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Abstract—In this work, we explore how we can assist engineers
in managing, in a lightweight way, both consistency and design
uncertainty during the creation and maintenance of models and
other development artifacts. We propose annotating degrees of
doubt to indicate design uncertainties on elements of development
artifacts. To combine multiple opinions, we use the fusion
operators of subjective logic. We show how these annotations
can be used to identify, prioritize, and resolve uncertainty
and inconsistency. To do so, we identify the types of design
uncertainty and inconsistency to be addressed in two concrete
industrial settings and show a prototype implementation of our
approach to calculating the uncertainty and inconsistency in
these cases. We show how making design uncertainty explicit
could be used to tolerate inconsistencies with high uncertainty,
prioritize inconsistencies with low associated uncertainty, and
uncover previously hidden potential inconsistencies.

Index Terms—Uncertainty, Consistency management, Model-
Based Development.

I. INTRODUCTION

We see a major challenge of model-based engineering in
the management of inconsistencies that occur between models
and other artifacts that are iteratively created during the devel-
opment process. It is well known that inconsistencies between
related artifacts must often be tolerated so as not to inhibit
engineers in their work [1]. However, there is a moment when
certain inconsistencies can no longer be tolerated and must
be resolved before continuing with the development process.
When is the right time to decide whether to continue to tolerate
an inconsistency or to resolve it? The answer to this question
is not obvious and often involves a high degree of doubt.

In addition to inconsistency, uncertainty is another unavoid-
able aspect in the development of model-based engineering of
software-intensive systems. Uncertainty can be due to different
factors, such as imperfect, incorrect, incomplete, or vague
requirements; lack of complete knowledge about the system
or its environment; distinct, even conflicting, interpretations
of the same evidence by separate parties; unforeseen changes
in the specifications; or the inability to determine whether
particular design decisions are better than others [2], [3].

In this paper, we consider the connection between un-
certainty and inconsistency, and how epistemic design-time
uncertainty (see Section II.A) might be an input to help
prioritize detected inconsistencies. Our starting assumption is
that more uncertainty in elements implies a lower priority to

resolve an inconsistency, and conversely, more certainty about
inconsistent elements implies a higher priority for resolving
the inconsistency. The rationale for this assumption is that we
deem it less likely for uncertain elements to be the basis of
further development before the uncertainty is resolved. Con-
versely, we foresee that elements without uncertainty are more
likely to be the built further on, and therefore inconsistency
in these elements may propagate through the system sooner.

Let us then formulate the research questions that we answer
by studying two industrial model-based development settings:

RQ1: What kinds of uncertainty and inconsistency are in-
volved in these two case studies?

RQ2: How can we allow engineers to explicitly represent
uncertainty in their models?

RQ3: How do we combine multiple expressions of uncertainty
across multiple development artifacts (and how do they
relate to the consistency rules)?

RQ4: How do we reason about uncertainty and inconsistency
in order to use them for (i) prioritizing inconsistencies and
(ii) help engineers in refining both their understanding and
their models of the system under development?

We limit our scope to detecting and reporting inconsisten-
cies and do not consider automatically resolving them. This
choice is due to two main reasons. First, in the considered
settings there is no authoritative source of truth [4], i.e., if
an inconsistency between two artifacts is detected, it is not
possible to determine which of them shall be changed to
restore consistency. Second, even knowing which artifact to
change would not be sufficient, since it is not meaningful
for the developer to, e.g., add the simple skeleton elements
that would make the consistency check to pass. In fact,
meaningful changes involve adding more semantics that can
not be automatically derived from the consistency rules.

We must also consider the following requirements when
addressing these research questions that are induced by our
application context. First, the users in the studied settings
are software engineers whose models are not diagrams with
well-defined semantics, but are often just sketches or are
described with informal notations. Second, consistency rules
must be specified in a very simple way, so that they can be
easily checked and, more importantly, easily specified and
maintained. Otherwise, they become another cumbersome ar-
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tifact added to the development environment. Third, whatever
notation we use to express uncertainty, it needs to be simple to
be usable. Finally, our proposal must be automatizable and the
results of our checks must be readable, easily understandable
and machine-processable. In short, our proposal must be
lightweight and have minimal impact on the current processes
and practices of software engineers in these companies.

The remainder of this paper is organized as follows. First,
Section II contains background on uncertainty, subjective
logic, and consistency management. Then, Section III intro-
duces the two industrial settings used to motivate, demonstrate,
and evaluate our proposal. Section IV presents our approach to
making explicit design-time uncertainty at the level of models.
After that, Section V details our prototypical implementation
and its evaluation in the two industrial settings. Section VI
discusses our findings and relates our results to other work.
Finally, Section VII concludes with an outlook on future work.

II. BACKGROUND

A. Uncertainty

Uncertainty can be defined as “the quality or state that
involves imperfect and/or unknown information” [2]. The
primary classification of uncertainty divides it into aleatory
and epistemic uncertainty [5], [6]. Aleatory uncertainty refers
to the inherent probabilistic variability or randomness of a
phenomenon. For example, deciding the result of rolling a
die. This type of uncertainty is irreducible, in that there will
always be variability in the underlying variables [2]. Epistemic
uncertainty refers to the lack of knowledge we have about the
system (modeled or real) or its elements. For instance, the
confidence we have in the actual occurrence of a modeled
event. This type of uncertainty is reducible, in that additional
information or knowledge may reduce it [7].

