
Centralised Architecture for the Automatic
Self-Configuration of Industrial Networks

Inés Álvarez∗, Daniel Bujosa∗, Bjarne Johansson†, Mohammad Ashjaei∗, Saad Mubeen∗
∗Mälardalen University, Sweden

†ABB, Västerås, Sweden
∗{ines.alvarez.vadillo, mohammad.ashjaei, daniel.bujosa.mateu, saad.mubeen}@mdu.se

†bjarne.johansson@se.abb.com

Abstract—Novel production paradigms aim at increasing the
efficiency and flexibility of production systems. Nonetheless,
traditional industrial infrastructures lack the mechanisms needed
to support these new paradigms. One of the main limiting
factors is the architecture, which follows the automation pyramid
in which subsystems are divided in layers depending on their
functionalities. This allowed to meet the timing and dependability
requirements of the production subsystems, however at the cost
of limiting the exchange of information required to provide
increased flexibility to the system. For this reason, in this paper
we propose a new industrial architecture with a single network
infrastructure to connect all the devices that conform to the
industrial systems. On top of that, we design an Automatic
Network Configurator to support the automatic configuration of
the system. To assess the feasibility of our design and evaluate its
performance, we implement the first instance of the architecture
capable of supporting changes in the traffic requirements during
run-time, i.e., without stopping or disrupting the system’s opera-
tion. Furthermore, we use the implemented instance to measure
the time required for reconfigurations.

Index Terms—Self-Configuring Networks, Industrial Architec-
ture

I. INTRODUCTION

The emergence of new production paradigms, such as
Industry 4.0 or Smart Factories, comes with the promise of
more efficient, cost-effective, and flexible production systems.
Nonetheless, traditional industrial communication infrastruc-
tures lack adequate mechanisms to support this change in
paradigm. Industrial systems, in particular in the automation
domain, are organized following the automation pyramid struc-
ture in which management (on the top of hierarchy) and pro-
duction (on the bottom of hierarchy) subsystems are divided
into planes, isolated from each other [1], as shown in Fig. 1.
This structure allowed to meet the stringent requirements on
reliability and timing predictability imposed by production
systems, at the cost of low accessibility of data and increased
complexity of network configuration [2].

Consequently, configuration of large industrial networks
becomes unmanageable using the existing configuration tech-
niques in the traditional paradigms [3]. This also limits the

This is a preprint version of a paper accepted in the 28th International
Conference on Emerging Technologies and Factory Automation (ETFA 2023).

flexibility in the production plane. Due to these limitations,
changes and reconfigurations in the current industrial commu-
nication infrastructures are rare and usually done from the top
of the pyramid with human intervention. Furthermore, changes
are mostly deployed offline to avoid undesired effects, which
makes the changes very costly. This hampers with realization
of the industry of the future with existing infrastructures.

To support the new production paradigms, characterized by
flexibility and accessibility of data, there must be a shift in the
way industrial communication infrastructures are designed and
managed [4]. First, the management entities should have easy
access to the information in the production plane, e.g., status
and faults in network components like switches. Second, these
entities should cater for the evolving resource requirements
during the lifecycle of the systems, such as the need for
allocation of new network resources (e.g., bandwidth or redun-
dant switches). Third, the network configuration management
should be automatized, removing human decisions from the
loop to provide faster and more reliable (re)configuration
decisions, leading to automatic self-configuring networks.

In this work, we propose a novel industrial architecture,
in which the network becomes backbone of the system,
enabling the integration of different planes in the automation
pyramid into a single one. With the network at the center of
the industrial infrastructure, its ability to adapt to changes will
dictate the flexibility of the entire system. For this reason, we
also provide the network with adequate mechanisms to adapt
to changes at run-time, providing the timing predictability
and reliability guarantees needed by the operational subsys-
tems, without disrupting the correct operation of the rest
of the system. Finally, we present the first instance of the
proposed architecture which implements a specific monitoring
and reconfiguration mechanism. This allows us to evaluate the
feasibility of the proposed architecture, as well as to have the
first measurement of the performance of the reconfiguration.

