
Cross-Platform Migration of Software
Architectural UML-RT Models: An Industrial

Experience

Malvina Latifaj1[0000−0002−2754−9568], Federico Ciccozzi1[0000−0002−0401−1036],
Antonio Cicchetti1[0000−0003−0416−1787], and Mattias Mohlin2

1 Mälardalen University, Västerås, Sweden
malvina.latifaj@mdu.se, federico.ciccozzi@mdu.se, antonio

.cicchetti@mdu.se
2 HCL Technologies, Malmö, Sweden

mattias.mohlin@hcl.com

Abstract. In this paper, we focus on the development of a model mi-
grator tool that automates the migration of software architectural UML-
RT models from HCL RTist to RTist in Code. HCL RTist is a soft-
ware development environment designed for the development of complex,
event-driven, and real-time applications, solely supported in the Eclipse
Desktop environment. On the other hand, RTist in Code offers a broader
platform compatibility, being supported in Eclipse Theia and Visual Stu-
dio Code. The model migrator ensures a seamless transition for the tool
users and preserves the effort and investment of RTist users, allowing
them to take advantage of the benefits of the textual Art language and
web-based technologies without having to recreate models manually. Fur-
thermore, we present a model splitter tool that enables users to partition
and organize Art models after their needs. Lastly, we validate a previ-
ously proposed approach for generating synchronization infrastructures
in blended modeling through an industrial use-case, and demonstrate its
novel application to model migration expanding its original scope.

Keywords: UML-RT · HCL RTist · RTist in Code · Eclipse · VSCode.

1 Introduction

Software architecture (SA) is a high-level blueprint of a software system that
describes its structure, components, and interactions. As such, it is an integral
part of the design, development, maintenance, and evolution of complex software
systems [1]. Model-Driven Engineering (MDE) is a paradigm that emphasizes
models as central artifacts throughout the development process [2]. The imple-
mentation of MDE practices in SA facilitates the separation of concerns and
promotes abstraction. As a result, software architects can focus on high-level
design choices instead of specific implementation details.

Unified Modeling Language (UML) is a standardized modeling language [3]
and the most used architecture description language in industry [4]. It provides

2 Latifaj et al.

an array of concepts for representing various aspects of a software system, in-
cluding its structure, behavior, and interactions. UML for Real-Time Systems
(UML-RT) profile extends UML to capture the concepts defined in the Realtime
Object Oriented Modeling (ROOM) Language and to address the needs of real-
time and embedded systems [5]. To support the use of UML and UML-RT in
software architecture, numerous tools and frameworks have been developed; in
this paper, we focus on HCL RTist3 and RTist in Code4.

1.1 Problem, motivation and RTist in Code case

HCL RTist is a proprietary software development environment designed for the
development of complex, event-driven, and real-time applications. Operating as
an extension of the Eclipse Desktop Integrated Development Environment (IDE),
it offers comprehensive support for UML and UML-RT, enabling the specifica-
tion and documentation of the structure and behavior of complex application
architectures. Furthermore, it uses the CppPropertySets profile to encompass all
the additional properties required to translate UML-RT models into C++ ap-
plications. Despite its broad range of capabilities, RTist continues to be tightly
bound to the Eclipse Desktop IDE, which is not meeting the growing demands
of RTist users seeking lightweight web-based technologies.

To add support for code editors and IDEs other than Eclipse Desktop, HCL
developed RTist in Code, an extension compatible with Visual Studio (VS)
Code5 and Eclipse Theia6. With this extension, architects and developers can
develop real-time stateful C++ applications by using the textual language, Art.
The first steps in creating the Art language involved defining a textual syntax
designed to allow the modeling of behavior using UML-RT state machines [6].
Based on the preliminary explorations of the textual syntax for UML-RT state
machines, the comprehensive Art language was later developed, encompassing
both structural and behavioral aspects. As a textual language, Art facilitates
readability, version control, and collaboration. In addition, it provides graphical
representations of class, state, and structure diagrams.