A particular type of epistemic uncertainty, called Belief
Uncertainty [8]–[10], occurs when a user is unsure about
any of the statements made in the model about the system
or its environment. Belief uncertainty is normally represented
in software models by assigning a degree of belief to model
elements such as classes, relationships, attributes, or their
values. It is sometimes called second-order probability or
second-order uncertainty in the literature of statistics and
economics, and is normally subjective, i.e., it depends on
the individual agent holding the belief. Belief uncertainty is
normally expressed by probabilities (interpreted in Probability
theory [11]), possibilities (in Fuzzy set theory [12])), plau-
sibilities (in the Dempster–Shafer theory [13])), or opinions
(in Subjective logic [7]). For a comprehensive survey on the
representation of uncertainty on software models, see [9].

B. Subjective logic

Subjective logic [7] is an extension of probabilistic logic
to expresses beliefs (opinions) about the truth of propositions
under degrees of uncertainty. Opinions can also indicate con-
fidence, or trust, in a given statement and this is what makes
them suitable in a context like ours.

Let F be a Boolean predicate stating a fact. Let X be a
user or any entity able to express opinions about facts, also
called a belief agent. A binomial opinion by user X about the
truth of F is defined as a quadruple wX

F = (b, d, u, a) where:
• b (belief ) is the degree of belief that F is true.
• d (disbelief ) is the degree of belief that F is false.
• u (uncertainty) is the degree of uncertainty about F , i.e.,

the amount uncommitted to belief or disbelief.
• a (base rate) is the prior probability of F without any

previous evidence.
These values satisfy the constraints that b + d + u = 1,

and b, d, u, a ∈ [0, 1]. Intuitively, the base rate represents the
objective probability that can be assigned to the fact using
a priori evidences or statistical estimates, whilst the other
elements of the tuple represent the subjective degrees of belief,
disbelief and uncertainty about the fact assigned by the expert.

In addition to the common logical operators (and, or,
implies, etc.) used to combine the opinions of the same
expert about different facts, Subjective logic implements fusion
operators for combining the opinions of different users about
the same fact [7]. We will use these fusion operators later
to combine multiple opinions about epistemic uncertainty of
elements of development artifacts.

C. Consistency Management

Describing the system using various models and other
artifacts induces a subsequent need to manage consistency
among these artifacts, since inconsistency across them could
lead to unmet requirements, delays, and ultimately even sys-
tem failures [14], [15]. A commonly accepted idea is that
inconsistency shall be tolerated and managed, so that it does
not negatively impact development [1]. In this paper, we use
the common rule-based approach to consistency management,
in which consistency rules are defined and evaluated upon
changes to development artifacts [16].

One of the key findings of most works on industrial studies
is that, despite the various existing academic proposals for
(automated) consistency management, their adoption in the
industry is not straightforward [17]. The challenges are mul-
tiple: consistency management tasks are costly and often not
prioritized; many legacy projects need to be maintained and
no consistency checks are defined for them; there are usually
many people and processes involved that cannot be easily
changed; and the usability of consistency checking processes
and tools is not good enough. As a result of these challenges,
there is an argument for approaching consistency management
in industrial settings in a rather lightweight manner [18].

III. MOTIVATING EXAMPLES

Our proposal is motivated by previous experience with com-
panies that use model-based software engineering practices
in their developments and need to manage inconsistencies
between their artifacts. To illustrate our proposal and evaluate
it, we will use two real industrial case studies from two
companies. To keep their names anonymous, we call them
A and B.
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Fig. 1. A SysML model and its related C++ code excerpt.

A. Component-based development in company A

Software architects at company A use SysML to create
system models that describe both software and hardware
concerns. In this setting, SysML models are used to capture
the high-level design of the system, its decomposition into
separate components, and their allocation to software or hard-
ware parts. Component behavior is described at a high level by
operations, specified by activity diagrams; interfaces, which
are specified by proxy ports; and states, specified by state
machines. Independent teams of software engineers work on
the implementation of the system, which is done in C++.

Figure 1 shows on the left two SysML components and
their associated state machines, and on the right an excerpt of
the corresponding C++ code (for confidentiality reasons, all
examples used in this paper have been anonymized).

The company has adopted consistency checks in its current
development processes to improve the overall consistency of
its development artifacts and detect potential sources of errors.
Consistency is key in this context to verify that the system
architecture defined by the software architects was followed
by the software engineers and accurately reflected the structure
of the code, and vice-versa. Furthermore, any changes made to
the code cannot conflict with the architectural requirements set
out in the models. In addition, both the models and the code
can evolve separately throughout the development process.

In this setting, structural consistency between the system
model and the code is defined by the following three rules:
R1 Each system component should be implemented in a

separate repository.
R2 Each state should be implemented in a separate class.
R3 Each reception event in the state machines should be

implemented as a case in a switch statement.
These rules can be easily checked with automatic means.

For example, in Figure 1 some discrepancies can be detected,
such as states in the SysML model that do not appear in the
code (S13), and vice versa (S14). Although this solution may
seem sufficient, it is not. In particular, the size of the artifacts
are in the order of thousands of elements and the number
of discrepancies between the models and the code is often
so large (in the order of hundreds) that they are difficult to
manage, and thus become useless [19].

