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A B S T R A C T

In this paper, we identify that the existing end-to-end data propagation delay analysis for distributed embedded
systems can calculate pessimistic (over-estimated) analysis results when the nodes are synchronized. This is
particularly the case of the Scheduled Traffic (ST) class in Time-sensitive Networking (TSN), which is scheduled
offline according to the IEEE 802.1Qbv standard and the nodes are synchronized according to the IEEE 802.1AS
standard. We present a comprehensive system model for distributed embedded systems that incorporates all
of the above mentioned aspect as well as all traffic classes in TSN. We extend the analysis to support both
synchronization and non-synchronization among the ECUs as well as offline schedules on the networks. The
extended analysis can now be used to analyze all traffic classes in TSN when the nodes are synchronized
without introducing any pessimism in the analysis results. We evaluate the proposed model and the extended
analysis on a vehicular industrial use case.
1. Introduction

Vehicular distributed embedded systems are often modeled with
chains of tasks and messages that can be distributed over two or
more Electronic Control Unit (ECUs)1 connected by a real-time net-
work [1]. Traditionally, the in-vehicle communication was based on
low-bandwidth and low-latency networks like Controller Area Net-
work (CAN) [2]. Since CAN is an event-triggered communication pro-
tocol, the ECUs connected to the network are not synchronized. The
traditional in-vehicle networks are unable to support high-bandwidth
requirements in many complex vehicular distributed systems, in which
realization of a higher level of autonomy of driving is envisioned.
Realizing these vehicular systems is conditioned to incorporating a
spectrum of functionalities, that range from handling high data-rate
sensor readings, to gathering information of the vehicle’s environment,
and providing predictable responses to the corresponding inputs [3].
The communication standards utilized in future vehicular systems need
to be flexible to allow accommodation of the new functions to the
system over time. Recently, the IEEE Time-sensitive Networking (TSN)
task group2 developed a set of TSN standards that have emerged
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1 We use the terms ECU, end-station and node interchangeably to refer to a single-core compute unit.
2 https://1.ieee802.org/tsn
3 Automotive systems are a subset of vehicular systems that include cars, trucks, construction vehicles, loading vehicles, moving cranes, to mention a few.
4 SymTA/S tool has been acquired by Luxoft (https://www.luxoft.com).

as a promising solution to support high-bandwidth and low-latency
in-vehicle communication [4].

In vehicular distributed embedded systems, the data in a chain of
tasks and messages propagates from the input to the output of the
chain. The input corresponds to the first task in the chain, e.g., the
task reading a sensor signal. Whereas, the output corresponds to the
last task in the chain, e.g., the task producing an actuation signal. Note
that any two neighboring tasks within the chain communicate using
over-writable and non-consuming buffers, also called registers. This
means, the writer task can over-write the previous data in the buffer,
whereas the data stays in the buffer after it is read by the reader task.
If tasks in such a chain are activated by independent activation sources
with different periodicity (e.g., different periodic clocks), the data can
propagate through more than one path from the input to the output
of the chain. This leads to different types of delays that the data can
experience while traversing through the chain. These delays are called
data-propagation delays or end-to-end delays. The developers of the
systems are required to verify, at the design time, that the specified
timing constraints are satisfied. This can be achieved by performing
the end-to-end data-propagation delay analysis of these systems [5–8].
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A joint effort from the automotive3 industry and academia identi-
fied the significance of these delays in vehicular systems and provided
their formal semantics [5,6,9]. Eventually, the timing constraints cor-
responding to these delays were included in the automotive domain-
specific modeling language EAST-ADL [10] and the AUTomotive Open
System ARchitecture (AUTOSAR) standard [9]. In order to verify these
timing constraints, the research community in collaboration with the
R&D of the automotive industry developed the end-to-end data-
propagation delay analysis [5–8]. This analysis is already implemented
in several tools that are used in the vehicle industry, e.g., SymTA/S4[11]
nd Rubus [12]. Since CAN is the most widely used onboard real-time
etwork in the vehicular domain, the existing analysis incorporated
he response-time analysis for CAN [13,14] within the end-to-end data-
ropagation delay analysis. Furthermore, as CAN is an event-triggered
etwork communication protocol and it does not support synchro-
ization of the connected ECUs, the data-path computation algorithm
ithin the existing end-to-end data-propagation delay analysis did not
ccount for synchronization of ECUs.

The existing end-to-end data-propagation delay analysis and its
ata-path computation algorithm also support the precursor of TSN,
alled the Ethernet Audio-Video Bridging (AVB), which includes some
lasses of TSN. This is because AVB also supports event-triggered
raffic and does not consider synchronization of ECUs. In that case, the
esponse-time analysis of AVB [15] was incorporated within the end-
o-end data-propagation delay analysis [16]. However, the TSN stan-
ards support synchronization of ECUs according to the IEEE 802.1AS
tandard. In particular, the ECUs should be synchronized when the
cheduled Traffic (ST) class in TSN is used, according to the IEEE
02.1Qbv standard. The real-time traffic mapped to the ST class is
ransmitted according to a schedule that is created offline. In general,
hen the IEEE 802.1AS standard is used then the ECUs in the TSN
etwork should be considered synchronized regardless of which TSN
raffic class, ST, AVB and Best-Effort (BE), is used. We identify that
hen the data-path calculation algorithm in the existing end-to-end
ata-propagation delay analysis, i.e. [5], is applied to the case of syn-
hronized ECUs, the analysis results can be pessimistic (over-estimated)
ecause the algorithm does not consider synchronization among the
CUs.

.1. Paper contributions

In this paper, we extend the data-path computation algorithm
ithin the existing end-to-end data-propagation delay analysis to sup-
ort both synchronization and non-synchronization among the ECUs.
he extended algorithm supports all traffic classes in TSN. Using the
xtended algorithm, the existing end-to-end data-propagation delay
nalysis can now be used to analyze all traffic classes in TSN networks,
here the ECUs may or may not be synchronized, without introducing
ny pessimism (over-estimation) in the analysis results.

The main contributions in the paper are as follows:

– We extend the data-path computation algorithm within the ex-
isting end-to-end data-propagation delay analysis to support all
traffic classes in TSN networks when the ECUs are synchronized
using the IEEE 802.1AS standard. Unlike the existing algorithm,
the analysis results with the extended algorithm do not include
any pessimism when the ECUs in the TSN networks are syn-
chronized. The extended algorithm is backwards compatible to
support the analysis of all non-scheduled traffic (non-ST) classes5

(AVB or BE) when the ECUs are not synchronized in the TSN
networks.

5 It is required to use synchronization when the ST traffic class in TSN is
sed.
2

– We present a comprehensive system model for distributed embed-
ded systems to support the extended algorithm, which incorpo-
rates all traffic classes in TSN. The model can express distributed
task chains that can contain various types of traffic supported by
TSN, including the ST, AVB, and BE traffic.

– We demonstrate the applicability of the presented model and
analysis to a vehicular industrial use case. We also perform com-
parative evaluation of the extended analysis with the existing
analysis by analyzing the use case with the two analyses. Fur-
thermore, the presented model and analysis are evaluated by
experiments to show the effect of various configurations of ST
class, receiver periods, and synchronization of the sender and
receiver ECUs on the end-to-end data propagation delays.

1.2. Paper layout

The rest of the paper is organized as follows. In Section 2, we pro-
vide background on TSN and related works on timing analysis of TSN
networks. Section 3 describes the end-to-end data propagation delays
and elaborates on the over-estimation of delays if the existing analysis is
applied to the ST class in TSN. Section 4 presents the proposed system
model for distributed embedded systems, and furthermore Section 5
presents the extension to the existing end-to-end data propagation delay
analysis. Section 6 presents a vehicular application case study. We
compare the results of the existing analysis with our proposed extended
end-to-end data propagation delay analysis. Furthermore, we present
the use-case results and an experimental study to show the effect of
various parameters on the end-to-end data propagation delays. Finally,
we discuss the results in Section 6.4, and in Section 7 we conclude the
paper.

2. Background and related work

2.1. Time-sensitive networking (TSN)

TSN standards are recently developed by the TSN task group in
IEEE standardization. This set of standards can be seen as a toolbox
containing various features to improve the performance of communi-
cation in several applications, e.g., automation and automotive appli-
cations [1,17,18]. According to the IEEE 802.1Q-2022 standards, the
traffic classes are categorized into three categories of ST, AVB, and
BE traffic. Among several features, the TSN standards allow temporal
isolation of the ST traffic that is transmitted according to an offline
schedule via the Gate Control List (GCL) as shown in Fig. 1. GCL is part
of the Time-aware Shaper (TAS) that can realize the temporal isolation
using a set of gates that control the transmission of traffic on a port
of a TSN interface or switch. The gates can stop the transmission of
lower priority traffic in favor of the urgent ST traffic class which in
turn guarantees low-jitter transmission for the ST traffic (also known
as preemption). In addition, the TSN standards define a Credit-Based
Shaper (CBS) mechanism that allows reservation of bandwidth over
the network for a set of traffic classes, known as the AVB classes. AVB
traffic includes several classes starting from A (high priority) and can be
up to eight as the number of queues per port is eight. It is very common
to use only classes A and B in analysis and examples, while it is possible
to have eight AVB traffic classes in the standard. Queues assigned to
AVB class undergo the CBS mechanism for transmission. According to
the CBS mechanism, a credit is configured per class of traffic on each
TSN port and the traffic associated to the class can only be transmitted
when the credit for that class is zero or positive. If the credit is negative,
the transmission is on hold until the credit replenishes with a constant
rate, known as the idleSlope, to zero or positive. The credit decreases
when the transmission is happening with a constant rate, known as
the sendSlope, and the summation of both values is equal to the port
rate. Moreover, TSN can support legacy traffic transmission that do not

need any timing guarantees, which is known as the BE traffic class.
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Fig. 1. TSN interface.
As shown in the example in Fig. 1, the eight traffic priorities in the
Priority Code Point (PCP) table are mapped to the eight configurable
queues at the egress port of the TSN switch. A queue can be configured
to use each of the aforementioned mechanisms for passing the traffic
with the associated PCP to the port. In this example, the PCP ’’111’’ is
configured to use the ST class, PCP ’’101’’ and PCP ’’100’’ are assigned
to AVB class with the priorities A and B subsequently. The PCP ’’001’’
is considered as BE traffic.

