
Automatic Clustering of Performance Events
Shamoona Imtiaz1, Gabriele Capannini1, Jan Carlson1, Moris Behnam1, Marcus Jägemar2

1 Mälardalen University, Västerås, Sweden, 2 Ericsson AB, Stockholm, Sweden
1first.last@mdu.se, 2first.last@ericsson.com

Abstract—Modern hardware and software are becoming in-
creasingly complex due to advancements in digital and smart
solutions. This is why industrial systems seek efficient use of
resources to confront the challenges caused by the complex
resource utilization demand. The demand and utilization of
different resources show the particular execution behavior of the
applications. One way to get this information is by monitoring
performance events and understanding the relationship among
them. However, manual analysis of this huge data is tedious and
requires experts’ knowledge. This paper focuses on automatically
identifying the relationship between different performance events.
Therefore, we analyze the data coming from the performance
events and identify the points where their behavior changes.
Two events are considered related if their values are changing
at ”approximately” the same time. We have used the Sigmoid
function to compute a real-value similarity between two sets
(representing two events). The resultant value of similarity is
induced as a similarity or distance metric in a traditional
clustering algorithm. The proposed solution is applied to 6
different software applications that are widely used in industrial
systems to show how different setups including the selection of
cost functions can affect the results.

Index Terms—Performance monitoring counters, Performance
events, Hierarchical clustering, Sigmoid function, Similarity mea-
surement, Similarity detection, Change point detection.

I. INTRODUCTION

Computers are subject to hardware resource management
in a fashion similar to cognitive load management in humans.
Consider a technician decommissioning hardware from a data
center while enjoying the music with headphones on. Mean-
while, a sudden alarm urges immediate attention. Listening to
the music while handling the alarm does not amuse anymore,
a vigilant response of the technician to handle the situation is
imperative. This is cognitive load and switching off the music
is required to manage the case. The same applies to machines,
resource management is the amount of information a machine
can load and process at one time. A system can possibly be
efficient and competitive by improving its software and hard-
ware utilization behavior. In general, it needs to be considered
critically which applications are running in the environment
and how they affect the system performance. This is why
deploying industrial applications requires extensive resource
utilization analysis in terms of computational cost, memory
requirements, load balancing, scheduling and Quality of Ser-
vice (QoS). Performance events such as L1 Cache Misses,
Branch Instruction retired, Instructions Retired, Page faults,
TLB Misses demonstrate the resource utilization of an ap-
plication on a platform [1]. The knowledge gained is useful

Acknowledgements: This work was supported by the Knowledge Founda-
tion in Sweden through the ACICS project (20190038).

for software developers, system integrators and performance
engineers in terms of load & efficiency, responsiveness and
resource utilization analysis respectively.

One way to monitor performance events is the use of
Performance Monitoring Counters (PMCs), available in the
Performance Monitoring Unit (PMU) of the modern computer.
These hard-wired special purpose registers are used to record
the events that occurred by the utilization of software and low-
level hardware resources such as cache, memory, processor,
translation lookaside buffers (TLB) and data bus. On the
one hand, it is possible that multiple performance events
are related to the same hardware resource and on the other
hand one performance event may cause the generation of
another performance event. Moreover, in a shared resource
environment the impact, relations and dependency between
different performance events are more significant than ap-
parent. A shared cache can really destroy the performance
and increasing the cores to serve the simultaneous hardware
utilization demand of all the applications running in parallel is
not an efficient use of resources. However, the interpretation of
such a complex execution behavior is indeed hard to visualize
without an intelligent tool. Moreover, tools to investigate
which performance events are related are not openly available
if there exists any. Consequently, the probability of missing the
signs and clues of parallelism, dependencies and relationship
between different resources gets higher.