A key solution for the company to successfully address
this issue is to prioritize inconsistencies, highlighting those
that need to be resolved first. Currently, all inconsistencies
are considered equally important, but some of them could
be more critical than others, and therefore are more urgent

to repair. Similarly, there may be others of little relevance
that could be tolerated or even ignored for the time being.
In general, it is during the early design phases that the most
inconsistencies occur. But it is also the period when there is
the most uncertainty in design decisions and implementations.
For example, a software architect may have doubts about
the constituent states of a state machine, e.g., whether a
given state should be part of it or not, or whether a state is
missing. Similarly, a software developer may be unsure of the
occurrence of a case in a switch statement, or of a particular
class in a component.

In this context, it is not only important to highlight informa-
tion regarding the doubts that engineers may have about their
designs or implementations. It is also essential to be able to
express certainty about some of its elements. For example, the
fact that some of the requirements have been consulted and
confirmed by the customer. Or that an implementation has to
include some particular class for security reasons or company
implementation policies. We will later show how to make use
of this additional information to prioritize inconsistencies and
also discover new inconsistencies that were previously hidden.

B. A product line architecture for embedded systems
The second example comes from company B that spe-

cializes in the development of embedded systems. Using a
product line approach, a team of software architects is re-
sponsible for designing and maintaining the reference software
architecture for the various variants of the embedded systems
that the company produces [18]. This reference architecture
is specified by one base model with all possible family
components, described using an informal notation (similar to
UML deployment diagrams) sketched in Draw.io. In addition,
a set of informal relationship diagrams, written in PlantUML,
describe the possible connections between these components.
The reference architecture for a fictional Family F is shown in
the upper part of Figure 2, showing the base model (RefArch)
and one associated relationship diagram (RefArch-RD).

The specification of every product of the family is given
by one product model (PM) that describes the set of elements
from the reference architecture that the product comprises, and
a set of associated relationship diagrams (PM-RD). An example
of the specification of a product P from family F is shown in
the bottom part of Figure 2. When a new product is created,
the reference architecture diagram is copied and components
are deleted or added as needed for that particular product,
analogous to clone-and-use practices common in software
product line engineering [20].
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Reference Architecture Relationship Diagram (RefArch-RD)

TopLayer1
[Container]

C1C2

C6
C8

[BlueLayer]

Uses
[http]

Uses
[http]

Uses
[http]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Product Model Relationship Diagram (PM-RD)

TopLayer1
[Container]

C1C2

C6
C9

[GreenLayer]

Uses
[http]

Uses
[http]

Uses
[http]

Fig. 2. Reference Architecture of product family F (top left) and Product Model of product P (bottom left), and a Relationship Diagram for each one.

In the reference architecture and product models, compo-
nents are assigned to layers, which act as containers for them.
Both components and layers have properties, such as color,
size, or position. Likewise, components and connectors in the
relationship diagrams may have properties (expressed within
square brackets), such as the protocol a connector uses.

There are different consistency rules that these four types of
models (RefArch, RefArch-RD, PM, PM-RD) should respect:
S1 Every component in a product model (PM) should exist

in the reference architecture (RefArch).
S2 Every component in a relationship diagram (RD) should

be in the corresponding model (RefArch or PM).
S3 Every connector in the RD of a product should be in the

corresponding RD of the RefArch.
As in the previous case, in this company one group of

engineers works with the reference architecture and another
with the product models. This can lead to inconsistencies.
For example, in the models and diagrams shown in Figure 2,
Component C0 exists in PM but not in RefArch; Component
C8 exists in RefArch-RD but not in RefArch; the properties
of Component C5 in PM are different from those in RefArch
(namely, its color and positions are different); Component C9
exists in PM-RD, but not in RefArch-RD, nor in RefArch.

Moreover, during the design phase of the reference archi-
tecture and the product models, different engineers may be
uncertain about these models and their elements. A difference
with respect to the previous example is that the teams of
architecture and product models work closely together, and
therefore one engineer could have doubts about any of the

model elements, no matter if they belong to the family
architecture or to the product model.

For example, Thomas K., a software architect developing
the reference architecture, may not be sure if a given compo-
nent (C1) is part of Family F or not, or whether protocol https
should be used instead of http for connecting components C1
and C8. Even worse, for that connection in the relationship
diagram of the product model (PM-RD), he thinks IMAP
could be a better option. He also doubts that component C6
is always available for use within the family architecture. On
the contrary, he is completely sure that component C2 should
belong to this family. In turn, Gabriele T., another software
architect also working on the project, has serious doubts about
the same component C2 that Thomas was certain about. She is
not sure if that component C1 is available for product P , and
also about the contents of the product model. She thinks that
some components could be missing in PM and that component
C9, included in PM-RD should be part of product P (the
complete lists of doubts is shown in Figure 5).

