue and
three relative ones. The absolute time queue stores the absolute
time for signal execution (month, day, hour and minute). Every
minute, the time queue compares this value with the system cal-
endar. When there is a match, the signal is moved to one of the
four job buffers. The three relative queues have a counter for each
job. Every 100 ms, 1 second and 1 minute, respectively, the time
queue receives a periodic signal from the job table and decrements
the counter. If a counter reaches the value zero, the correspond-
ing signal is forwarded to one of the job buffers. I.e., a signal that

22First In First Out

6 JOBS, SIGNAL BUFFERS AND JOB HANDLING 27

is fetched from a time queue is almost never executed at once23.
Execution of the signal is performed when the operating system
fetches it from the job buffer it was inserted in.

Fig. 19 shows how a software unit sends a delayed (and multiple) sig-
nal. The signal is first placed in a time queue and after that in a job
buffer. After it is taken from the job buffer, the execution is started in
the receiving unit.

...
Enter SigA

...

Unit B

...
Enter SigA

...

Unit C

Time Queue Job Buffer

...
Send SigA

...
Delay 200ms

EXIT
...

Unit A

Figure 19: Sending of a delayed (and multiple) signal. The signal is sent
from Unit A and received in Unit C but, as could be seen in the figure, it
is possible to receive the signal in Unit B as well if Unit B is specified as
the receiver by the PLEX designer.

6.3 Job Handling

The priorities at runtime correspond to the priorities among the job
buffers (Section 6.2), as will be shown below.

As already stated, Section 6.2, depending on their purpose and time
requirements, jobs are assigned to certain priority levels - five different
levels exist. But the important thing, when dicussing job priorities, is
how different priority levels can interrupt each other and, as could be
seen in the following discussion, we could view the five different priority
levels as only three if we take the possibility for one job to preempt
another into consideration.

23The only exception is when the receiving job buffer (and every job buffer with higher
priority) is empty.

6 JOBS, SIGNAL BUFFERS AND JOB HANDLING 28

Tasks initiated by a periodic Job Table signal use the traffic-handling
level 1 (THL 1), JBA signals use traffic-handling level 2 (THL 2), JBB
use traffic-handling level 3 (THL 3), JBC use base level 1 (BAL 1) and
JBD use base level 2 (BAL 2), see Fig. 20.

The Job Table has a higher priority than all the job buffers. JBA has
a higher priority than JBB, and so forth. The jobs in the job buffers are
executed in order of priority - JBA is emptied before JBB, and so on.
Data used in interrupted jobs stay in the processor register memory,
and THL, BAL 1 and BAL 2 jobs have their own processor registers.
That means all THL jobs share the same register buffers. Hence, no job
at one sub level of THL can interrupt a job at another sub level of THL,
since they share the same set of registers and the temporary variables
would be destroyed otherwise.

I.e., jobs from the job table, JBA and JBB have to wait for each other,
but all three can interrupt job from JBC and JBD. As BAL 1 and BAL 2
have different register memories, JBC can interrupt JBD.

Job Table
JBA
JBB
JBC
JBD
JBR

Job Buffers for CP-CP
and RP-CP signals

Job Buffer for CP-RP signals

JBA - urgent tasks of the operating system: preferential traffic
JBB - all other telephone traffic
JBC - input/output to operator and I/O devices
JBD - APZ routine self-test
JBR - signals from Central Processor to Regional Processor
THL - traffic-handling level
BAL - base level

THL 1
THL 2
THL 3
BAL 1
BAL 2

THL

Own processor register
Own processor register

Shared processor
register

Figure 20: Job buffers and runtime priorities in the AXE system.

In some cases, however, it may be necessary to prevent the system
from interrupting an important task. For example, an operation and
maintenance (O&M, Section 2.3) routine at C-level (BAL 1) is writing to
variables that are also accessed by traffic-handling routines at B-level
(THL 3). In this situation, it is best to inhibit the interrupt function as

6 JOBS, SIGNAL BUFFERS AND JOB HANDLING 29

long as the writing at C-level is in progress. The interrupt function is
inhibited by the DISABLE INTERRUPT statement and activated by the
ENABLE INTERRUPT statement.