2.2. Related work

Several schedulability analysis techniques have been proposed in
the literature to calculate the worst-case delays of traffic crossing
through a TSN network. Among the techniques, many of them focused
on the worst-case delays of the classes A and B frames under the
CBS only, e.g., the work in [19] and the improved technique given
in [20]. In addition, the work in [21] proposed a technique based on
the trajectory approach to compute the delays of classes A and B. The
technique obtains tighter bound of delays compared to the previous
techniques, e.g., compared to the delays calculated by the approach
in [19]. Later, the work in [22] proposed the notion of eligible interval
that could provide a bound for delays per frame that leads to tighter
analysis compared to the previous analysis techniques. The above-
mentioned works solely consider the CBS in TSN networks. However,
the TSN standards give various number of shapers and mechanisms
that a network designer can select from. For instance, the proposal
in [23,24] presented an analysis based on network calculus where it
considers a TSN shaper called the Burst-Limiting Shaper (BLS).

Various schedulability analysis techniques focused on mechanisms
other than the CBS, such as the gate mechanism. The analysis that is
proposed in [25] computes the worst-case response times of classes
A and B messages in TSN considering both CBS and the gate mecha-
nism. However, the analysis considers a single-switch network, while
industrial networks can consist of multiple switches. The work in [26]
presented an analysis for calculating the accumulation of delays per
link, whereas the works in [27,28] used network calculus to check
the schedulability of TSN messages. In addition, the technique in [29]
presented a response-time analysis for classes A and B messages con-
sidering the CBS and support for the ST that was earlier proposed
in [30]. Furthermore, the work in [31] extends the technique in [29]
for supporting the BE traffic in the response-time analysis. The traffic
forwarding and shaping model in the latter work was different than the
TSN standard models, as it was proposed before finalization of the first
TSN draft.

A TSN network may also benefit from the preemption support
along with the CBS and gate mechanisms according to the IEEE Time-
sensitive Networking (TSN) task group.6 Therefore, the work in [32]

6 https://1.ieee802.org/tsn
3

proposed an analysis considering frame preemption under the IEEE
802.3br standard. Further, the work in [33] presented a technique that
calculates the worst-case response times of frames for classes A and B
when the CBS, gate mechanism and frame preemption are used in a TSN
network. Similarly, the work in [34] proposed a response-time analysis
with the mentioned TSN features in combination with various modes,
such as enabling and disabling the hold and release mechanism. The
hold and release mechanism is defined in the TSN standards to prevent
any possible jitter for the ST traffic due to transmission of lower-priority
classes A and B.

To verify the timing behavior of TSN-based distributed embedded
systems, not only the response times of tasks in the nodes and messages
in the TSN network should be taken into account, but also the end-to-
end data propagation delays in the chains of tasks that include TSN
messages should be considered.

According to the classification in reference [35], there are three ap-
proaches for calculating the worst-case end-to-end delays: (1)
simulation-based method that obtains the maximum end-to-end delays
from a set of selected scenarios. The simulation approach does not
necessarily show the maximum end-to-end delay, because it might
not cover all the possible assumptions for the worst-case scenario; (2)
model-checking based on an exhaustive search can provide exact worst-
case end-to-end delays even on large-scale networks. However, these
methods have high time complexity; and (3) analytical approach that
provides upper bounds on end-to-end delays with a certain pessimism.
Our work lies in the group of analytical approaches in the above
mentioned classification.

From different perspective, the reference [36] mentions active and
passive approaches for the end-to-end data propagation delay analysis.
Active approaches optimize the pattern of task releases in a chain to
achieve optimal delays. Whereas, passive approaches study the worst-
case assumptions for the end-to-end delays in distributed embedded
systems to find upper bounds on the delays. This paper and the works
in [5,7,8,36–40] are among works in the passive category. In the
following paragraphs of this section, we present some of the recent
works on the end-to-end data propagation delay analysis.

The existing end-to-end data propagation delay analysis that com-
putes the end-to-end delays incorporates the response-time analysis
of various legacy real-time networks, such as CAN [7] and legacy
Ethernet [41].

The work in [42] targets data age delay in cause–effect chains
within one execution node. The tasks are synchronized inside an end-
station, and they are scheduled with offsets. The aim of the paper is
to find priorities, offsets and to optimize the design mapping for tasks
to minimize the data age delays in a chain of tasks. Similarly, the
work in [43] aims at finding offsets for the chain of tasks to optimize
the end-to-end delays. The works in [42,43] belong to the active end-
to-end data propagation analysis. Moreover, the paper [44] studies

https://1.ieee802.org/tsn
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the dependencies between the task instances. Such dependencies can
be specified at early development stages to guarantee data age delay
constraint.

The work in [36] performs end-to-end timing analysis for the sys-
tems with locally synchronized periodic tasks in one end-stations. The
end-stations only support non-synchronized communication, i.e., via
CAN, or FlexRay. Similarly, the work in [45] considers globally non-
synchronized communication among the end-stations, while the tasks
within the end-stations are considered synchronized. The authors in
[45] propose a computationally-efficient analysis compared to the anal-
ysis in [36]. Besides, the work in [45] achieves a higher upper-bound
on the data age delay than the work in [36].

The focus of the aforementioned works are only on data age delay,
whereas our analysis also includes the analysis of the reaction delay.
The reference [5] is a seminal work in the literature that introduces a
formal framework for defining end-to-end delays in the periodic and
register-based systems. The task model in [5] is based on Bounded Ex-
ecution Time (BET) task model. In BET task model, the communication
between the tasks is implicit where a task reads data from the register
at its beginning and writes to the register at its end of execution.
Furthermore, the work in the reference [46] proposes an end-to-end
data propagation delay analysis that includes sporadic tasks based on
BET task model. The work in paper [37] builds on the Logical Execution
Time (LET) paradigm by proposing a system-level LET-based commu-
nication model for distributed embedded systems. LET is an inter-task
communication model that augments the read/write access times (input
and output of the task) to the task’s physical execution time model.
System-level LET models the communication between tasks of different
end-stations. In the work presented in [37], the end-stations have their
own local clocks (timeline). The global timeline is approximated based
on the local timeline of the sender and receiver end-stations with a
bounded error. In our end-to-end data propagation delay analysis, we
rely on the determinism promised for ST traffic, and exclude the global
synchronization error for analyzing transactions that utilize ST traffic.
The work in [47] considers globally non-synchronized and locally
synchronized task chains and propose a method to calculate a limited
number of timed-paths7 that lead to the maximum end-to-end delays.

e extend the timed-path approach based on the works in [5,7,8,41],
hich calculate all possible timed-paths but within a bounded window
qual to twice the hyperperiod or the Least Common Multiple (LCM)
f the periods of all involved tasks in the chain. Consequently, our
lgorithm finds the timed-path that leads to the worst-case end-to-end
elays after considering all possible cases.

While the majority of the works focus on providing methods for cal-
ulating the maximum end-to-end delays in the chains, the work in [48]
iscusses robustness margins around the end-to-end timing constraints.
he work in [48] employs BET and system-level LET communication
odel, and further studies the variations in the tasks’ response times

nd the influence on the robustness of the system (i.e, variations in the
nd-to-end delays). In our evaluations, we also take into consideration
he changes in the end-to-end timing delays by making variations in
he configuration of ST traffic and the periods of the receiver tasks.

e focus only on the BET and consider pre-defined end-to-end timing
onstraints for the system under evaluation.

The work in [38] proposes an end-to-end data propagation delay
nalysis for the chains of tasks in the context of Robot Operating
ystems (ROS). The analysis prior to [38] mainly focused on analyzing
eriodic and sporadic tasks. The work in [38] extends the end-to-
nd timing analysis to support ROS2 task chains that deal with a mix
f time-triggered and event-triggered functions. Besides, the network
odel in [38] is based on publisher–subscriber communication model.

7 We use the terms timed-paths and data-paths interchangeably to refer to
he path that the data traverses from one task to another within the task chain.
4

d

The communication model is therefor inherently non-synchronized.
The proposed analysis in our work is only applicable to periodic tasks.

In comparison to the aforementioned works, this paper aims at
extending the data-path calculation algorithm within the existing end-
to-end data propagation delay analysis [5,7,8,41,47,49] to support
analysis of all traffic classes in TSN where nodes can be synchronized
or non-synchronized. These works have also been implemented in tools
to support model- and component-based software development of ve-
hicular embedded systems, e.g., [7,39,40], all of which are considering
the BET task modeling paradigm.

The existing timed-path calculation used in the end-to-end data
propagation delay analysis algorithms, such as [5,47], applies to traffic
classes that do not require offline schedules, i.e., AVB and BE. For exam-
ple, the work in [47] provides end-to-end analysis for the synchronized
communication between sender and receiver end-stations, but it only
considers the case when non-ST are transmitted between synchronized
end-stations, i.e. AVB or BE.

To the extent of our knowledge, there are a few works that aim at
realizing end-to-end data propagation delay analysis for interconnected
end-stations in distributed embedded systems that are based on the
system-level LET model, such as [36–38,48]. Unlike the previous works,
this paper considers that the ST messages are scheduled with offsets
(with globally synchronized end-stations).

These two models can be mapped to each other according to [48].
We chose to use the BET model because it is already integrated
to several tools (including industrial tools) that support model- and
component-based software development of vehicular embedded sys-
tems, e.g., in [39,40].

3. End-to-end data propagation delays

Embedded real-time systems are often modeled with chains of tasks
and messages. To verify the timing behavior of these chains, not only
their end-to-end response times need to be calculated and compared
against the corresponding deadlines, but also the end-to-end data prop-
agation delays (data age and reaction time) should be calculated and
compared with the corresponding data age and reaction time con-
straints. The timing constraints on the data age and reaction delays are
often specified on these distributed chains. The constraint on the data
age delay is important, in particular, for control applications where
freshness of the data is of value. Whereas, the reaction constraint is
important in applications where the time of the first reaction to the
input event is of value. These constraints are included in the timing
model of the AUTOSAR standard [9] and are translated to several
modeling languages in the vehicular domain [50].