In this company, more than the number of inconsistencies
to manage, they are interested in using them to guide evo-
lution. For example, in situations when a component gets
deprecated and needs to be updated. They also need to count
on mechanisms for dealing with exceptions to the rules. For
example, to state that they want to keep using a version of
a given component in a product, even when the reference
architecture prescribes a later version, and do not want to be
warned about this inconsistency anymore: “Stop telling me
this is inconsistent, I know it but I don’t want to change it.”
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IV. MAKING DOUBTS EXPLICIT

We propose a lightweight means to annotate development
artifacts with design uncertainties, which we will refer to
as doubts to avoid confusion with the term “uncertainty”
as defined by subjective logic. We propose these degrees of
doubt as a simplified notation for expressing epistemic design
uncertainties. We still rely on the underlying mechanism of
subjective logic to (i) allow for customization of the distribu-
tion of subjective logic values underlying particular degrees
of doubt, and (ii) have a solid formalism underlying any
calculations done to combine multiple opinions.

This section describes how we propose the artifacts to be
annotated with doubts and how we can make use of them
for discovering and prioritizing inconsistencies. In the follow-
ing subsections, we present four stages of our approach: I–
Manually annotating elements in design artifacts with doubts;
II–Automatically propagating doubts across the set of develop-
ment artifacts and their elements; III–Automatically merging
multiple doubts on the same elements by different agents; and
IV–Automatically prioritizing inconsistencies using subjective
logic operators and the consistency rules. Implicitly, a fifth
stage can be imagined during which the doubts are resolved.
Phase I responds to research questions RQ1 and RQ2. Phases
II and III respond to RQ3. Phase IV responds to RQ4.

Phase I: Annotating doubts

Types of doubts: Depending on the intended use of develop-
ment artifacts and the relationships between them, we have
identified different types of doubts that engineers may express:
Occurrence, Availability, Contents, and Properties.

• Occurrence doubts are those related to the existence of
an element in a model or a development artifact. For
example, Thomas may have doubts about component C1
being part of the configuration of product P .

• Availability doubts occur when the agent is not sure that
a component can be available when needed in a given
configuration. They are usually related to shared or scarce
resources. For example, a component that may not be
available under heavy load or high demand.

• Contents doubts are associated with container elements.
Layers, components or SysML blocks are examples of
containers in the previous case studies because they can
contain other elements. Doubts about the contents of a
container happen when the engineer believes that some
of its internal elements may be missing.

• Property doubts occur when the engineer is not sure
about the current value of a property of one element.
For example, its color, version or position.

Degrees of doubt: Expressing an opinion using subjective logic
tuples including degrees of belief, disbelief, and uncertainty
may be challenging for users [21]. In fact, we do not expect
that in practice engineers will be able to quantify all these de-
grees and, moreover, requiring all this information is not likely
to be beneficial to the usability of our approach. Therefore, we
propose a very lightweight way to annotate the elements of a

model with a single degree of doubt, using a notation inspired
by [22], with 4 values in a Likert scale:

Symbol Meaning Subj. Logic opinion
! Very certain (1.0, 0.0, 0.0, 0.5)
∼ Somewhat uncertain (0.95, 0.025, 0.025, 0.5)
? Uncertain (0.8, 0.1, 0.1, 0.5)
?? Very Uncertain (0.5, 0.25, 0.25, 0.5)

To be able to perform calculations with these values in
Subjective Logic, we have mapped them to subjective logic
opinions, as shown in the table above and, graphically, in
Figure 3. Basically, the greater the doubt, the greater the
uncertainty and disbelief. For example, the ∼ annotation
corresponds to little doubt and therefore it has a high degree
of belief and low degrees of disbelief and uncertainty. We
chose to assign equal values to the degrees of disbelief and
uncertainty (since, without more information, both might be
equal causes for doubt), but this can be configured.

We also need to give semantics to the elements of the
model without annotations about their uncertainty, i.e., most of
the model elements. Having no annotations has two possible
interpretations. The most obvious one is that we are quite sure
about them, i.e., that we have no doubt. This interpretation
is the one given, for example, by the creator of the model.
However, when reviewing an artifact, expressing no explicit
doubt may mean either “no reason to disagree with the original
creator” or that the artifact was not actually reviewed. This
absence of doubt will also be represented as “ ”, and its
corresponding value in subjective logic is (1.0, 0, 0, 0.5), same
as a Bang (“!”). There is no possible confusion between
“ ” and “!”. The former means absence of doubt while the
latter means complete certainty and requires the provision of
concrete evidence to reinforce the assertion.

Table I shows the operators we will use on doubts. They
correspond to the and (AND), implies (IMP), weighted belief
fusion (AVG) and equivalent (PLUS) operators in Subjective
logic [7]. The values in these tables have been computed using
the corresponding operators in Subjective logic.

0.50 10.8 0.95

Uncertainty

Disbelief Belief

Degree of
Doubt

??

?

∼

??

?

∼

None

Fig. 3. Mapping degrees of doubt to Subjective Boolean values. Annotation
‘!’ corresponds to an absolute belief, with no uncertainty nor disbelief, thus
corresponding to the point on the bottom-right corner of the triangle.
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TABLE I
BEHAVIORAL TABLES FOR OPERATORS ON DOUBTS.

AND – ∼ ? ??
– – ∼ ? ??
∼ ∼ ? ? ??
? ? ? ?? ??
?? ?? ?? ?? ??

AVG – ∼ ? ??
– – ∼ ? ??
∼ ∼ ∼ ? ?
? ? ? ? ??
?? ?? ? ?? ??