We conclude this subsection with an exampel. Fig. 21 illustrates the
execution of several jobs. In the figure, the execution starts in block 1
with the first job, proceeds in block 2 with the second job and finally
ends in block 1 with the execution of the last job. Fig. 22 gives a closer
look of the link (into job buffers) and execute process.

If a new job enters an empty job buffer, the buffer sends an inter-
rupt signal for that priority level. If the ongoing job has a lower priority
level, that job is interrupted. However, a job can not interrupt a job on
the same (or higher) priority level.

Timeblock 1 block 3block 2

enter

send

exit enter

send

send

exit enter

enter

send

exit

signal 1

signal 2

signal put in
job buffer

signal 5

signal put in
job buffer

signal put in
job buffer

signal 3

signal 4
exit

Figure 21: The execution model - Four jobs are executed. The process of
transfering a buffered signal from the sending block to the receiving, via
a job buffer, is shown in Fig. 22. NOTE the ”parallel” architecture that
could become real parallel execution.

6 JOBS, SIGNAL BUFFERS AND JOB HANDLING 30

(module)
block A

 Signal
 Number

1

5
4
3
2

Link Signal
 Number

ENTER

EXIT
ENTER

SEND siganl
name

EXIT
ENTER

EXIT

 Signal
 Number 1

4
3
2 Block number of B

APZ

(module)
block B

ENTER

EXIT
ENTER

EXIT
ENTER

EXIT

 Hop address

SSTSST

SDTSDT

 APZ - Operating System
 SDT - Signal Distribution Table
 SST - Signal Sending Table

Job Buffer

 Signal
 Number

DataBlock Nr of
B

Figure 22: Linking and execution for a buffered signal in APZ. See also
Fig. 21. NOTE: The procedure is the same for direct signals except that
they not are inserted in a Job Buffer.

7 LINKING ENCAPSULATION 31

6.4 Execution Time Limits

As stated in Section 4.1, PLEX is a real-time language. This means that
a system programmed in PLEX is a real-time system24. When talking
about execution times limits, one always refer to the execution time of a
job. There are limits for the execution time, but this is not measured in
absolute times. Instead, there are programmer guidelines that specify
how many lines of code that may be placed in a software unit (or units)
for one job.

7 Linking Encapsulation

All blocks used in the system are compiled separately and it is also pos-
sible to ”load“ them separately, even at run-time. This process is called
a Function Change and it was described in Section 2.1. When doing
a Function Change, the Signal-Sending Table (SST) and the Global-
Signal Distribution Table (GSDT) has to be updated. The update has
to be done because all signal sendings has to look in the SST and the
GSDT to find which signal to invoke.

When updating the tables, by the Rationalized Software Production
(RSP) functionality, the (new) introduced signal is given a unique num-
ber, the Global Signal Number (GSN). This number is stored in the
GSDT as well as in the SST of the Function Unit (block) using this
”new“ signal. The GSDT also stores Block Number Receiving (BN-R),
(the unique number of the block receiving the signal) and the Local
Signal Number (LSN) which is the position holding the local relative
address of the entry point of the signal entry.

The Signal Distribution Table (SDT) is not updated, as the SDT
holds the relative address to the signal entries inside the Function Unit.
SDT is set with a local number in the object step (during compilation).

SDT: Contains the relative entry address, set during compilation, of
the specific program sequences where signals are received.

SST: Contains the global signal number (GSN) of signals to invoke
24And, as shown by Arnström et. al, the AXE system is classified as a soft real-time

system [AGG99].