The remainder of the paper is organised as follows. Sec-
tion II presents the related work. Section III describes the
proposed architecture and its mechanisms; while Section IV
describe our first instance of the architecture. Section V
explains the experiment carried out and discusses the results,



Fig. 1: Traditional industrial architecture.

while Section V-C highlights the most important aspects of
our contribution. Finally Section VI concludes the paper.

II. RELATED WORK

Contemporary industrial systems are structured following
the automation pyramid, where different networks within the
systems are often isolated from each other. In this structure,
the management plane is separated from the operational plane,
and the flow of information among these planes is limited [5].
This infrastructure limits the flexibility of the system to adapt
to changes in a timely and cost-effective manner. There is
a consensus on how industrial networks can benefit from
the use of centralized solutions to ease their management
(i.e., network monitoring and configuration). These solutions
leverage a centralized entity that has a complete view of
the network, which enables faster and efficient management
of complex networks. This approach has been extensively
used for the management of Information Technologies (IT),
following the so-called Software Defined Networking (SDN)
paradigm, which has proved to be adequate to manage the
complexity of IT networks. For this reason, there is a wide
interest in using SDN-like solutions in industrial communi-
cation networks [3], [6], [7], yet SDN lacks support for the
configuration of real-time traffic [8], [9].

There are several works that address this limitation of
SDN. The works in [10] and [11] explore how to extend
SDN to support Flexible Time-Triggered (FTT) Ethernet, a
protocol that provides Ethernet with real-time guarantees and
online traffic configuration. Nonetheless, FTT-Ethernet has
limited adoption by industry, limiting the applicability of
these solutions. The work in [12] proposes an SDN-based

solution to configure PROFINET. Unfortunately, this solution
does not support configuration of other networks and, thus,
does not support the heterogeneity of industrial networks. An
SDN controller to schedule and configure time-triggered traffic
over Ethernet/IP networks is proposed in [13]. However, this
solution does not support real-time event-triggered traffic.

Some works aim at providing mechanisms to enable self-
configuring networks. The work in [14] discusses the adequacy
of existing topology discovery protocols and the use of Open
Network Operating System (ONOS) to carry out the topology
discovery in legacy networks using SDN. Nonetheless, the
work does not support the configuration of the network. The
work in [15] proposes an SDN-like approach to reduce the fail-
over time in networks after the failure of a network device.
However, this work does not adequately support network
traffic with real-time requirements.

Parallel to this trend, there is a plethora of research on the
use of Time-Sensitive Networking (TSN) standards1 developed
by the IEEE for industrial applications. TSN is a promising
technology to accommodate all the needs of future industrial
networks, which also relies on a centralized architecture to
provide the network with enhanced configuration capabili-
ties [16]. A key element in such architecture is the Centralized
Network Configuration (CNC) element, but its specification
is not covered by the standards. A conceptual framework
to monitor and reconfigure TSN networks using the fully
centralised architecture is proposed in [17]. However, this
work does not provide implementation of the CNC. The work
in [18] presents heuristic approach to configure TSN networks
at run-time, but does not discuss the implementation details of
the CNC.

The works in [19]–[21] propose mechanisms to schedule
time-triggered traffic and deploy the configuration in the net-
work, but do not address the configuration of event-triggered
traffic. Whereas, mechanisms to monitor and configure time-
triggered traffic in TSN networks are proposed in [22], how-
ever, the event-triggered traffic is not supported. In crux,
these works do not support contemporary and next-generation
heterogeneous network technologies.

The state of the art on self-organizing manufacturing sys-
tems (SOMS) is reviewed in [23]. Even though the term was
coined in 1994, a complete solution to support the realization
of the SOMS is still missing. In the last few years, many efforts
have been made in defining standard interfaces to enable
the SOMS. There have also been several works to propose
mechanisms to support self organization of different aspects
of industrial systems, however, there is no complete solution
in this regard.