IMP – ∼ ? ??
– – ∼ ? ??
∼ – ∼ ? ??
? – ∼ ? ??
?? – ∼ ? ??

PLUS – ∼ ? ??
– – ∼ ? ??
∼ ∼ ∼ ? ??
? ? ? ∼ ??
?? ?? ?? ?? ?

Expressing doubts: User should be able to annotate elements
they have doubts about. We propose the following notation:

⟨Agent⟩⟨Degree of Doubt⟩⟨Type⟩(⟨element⟩) : ⟨Rationale⟩
where:

• Agent is the identifier of the belief agent expressing the
doubt, e.g, Thomas (TK) or Gabriele (GT).

• Degree of doubt can be any of the symbols described
above: !, ∼, ?, or ??.

• Type is the identifier of the type of doubt: O (occurrence),
A (availability), M (missing contents), or P (property).

• Element refers to the model element about which the
doubt is expressed. For example, C1@RefArch refers to
component C1 in the RefArch model. More than one level
of nesting is possible, e.g., S13@Component1@SysML.
If the element is a property, it is prepended to the
identifier of the component, e.g., color#C1@PM.

• Rationale is a string with the reason for the doubt, or the
evidence that supports the certainty (!).

For example, Thomas might express his doubts on the
occurrence of component C1 in the product model PM:
TK?O(C1@PM):“Not sure if this component should be included
in this product after the change in requirements.”

Another agent, e.g., Gabriele, might independently express
another opinion on the same element:
GT!O(C1@PM): “I have confirmed with the customer that this
component is needed in this product.”

Phase II: Doubt propagation and combination
Propagating doubts: In this phase, the annotated doubts from
Phase I are propagated to the related development artifacts.
Propagation is achieved through the correspondences that
relate the elements in the different model views [23]. In
our industrial settings, these correspondences are implicitly
defined by the consistency rules, and element names are used
to identify the related elements. For example, component C1
in the product model PM corresponds to component C1 in the
reference architecture RefArch; and State S11 of Component1
in the SysML model corresponds to Class S11 of Component1
in the C++ implementation.

In our Product Line example, the components of the ref-
erence architecture are exactly the same as those of the
product models. Thus, if Thomas is not sure that C2 exists

in the reference architecture, his doubt should propagate to
component C2 of all product models. Note that the reverse
need not be true. Gabriele may have doubts that component
C3 should be part of a certain product model, but this does
not mean that she has doubts that C3 is part of the reference
architecture. That is, propagation is directional in this case.

Table II shows how doubts propagate in this example.
Propagation is defined considering the four diagrams in Fig-
ure 2, their relationships as described in Section III-B, and the
consistency rules S1–S3. The directions in the table refer to
the way the development artifacts are organized in Figure 2.
Estimated doubts refer to the annotations that modelers are
allowed to express, of different types. A “+” symbol means
that they are allowed, while a “–” symbol means that they
are not, mainly because their values are derived. Propagated
doubts are derived from the estimated doubts or from other
propagated doubts. Propagation directions are defined by the
nature of the consistency rules: the occurrence of a component
in one diagram often implies it must occur in another one too.

There are two exceptions to propagation rules: (1) We do
not propagate “!” or “None” since these are not expressions
of doubt. Bangs will be used later, during inconsistency
prioritization; (2) we do not propagate a doubt if the target
element has the same degree of doubt, because they are already
consistent.

Another type of correspondence occurs between elements
that are different but related by the consistency rules. For
example, states of components in the SysML model and C++
classes in the implementation. In this case, doubts do not
propagate because they are independent artifacts.

Combining multiple doubts by the same agent: Our goal is
to end up with a single degree of doubt (or none) for each
annotated element. Thus, after propagation, we combine the
opinions of the same agent on the same elements. If an agent
has provided two doubts of the same type, d1 and d2, on the
same element, that is equivalent to stating the single opinion:
d1 ∧ d2. This combined doubt is computed using the AND
operator (see Table I).

Phase III: Doubts merge
It may be the case that multiple agents have expressed

doubts of the same type about the same elements. To derive
a single opinion per element, in this phase we combine
opinions from multiple agents using the weighted belief fu-
sion operator [7], noted AVG in Table I. This operator is
commutative, idempotent, and non-associative, and computes
a weighted average of the doubts, giving more weight to those
opinions with less uncertainty, i.e., the smaller the value of the
uncertainty, the higher the weight. Again, we do not include
“!” in our calculations, since it is not a degree of doubt.

Phase IV: Uncertainties for inconsistency prioritization

Prioritizing inconsistencies: To prioritize the detected incon-
sistencies, we will assign a degree of doubt to each of them,
and rank them according to their uncertainty.
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TABLE II
PROPAGATION DIRECTIONS FOR ESTIMATED DOUBTS IN SETTING 2, THE DIRECTIONS REFER TO THE LAYOUT SHOWN IN FIGURE 2.

Components Connectors Containers
RefArch PM RefArch-RD PM-RD RefArch-RD PM-RD PM PM-RD

Estimated

Occurrence + + + + + + - -
Property-value + + + + + + + +
Availability + + + + + + - -
Missing - - - - - - + +

Propagated

Occurrence - from up from left from left - from up - -
Property-value - from up - - - from up from up from up
Availability - from up from left from left - from up - -
Missing - - - - - - - -

Fig. 4. A SysML model and its related C++ code excerpt. Both are annotated by their developers with information about their uncertainties.