Nonetheless, a problem cannot be solved without solving the
cause and not every performance problem can be solved in one
scenario. Hence, the focus of the study is to identify the exis-
tence of a relationship between different performance events
with respect to time. However, the captured resource utilization
behavior is sensitive to the sampling rate and the platform
where the application is running. For such reasons, finding one
single model for complex behavioral data is itself a challenge.
One way to reduce the complexity of the working set is using
segmentation [2]. Segmentation divides the longer sequence
into smaller parts (segments) based on applied criteria. The
positions where the sequence is chopped down are called
segmentation points. So rather than point-to-point comparison,
identifying relationships based on the segmentation points is
more appropriate to circumvent the sampling bias and different
loads of the execution environment. It also gives the advantage
of breaking down the rational and affinitive behavior based on
the abrupt changes in the data distribution [3, 4]. Therefore,
instead of quantifying the magnitude of change for the sake of
similarity, we consider performance events to be related who
experience a change from their previous norm in a similar time
fashion.979-8-3503-3990-1/23/$31.00 ©2023 IEEE

In 28th Annual Conference of the IEEE Industrial Electronics
Society (ETFA2023), September 12–15, 2023, Sinaia, Romania.

Groups of related data sets can be determined statistically
through clustering analysis. However, clustering analysis is
not limited to one approach. Regardless of the constitutional
basis of a clustering algorithm (such as distance, density, or
connectivity) [5] all clustering algorithms require at least one
homogeneous feature for grouping. Having change points as a
feature of similarity hinders the use of off-the-shelf clustering
algorithms since the number of changes in each performance
event is unlikely to be the same. That being the case, we have
instrumented the traditional Hierarchical Clustering algorithm
with a customized cost function to handle the inconsistency
of the data sets. This work builds upon our previous work on
automated performance monitoring [6] and segmentation of
resource utilization data [7], addressing clustering of perfor-
mance data based on the identified segments. The provision
of such knowledge helps engineers to make interpretations
based on their interests. They can target a particular group
of performance events rather than multiplexing the hundreds
of performance events, especially when the number of perfor-
mance monitoring counters is limited per platform. Therefore,
our main contributions are:

a) Similarity based on segmentation points: Our first
contribution is to identify not the same but somewhat similar
performance events based on the segmentation points. Based
on that we calculate the proximity of similarity for the ordered
sequences of numbers. The length of ordered sequences in
comparison can be different.

b) Clustering based on customized distance function:
Our second contribution is to compute the pairwise matrix
using our similarity function. Such that the matrix can be
utilized by the traditional clustering algorithms to identify the
groups of similar performance events.

Briefly, we start our study by presenting a technical back-
ground in Section II for the readers to easily understand the
contribution made through this work. Next, we present our
proposed solution in Section III describing the approach used
to achieve the goal of the study. The implementation details
and the experimental setup is then outlined in Section IV.
Following the implementation details, results are discussed
in Section V to extend the reader’s knowledge. The state-
of-the-art and related work to our study is then presented in
Section VI. Finally, the anticipated future work followed by
the conclusion concludes the paper in Section VII.

II. BACKGROUND

We use the Performance Monitoring Counters (PMCs) to
capture the resource utilization data of the applications. The
segmentation points are identified using the change point
detection method. Having these working sets ready for analysis
similarity is measured using different cost functions. The
weights of these costs are then considered during the grouping
of performance events.

A. Performance Monitoring Counters
The processor is one of the main information sources when

observing activities in computing devices. A fixed number of
registers are available to record the low-level performance
information at the CPU cycle level [8]. The performance

information is an observable activity, state or signal coming
from hardware, software, or kernel. This observable activity
is called an event and there can be hundreds of such events
that are been generated by the application when it is running
on a platform. In comparison to a large number of available
events, only a limited number of registers are available per
platform. These registers are called Performance Monitor-
ing Counters (PMCs) [1]. Though the number of available
PMCs is processor-specific, they are always significantly less
than the available performance events [1, 9, 10]. Therefore,
multiplexing is required when monitoring a high number of
performance events. A non-standardized event naming and
numbering scheme between hardware architectures further
complicates the portability of low-level performance mon-
itoring tools. However, a significant effort has been made
by the cross-platform tool called Performance Application
Programming Interface (PAPI) to standardize the performance
events names [11]. PAPI also gives the ability to collect all
platform-specific performance events called native events. In
this study, we use PAPI to collect performance monitoring
data.