HCL’s decision to provide RTist in Code as an extension for VS Code and
Eclipse Theia can be attributed to several factors. As a result of its flexibility,
user-friendly interface, and a wide variety of extensions, Visual Studio Code has
become a popular choice for various development tasks, including software ar-
chitecture modeling. Theia, on the other hand, provides an open, flexible, and
extensible tool platform that is based on modern web technologies and it allows
efficient tool and IDE development. Both VS Code and Eclipse Theia share a
common extension model, making extensions compatible across platforms. Addi-
tionally, both can be accessed through a web browser. Finally, they have strong
user communities that contribute to their popularity and adoption.

3 https://www.hcltechsw.com/rtist
4 https://opensource.hcltechsw.com/rtist-in-code/
5 https://code.visualstudio.com
6 https://theia-ide.org

Cross-Platform Migration of Software Architectural UML-RT Models 3

With Eclipse Theia and VS Code, advanced features such as automatic com-
pletion, text search, and code analysis can be configured to increase efficiency
while coding. However, since each tool uses a different Application Programming
Interface (API), implementing each feature individually poses an additional chal-
lenge. In 2015, Microsoft introduced the Language Server Protocol (LSP)7, which
standardizes communication between language servers and development tools.
This protocol allows a language server, containing language-specific features, to
interact with development tools through the LSP. RTist in Code utilizes the
Xtext implementation of the language server API, enabling the integration of
Art in VS Code and Eclipse Theia, both of which support LSP.

The main obstacle for the full adoption of RTist in Code is the migration
of graphical models from RTist to Art textual models in RTist in Code. As
part of this migration process, the existing graphical models stored in .emx
files are converted into textual models stored in .art files. When transitioning
from RTist to RTist in code, it is neither feasible nor logical to require users
to manually recreate their models. Due to the time and resource commitment
involved in manual migration, such a requirement would undoubtedly deter users
from embracing RTist in Code. A further challenge arises when considering that
the migration to Art models can span two extremes; at one end, there is the
option of producing a single .art file that encompasses the entire model, while at
the other end, each Art element may be allocated to a separate file, making the
compilation process more efficient. The likelihood of errors increases significantly
when these tasks are performed manually. Thus, enabling a seamless transition
that preserves the efforts and investments of RTist users while simultaneously
encouraging the adoption of RTist in Code is of paramount importance.

1.2 Paper contribution

This paper presents a model migrator designed to automate the migration of
models from RTist to RTist in Code. This migration tool aims to enhance the
user experience and to enable a seamless transition for users. Furthermore, users
are provided with a model splitter that enables them to partition and organize
Art models according to their preferences. Apart from that, the model migrator
is used to validate a previously proposed approach for generating synchroniza-
tion infrastructures in blended modeling [7], demonstrating the effectiveness of
the method as well as exploring a novel application of the method for model
migration, extending the method’s scope.

The remainder of this paper is structured as follows. Section 2 provides back-
ground concepts and compares the approach to other related works. Section 3
presents the model migrator and the model splitter. Section 4 concludes the
paper with a discussion of lessons learned and planned future works.

7 https://microsoft.github.io/language-server-protocol/

4 Latifaj et al.

2 Background and Related work

As a first step in establishing an understanding of the research landscape and
emphasizing the significance of our study, this section discusses the methodology
employed in this paper for implementing the model migrator, which originates
within the blended modeling paradigm. Following this, it examines model migra-
tion and co-evolution approaches, focusing both on generic solutions and those
that are specifically focused on UML-RT model migration.

2.1 Automated generation of synchronization infrastructure for
blended modeling

Blended modeling facilitates the development of complex multi-domain sys-
tems by providing seamless multi-notation modeling [7]. The mechanisms re-
sponsible for ensuring synchronization between notations are incorporated into
model transformations. Manually establishing these transformations is a time-
consuming and potentially error-prone process requiring advanced knowledge
of transformation languages. Moreover, any change made to the synchronized
languages or notations may render the transformations obsolete. Our prior re-
search presents an automated technique for generating synchronization transfor-
mations. This method offers users the ability to define mapping rules between two
domain-specific modeling languages (DSMLs) using a textual mapping modeling
language (MML). The resulting mapping model serves as input for higher-order
transformations (HOTs), which automatically produce synchronization trans-
formations [8]. While originally developed for the generation of synchronization
infrastructure in blended modeling, the approach is highly versatile and can be
adapted for a variety of purposes. This paper focuses on its application and
validation in model migration in industrial settings.