3.1. Data propagation delays in single-node embedded systems

In order to explain the data age and reaction time delays, consider
a task chain consisting of three tasks 𝜏1, 𝜏2 and 𝜏3, as shown in Fig. 2.
All tasks belong to a single-core node and are activated independently.
The periods of activation for tasks 𝜏1, 𝜏2 and 𝜏3 are 8 ms, 8 ms and
4 ms, respectively. The Worst-Case Execution-Time (WCET) of each
task is assumed to be 1 ms. For simplicity, we assume that the priority
of 𝜏1 is higher than the priority of 𝜏2 and the priority of 𝜏2 is higher
han the priority of 𝜏3. By this priority assignment policy, we ensure
hat the precedent elements in the chain should be executed before
heir subsequent elements in the chain. The tasks use register-based
ommunication, i.e., they communicate with each other and with their
nvironment by means of writing data to/ and reading data from the
egisters. The registers are of non-consuming type. This means that data
tays in the register after the reader has read the data. Furthermore, the
egisters are over-writable, i.e., if the writer is faster than the reader
hen the previous data in the register can be overwritten by the new

ata before the reader can read the previous data. The data read by 𝜏1
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Fig. 2. An example of a task chain that uses register-based communication.
Fig. 3. Data age and reaction time delays in the task chain depicted in Fig. 2.
from Reg-1 corresponds to the input of the chain. Similarly, the data
written to Reg-4 by 𝜏3 corresponds to the output of the chain.

As the tasks are activated independently and some tasks have dif-
ferent periods, the data traverses through the chain via multiple paths
from the input to the output of the chain as shown in Fig. 3. These paths
are called timed-paths (also referred to as data-paths). Due to multiple
timed-paths, there can be various delays to deliver the data from the
input to the output of the chain.

The data age delay is the time elapsed between the arrival of data
at the input and the latest availability of the corresponding data at the
output. In the data age delay analysis, we are interested in identifying
the longest time difference between the input data and the last sample
of corresponding output data. On the other hand, the reaction delay
corresponds to the earliest availability of the data at the first instance of
the output corresponding to the data that just missed the read access at
the input. An event (corresponding to availability of data) is considered
as readable by an instance of a task, if it occurs at or before the
activation of the task. If the event happens just after the activation of
the task instance, the data is not readable to this instance, i.e., the data
is just missed by the current instance of the task. The missed data is
read by the next instance of the task. This is illustrated by the white
thunderbolt in Fig. 3, where the first instance of 𝜏1 at time 0 misses the
data but the same data is read by the next instance of 𝜏1 at time 8.

Possible data age and reaction delays in the chain in Fig. 2 are
shown in Fig. 3. On the one hand, the data from the event happening a
bit before time 16 is accessible to the third instance of 𝜏1 (activated at
time 16). In such a case, the latest impact of this event is available at
the output of the chain until 5 ms after the occurrence of the event (data
age delay). On the other hand, the sampling of the data coming from
the event happening a bit after the time 0 is delayed until the time 8,
where the data can be read by the second instance of 𝜏1. Accordingly,
the earliest time the impact of the data appears at the output of the
chain is 11 ms after the occurrence of the event (reaction time delay).

3.2. Data propagation delays in distributed embedded systems

The data propagation delays are equally valid in distributed embed-
ded systems. Let us consider a distributed task chain in a distributed
embedded system depicted in Fig. 4, where two nodes are connected
via a network. In this example, the tasks are activated periodically with
periods of 6 ms and 3 ms, respectively. Task 𝜏1 in Node 1 sends a
message to task 𝜏 in Node 2 through the network.
5

2

Depending on the type of network, we may have different possible
timed-paths through which the data can propagate from the sender
task to the receiver task. For example, when the network is not ca-
pable of initiating communication independent of the sending tasks, a
message can only be queued for transmission at the network interface
by the sending task. This is the case of many event-triggered network
protocols, like CAN [2]. In this case, the message inherits its period
from the sender task. Furthermore, the timed-paths in a distributed task
chain also depends upon whether the network supports synchronization
of nodes. For example, TSN supports synchronization among the end
stations via the IEEE 802.1AS standard, whereas the CAN protocol does
not support synchronization. Fig. 5 shows an execution trace when the
nodes are synchronized in the system that is shown in Fig. 4. The data
age and reaction time delays in this distributed chain are identified as
7 ms and 10 ms, respectively.

A possible execution trace of the distributed task chain in Fig. 4
when the nodes are not synchronized is shown in Fig. 6(a). To create
worst-case conditions when the nodes are not synchronized, we assume
that the receiver task 𝜏2 is activated ‘‘just before’’ the arrival of the
message at the receiver node. Hence, the current instance of 𝜏2 (the first
period activation) will miss the read access of the message. The message
will be read by the next instance of 𝜏2 (second period activation) as
shown in Fig. 6(a). The corresponding data age delay is identified as
9 ms as shown in Fig. 6(a).

To increase readability, we draw the same execution trace sep-
arately for the case of reaction time delay in the distributed task
chain (as shown in Fig. 4) when the nodes are not synchronized as
depicted in Fig. 6(b). In Fig. 6(b), the first instance of 𝜏1 is activating
the first instance of the message 𝑚1. According to the assumption for
the reaction delay, the first instance of 𝜏1 has missed the sampling of
the chain’s input event, thus the first instance of 𝑚1 does not deliver
valid data from the input event to the receiver task. However, as the
second instance of 𝜏1 reads the input event, the second instance of the
message 𝑚1 also holds fresh data. Since 𝜏2 is not synchronized with
𝜏1, the worst-case assumption is that 𝜏2 is activated a small amount of
time earlier than arrival of the message that holds the sampled data.
Consequently, the first instance of 𝜏2 misses to read data of the event,
which is being written by the second instance of 𝑚1. But, at the next
instance of 𝜏2 (second period activation), 𝜏2 is able to read the incoming
data from 𝑚 . Accordingly, the reaction delay is 12 ms.
1
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Fig. 4. A multi-rate chain in a distributed embedded system.
Fig. 5. A possible execution trace for the distributed embedded system example shown in Fig. 4 when source and destination end-stations are synchronized.
Fig. 6. A possible execution trace for the distributed embedded system example shown in Fig. 4 when source and destination end-stations are not synchronized.
3.3. Need for extending the timed-path calculation algorithm

The timed-path computation algorithm in the existing end-to-end
data propagation delay analysis implicitly assumes that the nodes are
not synchronized. Hence, the worst-case assumption for the message
receiving task is that the task is released for execution ‘‘just before’’
the arrival of the message. This implies that the current instance of
the task cannot read the message and hence the next instance of the
task will read the message. This may not be true in the case of TSN
6

when the nodes are synchronized using the IEEE 802.1AS standard.
If the existing algorithm is applied to synchronized nodes, as is the
case of TSN, then the calculated delays can be pessimistic (i.e., over-
estimated). This can be seen in the figures Figs. 5, 6(a), and 6(b), where
data age and reaction time delays of 7 ms and 10 ms are calculated for
synchronized end-stations (Fig. 5). In comparison to the case of non-
synchronized end-stations respectively (Figs. 6(a), and 6(b)), data age
and reaction delays of 9 ms and 12 ms are calculated respectively.
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Fig. 7. End-to-end delays for an ST message.
Another example can be seen in Fig. 7, where the existing end-
to-end data propagation delay analysis is performed on a transaction
between two end-stations that use ST class for transmission of message
𝑚1 via link 𝑙18. In the sender end-station, the periods of each of tasks
𝜏1 and 𝜏2 are 10 ms. The message 𝑚1 is sent by 𝜏2 in the sender end-
station. The period of the receiver task (𝜏3) is 10 ms, and it reads the
data coming from the message 𝑚1 from the link 𝑙1. The offset of the
message is set to 1.052 ms, and the message is expected to finish its
transmission at 0.025 ms later than the offset of the message at 𝑙1.
The WCET of each task is 0.5 ms. In the ideal condition for ST traffic
when the sender and receiver end-stations are synchronized as shown
in Fig. 7(a), the data age and reaction time delays are subsequently
10.5 ms, and 20.5 ms. As seen in Fig. 7(b), the data age and reaction
time delays for this transaction in the case of non-synchronized nodes
are pessimistic (over-estimated), i.e., 11.577 ms and 21.577 ms respec-
tively. This is not desirable, since ST traffic is most commonly applied
in critical applications that require precise calculation of the delays.
Therefore, the data-path computation algorithm in the existing analysis
requires extension to support synchronized nodes without introducing
any pessimism in the analysis results.

4. System model

In this section, we formally present the system model of a dis-
tributed embedded system that consists of two or more end-stations
(single-core nodes, compute units, or ECUs) that are connected by a
TSN network. The system  consists of a set of transactions, denoted by
𝛤 , a set of end-stations, denoted by  , and a network, denoted by  .
The system is formally expressed by the following tuple.

 ∶=
⟨

𝛤 , , 
⟩

(1)

A transaction (denoted by 𝛤 ) represents the model of a distributed
task chain that consists of two or more tasks. The chain of tasks either
can be executed within one end-station; or tasks of different end-
stations can communicate with each other via one or more messages in
the network ( ). Multiple transactions can exist in the system model.
The set of transactions are formally expressed subsequently by Eq. (2):

𝛤 ∶= {𝛤1,… , 𝛤
|𝛤 |

} (2)

The set of end-stations in the system are represented by Eq. (3).

 ∶= {1,… , 
||} (3)

8 A detailed system model with all notations will be described in Section 4.
7

4.1. End-station model

An end-station 𝑖 may consist of one or more tasks as shown in
Eq. (4):

𝑖 ∶= {𝜏𝑖𝑗1,… , 𝜏𝑖𝑗𝑘} (4)

where 𝑖 is the index of the end-station to which the task belongs. Note
that a task in an end-station may be a part of one or more transactions.
Hence, 𝑗 represents the transaction index. Finally, 𝑘 represents the
unique identifier of the task within the scope of the end-station.

4.2. Task model

The properties of a task are specified by the tuple in Eq. (5).

𝜏𝑖𝑗𝑘 ∶=
⟨

𝑃𝑖𝑗𝑘, 𝐶𝑖𝑗𝑘, 𝑇𝑖𝑗𝑘, 𝐽𝑖𝑗𝑘, 𝑂𝑖𝑗𝑘
⟩

(5)

where, 𝐶𝑖𝑗𝑘 is the task’s WCET, 𝑇𝑖𝑗𝑘 is the task’s period, 𝑃𝑖𝑗𝑘 is the task’s
priority, and 𝐽𝑖𝑗𝑘 is the task’s release jitter. Moreover, 𝑂𝑖𝑗𝑘 represents
the offset of the task.

Some other properties of the task are calculated using the aforemen-
tioned information in the task’s tuple. Firstly, the activation time of the
𝑛th instance of the task 𝜏𝑖𝑗𝑘 (denoted by 𝛼𝑖𝑗𝑘(𝑛)) can be obtained using
the task’s period and offset based on Eq. (6). Moreover the worst-case
response time of the task is indicated by 𝑅𝑖𝑗𝑘. Also, the 𝑛th instance of
the task 𝜏𝑖𝑗𝑘 is denoted by 𝜏𝑖𝑗𝑘(𝑛).