B. Change Point Detection
Change point detection is a well-known statistical method

for locating changes in terms of mean, variance, or standard
deviation of a data set. The offline method requires complete
data series beforehand and applies a penalized contrast func-
tion to locate the positions of abrupt changes in the entire
data distribution. The iterative method continues to repeat until
the aggregate deviation based on empirical estimate becomes
minimum, called residual error [3, 4]. The parametric function
allows different attributes for trend analysis such as the number
of changes, the statistical method to be applied, the threshold
for minimum residual error improvement, and the minimum
distance between change points.

Some of the popular applications of change point detection
are signal processing, genome, trend analysis, time series,
intrusion detection, spam filtering, website tracking, quality
control, step detection, edge detection, and anomaly detection.
We use change point detection to identify the change in trend
such that the change in the behavior of one performance
event leads towards an impact on another performance event’s
behavior.

C. Sequence Similarity - Similar Is Not Same
Sequence analysis or sequence similarity analysis is a

popular method of identifying DNA similarity, a span of
life trajectories & career and text similarity, alignment dis-
tances, document similarity and classification [12]. Some
of the known methods are distance function (Chi-Squared,
Euclidean), common attributes (Hamming Distance, Longest
Common Subsequence), edit distance, cosine similarity and
Jaccard similarity. These methods are usually based on the
measure of distance, order, position, time, duration and/or the
number of repetitions [12]. Edit Distance can be an appropriate
choice if the aim is to quantify the inequality. It applies a
weight for each edit function (insertion, deletion, substitution)
until a sequence becomes identical to the other one. Cosine

similarity is useful when similarity is not intended in terms
of the size of the data. It can also be used in situations when
the data sets are of different lengths and the orientation of the
data is more important than the magnitude of the data [13].
The Jaccard similarity is a proximity measurement of shared
properties i.e., size of intersection over the size of union [14].

All of these methods are based on an exact match of
elements. However, in a classification problem, it is possible
that some items are similar but not the same. Things are the
same if they are identical to each other. Things can still be
similar if they are not exactly the same. For example, if there
are four sequences as below:

S1 = {3, 5, 7, 1700},
S2 = {3, 5, 7, 1700},
S3 = {2, 5, 9, 1700},
S4 = {3, 5, 1700}

We can see, the sequence S1 and sequence S2 are the same
because all of their elements are an exact match to each other
yet S3 and S4 are similar to S1 and S2. The matching criteria
of this study is similarity.

D. Bounded Cost Function

In a matching principle, the similarity is quantified with
probability when the objects in comparison are not exactly
the same. There are many ways to compute the probability
such as the Binary step function, Linear functions, and Non-
linear functions. The binary step function applies a static
cost if a certain threshold is passed. The drawback is that it
does not provide back-propagation. Linear functions are mean,
variance, and covariance and they also do not offer back-
propagation and the absence of one value can augment the cost
of the others. In comparison, there is a variety of non-linear
cost functions such as Sigmoid, Hyperbolic Tangent (Tanh),
Rectified Linear Unit (ReLU), and Exponential Linear Unit
(ELU) [15]. These functions have the advantage to propose
a smooth and bounded cost. For example, Sigmoid converts
the number on a scale of 0 and 1 and gives the probability
value as output. Its smooth scale gives the rate of change
based on the gradient descent. The bounded scale is good to
estimate the likelihood of probability which is why they are
considered reliable to use with analysis algorithms for opti-
mization purposes. The Sigmoid function is also important in
logistic regression. Logistic regression is used to predict binary
classification where Sigmoid plays the role of the activation
function. Therefore, we use the non-linear Sigmoid function
to calculate a decent cost to be applied while matching the
sequences.

E. Clustering Analysis

Clustering analysis is a classification technique for the
grouping of objects with respect to a predefined matching
rule. A rule can be distance, density, location, similarity, or
any. There are various clustering algorithms: Hierarchical,
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN), K-means and Nearest Neighbor [16].

In Hierarchical clustering, a multilevel hierarchy of clusters
is formed such that each cluster is found based on a similarity
function between the data points. First of all pairwise distance
based on similarity is computed and then clusters of objects
are created using close proximity. The iterative method keeps
growing the binary tree into a larger cluster based on the
pairs. However, not to forget, Hierarchical clustering does
not perform well when the data set is too large. DBSCAN
is also a distance-based clustering method and can work not
only with traditional distance measurements like Euclidean,
Manhattan and Hamming distance but also with customized
distance functions. A customized distance function can then be
used during the computation of the distance matrix for making
decisions. Both Hierarchical and DBSCAN, do not need to
know the number of clusters to find beforehand therefore this
makes them good candidates for clustering for this study.