The review of the state of the art shows that there are
several attempts to address the challenges of (re)configuration
of industrial networks. However, these solutions are limited in
various aspects. First, the existing SDN-based solutions focus

1https://1.ieee802.org/tsn/



only on the configuration of specific protocols, lack support for
heterogeneous networks, and more general solutions cannot
support event-triggered real-time traffic (which is integral
to industrial systems). Second, the CNC-based solutions are
customized for TSN networks with specific tasks and their
implementations are either lacking or not available publicly. In
this work we target to fill the research gap in the configuration
of heterogeneous industrial networks by proposing a complete
network architecture that leverages some of the above men-
tioned techniques [19]–[21] to support the self-configuration of
industrial networks. The proposed architecture allows configu-
ration during run-time while guaranteeing timing predictability
and reliability of the entire heterogeneous network.

III. ARCHITECTURE OVERVIEW

As we have discussed, traditional industrial architectures
divide the infrastructure in planes, as shown in Fig. 1. The
different planes are isolated from each other to meet the
stringent real-time and dependability requirements of the
control and field devices. However, this isolation limits the
flexibility of the system to adapt to changes, which clashes
with novel production paradigms centered in customization
and constant change. To support new production paradigms
we need to propose new architectures capable of meeting the
timing and dependability requirements of control and field
devices, while enabling flexibility to respond to the needs of
the enterprise. Such an architecture resembles the concept of
Industrial Internet of Things (IIoT) development in various
industries [24], while it is not the same as in our proposed
architecture we consider the network to be at the center of
the architecture and in IIoT architecture commonly data is
at the center of design choices. Following, we present the
network-centric architecture and a component that performs
the automatic network configuration.

A. The Network-Centric Approach

We propose to move from a hierarchical architecture to a
network-centric architecture, where the network becomes the
backbone of the industrial infrastructure, as depicted in Fig. 2.
In this way, we ease the exchange of information among the
different entities of the architecture, which is key to manage
the resources in an efficient and flexible manner.

The ability of such a centralized network to dynamically
adapt to changes can be leveraged to support the flexibility
of the entire system. Our vision is to support the network
with novel configuration mechanisms to automatically adapt
to changes at run-time, providing the timing predictability and
reliability guarantees needed by the operational subsystems,
with minimum disruption to the correct operation of the entire
system. We aim at realizing this vision by developing novel
techniques to support the Automatic Network Configurator,
depicted in Fig. 2, which will have the complete view of the
network capabilities and requirements.

Fig. 2: Proposed industrial architecture.

According to the architecture depicted in Fig. 2, the network
is a unified communication channel among various nodes
including the field level devices (e.g., control devices), the
control-level devices, the supervision and monitoring devices,
and the top-level management and enterprise devices. Such an
architecture allows data transparency among different devices
in the factory as well as flexibility of the entire communica-
tion system. Such a unified and converged communication is
envisioned by the recent advancements in IEEE task forces,
i.e., TSN standardization task force2. Although the concept of
network configuration mechanism is not limited to any specific
industrial network technology, for the sake of argumentation
and simplicity we present the network as TSN network.
We also consider a component named Automatic Network
Configurator that is connected to the network. This component
is responsible for monitoring the entire network, decide on
automatic configuration when needed, and to deploy new
configurations. The details of this component will be discussed
in the next section.

Within the above-mentioned context, we envision the TSN
standards to be the underlying network technology of our
proposed industrial architecture. TSN represents a promising
technology to support the integration of the Information Tech-
nologies (IT) and Operation Technologies (OT), by supporting
traffic with different characteristics and requirements to be
transmitted over a single network infrastructure. Furthermore,
TSN proposes the use of a fully centralised network architec-
ture to ease the management of the communications during
run-time, which aligns with our proposed architecture. Even
though the TSN task force does not provide mechanisms to
carry out the reconfiguration of the network in an autonomous
manner, it does provide mechanisms in the bridges that enable
their remote configuration, simplifying the realization of our
architecture.