2.2 Migration of UML-RT models

HCL RTist is an advanced version of Rational Rose Real-Time (RoseRT), a
tool owned by Rational Software and released in 2000. Later in 2007, IBM and
Rational Software introduced Rational Software Architect Real-Time Edition
(RSARTE). RSARTE, based on the Eclipse platform, offered several advantages
over RoseRT, including access to Eclipse’s rich features and support for UML
2.x. [14]. In 2016, IBM and HCL introduced a rebranded RSARTE version called
HCL RTist. RoseRT import wizard [14] was defined to allow the migration from
RoseRT to RSARTE and HCL RTist. Models created in RSARTE could be
easily used in HCL RTist without migration since both tools utilize the same
model file format and generate identical C++ code. The utilization of RSARTE
models is possible within the open-source Papyrus framework as well. It requires
installing the Papyrus component RSA model importer in Papyrus 3.x, and it
translates RSA models (.emx files) into Papyrus models, and RSA profiles (.epx
files) into Papyrus profiles [11]. XMI toolkit is an add-on product for IBM Ra-
tional Rhapsody that enables the migration of models created in RSARTE into

Cross-Platform Migration of Software Architectural UML-RT Models 5

Rational Rhapsody [12]. While these solutions have been successful in migrating
UML-RT models, they are tool and language-specific and do not address the
migration of UML-RT models defined in HCL RTist to RTist in Code.

2.3 Model migration and model co-evolution

In the MDE paradigm, the concepts of model migration and model co-evolution
are frequently used interchangeably and are generally regarded as the result of
metamodel evolution. Rose et al. [15] categorize model migration approaches
into manual specification approaches (e.g., Java8, ATL9, QVTo10), operator-
based co-evolution approaches [16–18], and metamodel matching approaches [9,
19–21]. As they point out, using general-purpose or model transformation lan-
guages to manually specify migration strategies empowers developers, but it also
requires more effort as they do not capture commonly occurring patterns, such
as copying unchanged elements from the source model to the target model. The
same limitation applies to operator-based co-evolution. Metamodel matching,
on the other hand, requires minimal user effort, but may not always provide
deterministic results. Rebig et al. [22] develop a more detailed taxonomy of so-
lution techniques for the co-evolution of metamodels and models and categorize
31 existing approaches. One might question the approach employed in this study
and argue that a customized approach to model migration and co-evolution may
be more effective at defining the migration strategy. The RTist and RTist in
Code case, however, does not involve metamodel evolution, since the underly-
ing languages are defined separately. RTist models conform to UML metamodel,
UML-RT, and CppPropertySet profiles. These profiles extend UML concepts to
make RTist suitable for modeling real-time systems. RTist in Code models, on
the other hand, conform to a single compact language known as Art. While Art
shares conceptual similarities with UML metamodel, UML-RT, and CppProper-
tySet profiles, it is a distinct and more compact language. Given the substantial
differences between metamodels, implementing the aforementioned approaches
may pose challenges or lead to inefficiencies. Moreover, this study also aims to
validate the flexibility and versatility of our previously proposed approach by
exploring its application for model migration.

3 Model migrator and model splitter

This section describes the steps involved in the implementation of the model
migrator and model splitter. A prerequisite for the successful migration of models
is that the languages involved should be defined as Ecore-based metamodels. The
latter refer to structured data representations that are described and defined
employing the Ecore meta-modeling language, an integral part of the Eclipse
Modeling Framework (EMF) [23]. Fig. 1 illustrates the process.
8 https://www.java.com/en/
9 https://www.eclipse.org/atl/

10 https://wiki.eclipse.org/QVTo

6 Latifaj et al.

Starting from UML, UML-RT, and CppPropertySet as Ecore-based source
metamodels and Art as Ecore-based target metamodel, the uml_2_art.mapping
mapping model describes the relationship between the source and target ele-
ments, as well as the constraints driving the transformation. The defined map-
ping model is used as input for the HOT, generating the uml_2_art.qvto model-
to-model transformation. Upon execution of this transformation, the graphical
models originally defined in RTist are translated into textual Art models. The
resulting Art models can be then imported into RTist in Code in either VS
Code or Eclipse Theia, allowing users to continue their development work us-
ing their preferred environment. By this point, users who wish to continue their
development process within a single .art file have reached the final step. Alterna-
tively, users who prefer to split the generated Art model into multiple .art files
can leverage the model splitter that, guided by a user-defined splitting strategy,
splits the generated model into multiple .art files.