III. PROPOSED SOLUTION

We propose a two-step method that identifies the groups of
similar performance events based on our customized similarity
measurement.

A. Similarity Detection

This section firstly describes the measurement approach,
segmentation points, and sequence used in this study and
proposed in [7]. Then our method for evaluating the similarity
of two given sets of segmentation points is introduced. To
this end, we defined our own similarity function which is
inspired by the Jaccard similarity coefficient [17]. While the
original definition is based on counting the number of identical
elements occurring in two input sets, we aim to have a more
flexible definition of matching between a pair of elements.
This has been achieved by exploiting a pairwise cost function
mapping the difference between two elements into the range
[0, 1] where zero denotes a perfect matching, i.e., the elements
are the same. By means of the proposed cost functions, we
defined our similarity measure and, then, populated a similarity
matrix that acted as input for the chosen clustering algorithm
i.e., Hierarchical clustering.

a) Measurement approach: For a given application, p,
we define a set of performance events, E , of size n . For each
e ∈ E , a measurement series, mi , of Li data points is collected
at frequency, f [6]. As a result, we get n measurement series
for the application p such that M(p) = {mi : 1 ≤ i ≤ n}
where mi is a time ordered series of i -th performance event.

b) Segmentation points and Sequences: Segmentation
points are the points where abrupt changes in measurement
are coming and the sequence is an ordered list of successive
numeric elements. Using the statistical change point detection
method, the segmentation points are identified through the
mechanism devised in [7]. Thereby an ordered sequence
pts(mi) of di number of segmentation points for each mi

is detected such that |pts(mi)| ∈ (1 , di]. Each element in
pts(mi) corresponds to a perceived change in trend after a
stable behavior and |pts(mi)| can be different for each mi .

0
0

1

g1 g3

c1(x)

c2(x)

c3(x)

Fig. 1. Plot of the cost functions proposed with the thresholds g1 and g3.

c) Cost Functions: Let p1 and p2 a pair of points be-
longing to pts(m1) and pts(m2), respectively. A cost function
returns a higher value when p1 and p2 are more distant. The
cost function is required to be defined in [0,+∞) and return a
value in [0, 1] where values near 1 denote a higher difference
between p1 and p2.

As candidate cost functions we defined three monotone non-
decreasing functions depicted in Figure 1 where x = |p1−p2 |
and defined as:

c1(x) = 0.5 · k1x− k1g1√
(k1x− k1g1)2 + 1

+ 0.5 (1)

c2(x) =
k2x√

(k2x)2 + 1
(2)

c3(x) = min(1, (g3x)
2) (3)

Here, any g parameter (i.e., g1 and g3) is a similarity
threshold defining the dividing point between “similar points”
(if x < g) and “different points” (if x > g) while k (i.e., k1
and k2) is a positive factor used to flatten the functions thus for
tuning the degree of uncertainty in defining the similarity value
returned. Parameter g selection can be challenging in terms of
level of strictness therefore the g is been used in three different
scenarios through Equations 1, 2 and 3 as firm, rigorous and
strict, respectively. Whereas parameter k is tweaked to create
the ’S’ shape curve of the Sigmoid function. In more detail:

• The first cost function c1, Equation 1, is a non-linear
Sigmoid function having the parameter g1 as similarity
threshold that denotes the point where the function be-
comes concave, as shown in Figure 1. The function also
requires the parameter k1 which denotes how fast the
function approaches the extremes (i.e, 0 and 1) while
getting away from g1 .

• The second cost function c2, Equation 2, corresponds
to the concave part of another non-linear Sigmoid func-
tion. Here there is no parameter defining the similarity
threshold (i.e, g = 0), like in c1, just the factor k2 for
flattening the function, which is to set how quickly it
reaches the upper extreme while getting away from zero.
This function considers the absolute distance between p1
and p2 regardless of the similarity threshold so the cost is
calculated at one step function hence resulting in a higher
aggregated cost.