To assign degrees of doubts to the inconsistencies, we
will use the doubts noted on the elements involved in the
inconsistency. Three cases may occur. First, if none of the
elements involved in the inconsistency has any associated
doubt, the degree of doubt associated with the inconsistency
is “none” (“ ”). Second, if one or more elements have a “!”
associated with it, the degree of doubt associated with the
inconsistency is “!”. Finally, if the elements involved in the
inconsistency have associated degrees of doubt, they need to
be combined, and the result assigned to the inconsistency.
The operator used to combine the doubts associated with
the inconsistent elements depends on the directionality of
the inconsistency. We previously saw that inconsistencies can
be either directional (when they work in one way only) or
bidirectional. Then, the implies (IMP) operator will be used
in the first case, and the equivalence operator (⇔, PLUS) in
the second. Examples of these are detailed in Section V.

Uncovering potential inconsistencies: A byproduct of anno-
tating elements with uncertainties is that we can uncover
potential inconsistencies that were hidden before, in addition
to the “rule-based” inconsistencies that follow directly from
the consistency rules. For example, consider the state S11 in
the state machine in Figure 1 and the corresponding class S11
in the code. By the consistency rule, occurrence of a state
implies occurrence of the class, and vice-versa, and therefore
this pair will not be marked as inconsistent. But when we
consider the annotated doubts, we see that the state has
been annotated with a doubt of occurrence (“?”), while the
occurrence of S11 in the code has been confirmed by another
agent expressing certainty about its occurrence (“!”). This
discrepancy between the degrees of doubts associated with the
related elements needs to be signaled too, because it might
mean a potential inconsistency. Our reasons for discovering

these potential inconsistencies are due the fact that elements
explicitly marked with doubts are more likely to change in the
future and hence more likely to become inconsistent.

Finally, both detected and uncovered inconsistencies will be
ranked according to the degree of doubt assigned to them.

V. IMPLEMENTATION

This section describes the prototype implementation we
have developed to demonstrate and validate our approach as
well as its application to the two industrial case studies. The
description follows the process of application of our approach,
as detailed in the previous section. For space and readability
reasons, only a few synthetic doubts have been annotated in the
models, although they are sufficient to illustrate the proposal.
All artifacts used and produced by our algorithm, as well as its
implementation, are available in the replication package [24].

Phase I: Annotating doubts. Figures 4 and 5 show the
annotated doubts on the models used in the two settings.
Engineers can use notes, stereotypes, code comments, text
files, or any other ways to denote doubts in their models. These
annotations are then extracted from the models and stored
in textual files (*.uncertainty). The grammar is defined using
TextX [25] (see architecture.tx in the replication package).

Phase II: Doubt propagation. The algorithm automatically
propagates the doubts through the consistency rules, and also
throughout artifacts, see Section IV. The propagation depends
on the relationship between the artifacts, i.e., whether they
refer to the same elements or not. In Setting 1, the related
artifacts were of different nature, and therefore the doubts are
not propagated. In contrast, the elements in the models of
Setting 2 refer to exactly the same components, and therefore
doubts must be propagated throughout the diagrams following
the guidelines given in Table II.
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Reference Architecture Relationship Diagram (RefArch-RD)
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Product Model Relationship Diagram (PM-RD)
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Fig. 5. Models and diagrams of Fig. 2, here annotated with uncertainty information.

A concrete example of propagation happens with the doubt
by agent TK on C1 in RefArch, which is propagated to the same
component in PM, based on the “from up” entry in Table II.
Since C1 in PM also had an annotated doubt by the same
agent (TK), we obtain a single doubt by applying the AND
operator on the two doubts (See Table I). The result is the
doubt TK??O(C1@PM). The other propagated doubts in this
setting are:

• GT?O(C2@PM) – From GT∼O(C2@PM) and
GT?O(C2@PM), propagated from GT?O(C2@RefArch)

• TK??O(C1@PM-RD) – From TK??O(C1@PM)
• GT∼O(C2@PM-RD) – From GT∼O(C2@PM)
• GT?O(C2@RefArch-RD) – From GT?O(C2@RefArch)

These propagated doubts are automatically added to the esti-
mated doubts of each case as listed in the textual files.

Phase III: Doubt merge: In Setting 1, no doubts were
propagated during Phase II and no elements in Figure 4 were
annotated with multiple doubts (from different agents).

The situation is different in Setting 2. After propagating
the doubt TK??O(C1@PM) to TK??O(C1@PM-RD), we now
have two opinions associated with this element, the other being

GT!O(C1@PM-RD). Since we ignore “!” during merging, we
obtain the merged opinion *??O(C1@PM-RD). Note that the
asterisk is used to denote that this opinion is originating
from multiple agents. Similarly, we obtain *?O(C2@RefArch)
from merging GT?O(C2@RefArch) and TK!O(C2@RefArch).
Operator AVG is used to perform the merge operations.

Phase IV: Uncertainties for inconsistency prioritization. The
last step consists in applying the consistency rules to search
for possible inconsistencies. In addition to those found by
the rules, other inconsistencies are detected in the case where
the consistency rule is not violated, but there is a difference
of doubt between the elements. Below, we provide examples
to illustrate the final priorizations in the two settings. The
complete results can be found in files output-example-1.txt and
output-example-2.txt in the replication package.