Section 3.1 delves into the details regarding the mapping model (i.e., the
foundation for the model migrator) while Section 3.2 describes the model splitter.
Implementation details on the MML and HOT can be found in our prior work [8].

Fig. 1. Model migration and model splitting workflow

3.1 Mapping model definition

The definition of the mapping model is driven by language engineers who have
an understanding of the syntax and semantics of both the source and target lan-
guages and is the sole input required to build the migration tool. Unless any of
the languages involved is modified, the mapping model only needs to be defined
once. The UML metamodel serves as the “base” metamodel, with its concepts
being mapped to the corresponding concepts in the Art Language. UML is, how-
ever, designed to be a general-purpose modeling language applicable to various
domains, making it inherently expansive and all-encompassing. Despite the sig-
nificant contribution of the involved profiles to the definition of mappings, the

Cross-Platform Migration of Software Architectural UML-RT Models 7

vastness of UML still represents a significant challenge. To tame this complexity,
the mapping model is established using a systematic approach, starting with the
identification of UML concepts extended by the profiles and the identification
of additional UML metamodel concepts and relationships used in RTist. The
set of identified UML concepts is first reviewed by language engineers and then
mapped to corresponding Art language concepts. UML-RT and CppProperty-
Sets profiles allow the extraction of information about specific UML elements
that exhibit UML-RT characteristics and are required to guide the transforma-
tion. For instance, a UML class stereotyped with umlrt::Capsule, implies that
the class represents a capsule in UML-RT. The language engineer defines con-
ditions that identify these stereotyped classes and map them to corresponding
elements in the target metamodel.

The definition of the mapping model for this particular use case required
a minor customization to the MML and HOT. The main concept of MML, as
discussed in [8], is the MappingRule. MappingRule instances, also referred to
as mapping rules, establish the relationship between elements in the source and
target metamodels. They can be classified into immediate mapping rules and
child mapping rules depending on the type of source and target meta-elements.
Child mapping rules serve various purposes depending on the values assigned to
their source and target attributes. One of these purposes is to facilitate model
element navigation. Specifically, when metamodels exhibit structural and/or con-
ceptual differences, it may be necessary to traverse different paths, additional
references, or intermediate elements to accurately map the source model ele-
ments to the target model elements. The implementation of MML and HOTs
automates navigation to the greatest extent possible while ensuring the genera-
tion of deterministic transformations. However, attempting to cover every corner
case would be impractical due to the increased complexity involved in defining
the mapping model. The vastness of UML and the disparities between UML and
Art necessitate intricate navigation paths combined with OCL operations for
accessing references and attributes. The initial version of MML and HOTs did
not support all the scenarios encountered in this case. To address unanticipated
or complex corner cases without compromising the simplicity and usability of
the mapping modeling language, a VariableDeclaration concept has been in-
cluded in the MML. This concept enables users to define variables in a free-form
manner (i.e., String type), capturing specific operations or scenarios that are
not directly supported by the MML’s constructs. Considering that this feature
can serve multiple purposes, other custom transformation logic not currently
supported by the MML can be incorporated as well. Upon completion of the
mapping model definition, the latter is used as input to the HOTs, resulting in
the generation of QVTo model transformation, execution of which leads to the
generation of Art models.

3.2 Model splitter

Art models in RTist in Code can be organized according to the user’s preferences.
While some users choose to develop their model within a single generated .art

8 Latifaj et al.

file, others opt for a different approach where they partition the generated Art
model into multiple .art files, distributing the elements across different files.

In organizations where multiple people work simultaneously on the same
model, it is common to have many files, sometimes even one model element per
file (in case of complex elements). This reduces the possibility that more than
one person edits the same file at the same time, resulting in merging conflicts.
Moreover, with modern machines having multiple cores, model splitting is also
beneficial for separate compilation. Translation of many small files concurrently
is more efficient than translating fewer large files. As part of the parallelizing code
generation process in RTist in Code, the C++ generator utilizes a thread pool,
with each thread handling a specific .art file and producing .cpp and .h output
files. In comparison, RTist parallelizes only the final stage of code generation.
This indicates that code generation in RTist in Code can be significantly faster.