𝛼𝑖𝑗𝑘(𝑛) = 𝑛 ∗ 𝑇𝑖𝑗𝑘 + 𝑂𝑖𝑗𝑘 (6)

4.3. Network model

The network attributes are indicated by a set of parameters in
Eq. (7):

 ∶= ⟨𝑠,,⟩ (7)

where 𝑠 is the overall network speed. We assume the network operates
with the same speed on all of the links.  holds the set of links in the
network. We consider that each link creates a bi-directional connection
between an end-station and a switch or between two switches. All
switches in the network are TSN switches, hence there can be different
traffic classes in the network. We indicate the traffic classes by the set 
in Eq. (8), where AVB can be classes A, B or other classes that undergo
the CBS. Moreover, 𝑆𝑇 and 𝐵𝐸 represent the scheduled traffic and
best-effort traffic classes respectively.

 = {𝐴𝑉 𝐵, 𝑆𝑇 , 𝐵𝐸} (8)
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A message in the network is indicated by 𝑚𝑗𝑘, where the subscript 𝑗
identifies the transaction to which the message belongs. Furthermore,
the subscript 𝑘 is the unique identifier of a message within the scope of
the network. Eq. (9) shows the set of attributes defining the properties
of a message.

𝑚𝑗𝑘 ∶=
⟨

𝑃𝑗𝑘, 𝑆𝑖𝑧𝑒𝑗𝑘, 𝑇𝑗𝑘, 𝐽𝑗𝑘,𝑗𝑘,𝑗𝑘
⟩

(9)

where the priority of the message is denoted by 𝑃𝑗𝑘 that specifies the
TSN class from which the message is transmitted, e.g., class ST, AVB (A,
B, or etc.) and BE. In this model, the ST class has the highest priority,
while AVB has a lower priority than ST. Moreover, the BE class has the
lowest priority among all the other classes. The size of data (payload
size in bytes) is indicated by 𝑆𝑖𝑧𝑒𝑗𝑘. We assume that all messages are
periodic, therefore 𝑇𝑗𝑘 is the period of the message. The release jitter of
the message is indicated by 𝐽𝑗𝑘. The set of links assigned as the route of
the message from the source end-station to the destination end-station
is stored in the set 𝑗𝑘. Furthermore, the set of offsets of the message
at each of the links specified in the set 𝑗𝑘 is stored in the set 𝑗𝑘. We
assume that we only know the offset of the ST traffic as it is scheduled
offline. Therefore, the set 𝑗𝑘 for non-ST traffic (AVB or BE) is assumed
to be empty, i.e., 𝑗𝑘 = {}.

Based on the aforementioned properties, we can calculate other
properties of the message 𝑚𝑗𝑘, such as the transmission time (𝐶𝑗𝑘) as
well as the worst-case response time (𝑅𝑗𝑘) by utilizing the response-
time analysis of various classes in TSN [31]. Moreover, the activation
time of the 𝑛th instance of the message 𝑚𝑗𝑘 at link 𝑙 is calculated by
Eq. (10), where, 𝑂𝑙

𝑗𝑘 is the offset of 𝑚𝑗𝑘 on link 𝑙.

𝛼𝑙𝑗𝑘(𝑛) = 𝑛 ∗ 𝑇𝑖𝑗𝑘 + 𝑂𝑙
𝑗𝑘 (10)

We assume that both ST and non-ST traffic inherit the period from
the corresponding sending task. Therefore, 𝑇𝑖𝑗𝑘 indicates the period of
the 𝑘th task (sending task) belonging to the 𝑖th end-station and being
part of the 𝑗th transaction. Moreover, we denote the 𝑛th instance of the
message 𝑚𝑗𝑘 by 𝑚𝑗𝑘(𝑛).

4.4. Transaction model

A transaction 𝛤𝑗 represents the model of a distributed task chain
that consists of two or more tasks that communicate with each other via
one or more messages. The data read by the first task of the transaction
is considered as the input of the transaction, and the data written by
the last task of the chain corresponds to output of the transaction. The
period of the transaction is denoted by 𝑇𝑗 . Note that this model limits
the number of message to one per transaction.

Fig. 8 shows an example of a TSN-based distributed embedded
system with the presented model. There are two end-stations that are
connected to one TSN network. More specifically, end-station 1 and
2 are connected via links 𝑙1 and 𝑙2 to switch 1 (𝑆𝑊 1). There are two
transactions in the system, namely 𝛤1 and 𝛤2, as shown in Fig. 8. These
transactions are further elaborated in Fig. 9.

According to the example in Fig. 8, 𝛤1 is a transaction that is within
a single end-station (2) and only includes tasks from 2. Hence, 2 is
both initiator and terminator end-station of 𝛤1. As shown in Fig. 9,
transaction 𝛤1 initiates and terminates inside the end-station 1. On
the other hand, transaction 𝛤2 is distributed over two end-stations. 𝛤2
initiates from 1 and terminates in 2. The message 𝑚2,1 travels from
link 𝑙1 and 𝑙2 between the transaction initiator and terminator. It should
be noted that, the transaction model does not consider forking and
joining of tasks in a transaction.

4.4.1. Trigger modes
According to [51], the assumptions on the activation times of the

tasks and messages in a distributed transaction affect the delays of the
transaction. In this paper, we assume that each entity in a transaction,
regardless of being a task or message, can be triggered in two modes,
8

Fig. 8. Example of a distributed vehicular embedded system based on TSN.

i.e. ‘‘𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡’’ or ‘‘𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡’’. The trigger mode is selected by the
parameter 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑀𝑜𝑑𝑒, as shown in Eq. (11).

𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑀𝑜𝑑𝑒 ∶= {𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡, 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡} (11)

A task can be independently triggered by an event source, e.g., a
periodic clock. Additionally, a task can be triggered based on (i) an
activation signal from a predecessor task, (ii) receiving data from a
predecessor task, or (iii) a combination of both.

4.4.2. Message activation time
If the message is ST, it is triggered independently. This means that

the message is triggered based on static offsets defined for it at each of
the links specified in its route to the destination end-station. In case of
the dependent trigger mode, the message is triggered at the end of the
execution of its sender task. For example, the message assigned to non-
ST classes in TSN networks (AVB or BE) can use the link as soon as the
message’s sender task completes its execution as well as the bandwidth
on the link is available, and there are no higher priority messages that
need to be transmitted.

4.4.3. Receiver task’s activation time
Activation time of the message receiving task can be calculated

based on different assumptions. For instance, if the sender and receiver
end-stations are synchronized, the first instances of their tasks are
assumed to be activated simultaneously. In such a case, the receiver
task polls for the TSN network to read data from the messages. Accord-
ingly, the activation time of the receiving task within a synchronized
network is calculated by the generic equation in Eq. (6). Where each
instance 𝑛 of the task within the receiving end-station is released
periodically (𝑇𝑖𝑗𝑘) and can have offset specified by the parameter 𝑂𝑖𝑗𝑘.
In the non-synchronized network, the existing analysis assumes that the
receiver task gets read access as soon as a message is available on the
network. Hence, the activation time of the message receiving task is
represented by Eq. (12).

𝛼𝑖𝑗𝑘(𝑛) = 𝑛 ∗ 𝑇𝑖𝑗𝑘 + 𝑂𝑖𝑗𝑘 + 𝑅𝑗𝑘 (12)

4.4.4. Transaction constraints
A timing constraint on transaction, denoted by 𝐶𝑟𝑗 , defines the max-

imum allowed value of the delays, such as data age (𝐴𝑔𝑒𝑗) and reaction
time (𝑅𝑒𝑎𝑐𝑗). Moreover, a deadline constraint (𝐷𝑗) can be specified on a
transaction. Deadline constraint corresponds to the end-to-end response
time, i.e., response time of the transaction from its input to its output.
These constraints are shown in Eq. (13) for transaction 𝛤𝑗 :

𝐶𝑟 ∶= {𝐴𝑔𝑒 ,𝑅𝑒𝑎𝑐 ,𝐷 } (13)
𝑗 𝑗 𝑗 𝑗
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Fig. 9. Example of transactions.
5. End-to-end data-propagation delay analysis

This section presents the end-to-end data propagation delays anal-
ysis of task chains that are distributed over TSN network. The analysis
is based on the existing analysis [5,7] that considers legacy networks
like CAN. The end-to-end data propagation delay analysis requires com-
putation of all relevant data-paths (also called reachable timed-paths)
within the distributed task chains. In TSN unlike CAN, different traffic
classes are to be analyzed in the same network, which would require
incorporating synchronized and non-synchronized end-stations. The
data-path computation algorithm in the existing end-to-end data propa-
gation delay analysis [5,7] only support non-synchronized end-stations.
In this section, we propose an extended algorithm for TSN networks
which covers all the TSN traffic characteristics while supporting both
synchronized and non-synchronized end-stations.

5.1. Reachable timed-paths

The order of read and write by each instance of the tasks from the
input to the output of the transaction is represented by a set of timed-
paths. These timed-paths track the propagation of data from the input
to the output of the transaction. Therefore, each transaction can have
a set of timed-paths. A timed-path belonging to the transaction 𝛤𝑗 is
denoted by 𝑡𝑝𝑖𝑗 , where 𝑖 is the ID of the timed-path. A valid timed-
path between a writer and reader task instance (the term ’’instance’’
is equivalent to the term ’’task job’’) is selected according to a set
of conditions as presented in [5]. In the following paragraphs of this
section, we briefly explain the Boolean functions for checking the
reachability of the timed-paths as presented in [5].

The first condition in identifying a valid timed-path checks whether
the reader task (say 𝜏𝑑𝑏𝑒) is activated after the activation of the current
instance of the writer task (say 𝜏𝑎𝑏𝑐). Violating this condition is also
known as activation time-travel (𝑎𝑡𝑡()), therefore Eq. (14) defines this
condition in negated form. Because, the activation time-travel should
not happen in valid timed-paths. Note that 𝛼(𝑤) shows the activation
time of the 𝑤th instance of the task computed according to Eq. (6).

𝑎𝑡𝑡(𝜏𝑎𝑏𝑐 (𝑤) ⟶ 𝜏𝑑𝑏𝑒(𝑟)) = 𝛼𝑑𝑏𝑒(𝑟) < 𝛼𝑎𝑏𝑐 (𝑤) (14)

Eq. (14) is true in case the activation time-travel happens between
the writer and reader tasks. Otherwise, for valid timed-paths it is
desirable when the condition in Eq. (14) is false.