In Setting 1, we found two rule-based inconsistencies since
S13 and S14 occur only in one view and not in the other.
In addition, we found four uncovered inconsistencies, one
of which has an even higher priority than the rule-based
inconsistency. Another interesting result is that one rule-based
inconsistency becomes the lowest priority due to the doubt
assigned on the occurrence of S14 in the code.
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The final list of inconsistencies found by our algorithm in
Setting 1 is presented below. They are sorted by their priority
according to our approach.

Prio. Type Detected inconsistency (Setting 1)
! Unc. ?S11@SysML ⇐⇒ !S11@CPP

Rule S13@SysML ⇍⇒ S13@CPP
∼ Unc. ∼S12@SysML ⇐⇒ S12@CPP
∼ Unc. e22@SysML ⇐⇒ ∼e22@CPP
? Unc. S23@SysML ⇐⇒ ?S23@CPP
?? Rule S14@SysML ⇍⇒ ??S14@CPP

We distinguish between “Rule” and “Uncovered” (Unc.)
inconsistency types, where the former refers to a violation
of one of the consistency rules defined for the system and
the latter is due to a difference in the degrees of doubt (or
certainty) of the related elements.

In Setting 2, the algorithm finds six uncovered inconsis-
tencies, on top of the five rule-based inconsistencies that we
originally had. They are shown below.

Prio. Type Detected inconsistency (Setting 2)
! Unc. !C1@PM-RD =⇒ ??C1@PM
! Unc. !C1@PM-RD =⇒ ?C1@RA-RD

Rule C1 C9@PM-RD ≠⇒ C1 C9@RA-RD
Rule C0@PM ≠⇒ C0@RefArch
Rule C8@R.A.-RD ≠⇒ C8@RefArch

? Unc. C6@PM-RD =⇒ ?C6@RA-RD
? Unc. C2@PM-RD =⇒ ?C2@PM
? Unc. C2@PM-RD =⇒ ?C2@RA-RD
? Unc. ??C1@PM =⇒ ?C1@RefArch
?? Rule ??C9@PM-RD ≠⇒ C9@PM
?? Rule ??C9@PM-RD ≠⇒ C9@RA-RD

We can see how annotated doubts can be used for inconsis-
tency prioritization as well as for uncovering previously hidden
inconsistencies. In addition, the annotated doubts may be used
as a guide for further refinement of the models, as they indicate
places that may require attention.

VI. DISCUSSION

A. Proposed methodology of working with annotating doubts

This section illustrates the process we envisage to annotate
model elements with doubts and to detect and prioritize
inconsistencies between model elements. The goal is to help
engineers resolve inconsistencies as quickly as possible but
tolerating those for which there is insufficient information until
it is obtained. Our approach is primarily intended in a model-
driven agile development environment that works in sprints.

Annotating doubts shall be possible at any time. Once
created, they will be propagated and evaluated at the end of
each sprint. After the propagation phase, inconsistencies are
identified and ranked. The prioritized list of inconsistencies
provides a guideline on the order to follow to address the
resolution (or tolerance) of both inconsistencies and doubts.

The inconsistencies with the highest priority should be
checked first, to ensure that the doubts are removed or the

inconsistency is resolved. Normally, doubts are removed when
the reasons that justified them are investigated and resolved.

It is important to clear as many doubts as possible after
each sprint, especially the easiest to resolve (“∼” and “?”),
in order to keep the overall design uncertainty under control.
Note that most of the design uncertainty in models is epistemic
in nature, meaning that it can be mitigated by providing more
information. Finally, lower-priority inconsistencies usually re-
solve themselves over the course of model refinement, or as
doubts disappear.

B. Feedback from industry partners

We also presented our proposal to the engineers of the two
companies that work exactly with the settings we studied,
asking them for feedback and suggestions.
Feedback from company A: For company A, prioritization
was of primary importance for its estimated business value. It
is often difficult to motivate some of the tasks that need to be
done, especially when they are cumbersome or costly. This is
critical for some quality-related aspects, such as consistency
checking. However, when you have prioritized inconsistencies
and, in addition, know how often a particular component is
reused in different products, it may be easier to motivate the
business value of working to resolve inconsistencies.

The “lightweightness” of the proposed annotations was also
appreciated, and compared to other coarse-grained estimations
they use in the company, such as using “T-shirt sizes” (S,
M, L, XL) for estimating the effort required to implement
pieces of functionality. They also saw a potential for annotated
doubts to be used as requirements for degrees of consistency.
For example, a modeler might annotate an element with a
certainty (!) and the rationale: “I want this part to definitely be
consistent”. The uncovered inconsistencies become then very
relevant when discovering, e.g., a corresponding code element
for which a software engineer has expressed a doubt such as
“I do not care much if this is consistent or not.”