To benefit from the code generation capabilities of RTist in Code, a model
splitter defined in Java takes the generated Art model as an input and generates
multiple .art files, each containing part of the model. Splitting the model can
be accomplished according to a default strategy or a custom one. In the default
strategy, the partitioning process separates each capsule, class, and protocol
into individual files. If the default strategy does not meet the users’ needs, they
can define a custom splitting strategy using a textual syntax. Through this
syntax, they can group specific elements according to their preferences by simply
defining the names of the instantiated elements (and their types if necessary).

For instance, consider the PingPong example, which consists of three capsules
named Top, Ping, and Pong, along with a protocol named Proto. Specifically,
the user is requesting that the Top capsule and Proto protocol be separated into
separate files, while the Ping and Pong capsules remain within the same .art
file. Listing 1.1 details the custom splitting strategy. Line 1 allows importing
the model file and accessing the necessary data. Line 2 and 3 specify that both
default and custom splitting strategies are applied to the imported model. This
implies that all capsules, classes, and protocols, except those explicitly mentioned
in Line 4, should be separated and stored individually in distinct files. On the
other hand, the elements specified in Line 4, namely Ping and Pong, should be
combined into a single file named PingPong.

1 import PingPongExample.art
2 default: yes
3 custom: yes {
4 elements: Ping , Pong filename: PingPong;
5 }

Listing 1.1. PingPong example splitting strategy

4 Discussion and Conclusions

This paper proposes a model migrator designed to facilitate the seamless mi-
gration of models from RTist to RTist in Code and a model splitter specifically

Cross-Platform Migration of Software Architectural UML-RT Models 9

designed to allow users to organize their Art models into multiple files as re-
quired, providing them with greater flexibility.

The validation process for the migrator is still in its early stages. The model
transformations have been tested on a limited group of RTist models with match-
ing RTist in Code models provided by HCL. While the test suite is expanding
to include more models, the ultimate validation will involve comparing the C++
code generated from migrated models with the code from the original RTist
graphical models. However, this comparison is pending due to the ongoing de-
velopment of the C++ generator in RTist in Code. Once it is finalized, a com-
prehensive validation will determine the extent to which the C++ code derived
from the migrated models accurately matches the code derived from the source
graphical models. Considering the separate compilation capability of RTist in
Code, the latter should perform better on code generation than RTist, result-
ing in a faster code generation process. We are currently carrying out extensive
validation of the model migrator on a larger set of models and initiating a com-
parative analysis between the C++ code generators in RTist and RTist in Code.

One notable advantage of the approach employed to implement the model
migrator is its inherent flexibility and adaptability to language evolution. As
software languages evolve and undergo revisions, traditional model migrators
often struggle to accommodate these changes. Using the approach presented in
this paper facilitates the adaptation of the model migrator to language enhance-
ments by allowing the customization of mappings at a higher level of abstraction
than that of model transformations. This not only saves developers considerable
time and effort but also ensures the migration solution’s long-term sustainability.

This study primarily focuses on the migration from RTist to RTist in Code;
however, it is imperative not to confine its relevance solely to a specific user
group. The proposed approach possesses the potential for seamless adaptation
to diverse migration scenarios involving other pairs of Ecore-based metamodels.
This adaptability can be achieved through the formulation of high-level map-
pings that describe the relation between the concepts of the source and target
metamodels. In future work, we will explore further enhancements to the gener-
ation approach and investigate its applicability to other migration scenarios.

References

1. Garlan, D., Shaw, M. (1993). An introduction to software architecture. In Advances
in software engineering and knowledge engineering (pp. 1-39).

2. Schmidt, D. C. (2006). Model-driven engineering. Computer-IEEE Computer
Society-, 39(2), 25.

3. Unified Modeling Language Specification. (2017, December). Object Management
Group. Retrieved June 1, 2023, from https://www.omg.org/spec/UML/2.5.1/PDF

4. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., and Tang, A. (2012). What in-
dustry needs from architectural languages: A survey. IEEE Transactions on Software
Engineering, 39(6), 869-891.