7 LINKING ENCAPSULATION 32

Signal
Distribution Table

(SDT)

Signal Sending
Table (SST)

Program Code

PS

One function Unit
(Block)

Figure 23: PS, showing SDT, SST and Program Code of one function
unit.

from function unit using ”this“ SST, created in the object step and
changed by the RSP.

GSDT: Contains the global signal number (GSN), the Block Number
Receiving (BN-R) and the Local Signal Number (LSN).

In DS, values are stored for all variables.
In PS, the programs for all blocks are stored together with the Signal-

Sending Tables (SST), the Signal Distribution Table (SDT) and the Global-
Signal Distribution Table (GSDT), see Fig. 23

RS is used for addressing DS and PS, and contain the Program Start
Address (PSA) and Base Start Address (BSA), see Fig. 24.

7.1 Addressing a Program Sequence

Fig. 25 shows ”unit A” sending a signal to ”unit B”; the global signal
number (GSN) is found in the Signal-Sending Table (SST) of ”unit A”.
The GSN is used to find the Block Number Receive (BN-R) and the Local
Signal Number (LSN) in ”unit B” (”unit A” doesn’t know it is ”unit B”
that holds the signal entry for the signal sent from ”unit A”). The BN-R
is used to obtain the Program Start Address (PSA) in the Register Store
(RS). The PSA is an absolute address in the Program Store (PS), and by
knowing the LSN and PSA, and also using the Signal Distribution Table

7 LINKING ENCAPSULATION 33

Block 1

RS

Block 2

Block 3

...

...

...

Block n

PSA

PSA = Program Start Address

Reference Table

Figure 24: RS, showing the Reference Table.

Unit A GSDT
Reference
Table (RS)

UNIT B

GSN

LSN
PSA

BN-R

Figure 25: The information flow in determining the signal entry when
sending a signal.

(SDT) of ”unit B” the entry point of the program code can be determined
in ”unit B”. See Fig. 26.

7 LINKING ENCAPSULATION 34

SDT

SST

Program
Code

SDT

SST

Program
Code

Block X

Block Y

PSA

PSA / LSN

GSN

GSN

GSN
GSN

GSDT

LSNBN-R

1

2

PS RS

PSA

3

SSP

GSN

BN-R /
LSN 4

PSA / LSN

5

IA

6 LSN
BN-R = Block Number Receive
GSDT = Global-Signal Distribution Table
GSN = Global Signal Number
IA = Instruction Address
LSN = Local Signal Number
PS = Program Store
PSA = Program Start Address
RS = Register Store
SDT = Signal Distribution Table
SSP = Signal-Sending Pointer
SST = Signal-Sending Table

PSA + IA

7

Figure 26: The consecutive order of handling a signal sending.

8 SOFTWARE RECOVERY 35

7.1.1 Addressing in DS

RS actually consists of two parts: the Reference Table (RT) and the
Base Address Table (BAT). In the RT there is one PSA and Base Start
Address (BSA) for each block, and the BSA points to the starting point
of BAT, see Fig. 2725.

RT: is part of Register Store and hold the Program Start Address and
Base Start Address.

BAT: holds the address of the variables in DS. For each block a variable
is given a number from 1 and upwards. This number is called the
Base Address Number (BAN). To get the address of a variable in
DS, the BSA + BAN will give the position holding the address in
DS.

BSA: holds the address of current start point of BAT.

8 Software Recovery

After the initial loading (Section 2.4), the exchange is supposed to run
smoothly during its lifetime. This is also the normal situation for the
system. However, errors can’t be entirely eliminated and in this section
we will study software recovery actions. The goal with the automated
recovery action is to minimize the exchange down-time. This is achieved
by first trying to release only the dysfunctional forlopp26 (which nor-
mally stretches over parts of several blocks) and leave the rest of the
system unaffected. As a last step, if nothing else works, the entire sys-
tem is restarted.

This section will cover the different steps regarding software recov-
ery actions. In Section 3.3 we stated that variables are treated dif-
ferently at recovery actions depending on the properties set by the de-
signer. We will end this section with a summary of variable properties
and their ”behavior” at recovery actions.