In addition, to provide interoperability in such a unified
network, we leverage the use of OPC UA which is an IEC stan-
dard that aims at providing better interoperability of industrial

2https://1.ieee802.org/tsn/



systems. Specifically, OPC UA defines data models for data
exchange between a great variety of industrial systems. This
enables interoperability, but also support for easy reconfigu-
ration of the communication. Furthermore, we propose to use
broker-less OPC UA PubSub (Publisher-Subscriber) for time-
sensitive control and field traffic. Together, TSN and OPC UA
PubSub can provide adequate support for the integration of IT
and OT traffic [25] with different timing requirements.

B. The Automatic Network Configurator

As we have discussed, we envision our network-centric
industrial infrastructure to leverage a central element, capable
of reconfiguring the communications during run-time in an
automatic manner. This device, which we call the Automatic
Network Configurator in Fig. 3, has the complete view of the
network status and system requirements. This provides it with
a strategic advantage to support changes in the communica-
tions in an efficient and cost-effective manner.

Fig. 3: Automatic Network Configurator mechanisms.

The Automatic Network Configurator includes the follow-
ing mechanisms, depicted in Fig. 3: (i) automatic network
monitoring, (ii) automatic network configuration and dynamic
reconfiguration, (iii) feasibility and predictability verification
of the configuration, and (iv) configuration deployment. The
Monitoring component is responsible for monitoring and gath-
ering information about the status of the network including
the occurrence of faults, changes in the topology or changes
in the bandwidth utilization, to name a few, and report this
to the second component, Reconfiguration. Then, the Recon-
figuration component utilizes the collected information about
the network status and decides whether any change in the
network is required. These changes include port configuration,
bandwidth allocation to specific traffic services, re-routing of
traffic due to identified faults, or handling new connected
nodes and traffic.

Once a decision has been made by the Reconfiguration
component, the new changes should be validated before they
are deployed. For instance, if a change is decided on the
bandwidth allocation, the consequences of that on the timing
predictability of traffic has to be verified. Moreover, if a new
routing should be imposed, the effects on the latency of traffic
should be evaluated. When the changes are validated using
the Validation component, the new changes will be deployed

by the Deployment component. The main responsibility of
the latter component is to apply the changes on the network
with minimum disruption on the functionality of the network.
Therefore, specific mechanisms are required to perform such
a deployment. Note that this is the overall functionality for
the Automatic Network Configurator which is not defined and
customized for a specific configuration. Obviously, different
mechanisms should be designed and evaluated for every type
of changes that are considered in the network.

In order to show the feasibility and plausibility of the pro-
posed architecture and the Automatic Network Configurator,
in the following sections we describe how we instantiate the
solution for a specific case, and we evaluate its performance.

IV. THE FIRST INSTANCE OF THE ARCHITECTURE

In order to prove the feasibility of our proposal, as well as
to study its adequacy, we have implemented the first instance
of our architecture. The objective of this implementation is
to provide timing guarantees to time-triggered (TT) traffic
transmitted through a TSN network in the presence of changes.
To that, our system monitors the traffic to detect deviations
from the planned schedule and calculates a new schedule to
ensure that the TT traffic meets its deadlines.

As we have discussed, we use TSN as the network technol-
ogy, and the Automatic Network Configurator is implemented
within TSN’s CNC. Specifically, we have extended the CNC
presented in [21] with the mechanisms required to support
the modification of the schedule during run-time. Fig. 4
shows the instance of the Automatic Network Configurator
within the CNC, where gray boxes represent the components
implemented in previous works, while black boxes represent
the components implemented in this work. Furthermore, in the
boxes with dashed lines we can see to which mechanism of
our architecture the modules correspond to.

CNC

NETCONF client [27]

N1 TSN Bridge 2 ... TSN Bridge N

Configuration Agent [21]

HERMES [26]

TSN Bridge 1N2 Nm

User Interface Monitor

Schedule Modifier

...

Deployment

Monitoring

Reconfiguration
& validation

Fig. 4: Instance of the Automatic Network Configurator within
the CNC.

If we focus on the right side of the figure, we see that
the CNC is responsible for creating a valid schedule for the
TT traffic using the HERMES scheduler [26]. This schedule is
sent to the configuration agent [21], which in turn converts it to



the so-called Gate Control Lists (GCLs), which dictates when
the transmission queues of the TSN bridges can transmit the
frames enforcing the schedule. After that, the CNC deploys
the new GCLs in all the involved bridges using the NET-
CONF [27] protocol, which is also responsible for activating
the new configuration in the bridges in a coordinated manner.