5. Selic, B. (1996). Real-time object-oriented modeling. IFAC Proceedings Volumes,
29(5), 1-6.

10 Latifaj et al.

6. Latifaj, M., Ciccozzi, F., Mohlin, M., Posse, E. (2021, September). Towards Au-
tomated Support for Blended Modelling of UML-RT Embedded Software Architec-
tures. In ECSA (Companion).

7. Ciccozzi, F., Tichy, M., Vangheluwe, H., Weyns, D. (2019, September). Blended
modelling-what, why and how. In 2019 ACM/IEEE 22nd International Conference
on Model Driven Engineering Languages and Systems Companion (MODELS-C)
(pp. 425-430). IEEE.

8. Latifaj, M., Ciccozzi, F., Mohlin, M. Higher-order transformations for the genera-
tion of synchronization infrastructures in blended modeling. Frontiers in Computer
Science, 4, 2023.

9. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A. (2008, September). Au-
tomating co-evolution in model-driven engineering. In 2008 12th International IEEE
enterprise distributed object computing conference (pp. 222-231). IEEE.

10. Rose, L. M., Kolovos, D. S., Paige, R. F., Polack, F. A. (2010). Model migration
with epsilon flock. In Theory and Practice of Model Transformations: Third Inter-
national Conference, ICMT 2010, Malaga, Spain, June 28-July 2, 2010. Proceedings
3 (pp. 184-198). Springer Berlin Heidelberg.

11. Papyrus Guidelines, https://opennetworking.org/wp-content/uploads/2018/
08/TR-515_Papyrus_Guidelines_v1.3-1-1.pdf. Last accessed 31 May 2023.

12. International Business Machines (IBM), https://www.ibm.com/docs/en/
SSB2MU_8.3.1/com.ibm.rhp.oem.pdf.doc/pdf/sodius/Rhapsody_RSART\
_Integration.pdf. Last accessed 31 May 2023.

13. HCL RTist, https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.
webdoc/pdf/RTist_RoseRT_MigrationBestPractices.pdf. Last accessed 31 May
2023.

14. HCL RTist, https://rsarte.hcldoc.com/help/index.jsp?topic=\%2Fcom.ibm.
xtools.rsarte.webdoc\%2Fusers-guide\%2Foverview.html. Last accessed 31
May 2023.

15. Rose, L. M., Paige, R. F., Kolovos, D. S., Polack, F. A. An analysis of approaches
to model migration. In Proc. Joint MoDSE-MCCM Workshop (2009), (pp. 6-15).

16. M. Herrmannsdörfer. COPE - a workbench for the coupled evolution of metamodels
and models. Proceedings of the International Conference on Software Language
Engineering (SLE) (2010), pp. 286-295

17. G. Wachsmuth. Metamodel adaptation and model co-adaptation. European Con-
ference on Object-Oriented Programming (ECOOP) (2007), pp. 600-624

18. M. Herrmannsdörfer, G. Wachsmuth. Coupled evolution of software metamodels
and models. Evolving Software Systems, Springer (2014), pp. 33-63

19. B. Meyers, M. Wimmer, A. Cicchetti, J. Sprinkle. A generic in-place
transformation-based approach to structured model co-evolution. Proceedings of
Multi-Paradigm Modeling (MPM) Workshop (2010), pp. 1-13

20. A. Cicchetti, F. Ciccozzi, T. Leveque, A. Pierantonio. On the concurrent versioning
of metamodels and models: challenges and possible solutions. International Work-
shop on Model Comparison in Practice (IWMCP) (2011), pp. 16-25.

21. K. Garcés, F. Jouault, P. Cointe, J. Bézivin. Managing model adaptation by pre-
cise detection of metamodel changes. Proceedings of the European Conference on
Modelling Foundations and Applications (ECMFA) (2009), pp. 34-49.

22. Hebig, R., Khelladi, D. E., Bendraou, R. Approaches to co-evolution of metamodels
and models: A survey. IEEE Transactions on Software Engineering (2016), pp. 396-
414.

23. Steinberg, D., Budinsky, F., Merks, E., and Paternostro, M. (2008). EMF: Eclipse
Modeling Framework (Pearson Education).