Moreover, the completion of the writer and reader tasks should not
overlap in a valid timed-path. Therefore, the next reachability condition
checks whether the activation time of the reader task is after the
completion of the current instance of the writer task (according to 𝑅𝑎𝑏𝑐 ,
the worst-case response time of the writer task, referring to the system
model presented in Section 4). Violating this condition is also known as
critical condition and is represented by the critical function (𝑐𝑟𝑖𝑡()), as
shown in Eq. (15). 𝑐𝑟𝑖𝑡() function returns true if the reader task 𝜏𝑎𝑏𝑐 is
activated before the writer task is completed. In such a case, the reader
task misses the data from the writer task. Otherwise, the function in
Eq. (15) returns false, which is desirable for valid timed-paths.

𝑐𝑟𝑖𝑡(𝜏𝑎𝑏𝑐 (𝑤) ⟶ 𝜏𝑑𝑏𝑒(𝑟)) = 𝛼𝑑𝑏𝑒(𝑟) < 𝛼𝑎𝑏𝑐 (𝑤) + 𝑅𝑎𝑏𝑐 (15)
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The instance number of each instance of writer and reader tasks
are indicated in Figs. 10(a) and 10(b). Fig. 10(a) shows an example of
the case where the reader task is activated just after the writer task is
completed. In this case, we have a reachable timed-path from the first
instance of the writer task to the first instance of the reader task. Note
that the timed-path from the second instance of the writer task to the
reader task’s first instance is not reachable, and it will be excluded by
Eqs. (14) and (15).

Moreover, the reader and writer task instances can only overlap
when they are activated at the same time in the same single-core end-
station. In such a case, the reader task does not miss the writer task’s
data, if the priority of the reader task (𝑃𝑑𝑏𝑒) is lower than the priority of
the writer task (𝑃𝑎𝑏𝑐) as shown in Eq. (16). If the reader task executes
before the writer task, then the reader task needs to wait until its next
period activation in order to read the fresh data from the writer task.
This is taken into account according to the wait function (𝑤𝑎𝑖𝑡()) in
Eq. (16), where 𝑃 indicates the priority of the task according to the
system model in Section 4.1.

𝑤𝑎𝑖𝑡(𝜏𝑎𝑏𝑐 (𝑤) ⟶ 𝜏𝑑𝑏𝑒(𝑟)) = 𝑃𝑑𝑏𝑒 < 𝑃𝑎𝑏𝑐 (16)

Fig. 10(b) shows an example of a timed-path between two tasks inside
an end-station. If both writer and the reader tasks are activated at the
same time, there is a reachable timed-path between the writer and the
reader task, provided that the writer task has executed before the reader
task.

Accordingly, if the writer and reader task instances are from two
different end-stations, the reachability of the timed-path through the
network is obtained referring the worst-case response time of the
message communicated between the writer and reader tasks, and the
activation time of the writer task instance, as shown in Fig. 11. For
instance, if there is a writer task 𝜏𝑤 and a reader task 𝜏𝑟 which
communicate by a message 𝑀𝑠𝑔, there are three different timed-paths
as shown in Fig. 11. However, only one of those timed-paths is a
reachable timed-path from the input to the output of the transaction.

The forward reachability of two tasks in the timed-path, according
to the aforementioned functions (𝑎𝑡𝑡(), 𝑐𝑟𝑖𝑡() and 𝑤𝑎𝑖𝑡()), is examined
based on the forward reachability function 𝑓𝑜𝑟𝑤() as presented in
Eq. (17).

𝑓𝑜𝑟𝑤(𝜏𝑎𝑏𝑐 (𝑤) ⟶ 𝜏𝑑𝑏𝑒(𝑟)) =
¬𝑎𝑡𝑡(𝜏𝑎𝑏𝑐(𝑤) ⟶ 𝜏𝑑𝑏𝑒(𝑟))∧
(¬𝑐𝑟𝑖𝑡(𝜏𝑎𝑏𝑐(𝑤) ⟶ 𝜏𝑑𝑏𝑒(𝑟)) ∨𝑤𝑎𝑖𝑡(𝜏𝑎𝑏𝑐 (𝑤) ⟶ 𝜏𝑑𝑏𝑒(𝑟)))

(17)

Further, it is important to note that Eq. (17) does not cover all
the cases to check the reachability of the timed-paths, because it can
happen that two instances of a writer task reach to an instance of a
reader task, e.g., when the period of the writer task is shorter than the
reader task. In this case, the data that is accessible to the reader task
will be overwritten by subsequent writer task instances. We make sure
that only the last writer task instance reaches the reader task instance,
i.e., there is no next writer task instance that reaches this reader task
instance. This can be detected when the function in Eq. (18) returns
true, where 𝜏𝑎𝑏𝑐 (𝑤+1) represents the next instance of the task instance
𝜏𝑎𝑏𝑐 (𝑤).

𝑟𝑒𝑎𝑐ℎ(𝜏𝑎𝑏𝑐(𝑤) ⟶ 𝜏𝑑𝑏𝑒(𝑟)) = 𝑓𝑜𝑟𝑤(𝜏𝑎𝑏𝑐 (𝑤) ⟶ 𝜏𝑑𝑏𝑒(𝑟)) (18)

∧¬𝑓𝑜𝑟𝑤(𝜏𝑎𝑏𝑐(𝑤 + 1) ⟶ 𝜏𝑑𝑏𝑒(𝑟))
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Fig. 10. Reachability conditions for tasks in the same end-station.
Fig. 11. Timed-paths.

After checking the reachability between two task instances, we
check for the whole timed-path by evaluating every two consecutive
task instances in the timed-path from the first task until the last task.
We show this by Eq. (19) where a timed-path 𝑡𝑝𝑖𝑗 belongs to the
transaction 𝛤𝑗 . For simplicity of the equation, two consecutive task
instances in the timed-path are shown by 𝜏𝑤 and 𝜏𝑟.

𝑟𝑒𝑎𝑐ℎ(𝑡𝑝𝑖𝑗 ) =
∏

𝑟𝑒𝑎𝑐ℎ(𝜏𝑤 ⟶ 𝜏𝑟) (19)

We finally evaluate all possible timed-paths in the transaction 𝛤𝑗 to
obtain all reachable (valid) timed-paths in a set 𝑇𝑃 𝑟𝑒𝑎𝑐ℎ

𝑗 , according to
Eq. (20) assuming that there are 𝑧 timed-paths in the transaction.

𝑇𝑃 𝑟𝑒𝑎𝑐ℎ
𝑗 = {𝑟𝑒𝑎𝑐ℎ(𝑡𝑝𝑖𝑗 ); 𝑖 = 1..𝑧} (20)

5.2. Accounting for the ST messages

Each ST message has a deterministic schedule at each link within
its route from the sender (writer) task to the receiver (reader) task. The
activation time of an ST message on its last link (the time it is available
to the reader task instance) is not directly dependent on the response
time of the sender task or the response time of the message itself on
the previous links. Although, some parameters such as the response
time of the sender task, the transmission time of the ST message per
link and/or other optimization objectives can be accounted for when
defining the offset of the ST message per link. This is opposed to the
case of a non-ST message, where the activation time of the message on
the last link between the sender and receiver tasks is dependent upon
both the response time of the sender task and its own response time on
the previous links. Whereas, the ST messages are isolated by the time
slots, which are configured offline on each link in their route to the
receiver tasks.

ST offsets at the subsequent links in the route of the message are
defined in a way to satisfy a set of scheduling constraints as presented
in our previous work [52]. The scheduling constraints differ from the
timing constraints which were mentioned earlier in this paper. The
scheduling constraints are a set of logical rules set on the message’s
set of offsets per link to find satisfiable values of offsets which lead to
a feasible offline schedule. The TSN schedules are configured offline,
and before performing the data propagation delay analysis.
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The most important set of scheduling constraint are as follows:
(1) constraint on the frame size; (2) constraint on overlapping of
messages on a link; (3) constraint on the order of traversed links; and
(4) constraint on deadline satisfaction. Firstly, the constraint on the
frame ensures that the value of the offset on one link does not force
the arrival of the message after its next period activation. Secondly,
the overlapping constraint checks whether the offset of two different
messages on the same link will not cause overlapping time slots for
these two messages. Thirdly, the order of the offset for the same
message on subsequent links must consider the propagation of the
message from the source end-station’s link to the sink end-station’s
link (avoiding time-travel). Fourthly, the offsets per links in the route
of the message must enforce the message to arrive to the destination
end-station before the message’s deadline (implicitly the next period
activation of the sending task).

According to the feasible TSN schedule, the reachability of an in-
stance of an ST message to the instances of the reader task is determined
considering the offsets per link along the route of the message. In this
case, the existing constraint to find reachable timed-path requires to
trace through all the hops in the route of the ST message and take into
account the activation times of the ST message per link.

An example of a transaction is shown in Fig. 12, in which the ST
class is utilized for the communication between two end-stations. The
two end-stations are connected via the links 𝑙1 and 𝑙2, therefore the
instance of the ST message at link 𝑙1 is scheduled by the offset 𝑂𝑙1

1,1 and
it is notated by 𝑚𝑙1

1,1. Likewise, the instance of the ST message on the link
𝑙2 is indicated by the notation 𝑚𝑙2

1,1 and its offset on the link is defined by
𝑂𝑙2
1,1. Moreover, the reachable timed-paths in the transaction (𝛤1) shown

in this example are subsequently, 𝑡𝑝11, 𝑡𝑝
2
1, 𝑡𝑝

3
1 and 𝑡𝑝41. For instance, 𝑡𝑝11

starts with the first instances of the first task (𝜏1,1,1) and the second task
(𝜏1,1,2) of the source end-station. Then the message uses the bandwidth
of the links in its path according to its offset at each of the links.

As it can be seen in Fig. 12, the analysis has to be extended to
support multiple activations of the message on several links as the ST
messages have deterministic activation times per link. In the following,
we show that in the end-to-end data propagation delay analysis of the
ST messages, we can omit the activation times of the links in the path of
the message except for the last link. This reduction in the timed-path
significantly decreases the number of timed-paths to evaluate and in
turn reduces the computation time of the analysis. We show this with
the following lemma.

Lemma 1. It is enough to consider the activation time of an ST message
on its last link between its sender and receiver end-stations when extracting
the reachable timed-paths through the TSN network.