If we now focus on the bottom-left part of the figure, we see
the User Interface Monitor (UIM), which receives information
from the nodes about their traffic requirements, and uses such
information to decide whether any changes are required in
the existing schedule. If any changes are required, the UIM
provides the updated information about the traffic requirements
to the Schedule Modifier module, which uses the information
to decide whether a new schedule is required, to calculate a
new schedule when needed and to validate it. We can also see
that the Schedule Modifier uses the schedule calculated by
HERMES as input to recalculate the schedule. We must note
that the changes requested by nodes are related to the timing
needs of the traffic they exchange, e.g., changing the period
of a stream. If these changes are simple enough to not require
rescheduling or rerouting the whole traffic again, the Schedule
modifier produces the new schedule, validates it and forwards
it to the Deployment mechanism. Otherwise, HERMES would
produce a new schedule.

We next describe how we have validated the design of our
architecture, as well as how we have evaluated its performance.

V. EXPERIMENTAL EVALUATION

We have implemented an instance of the proposed architec-
ture to show the feasibility of our design, as well as to measure
its performance. We next describe the setup used, as well as
the experiments carried out and the results acquired.

A. Experimental Setup

We have used the topology shown in Fig. 5, which is formed
by four nodes, labelled in the figure using Ni where i is the
node number, and four bridges, labelled using Bj where j is
the bridge number, connected in a ring topology. We also have
a CNC, connected to the network through a single bridge. Note
that the CNC can communicate with all TSN bridges and the
end nodes using the same network infrastructure used by the
application.

In our implementation, nodes exchange time-triggered (TT)
traffic, and they are implemented using Raspberry Pi, while
Bridges are TSN bridges responsible for enforcing the timing
guarantees of the TT traffic with the help of the CNC.
The CNC is implemented in software and runs in a docker
container over a PC running Windows 11.

In our experiments, we send two different streams, one from
node N1 to N2 and another from N3 to N4. These streams have
a period of 1 second each, and such period is reduced every
100 frames. As we have discussed, nodes are responsible for
communicating the changes in the traffic requirements to the
CNC, so every time the period is reduced, the node indicates

Fig. 5: Topology used in the experimental evaluation.

the new period to the CNC, triggering the reconfiguration
process. We must note that the transmission of the traffic
requirements is done using standard TSN frames with the same
network that is used by the nodes to communicate among
them, e.g., if node N3 needs to send information to the CNC
it does so through bridges B2, B4 and B3.

In our implementation, the transmission of the new traffic
requirements is implemented in software in each node. In
this sense, the monitoring can be considered to be partially
distributed, as it is performed jointly by the CNC and the
nodes. Implementing part of the monitoring as software in the
nodes allows us to monitor the traffic requirements in a cost-
effective manner, as it does not require the addition of extra
hardware in the network nor the end nodes. Furthermore, it
allows using commercial off-the-shelf bridges, reducing the
cost of the network and guaranteeing interoperability.

When the CNC receives information about new traffic
requirements from an end node it uses such information to
decide whether the schedule needs to be modified and, if so, to
modify it adequately. Once the new schedule is calculated, it is
transformed into gate control lists (GCLs), and deployed in the
network using NETCONF messages, encapsulated in Ethernet
frames. In turn, bridges process the NETCONF messages,
change their configuration adequately, and notify the CNC
about the change.

Using the aforementioned setup, we have been able to
successfully reconfigure the traffic exchanged in our network
during run-time. In this way, we have successfully assessed the
feasibility of our designed architecture in supporting changes
in the traffic without interrupting the ongoing communications.
We next evaluate the performance of this first implementation
in terms of the time required to carry out the reconfiguration.