• Our last cost function c3, Equation 3, is a quadratic
function where a factor g3 defines the point of maxi-

mum distance between p1 and p2 after which the two
compared points returns the maximum cost.

In the following, one of the cost functions is applied at a
time to test the accuracy of each.

d) Similarity Function: Let A,B ∈ pts(mi) be two
sequences of ordered numbers to be compared. Our similarity
function is inspired by Jaccard similarity [17] defined as:

J(A,B) =
|A ∩B|
|A ∪B| =

|A ∩B|
|A|+ |B| − |A ∩B| (4)

For our similarity function, rather than using the number of
elements that are present in both sets, |A ∩ B|, we calculate
the matching degree between the two sets by means of a given
cost function c.

In particular, let |B| ≤ |A|, we assess |A∩B| as the result
of summing 1 − c(|b − a⋆|) for each b ∈ B where a⋆ refers
the closest element of A to b, thus returning the lowest cost
for matching b into A according to c. Therefore, we define
σ =

∑
∀b∈B c(|b− a⋆|) and replace |A ∩ B| with |B| − σ in

Equation 4 to define our similarity function:

jSim(A,B, c) =
|B| − σ

|A|+ σ
(5)

The implementation of jSim is presented in Algorithm 1
where A and B are two non-empty sets of values sorted in
ascending order and c is one of our cost functions. Such
assumptions come directly from our case study; in more
general cases, Algorithm 1 can be modified to return zero
if either A or B is empty as well as A and B can be sorted
beforehand if they are not (rising, in this way, the overall
computational complexity which is now linear).

First, the algorithm checks that |B| is smaller than |A|
otherwise the two sets are swapped (line 3). This check is
crucial since performing the matching from the smallest set
to the largest one, and not vice-versa, limits the number
of matching pairs between A and B so as to ensure that
the numerator in Equation (5) does not get greater than the
denominator and the returned similarity value lies in [0, 1]. As
counter example, assume that B = {3, 6} and A = {4} while
c(a, b) simply returns 0 if |a − b| < 5 otherwise 1. Skipping
line 3 in Algorithm 1 leads to having jSim(A,B, c) =
(2−0)/(1+0) = 2 (since all pairwise absolute distances are
less than the threshold 5 hence σ ← 0) while, enabling the
swap-test, jSim(A,B, c) = 0.5 < 1 as required.

The algorithm finds the best match for each value in B by
calculating the related cost against the closest element in A. To
keep low the overall computational complexity, Algorithm 1
takes advantage of the sorted inputs and logically divides
A into a number of ranges defined by pairs of consecutive
elements (identified by l, the left end-point, and r, the right
end-point). As depicted in the example in Figure 2, the
algorithm calculates the cost associated with the elements of
B belonging to the current range [l, r) by matching each of
them with the closer end-point then adds the related cost to σ
(line 11).

As soon as the elements of B become greater than r,
the range-endpoints are shifted forward to include the next

Algorithm 1: jSim(A,B, c) computes the similarity
between two non-empty sets of ordered values, A =
{a0, ..., a|A|−1} and B = {b0, ..., b|B|−1}, given a cost
function c.

1 function jSim(A,B, c)
2 if |B| > |A| then
3 swap(A,B)
4 l← −∞
5 r ← a0
6 i← 1
7 j ← 0
8 σ ← 0
9 while true do

10 while j < |B| ∧ bj < r do
11 σ ← σ + c(min(bj − l, r − bj))
12 j ← j + 1
13 if i = |A| ∨ j = |B| then
14 break
15 l← r
16 r ← ai
17 i← i+ 1
18 while j < |B| do
19 σ ← σ + c(bj − r)
20 j ← j + 1
21 return (|B| − σ)/(|A|+ σ)

A = {5, 7, 37, 237, 433, 630, 1685}

B = {5, 171, 1812}

Fig. 2. In this example, the red element is the only one in the blue range
and it will be associated to the right end-point (i.e., r = 237) which is closer
than the other one (i.e., l = 37).

A element (lines 15 and 16) and the matching process is
repeated until the end of A or B is reached (line 14). In case
A terminates before all elements of B have been matched,
the cost for the remaining B elements is computed against
the last element of A (line 19) which is straightforwardly the
closest one. Once σ has been calculated, Algorithm 1 returns
the similarity jSim as defined by Equation 5 (line 21).