25Actually, this is how addressing is performed in some architectures. The addressing
principles may differ among the APZ versions

26Forlopp will be described in Section 8.1

8 SOFTWARE RECOVERY 36

PSA BSA

Base Address 1
(the word-address of a

stored variable)
Base Address 2

.....

Base Address n

Base
Address

Table

Reference
Table

PS

BN-R RS DS

1

2

3

Block A
Block B

Block n

.....

Block A

Block B
.....

Block n

1 = BSA indicates the starting point of base address table for block A located in reference
store. The BSA will give the absolute address.
2 = BAN indicates where the BAT word address for the specific variable is found. BAN is a
relative address.
3 = The word address indicates where the value of the specific variable is stored in DS.

Figure 27: Show how addressing to DS is performed in RS. BSA points
to the starting point of BAT

8 SOFTWARE RECOVERY 37

8.1 Forlopp

The first line of defense for maintaining system availability is the For-
lopp release. The purpose of a forlopp release is to allow a single process
chain, e.g., a call, to be released without adversely affecting any other
processes in the system.

Forlopp originates from the Swedish word ”förlopp” meaning ”se-
quence of related events”. In the contents of AXE, a typical forlopp
will result in a ”path through the system” which generally will be rep-
resented by a chain of linked software resources, such as records. In
AXE, the word forlopp can be used to denote both the ”sequence of re-
lated events” and the resulting ”path through the system”. The forlopp
mechanism is implemented in the Maintenance Subsystem, MAS, Fig.
1. Examples of forlopps are an ordinary telephone call or a command.
Some concepts associated with forlopps:

• A forlopp identity (FID), stored in a special register, is assigned to
each process (a call or forlopp). All parts participating in the same
forlopp have the same forlopp identity.

• The forlopp manager (FM) stores information concerning the dif-
ferent forlopps.

• When a software error is detected, the FM sends release signals to
the blocks involved according to the information stored in FM. A
forlopp release is hereby performed.

• At a forlopp release, a software error dump is performed, which
means that the contents of the records participating in the current
forlopp are dumped27.

To summarize, a detected software fault may result in a forlopp release,
provided that the function block in which the fault occurred is forlopp-
adapted and the forlopp function is active.

8.2 System Restart

The system restart has been the traditional recovery action taken by the
APZ (Section 2) when it detects a software fault. The system restart

27Section 2.4 describes what a dump is.

8 SOFTWARE RECOVERY 38

affects the entire system and not only the forlopp in which the fault
occurred. The purpose of a system restart is to restore the system to a
predefined state.

During restart, restart signals are sent to each block, so that during
successive restart phases, blocks perform actions to complete the initial-
ization or restoration to a consistent value of their data store variables.

The system restart procedure could be initiated manually, by a COMMAND
(Section 2.3), or automatically. A manual system restart clears error
situations, for instance the disconnection of a hanging device. An auto-
matic system restart is detected by programs, microprograms and su-
pervisory circuits. At a system restart, the job table, the job buffers and
the time queues (Section 6) are cleared.

There are three levels of system restart activities:

• Small system restart, which does not affect calls in speech position
and semi-permanent connections. Other calls are disconnected.
This is a minimal system restart.

• Large system restart in which all calls are disconnected. Semi-
permanent connections are not affected.

• Reload and large system restart in which a reload is performed
first to ensure that RELOAD-marked variables contain correct val-
ues. This is then followed by a large system restart. Semi-permanent
connections are disconnected and automatically reestablished.

The reason to have different types of system restarts is to disturb traffic
handling as little as possible during the restart phase.

With the occurrence of the first fault in a normal block that leads to
a system restart, the system tries to repair itself without disturbing the
traffic too much - A small system restart is initiated. If another serious
fault occurs within a predefined time interval, a large system restart
will be initiated. In the event of the occurrence of a third serious fault
within another predefined time interval, a reload and a large system
restart will take place. This represents the system’s most extreme error-
recovery action. The described phases is pictured in Fig. 28.