B. Description of the Experiment and Results

We use the topology shown in Figure 5 to measure the
time required to carry out the reconfiguration of the network.
Specifically, we measure the time that elapses since a node
changes the period of a stream until the bridges notify the CNC
that the configuration has been successfully implemented.
Thus, we account for the time required to encapsulate the
information related to the traffic, send the information to the
CNC, process such information, calculate a new configura-
tion, send the new configuration to the bridges, and receive
the confirmation from bridges that the new configuration is
implemented.

We have transmitted a total of 4000 frames, 2000 frames
through each stream. Since the period is modified every 100
frames, we have measured 40 reconfigurations. Figure 6 shows
the times required to reconfigure the network traffic. The
X axis show the configuration time in seconds, divided in
intervals of 0.1 second; the blue Y axis show the number
of experiments that have a configuration time within a certain
interval, while the red Y axis show the probability distribution
of the configuration times.

Fig. 6: Time required to carry out the reconfiguration of the
network traffic.

As we can see, the measured reconfiguration times range
from 0.6 to 1.7 seconds. This can be due to the fact that our
implementation has been done using non-real-time operating
systems. Furthermore, the frames conveying monitoring and
configuration information are treated as best effort traffic with
no specific timing requirements. We must note that the main
objective of this implementation is to prove the adequacy of
the designed architecture to support adaptive systems with
changing traffic requirements during run-time. For this reason,
the implementation has not been optimized to minimize the
reconfiguration time. In any case, we note that in current in-
dustrial systems this type of changes are typically done offline,

and with human intervention, and can take from hours to days
to be realized. Therefore, the results represent a significant
improvement compared to the times required nowadays to
perform changes in the communications in existing industrial
infrastructures.

C. Discussion

In Section III we have designed a new industrial architecture
with the objective of increasing the flexibility of industrial
infrastructures and, in this way, supporting novel production
paradigms. This architecture is characterised by the use of a
single network infrastructure which is managed in an auto-
matic manner by a centralised component called Automatic
Network Configurator. In order to prove the feasibility of
our design and evaluate its adequacy, we have implemented
the first instance of our Automatic Network Configurator,
described in Section IV. This instance implements a single
reconfiguration mechanism, a simplification required to enable
the evaluation of our concept without increasing the complex-
ity of the evaluation. This instance is sufficient to prove the
adequacy of the design, as it encompasses all the mechanisms
envisioned to support the reconfiguration of the network:
monitoring, reconfiguration, validation and deployment.

Furthermore, the results obtained in the experimental eval-
uation prove that the architecture can be used to support the
automatic reconfiguration of the network during run-time. For
this reason, this implementation represents a good base to build
other mechanisms to support the adaptation of the network
due to other reasons, e.g., due to the presence of faults or the
addition of new components in the system.

VI. CONCLUSIONS

Novel industrial paradigms such as Industry 4.0, promise
to bring efficiency and flexibility to the production sys-
tems. Nonetheless, traditional industrial infrastructures cannot
support this change in paradigm. For this reason, we have
presented a new industrial architecture that can increase the
flexibility of the system by putting the network in the core
of the industrial infrastructure. Specifically, we propose to
use a converged network topology to connect all the entities
of our industrial architecture, which eases the exchange of
information, enabling an efficient and flexible management of
resources.

Furthermore, the proposed architecture counts with an Auto-
matic Network Configurator, an element responsible for recon-
figuring the communications during run-time in an automatic
manner. This element implements the mechanisms to manage
the network in a centralised manner, taking advantage of the
complete knowledge of the network status and requirements
to make complex decisions in an efficient manner. We propose
to divide the operation of this element into four mechanisms:
monitoring, reconfiguration, validation and deployment.

In order to prove the feasibility of our design, we have
implemented the first instance of our architecture, which



supports the modification of the traffic requirements during
run-time. Specifically, our instance allows for nodes to request
changes in the traffic they exchange, e.g., the period of a
stream. We use this instance to modify the requirements
of two streams during run-time, and we have measured the
time required to carry out the reconfiguration of the network
when a change is requested. The results obtained allow us
to prove that the designed architecture is adequate to support
the automatic reconfiguration of the network during run-time.
Furthermore, the results also show a significant improvement
in the time required to reconfigure the network when compared
to the current methods to implement changes in industrial
infrastructures, which usually require changes to be done
offline, disrupting the operation of the infrastructure.