Proof. Response-time analysis for ST traffic is not required as the ST
traffic is scheduled offline. Feasible TSN schedules for ST class guaran-
tee by construction the schedulability of the ST traffic. In addition, a
feasible TSN schedule ensures that during the transmission of the ST
message until its arrival to the destination end-station, there will be
no new activation of the subsequent instances of the ST message. The

activations and arrivals of ST frames within the network are known
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Fig. 12. Timed-path with ST messages.
Fig. 13. Modeling the ST message at the last hop.
prior to the end-to-end analysis, thus there is always a deterministic
reachable timed-path for an ST message over several links, which is
already calculated and is configured offline, at the time of scheduling
the ST traffic. Because the reachability of this deterministic path is
already approved with the offline scheduling algorithm, it is only
required to check the reachability of this path to the receiver node.
Therefore, it is enough to consider the activation of the ST message on
the last link (the end of the network’s reachable path) when extracting
the reachable timed-paths.

Based on Lemma 1 in case of the scenario depicted in Fig. 12, the
message at its last hop (𝑚𝑙2

1,1) is enough to consider in the identification
of reachable timed-paths for the end-to-end data propagation delay
analysis, which is shown in Fig. 13. Hence, the existing analysis needs
to be extended in order to support the TSN classes.

According to Lemma 1, only considering the ST message activation
on its last link is sufficient for deriving the timed-path. However to
consider the ST message on the last link, we propose to model the
whole path of the ST message as a separate task which simplifies the
incorporation of the ST message in the existing analysis. Eq. (21) shows
the model of such a task. We regard this task as the network task
and denote it by 𝜏𝑁𝑒𝑡,𝑗 . This task corresponds to the message 𝑚𝑟

𝑗𝑘. The
parameter 𝑟 is the ID of the link delivering the message to the receiving
11
end-station (last hop). Therefore, each ST message is modeled with a
𝜏𝑁𝑒𝑡,𝑗 task.

𝜏𝑁𝑒𝑡,𝑗 ∶=
⟨

𝑃𝑁𝑒𝑡,𝑗 = 𝑃𝑗𝑘, 𝐶𝑁𝑒𝑡,𝑗 = 𝑇𝑇 (𝑆𝑖𝑧𝑒𝑗𝑘), 𝑇𝑁𝑒𝑡,𝑗 = 𝑇𝑗𝑘, 𝐽𝑁𝑒𝑡,𝑗 = 𝐽𝑗𝑘, 𝑂𝑁𝑒𝑡,𝑗 = 𝑂𝑟
𝑗𝑘

⟩

(21)

where, 𝑇𝑇 () calculates the transmission time of the message based on
the size of the message and the network speed (𝑠). 𝑇𝑇 () is calculated
by ((𝑆𝑖𝑧𝑒𝑗𝑘 +𝑂𝐻) ∗ 8)∕(𝑠). Where, 𝑂𝐻 is the TSN frame’s overhead in
Bytes.

Modeling of the ST message with a task allows us to use Eq. (20) to
evaluate the reachability of timed-paths corresponding to a transaction,
where 𝜏𝑁𝑒𝑡,𝑗 can be a reader or writer task in the transaction 𝑗, while
its activation time is computed according to Eq. (10).

5.3. Accounting for the non-ST messages

A non-ST message is assumed to be scheduled for transmission as
soon as the sender task completes its execution. The arrival time of
the message instance to the reader task instance is calculated based
on the activation time and the period of the writer task instance and
the response time of the message. As depicted in Fig. 14, the non-ST
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Fig. 14. Timed-path with non-ST messages.
Fig. 15. Vehicular application use case.
message 𝑚1,1 has no offset in the set of two links in its route to the
reader task, namely 𝜏2,1,1. As a result, the activation time of the message
is assumed to be the same as its predecessor writer task. In Fig. 14, each
instance of 𝑚1,1 is not transmitted immediately after the completion
of the sender task 𝜏1,1,2 because we assume the message received
interference from other higher priority messages (and/or it was blocked
by the lower priority messages). By knowing the worst-case response
time of the message (𝑅1,1) the reachable instance of the reader task can
be determined. For example, consider 𝑡𝑝11 and 𝑡𝑝21 in Fig. 14. In these
timed-paths, the first instance of the message is reachable to the third
and fourth instance of the reader task. Therefore, Eq. (17) is used to
evaluate the reachability of timed-paths in a transaction.

5.4. Calculation of worst-case data age and reaction time delays

The data age and reaction time delays are derived based on timed-
paths (introduced in Section 5.1). In this section, we further explain
the calculation of the worst-case data age and reaction time delays
according to [5]. The data age delay for a timed-path 𝑡𝑝𝑛𝑗 belonging
to the transaction 𝛤𝑗 is calculated by Eq. (22), which calculates the
time difference between the input data and the last sample of the
corresponding output data.

𝛥𝑎𝑔𝑒(𝑡𝑝𝑛𝑗 ) = 𝛼𝑙𝑎𝑠𝑡(𝑡𝑝𝑛𝑗 ) + 𝑅𝑇𝑙𝑎𝑠𝑡(𝑡𝑝𝑛𝑗 ) − 𝛼𝑓𝑖𝑟𝑠𝑡(𝑡𝑝𝑛𝑗 ) (22)

where, 𝛼𝑓𝑖𝑟𝑠𝑡() returns the activation time of the task instance that is the
first task receiving the fresh input data. This task is an instance of the
transaction’s initiator task inside the initiator end-station. Also, 𝛼 ()
12

𝑙𝑎𝑠𝑡
and 𝑅𝑇𝑙𝑎𝑠𝑡() return the activation time and the worst-case response time
of the instance of the terminator task from the terminator end-station,
after which the data is overwritten.

The reaction time delay is calculated by Eq. (23), where 𝑃𝑟𝑒𝑑()
represents the first instance of the timed-path before the timed-path
under analysis 𝑡𝑝𝑛𝑗 . Note that the effect of just missing an event at the
input of the task chain is covered by 𝑃𝑟𝑒𝑑().

𝛥𝑟𝑒𝑎𝑐 (𝑡𝑝𝑛𝑗 ) = 𝛼𝑙𝑎𝑠𝑡(𝑡𝑝𝑛𝑗 ) + 𝑅𝑇𝑙𝑎𝑠𝑡(𝑡𝑝𝑛𝑗 ) − 𝛼𝑓𝑖𝑟𝑠𝑡(𝑃𝑟𝑒𝑑(𝑡𝑝𝑛𝑗 )) (23)

The data age and reaction time delays for all timed-paths for every
transaction should be extracted and the longest corresponding val-
ues represent the worst-case data age and reaction delays, which are
calculated according to Eq. (24).

𝛥𝑎𝑔𝑒(𝛤𝑗 ) = {𝑚𝑎𝑥(𝛥𝑎𝑔𝑒(𝑡𝑝𝑛𝑗 )); 𝑛 = 1...𝑧}

𝛥𝑟𝑒𝑎𝑐 (𝛤𝑗 ) = {𝑚𝑎𝑥(𝛥𝑟𝑒𝑎𝑐 (𝑡𝑝𝑛𝑗 )); 𝑛 = 1...𝑧}
(24)

The instances of the task set in a periodic system repeat in a given
bounded pattern specified by the LCM of the periods of the tasks in the
task set. Moreover, to find the worst-case data age and reaction time
delays, it is sufficient to enumerate and compare all timed-paths within
a finite bound of twice the hyperperiod (LCM of all the involved periods
in the transaction) [5].

It is conventionally desired that the data age and reaction time de-
lays are less than or equal to their corresponding constraints according

to Eq. (25).
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Fig. 16. Evaluation settings (chains of tasks).
𝛥𝑎𝑔𝑒(𝛤𝑗 ) <= 𝐴𝑔𝑒𝑗
𝛥𝑟𝑒𝑎𝑐 (𝛤𝑗 ) <= 𝑅𝑒𝑎𝑐𝑗

(25)

After the analysis the values of the data age and reaction time
delays can be examined to check if they satisfy the specific needs
of the targeted system according to the user-defined end-to-end tim-
ing constraints, i.e., based on different criteria as explained in the
works [16,48].

6. Vehicular application case study

In this section, we discuss a vehicular industrial use case that
is used to evaluate the presented end-to-end data propagation delay
analysis. The use case consists of 14 end-stations that are connected by
a two-switch TSN network as illustrated in Fig. 15. Each end-station
is assumed to include multiple tasks. Fig. 15 is inspired by a use case
developed in [53] and the traffic is specified accordingly. We imple-
mented the proposed analysis as an in-house tool. The configuration
and message set in the use case were given as input to the implemented
analysis (see Fig. 15).
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6.1. Experimental setup

We perform the extended as well as the existing end-to-end data
propagation delay analysis of the use case in Fig. 15. The evaluation
of the analyses is performed under different traffic scenarios given to
the use case. In this experiment, we assume there are 14 transactions
starting from end-stations 1 to 7 that use different TSN traffic classes
to communicate with three sink end-stations with the IDs 8 to 10.
Table 1 shows the transaction settings. Moreover, Fig. 16 illustrates the
relation between the elements of the transactions shown in Table 1.
Note that in Fig. 16, we do not show registers between any two
messages within a node or two end-stations for the sake of enhancing
readability of the figure. Each transaction initiates and terminates by a
task within different end-stations. Each transaction includes four tasks
in total. Besides, each transaction includes two tasks per end-station
which constitute the chain. In the source end-station, the first task is
a computation task and the subsequent task is a communication task,
which receives data input from the predecessor task, then prepares and
injects messages to the network. In the destination end-station of these
transactions, the first task is a communication task that receives and
processes the message from the network. The communication task sends
the message for further processing to the last task in the transaction.
The periods of the tasks are chosen based on the automotive data set
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Table 1
Evaluation settings for the use case based on distributed chains.
𝛤𝑗 𝑖 Source tasks (𝜏𝑖𝑗𝑘): Message (𝑚𝑗𝑘): 𝑖 Destination tasks (𝜏𝑖𝑗𝑘):

[id, 𝑃𝑖𝑗𝑘, 𝐶𝑖𝑗𝑘, 𝑇𝑖𝑗𝑘] [id, 𝑃𝑗𝑘, 𝑆𝑖𝑧𝑒𝑗𝑘, 𝑇𝑗𝑘, 𝑟
𝑗𝑘] [id, 𝑃𝑖𝑗𝑘, 𝐶𝑖𝑗𝑘, 𝑇𝑖𝑗𝑘]