Finally, it is sometimes unnecessary to immediately initiate an auto-
matic system restart. The system restart could be delayed or inhibited.
This is done by calling the selective restart function.

8 SOFTWARE RECOVERY 39

time
x min x min

Small
Restart

Small
Restart

Large
Restart

Reload
+

Large
Restart

Figure 28: Different types of system restart.

8.3 Forlopp Release or a System Restart?

In Section 8.1 we described the concept of forlopps as a way to recover
from a software error without affecting more than the faulty forlopp.
Then, in the following Section, 8.2, we described the system restart
and the different levels of restart and when they apply. This section
explains when the system restart action takes over from the forlopp re-
lease mechanism.

As we said in Section 8.1, a forlopp release is always a first choice if
an error has been detected. The system restart ”function” applies when
and if:

• The forlopp release fails to recover the system (i.e., the faulty for-
lopp), or

• The faulty process has not been forlopp-adapted, or

• The number of faults have been to high according to a predeter-
mined limit.

The last case is checked against an intensity counter. This counter keeps
tracks of the quantity of software faults. The counter is stepped each
time a fault is detected leading to a delayed system restart or a forlopp
release. When the counter reaches the predetermined limit, a system
restart is initiated. The counter is then reset and starts again from
zero. Fig. 29 shows the intensity counter and Fig. 30 shows the different
levels of software recovery.

8 SOFTWARE RECOVERY 40

time

Counter
value

Restart limit (default = 25)

+5

+10

+3

-1 every hour

No restart
Error is ignored

Delayed
restart

Forlopp
release

Figure 29: The intensity counter.

ERROR

Forlopp release
possible and active?

Selective
Restart active?

Intensity
counter high?

Check block
category

Error ignored

Delayed restart

Immediate restart

Delayed restart with reload

System Restart

0 1 2 3

Yes Forlopp
release

System Restart

No

No

No

Yes

Yes

Figure 30: Different levels of recovery after a detected software error.

8 SOFTWARE RECOVERY 41

8.4 Variables and Software Recovery

As said in Section 3.3, the variable properties determine how the vari-
ables are to be treated (i.e., from a data point of view) in the case of a
system restart. Fig. 31 shows the principles of how different types of
variables should be treated after a system restart.

 DS
 DS DUMP
 DS STATIC
 DS RELOAD
 DS RELOAD DUMP
 DS RELOAD STATIC

 DS CLEAR
 DS CLEAR DUMP

Start
Small

system restart
Large

system restart

System restart
with

reloading
 Cannot
 be
 trusted

 Cannot
 be
 trusted

 Can be trusted
 Can be
trusted

 Can be trusted

 Cannot be trusted
 Exception: when the variable value
 is checked in system restart routine

Figure 31: Data security of different start/restart types.

Acknowledgements

This report is published within the research co-operation between Erics-
son AB and Mälardalen Real-Time Research Center. The work has been
founded by Ericsson AB, Mälardalen Real-Time Research Center
and the KK-foundation.

The authors would like to Janet Wennersten at Ericsson AB as well
as professor Björn Lisper at Mälardalen University for many helpful
discussions.

We would also like to mention Per Burman, Anders R. Larsson
and Anders Skelander at Ericsson AB, as well as Peter Funk at
Mälardalen University, who all have been eager to keep the research
co-operation between Ericsson AB and Mälardalen University ”up and
running”.

REFERENCES 42

References

[AB95a] Ericsson Telecom AB. CPS Principles, 1995.

[AB95b] Ericsson Telecom AB. PLEX-C 2, 1995.

[AB98] Ericsson Telecom AB. PLEX-C 1, 1998.

[AB99] Ericsson Telecom AB. Basic Principles of Forlopp Handling,
1999.