ACKNOWLEDGEMENT

This work is supported by the Swedish Governmental
Agency for Innovation Systems (VINNOVA) via the DES-
TINE, PROVIDENT and INTERCONNECT projects and by
the Swedish Knowledge Foundation through the projects
DPAC, HERO and FIESTA. The authors also thank all indus-
trial partners, especially ABB, Arcticus Systems, HIAB and
Volvo Construction Equipment, Sweden for valuable input.

REFERENCES

[1] T. Williams, “A Reference Model for Computer Integrated
Manufacturing from the Viewpoint of Industrial Automation,”
IFAC Proceedings Volumes, vol. 23, no. 8, Part 5, pp. 281–
291, 1990, 11th IFAC World Congress on Automatic Control,
Tallinn, 1990 - Volume 5, Tallinn, Finland. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1474667017517486

[2] S. Vitturi, C. Zunino, and T. Sauter, “Industrial communication systems
and their future challenges: Next-generation ethernet, iiot, and 5g,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 944–961, 2019.

[3] K. Ahmed, J. O. Blech, M. A. Gregory, and H. W. Schmidt, “Software
Defined Networks in Industrial Automation,” Journal of Sensor and
Actuator Networks, vol. 7, no. 3, 2018.

[4] B. Bajic, A. Rikalovic, N. Suzic, and V. Piuri, “Industry 4.0 Implemen-
tation Challenges and Opportunities: A Managerial Perspective,” IEEE
Systems Journal, vol. 15, no. 1, pp. 546–559, 2021.

[5] “Enterprise-Control System Integration - Part 1: Models and Terminol-
ogy.” 2010.

[6] M. Herlich, J. L. Du, F. Schörghofer, and P. Dorfinger, “Proof-of-
concept for a software-defined real-time Ethernet,” in 21st International
Conference on Emerging Technologies and Factory Automation, 2016.

[7] L. Silva, P. Pedreiras, P. Fonseca, and L. Almeida, “On the adequacy of
SDN and TSN for Industry 4.0,” in IEEE 22nd International Symposium
on Real-Time Distributed Computing (ISORC), 2019, pp. 43–51.

[8] D. Henneke, L. Wisniewski, and J. Jasperneite, “Analysis of realizing
a future industrial network by means of Software-Defined Networking
(SDN),” in IEEE World Conference on Factory Communication Systems,
2016, pp. 1–4.

[9] M. Ehrlich, D. Krummacker, C. Fischer, R. Guillaume, S. S.
Perez Olaya, A. Frimpong, H. de Meer, M. Wollschlaeger, H. D.
Schotten, and J. Jasperneite, “Software- Defined Networking as an
Enabler for Future Industrial Network Management,” in 2018 IEEE
23rd International Conference on Emerging Technologies and Factory
Automation (ETFA), vol. 1, 2018, pp. 1109–1112.

[10] C. Ternon, J. Goossens, and J.-M. Dricot, “FTT-OpenFlow, on the Way
towards Real-Time SDN,” SIGBED Rev., vol. 13, no. 4, p. 49–54, nov
2016. [Online]. Available: https://doi.org/10.1145/3015037.3015045

[11] L. Moutinho, P. Pedreiras, and L. Almeida, “A Real-Time Software De-
fined Networking Framework for Next-Generation Industrial Networks,”
IEEE Access, vol. 7, pp. 164 468–164 479, 2019.

[12] K. Ahmed, J. O. Blech, M. A. Gregory, and H. Schmidt, “Software
defined networking for communication and control of cyber-physical
systems,” in 2015 IEEE 21st International Conference on Parallel and
Distributed Systems (ICPADS), 2015, pp. 803–808.