Computation Communication Communication Computation

1 1 [𝜏1,1,1,4,0.5,20] [𝜏1,1,2,3,0.5,20] [𝑚1,1, ST,1500,20,1.039] 8 [𝜏8,1,1,10,0.5,10] [𝜏8,1,2,9,0.5,10]
2 3 [𝜏3,2,1,4,0.5,20] [𝜏3,2,2,3,0.5,20] [𝑚2,2, ST,1500,20,1.026] 8 [𝜏8,2,3,8,0.5,10] [𝜏8,2,4,7,0.5,10]
3 4 [𝜏4,3,1,4,0.5,10] [𝜏4,3,2,3,0.5,10] [𝑚3,3, ST,1500,10,1.065] 8 [𝜏8,3,5,6,0.5,10] [𝜏8,3,6,5,0.5,10]
4 6 [𝜏6,4,1,4,0.5,10] [𝜏6,4,2,3,0.5,10] [𝑚4,4, ST,1500,10,1.078] 8 [𝜏8,4,7,4,0.5,10] [𝜏8,4,8,3,0.5,10]
5 5 [𝜏5,5,1,2,0.5,10] [𝜏5,5,2,1,0.5,10] [𝑚5,5, ST,1500,10,1.052] 9 [𝜏9,5,1,10,0.5,10] [𝜏9,5,2,9,0.5,10]
6 7 [𝜏7,6,1,6,0.5,10] [𝜏7,6,2,5,0.5,10] [𝑚6,6, A,1500,10,0] 9 [𝜏9,6,3,8,0.5,10] [𝜏9,6,4,7,0.5,10]
7 7 [𝜏7,7,3,4,0.5,10] [𝜏7,7,4,3,0.5,10] [𝑚7,7, A,1500,10,0] 9 [𝜏9,7,5,6,0.5,10] [𝜏9,7,6,5,0.5,10]
8 7 [𝜏7,8,5,2,0.5,10] [𝜏7,8,6,1,0.5,10] [𝑚8,8, A,1500,10,0] 9 [𝜏9,8,7,4,0.5,10] [𝜏9,8,8,3,0.5,10]
9 1 [𝜏1,9,3,2,0.5,20] [𝜏1,9,4,1,0.5,20] [𝑚9,9, B,1500,20,0] 10 [𝜏10,9,1,8,0.5,10] [𝜏10,9,2,7,0.5,10]
10 2 [𝜏2,10,1,4,0.5,20] [𝜏2,10,2,3,0.5,20] [𝑚10,10, B,1500,20,0] 10 [𝜏10,10,3,6,0.5,10] [𝜏10,10,4,5,0.5,10]
11 2 [𝜏2,11,3,2,0.5,20] [𝜏2,11,4,1,0.5,20] [𝑚11,11, B,1500,20,0] 10 [𝜏10,11,5,4,0.5,10] [𝜏10,11,6,3,0.5,10]
12 3 [𝜏3,12,3,2,0.5,20] [𝜏3,12,4,1,0.5,20] [𝑚12,12, BE,1500,20,0] 8 [𝜏8,12,9,2,0.5,10] [𝜏8,12,10,1,0.5,10]
13 4 [𝜏4,13,3,2,0.5,10] [𝜏4,13,4,1,0.5,10] [𝑚13,13, BE,1500,10,0] 10 [𝜏10,13,7,2,0.5,10] [𝜏10,13,8,1,0.5,10]
14 6 [𝜏6,14,3,2,0.5,10] [𝜏6,14,4,1,0.5,10] [𝑚14,14, BE,1500,10,0] 9 [𝜏9,14,9,2,0.5,10] [𝜏9,14,10,1,0.5,10]
Table 2
idleSlope of class A and class B per link.
idleSlope (Mbps) 𝑙1 𝑙2 𝑙7 𝑙10 𝑙15
Class A – – – 0.78 0.78
Class B 0.4 0.4 0.4 – –

Table 3
Timing constraints for all transactions.

Reac𝑗 (ms) Age𝑗 (ms)

Cr𝑗 35 25

in [54], i.e., {1, 2, 5, 10, 20, 50, 100} in milliseconds (ms). The size of all
essages are fixed to 1500 𝐵𝑦𝑡𝑒𝑠 as the maximum payload size and

he worst-case execution time of each task (WCET) is considered to be
.5 ms. The end-stations run their tasks according to the fixed-priority
reemptive scheduling algorithm. In each transaction, we assume that
he priority of a task is higher than the priority of its subsequent task
ithin the same end-station. Because, we want to keep the execution
f two subsequent tasks inside the same end-station in such an order
o avoid creating delay in writing of data. This ensures that each
recedent task (writer task) in the transaction must be executed before
he subsequent task in the chain (reader task) in the case if the two
asks are activated for execution at the same time.

Five out of fourteen transactions use ST traffic class; three transac-
ions use class A; three transactions use class B; and three transactions
se class BE. The CBS mechanism is set according to Table 2, where
he credit for classes A and B are chosen according to the utilization
f these classes on the network links. The overall network speed is set
o 1 𝐺𝑏𝑝𝑠. We set the idle slope (idleSlope) according to the utilization
f the traffic on classes A and B, as shown in Table 2. The transactions
, 7 and 8 use class A on the links 10 and 15, therefore the credit of
he links 𝑙10 and 𝑙15 are set to 0.78. Furthermore, the transactions 9, 10
nd 11 use the class B on the links 1, 2 and 7. Accordingly, the credits
or class B on the links 𝑙1, 𝑙2 and 𝑙7 are set to 0.4. We note that zero
redit means there are no messages from the associated CBS classes on
he link. In Table 2 only the credit for the links utilizing CBS is shown.
inally, the data age and reaction time constraints specified on each
ransaction are depicted in Table 3.

.2. Evaluation of the existing and extended analyses

In this section, we compare the analysis results acquired by per-
orming the existing [5] and the extended end-to-end data propagation
14
Table 4
Response times of the tasks and messages in the transactions (ms).

Trans. (𝛤𝑗 ) 𝑅𝑖𝑗𝑘 of sender 𝑅𝑖𝑗 of message 𝑅𝑖𝑗𝑘 of last task

1 𝑅1,1,2 = 1 𝑅1,1 = 0.025 𝑅8,1,2 = 1
2 𝑅3,2,2 = 1 𝑅2,2 = 0.038 𝑅8,2,4 = 2
3 𝑅4,3,2 = 1 𝑅3,3 = 0.025 𝑅8,3,6 = 3

4 𝑅6,4,2 = 1 𝑅4,4 = 0.038 𝑅8,4,8 = 4
5 𝑅5,5,2 = 1 𝑅5,5 = 0.038 𝑅9,5,2 = 1
6 𝑅7,6,2 = 1 𝑅6,6 = 1.081 𝑅9,6,4 = 2

7 𝑅7,7,4 = 2 𝑅7,7 = 2.081 𝑅9,7,6 = 3

8 𝑅7,8,6 = 3 𝑅8,8 = 3.081 𝑅9,8,8 = 4

9 𝑅1,9,4 = 2 𝑅9,9 = 2.218 𝑅10,9,2 = 1

10 𝑅2,10,2 = 1 𝑅10,10 = 1.262 𝑅10,10,4 = 2

11 𝑅2,11,4 = 2 𝑅11,11 = 2.262 𝑅10,11,6 = 3

12 𝑅3,12,4 = 2 𝑅12,12 = 2.127 𝑅8,12,10 = 5

13 𝑅4,13,4 = 2 𝑅13,13 = 3.150 𝑅10,13,8 = 4

14 𝑅6,14,4 = 2 𝑅14,14 = 2.398 𝑅9,14,10 = 5

delay analyses. Table 4 shows the response times of each message (𝑅𝑖,𝑗)
and its sending task (𝑅𝑖,𝑗,𝑘) separately. Moreover, the response time of
the last task in each transaction is shown in Table 4.

The data age and reaction time delays for each individual transac-
tion depicted in Table 1 are calculated with the existing and extended
end-to-end data-propagation delay analyses. The analyses results are
shown in Table 5.

It can be observed in Table 5 that the reaction time and data age
delays calculated by the extended end-to-end data-propagation delay
analysis are smaller than those calculated by the existing analysis.
For example, the reaction time and data age delays of transaction 𝛤5
calculated with the existing analysis are 22.09 ms and 12.09 ms respec-
tively. Whereas, the reaction time and data age delays of transaction 𝛤5
calculated with the extended analysis are 21 ms and 11 ms respectively.
We note that the existing analysis calculates the reaction time and data
age delays of 𝛤5 with 5.19% and 9.90% over-estimation (pessimism)
compared to the extended analysis. We visually demonstrate the reac-
tion time and data age delays in 𝛤5 with the help of execution traces in
Fig. 17. In 𝛤5, the tasks in the sender end-station (5) and the receiver
end-station (9) are synchronized for using the ST class. The extended
analysis considers synchronization of the nodes in 𝛤5, i.e., each node
sees the same time 0. Fig. 17(a) shows the reachable timed-paths within

twice the hyperperiod (LCM of the periods of all tasks in 𝛤5, which
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Table 5
Calculated reaction time and data age delays for each transaction.

Results with the existing analysis Results with the extended analysis

Trans. (𝛤𝑗 ) Reaction delay (ms) Age delay (ms) Reaction delay (ms) Age delay (ms)

1 32.064 22.064 31 21
2 33.064 23.064 32 22
3 24.09 14.09 23 13
4 25.116 15.116 24 14
5 22.09 12.09 21 11
6 23.081 13.081 22 12
7 25.081 15.081 23 13
8 27.081 17.081 24 14
9 33.218 23.218 31 21
10 33.262 23.262 32 22
11 35.262 25.262 33 23
12 37.127 27.127 35 25
13 27.15 17.15 24 14
14 27.398 17.398 25 15
Table 6
The transaction specifications.
𝛤𝑑 𝑖 Source tasks (𝜏𝑖𝑗𝑘): Message (𝑚𝑗𝑘): 𝑖 Destination tasks (𝜏𝑖𝑗𝑘):

[id, 𝑃𝑖𝑗𝑘, 𝐶𝑖𝑗𝑘, 𝑇𝑖𝑗𝑘] [id, 𝑃𝑗𝑘, 𝑆𝑖𝑧𝑒𝑗𝑘, 𝑇𝑗𝑘, 𝑟
𝑗𝑘] [id, 𝑃𝑖𝑗𝑘, 𝐶𝑖𝑗𝑘, 𝑇𝑖𝑗𝑘]

Task 1 Task 2 Task 3

1 3 [𝜏1,1,1,1,1,50] [𝑚1,1, ST,1500,50,X] 8 [𝜏9,1,1,2,1,Y] [𝜏9,1,2,1,1,Y]
Fig. 17. Demonstration of data age and reaction time delays in 𝛤5 in Table 5 with execution traces.
is 20 ms). On the other hand, the execution trace considered by the
existing analysis is shown in Fig. 17(b).