Lastly, they were interested in considering the hierarchical
propagation of uncertainties. For example, annotating certainty
in a component, for them also implied certainty in all its
contents. So far, we have considered instead that the hierarchy
does not guarantee such propagation, but we expect this to
largely depend on the specificities of the industrial setting.
Feedback from company B: Engineers at company B were
not so concerned about prioritizing many inconsistencies,
because their number was expected to be low. Essentially,
the engineers rely on “copy-and-modify” for the creation of
a new product from the reference architecture. Consequently,
not many inconsistencies are expected. However, they were
very interested in scenarios where annotations would make
consistency checks clearly more valuable. For instance, in
a situation in which a component is deprecated and needs
to be updated, the architects found our proposal useful as a
tool to guide the evolution. Moreover, they found certainties
(“!”) very valuable for suppressing inconsistency warnings.
For example, to assert that in a certain product, they want
to continue using version n of a particular component, even
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if the reference architecture prescribes version n + 3. Being
able to smoothly tolerate exceptions to inconsistency rules is
a common requirement in industrial environments [17].

These initial reactions to our proposal are encouraging,
and we have started to consider further empirical evaluations
in different industrial settings to understand better how our
proposal can be used. For example, we would like to ex-
plore whether other, more expressive notations for expressing
subjective opinions are acceptable to engineers. Furthermore,
work is needed to identify the types of uncertainty that are
most relevant to in diverse industrial settings to improve the
applicability of our proposal. We think of this as the natural
way to continue our work.

C. Limitations and generalizability

This approach considers ranking of inconsistencies only
on the basis of the annotated uncertainty. In the considered
cases, this is the only information available and therefore
the only one possible to use. In general, the prioritization of
inconsistencies to be resolved can have many more inputs,
such as the expected impact of the inconsistency, or the relative
importance of adherence to a particular consistency rule.
Thus, in general, inconsistency prioritization is a matter of
optimizing many variables, although in this paper we limited
ourselves to only one such factor.

We have aimed for industrial model-based development
settings in which models may be of a rather informal nature.
We have not evaluated the generalizability of the approach
beyond the presented case studies. However, we think that ,in
general, providing lightweight means to manage uncertainty
and inconsistency can be helpful in settings similar to those
shown here. Future research is needed to evaluate how the
methodology presented in Section VI-A generalizes.

D. Related work

The work presented in this paper relates to several research
areas. First, many works deal with consistency management;
relevant recent secondary studies include [15], [26]. By its
nature, dealing with inconsistencies is not a problem that can
have a single, general, solution, but rather it depends on many
factors from particular industrial settings. Thus, there is a con-
tinued relevance for new consistency management approaches
that address the reality of industrial settings [17]. In this work,
we address the requirements of two concrete industrial settings
and explore how they improve their consistency management
by making uncertainty explicit.

Uncertainty management is the second area of research
addressed in this paper. Previous work has implicitly hinted
at combining uncertainty and inconsistency, by noticing that
uncertainty is equally inevitable as inconsistency, and by tak-
ing steps towards instead managing uncertainty [27]. Another
approach is to live with design-time uncertainty by generating
all options at run-time, as done in JTL [28]. In our studied
settings, we aim to make the uncertainty already explicit at
design time. Another set of works, e.g., [10], [22] deals with
the explicit representation of belief uncertainty in models;

see [9] for a survey on uncertainty representation in software
models. However, none of these works use uncertainty to
address inconsistency management as we do here.

Another set of related works, e.g., [29]–[31], combines
uncertainty and consistency, although they focus on uncer-
tainty in the definition of traceability links between related
elements. In our case, we have focused on uncertainty on the
elements themselves and on their properties, assuming simple
consistency rules and thus simple traceability links. As future
work we could investigate whether it makes sense in our case
studies to incorporate belief uncertainty in traceability links,
and how to combine it with our current approach.

Detected inconsistencies, to be manually resolved, can be
the result of static analysis over multiple development artifacts.
Within the field of static analysis, various approaches have
been proposed to prioritizing warnings, e.g., based on the
change history [32], and machine learning [33]. Our proposal
prioritizes inconsistencies based only on the uncertainty asso-
ciated with the elements involved and does not consider the
type of violation. Finally, to the best of our knowledge, this
is the first work that attempts to uncover “hidden” inconsis-
tencies, using uncertainty information to do so.

VII. CONCLUSION

Inconsistency and uncertainty are both integral and in-
evitable aspects of the model-based development of software-
intensive systems. During the development process, they are
both expected to decrease until ideally zero for a final product.
In this paper, we have proposed a means to explicitly annotate
models (be they strict or rather informal) with design-time
uncertainties in a lightweight way. To allow so, we propose a
single degree of doubt that covers values for belief, disbelief,
and uncertainty in subjective logic. We then show how to
use the explicit doubts as an input to various subjective logic
operations to obtain prioritized inconsistencies, as well as to
uncover previously hidden potential inconsistencies between
development artifacts. The approach is demonstrated in two
examples from industrial settings. Results from these settings
give an indication of the potential usefulness of our proposal.

There are several aspects that we plan to address as part
of our future work. First, we want to evaluate the usability,
applicability, scalability and usefulness of the proposal with
more case studies in different industrial settings. Exploring
alternative, more expressive ways of representing doubts is
also on our agenda. Finally, we also want to get more feedback
from practitioners about our proposal, including other use
cases where explicit expression of doubts can bring more
value to industrial processes, beyond the prioritization of
inconsistencies. The impact of our proposal depends primarily
on the value it brings to the industry.
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