It turns out that each element of B is tested once while
sliding the endpoints r and l over A while the cost for
matching any remaining B elements is calculated directly
sweeping the tail of B, hence the overall number of operations
performed by Algorithm 1 is O(|A|+|B|).

B. Group Identification

Followed by the similarity detection, let jSimMtrx be the
n×n matrix for pts(m[i..n]) such that each row contains a
pairwise similarity with all other sequences in the data set,
in Algorithm 2 line 4. The matrix is then used to compute
the distance between any of the two sequences such that
∆(pts(m1), pts(m2)) using a linkage function. Since we
opt to choose an unsupervised technique i.e., agglomerative

hierarchical clustering, the linkage function is augmented
with our customized jSimMtrx and linkage type (which is
′complete′ in our case). We do not need to define the cut-
off since the interest was real proximity of similarity. The
function performs n(n − 1)/2 comparisons to generate a
3-column pairs matrix, Algorithm 2 line 5. The pairs is
then used to form the clusters with respect to the minimum
distance between sequences and merge into a tree of n leaf
nodes, the performance events. This multilevel hierarchy is
then visualized with the dendrogram graphical tool which is
well-known for qualitative and quantitative evaluations.

Algorithm 2: Identify clusters of similar performance
events

1 load n measurements into mi ∈M(p)
2 for i← 1 to n do
3 for j ← 1 to n do
4 jSimMtrxi,j < −jSim(pts(mi), pts(mj), c)
5 jSimClusters(jSimMtrx,′complete′)

IV. IMPLEMENTATION AND EXPERIMENTS

We measure the performance of the applications by using
PAPI library version 5.7.0.0 to sample the PMCs. Since the
aim was to identify the groups of similar performance events
so the entire execution period of the applications is measured
for each event. To sample the applications a symmetric 5
milliseconds period was used which generates a varying
number of samples depending on their execution time. From
these time-based measurements, we detect segmentation points
in each using findchangepts() function available in Matlab
version R2021. Overall comparison, analysis, and visualization
of grouped sequences are performed in Matlab.

Test Applications: We have chosen 6 different applications
for the experiments based on their functions. We characterize
2×2 matrix multiplication, meltdown (a malware), SUSAN
(image processor to find corners), SIFT (a complex feature
detection algorithm to detects objects rather than just cor-
ners), Multiresolution analysis kernel (MADNESS) and Co-
variance (for Coefficient of Variance Computation). The mo-
tive behind their selection is the significant use of computation
functions and memory utilization in many industrial systems.
Such applications can enormously impact the system perfor-
mance due to their eager resource utilization demands.

Measurements: Each test application was characterized 20
times for its complete execution period using the solution
provided in [6, 7]. For each application, a different number
of performance events was captured since these events are
coming from hardware, software and kernel. The hardware
events may remain similar because they are coming from the
same platform but the list of software events may vary since
each application produces different events based on its distinct
resource utilization demand.

Results: We run the application and collect sequences of
segmentation points as proposed in [7]. A few of them are
listed in Table I with their corresponding performance event
for application meltdown. Supplying a batch of sequences to

(a) Approximate similarity using C1 (b) Approximate similarity using C2 (c) Approximate similarity using C3

Fig. 3. Pairwise proximity of similarity between some of the performance events of Meltdown application

our clustering algorithm, Algorithm 2, the similarity matrices
for a subset of performance events are illustrated in Figure 3.
A hierarchy is formed by merging the identified pairs using a
similarity matrix and is presented in Figure 4.