[13] N. G. Nayak, F. Dürr, and K. Rothermel, “Time-Sensitive Software-
Defined Network (TSSDN) for Real-Time Applications,” in Proceedings
of the 24th International Conference on Real-Time Networks and
Systems, ser. RTNS ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 193–202. [Online]. Available:
https://doi.org/10.1145/2997465.2997487

[14] S. K. Panda, M. Majumder, M. Ehrlich, A. Neumann, L. Wisniewski, and
J. Jasperneite, “Topology Detection as a Base for Efficient Management
of Heterogeneous Industrial Network Systems Using Software-Defined
Networking,” in 15th IEEE International Workshop on Factory Commu-
nication Systems, 2019, pp. 1–8.

[15] N. N. Josbert, W. Ping, M. Wei, and Y. Li, “Industrial Networks Driven
by SDN Technology for Dynamic Fast Resilience,” Information, vol. 12,
no. 10, 2021.

[16] “IEEE Standard for Local and Metropolitan Area Networks–Bridges and
Bridged Networks – Amendment 31: Stream Reservation Protocol (SRP)
Enhancements and Performance Improvements,” IEEE Std 802.1Qcc-
2018 (Amendment to IEEE Std 802.1Q-2018 as amended by IEEE Std
802.1Qcp-2018), pp. 1–208, Oct 2018.

[17] M. Gutiérrez, A. Ademaj, W. Steiner, R. Dobrin, and S. Punnekkat,
“Self-Configuration of IEEE 802.1 TSN Networks,” in 22nd IEEE Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA), 2017, pp. 1–8.

[18] M. L. Raagaard, P. Pop, M. Gutiérrez, and W. Steiner, “Runtime
Reconfiguration of Time-Sensitive Networking (TSN) Schedules for Fog
Computing,” in 2017 IEEE Fog World Congress, 2017, pp. 1–6.

[19] T. Gerhard, T. Kobzan, I. Blöcher, and M. Hendel, “Software-defined
Flow Reservation: Configuring IEEE 802.1Q Time-Sensitive Networks
by the Use of Software-Defined Networking,” in 24th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
2019, pp. 216–223.

[20] A. Garbugli, A. Bujari, and P. Bellavista, “End-to-end QoS Manage-
ment in Self-Configuring TSN Networks,” in 17th IEEE International
Conference on Factory Communication Systems, 2021, pp. 131–134.

[21] I. Álvarez, A. Servera, J. Proenza, M. Ashjaei, and S. Mubeen, “Imple-
menting a First CNC for Scheduling and Configuring TSN Networks,”
in IEEE 27th International Conference on Emerging Technologies and
Factory Automation (ETFA), 2022, pp. 1–4.

[22] N. S. Bülbül, D. Ergenç, and M. Fischer, “SDN-based Self-Configuration
for Time-Sensitive IoT Networks,” in 2021 IEEE 46th Conference on
Local Computer Networks (LCN), 2021, pp. 73–80.

[23] Z. Qin and Y. Lu, “Self-organizing manufacturing network: A paradigm
towards smart manufacturing in mass personalization,” Journal of
Manufacturing Systems, vol. 60, pp. 35–47, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0278612521000960

[24] B. Craggs, A. Rashid, C. Hankin, R. Antrobus, O. Şerban, and
N. Thapen, “A reference architecture for iiot and industrial control
systems testbeds,” in Living in the Internet of Things, 2019, pp. 1–8.

[25] P. Denzler, M. Ashjaei, T. Frühwirth, V. N. Ebirim, and W. Kastner,
“Concurrent OPC UA information model access, enabling real-time OPC
UA PubSub,” in 2022 IEEE 27th International Conference on Emerging
Technologies and Factory Automation (ETFA), 2022, pp. 1–4.

[26] D. Bujosa, M. Ashjaei, A. Papadopoulos, T. Nolte, and J. Proenza,
“HERMES: Heuristic Multi-queue Scheduler for TSN Time-Triggered
Traffic with Zero Reception Jitter Capabilities,” in The 30th
International Conference on Real-Time Networks and Systems, June
2022. [Online]. Available: http://www.es.mdh.se/publications/6446-

[27] R. Enns, M. Björklund, J. Schönwälder, and A. Bierman, “Network
Configuration Protocol (NETCONF),” RFC 6241, June 2011.