[AB02] Ericsson Telecom AB. PLEX-C Language Description, 2002.

[AE00] J. Axelsson and J. Erikson. SAPP, Theories and Tools for
Execution Time Estimation for Soft Real Time (Communica-
tion) Systems. Master’s thesis, Mälardalen University, 2000.

[AGG99] A. Arnstrom, C. Grosz, and A. Guillemot. GRETA: a tool con-
cept for validation and verification of signal based systems
(e.g. written in PLEX). Master’s thesis, Mälardalen Univer-
sity, 1999.

[EFGL02] J. Eriksson, P. Funk, J. Gustafsson, and B. Lisper. A tool
concept for execution time analysis of legacy systems. In
14th Euromicro Conference on Real-Time Systems, Work-in-
Progress. IEEE, 2002.

[KO00] P. Karlsson and S. Ohlsson. Jämförelse av registerallok-
erigsstrategier för programmerinsspråket PLEX. Master’s
thesis, Mälardalen högskola, 2000.

[KP96] Al Kelley and Ira Pohl. C By Dissection - The Essentials of C
Programming. Addison-Wesley, 1996.

[MH01] A. Marburger and D. Herzberg. E-cares research project:
Understanding complex legacy telecommunication systems.
In Fifth European Conference on Software Maintenance and
Reengineering, pages 139 – 147. IEEE, 2001.

A THE SIGNAL DESCRIPTION 43

A The Signal Description

There are two main documents for signals: The Signal Survey, which
is a listing of all the signals sent and received in a unit, and the Signal
Description, which will be studied in this section. These documents are
compiled together with the Source Program Information28, SPI.

The Signal Description, SD, is the document that defines a signal.
The type of the signal, as well as the priority level of the signal is speci-
fied in this document. There is one SD for every signal and all SD’s are
stored in special libraries. We will study how the SD ”interact” with the
SPI during the code generation phase. But as a first attempt to capture
the contents of the SD, it could be seen as similar to the h-file in C

that externally defines a function (among other things).
The SD includes the following items:

• Name of the signal - Every signal has a name that, perhaps,
captures its functionality.

• Signal number - For internal documentation.

• Function - Used to make comments about functionality.

• Signal type - The signal type indicates whether the signal is Sin-
gle or Combined. There are three possible type specifications:

– Type 1: Single signal

– Type 2: Combined forward

– Type 3: Combined backward

If the signal is Multiple, this is indicated by adding the keyword
MULTIPLE to the signal type, like in: TYPE IS 1 MULTIPLE

A Unique signal has no indication at this point! (A signal is unique
”by default” if nothing else is stated.) If the signal is local, the
keyword LOCAL is added to the signal type.

• Possible return signal - For internal documentation.
28The Source Program Information is the ”source code file”, i.e., the document that

we normally call a program. See Section 3.1 for further details.

A THE SIGNAL DESCRIPTION 44

• Possible sending block - For internal documentation.

• Possible receiving block - For internal documentation.

• Buffer level - The priority level! In Section 6, it is described how
every signal is assigned a priority level, and how signals are stored
in different job buffers (in case of a buffered signal). The buffer
level states the priority level of the corresponding job and also in
which job buffer the signal will be buffered (if it is to be buffered,
i.e.).
NOTE: The buffer level can have the following combinations:

– NO BUFFER: The signal is direct. (A combined signal is
always direct, see Section 5.3.)

– LEVEL A/B/C/D BUFFER: The signal is buffered and uses
the job buffer specified. This combination overrides a possible
use of the HURRY option in the signal sending statement (see
below).

– LEVEL A/B/C/D: The signal is buffered and uses the job
buffer specified, unless the keyword HURRY is used in the
signal sending statement, which indicates that the signal is
direct.

• Signal data - Specification of the ”arguments” (i.e., the data) that
the signal is carrying.

• ID sector - For internal documentation.