Similarly, consider another transaction, 𝛤11, in Table 5. The reaction
time and data age delays of transaction 𝛤11 calculated with the existing
analysis are subsequently 35.262 ms and 25.262 ms. Whereas, these
delays calculated with the extended analysis are 33 ms and 23 ms
respectively. Hence, the existing analysis calculates the reaction time
and data age delays of 𝛤11 with 6.85% and 9.83% over-estimation
(pessimism) compared to the extended analysis. The reaction time and
data age delays in 𝛤11 are visually demonstrated with the help of
execution traces in Fig. 18. 𝛤11 uses a class B message. The extended
analysis considers synchronization of the nodes in 𝛤11, i.e., each node
sees the same time 0 as shown in the execution trace in Fig. 18(a).
Whereas, the execution trace considered by the existing analysis is
shown in Fig. 18(b).
15
6.3. Impact of various parameters on the data age and reaction time delays

In this subsection, we demonstrate the impact of various parameters
on the data age and reaction time delays using the extended end-to-
end data propagation delay analysis. The parameters of interest include
the offset of the ST messages, and the periods of the tasks in the
receiver end-stations (i.e., the periods of the message receiving tasks).
The evaluations are carried out in a transaction in the use case shown
in Fig. 15. The transaction’s details are shown in Table 6.

The transaction under analysis starts from CAM1 as the sending
end-station and finishes in AVSink as the receiving end-station. This
transaction uses one task in CAM1 with the fixed period of 50 ms and
the WCET of 1 ms. CAM1 sends an ST message that is routed to AVSink
via three links, namely 𝑙2, 𝑙0 and 𝑙15 according to the topology shown
in Fig. 15. There are two tasks in the AVSink that are engaged in this
transaction, namely 𝜏 and 𝜏 . Each of these tasks has the WCET of
9,1,1 9,1,2
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Fig. 18. Demonstration of data age and reaction time delays in 𝛤11 in Table 5 with execution traces.
Fig. 19. Demonstration of the minimum and maximum values of the offsets on the
last link for the message under analysis.

1 ms. The task 𝜏9,1,1 in AVSink that receives messages from the TSN net-
work has the highest priority. We vary the period of the receiver end-
station’s tasks (AVSink) shown by notation 𝑌 in Table 6. 𝑌 can obtain
values from the range {15, 20, 25, 30, 40, 50, 60, 70, 90, 100, 150, 200, 250}
in milliseconds (ms). Both tasks of AVSink have the same period.

As we consider an ST message in the transaction under analysis,
we can assign any value to its offset between the range of minimum
offset and maximum offset on its last link 𝑚𝑙15

1,1. The variable value of
the offset is denoted by 𝑋 notation in Table 6. The minimum offset of
the message on the last link (𝑚𝑙15

1,1) is equal to the sum of the response
time of the sender task, 𝜏1,1,1 (1 ms), transmission time of the message
on the first link 𝑚𝑙2

1,1 (0.0126 ms) and the transmission time of the
message on the second link 𝑚𝑙0

1,1 (0.0126 ms) as shown in Fig. 19. The
sum of these three terms is equal to 1.0252 ms, which defines the
minimum value of the offset that can be assigned to the message under
analysis on its last link towards the destination end-station. Similarly,
the maximum value of the offset that can be assigned to the message
under analysis on its last link towards the destination end-station is
49.9874 ms, which is equal to the difference between the message’s
period (50 ms) and transmission time of the message on the last link
(0.0126 ms). There are no other TSN messages interfering with the ST
16
message in this transaction. According to the Worst-Case response-Time
Analysis of TSN [31,33,34], the response time of the message (the time
the message is received at the receiver end-station) is 1.025 ms. The
experiments are carried out by calculating and comparing the data age
and reaction time delays, under variations made on the parameters 𝑋
for ST offsets and 𝑌 for the period of the receiver end-station’s tasks
from the settings given in Table 6.

The data age and reaction time delays of the transaction under
analysis are presented in Fig. 20 and Fig. 21 respectively. The hori-
zontal axes in Figs. 20 and 21 show the variations in the receiver task’s
periods. The vertical axis represents the data age delays (in Fig. 20) and
reaction time delays (in Fig. 21). Color-coded line graphs present the
delays calculated based on different offsets assigned to the ST message.

Fig. 20 shows that the data age delay remains constant at 52 ms
with variation in the period of the message receiving task in the
transaction, when the offset of the message is set to the minimum
value of 1.0252 ms. The data age delay increases as the value of the
offset is increased to its maximum value of 49.9874 ms. Similarly,
the reaction time delays calculated for the same transaction by setting
different values of the ST message offset and by varying the period of
the message receiving task within the traction are depicted in Fig. 21.

We note for some specific cases in Fig. 20, where the message
receiving task’s period is a harmonic multiple (50 ms, 100 ms, . . . ) of
the sender task’s period (50 ms) within the transaction, the data age
delay remain constant at 52 ms. Furthermore, any variation in the ST
message’s offset (selected between the minimum and maximum values
of the offset) also does not effect the data age delay in such cases. The
reason for getting the same data age delay in these specific cases is that
the data age delay considers the last input in the timed path which
is not overwritten by the previous inputs [5,7]. We demonstrate this
situation by drawing the execution traces of the transaction in Figs. 22
and 23, where the period of the message receiving task (𝜏9,1,1) is set
to the first two harmonic multiples (50 ms and 100 ms) of the period
of the sender task (𝜏1,1,1, period = 50 ms). Figs. 22(a, c, e) and 23 (a,
c, e) represent the execution traces of the transaction when periods of
the sender task (𝜏1,1,1) and the receiver task (𝜏9,1,1) are set to 50 ms
while different values of the ST message offset are considered. Whereas,
Figs. 22(b, d, f) and 23(b, d, f) represent the execution traces of the
transaction when periods of the sender task (𝜏1,1,1) is set to 50 ms while
the period of the receiver task (𝜏9,1,1) is set to 100 ms while varying the
ST message’s offset.

For instance, the data age delay in Fig. 22(a) is 52 ms. Although the
period of (𝜏9,1,1) is doubled in Fig. 22(b) with respect to its period in
Fig. 22(a), the first instance of the message will be overwritten by the
second instance of the message in Fig. 22(b). Hence, the data provided

by the first instance of 𝜏1,1,1 via the first instance of the message cannot
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Fig. 20. Impact of variations on the message offsets and the receiver task’s period on the data age delay.
Fig. 21. Impact of variations on the message offsets and the receiver task’s period on the reaction time delay.
reach the second instance of 𝜏9,1,1. In fact, the second instance of 𝜏9,1,1
will read the data produced by the second instance of 𝜏1,1,1. Therefore,
the data age delay in Fig. 22(b) is the same as that of the data age delay
in Fig. 22(a). In fact, the data age delay stays the same when higher
harmonic multiples of the period of 𝜏1,1,1 are considered for the period
of 𝜏9,1,1 including 150 ms, 200 ms and 250 ms as shown in Fig. 20.
Furthermore, by varying the values of the ST message’s offsets, the data
path for the age delay remains the same because the message offset
cannot exceed the period of its sender task (𝜏1,1,1) and the period of the
receiver task (𝜏9,1,1) is a harmonic multiple of the period of 𝜏1,1,1.

On the other hand, the reaction time delay is significantly impacted
by the increase in the period of the task that is receiving the message,
as shown in Fig. 21. We note that the reaction time delay is the same
for the periods of 𝜏9,1,1 that are the first two harmonic multiples of
the period of 𝜏1,1,1. However, the reaction delay keeps on increasing
with the increase in the period of 𝜏 that is equal to the subsequent
17

9,1,1
harmonic multiples (150 ms, 200 ms and 250 ms) of the period of 𝜏1,1,1
as shown in Fig. 21.

6.4. Discussions

The end-to-end data propagation delays such as data age and re-
action time delays calculated by the existing timing analysis can be
pessimistic (over-estimated) based on different network implementa-
tions, i.e., when the sender and receiver end-stations are synchronized.
Also, variations in the network configuration such as offset configura-
tion or period of the sender and receiver tasks affect the propagation
of data from the input to the output of the transaction. Hence the end-
to-end data propagation delays may also vary significantly for different
settings. Transactions that utilize ST class need more configuration and
optimization effort due to the need for offline schedules. Though, ST
classes enable flexible adjustment of the end-to-end data-propagation
delays.
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Fig. 22. The effect of offset variations and harmonically set periods on the data age and reaction time delays of the transaction (offsets 1,012 ms, 10 ms and 25 ms).
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Fig. 23. The effect of offset variations and harmonically set periods on the data age and reaction time delays of the transaction (offsets 30 ms, 40 ms and 49.987 ms).
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7. Conclusions and future works

In this paper, we presented a detailed end-to-end timing model
of vehicular distributed embedded systems that utilize TSN for net-
work communication. The end-to-end timing model enables integrating
TSN features with the existing end-to-end data propagation analysis.
The proposed end-to-end timing model features distributed TSN trans-
actions over two or multiple synchronized end-stations with locally
synchronized tasks. Distributed TSN transactions define a chain of
tasks which can communicate within two different end-stations by TSN
messages. TSN classes have different clock synchronization require-
ments, that have not been accounted for in the existing end-to-end
data propagation delay analysis. In this paper, we proposed models and
methods to incorporate all TSN traffic requirements in the end-to-end
data propagation delay analysis.

The proposed end-to-end timing model and analysis were evaluated
on a vehicular use case. We performed a comparative evaluation of the
existing and extended analysis on the base of the use case. Moreover,
the evaluations are in terms of the effects that the transaction periods
and the message offsets can cause on the data age and reaction time
delays.

In summary, we concluded from the results that the non-ST transac-
tions deal with less effective parameters on the data age and reaction
time delays. The data age and reaction time delays of the ST trans-
actions are more flexibly readjusted, though the optimization with
regards to their multiple configurable parameters is complex.

The results of this work additionally indicated some potential future
work directions. Firstly, this work enables analysis-based optimization
of the end-to-end timing delays (active approach). For example, the
scheduling of the tasks within the end-stations could also be included
in order to optimize the end-to-end data propagation delays. Secondly,
system-level optimization of the end-to-end data propagation delays by
co-scheduling of tasks and messages could be considered as extension
of the work presented in this paper. Finally, a potential future work is
to integrate the proposed end-to-end data propagation delay analysis
with model-based software development frameworks for distributed
embedded systems, e.g., Rubus-ICE [12].
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