TABLE I
SEQUENCES OF SEGMENTATION POINTS FOR SOME PERFORMANCE

EVENTS OF Meltdown APPLICATION

Performance Event Sequence of Segmentation
Points

INSTRUCTIONS-RETIRED {37, 48, 66, 70}
PERF-L1-ICACHE-LOADS {3, 29, 52, 64, 70}
PERF-L1-DCACHE-LOAD-
MISSES

{3, 37, 41, 69}

PERF-DTLB-STORE-
MISSES

{3, 34, 36, 63}

L2-LINES-OUT {3, 40, 58, 69}
L1D-PEND-MISS {3, 5, 36, 39, 51, 58, 62, 67, 71}
TLB-FLUSH {48, 73}

V. DISCUSSION

With respect to two major contributions of the paper, it was
important to understand which cost function can establish a
good base for the classification rule. The optimal number of
classes will always be the unique data points if the classifi-
cation rule is ’identical’ only. Therefore, a prospective cost
function is anticipated to compute a real-value distance from
the closest match. Through visual observation, we evaluate c2
yields a higher cost since it applies the penalty to the absolute
distance between the points instead of a normalized cost up to
the defined threshold. This is also apparent from Figure 3 and
Table I that c2 does not perform well when competing with
c1 and c3 such as for performance events INSTRUCTIONS-
RETIRED and PERF-L1-ICACHE-LOADS. The sequences of
stated performance events are quite similar but c2 identifies
them as far distant. This also implies the fact that more
rigorous costs are expected if the sequences are derived from
the measurements consisting of thousands of data points.

However, this means c2 is relatively advantageous when strict
or close matches are desired.

The above-stated observations stimulate further investiga-
tion between c1 and c3. The c3 applies a sharp cost as soon as
the distance between the points exceeds the threshold. This is
good in a way to restrict the measure of similarity but in reality,
there is always room for sampling bias and different loads of
the execution environment within the captured performance
data. In contrast, c1 applies smoother cost not until the
threshold is reached but also while leaving the boundaries of
the similarity zone. For example, if the threshold of similarity
is 25 and the distance between two points is 26 then it does
not suddenly becomes dissimilar. Instead of a steep kick out
from the similarity zone, a smooth departure is allowed. Such
a smooth method is deemed appropriate when the data char-
acteristics are complex and rational. Next, talking about TLB-
FLUSH when compared with L1D-PEND-MISS it finds a close
match for both elements yet the similarity is low, also shown
in Figure 3a. The resultant similarity is nevertheless factual
considering the difference in the cardinality of the compared
sequences. Besides, the visual inspection of the results also
verifies the level of identified similarity. Consequently, the
performance of c1 is recognized as accepted.

Moving on to the second contribution, Figure 4 illustrates
the groups of similar performance events for applications melt-
down and 2x2matrix multiplication. The formulated hierarchy
of different sequences demonstrate how distant they are, as
shown in the case of PERF-L1-DCACHE-LOAD-MISSES,
PERF-DTLB-STORE-MISSES and L2-LINES-OUT in Fig-
ure 4a. The dendrogram clearly presents that they might not be
the same but comes in the same cluster with a certain distance.

Although the groups are not identified based on
the magnitude of change, the visual analysis of clus-
ters observes the change in behavior at a similar time
for BRANCH-INSTRUCTIONS-RETIRED, PERF-BRANCH-
LOADS, PERF-L1-ICACHE-PREFETCHES and PERF-LLC-
LOADS, in Figure 4b. This information can be used to identify
possible relevance between various resources such as processor
and L1 cache. However, to detect impact and dependence more
features are to be investigated such as the trend of data at the
segmentation points.

(a)

(b)

Fig. 4. Clustering Results for Different Applications

VI. RELATED WORK

PMCs have also been used for behavioral-image formation
where each performance event is considered as a feature [18].
The research includes features (PMCs) as images for behav-
ioral analysis using a deep learning algorithm to know the
normal or abnormal state of the system.

For finding similarity there are many existing approaches
such as DNA similarity, cosine similarity, edit distance, and
Jaccard index but they have preconditions such as identical or
different lengths, same data structure or exact matches [12, 13,
14]. The way they compare is more strict and can be applied
in absolute conditions. When it is not the case researchers
like Fletcher and Islam [19] have used the Jaccard index for
comparing patterns coming from different techniques. Their
proposed method converts each pattern into a single element
which is also the commonality between their and our solution.
However, our method to get a discrete value of similarity is
different. Their method translates each pattern into an element
of its own set whereas we compute the similarity based on
element-wise weighted distance with respect to the lengths of
the sequences. This is an additional strength of our proposed
mechanism to handle the inconsistencies of data.

A similar approach has also been applied by Koch, Zemel
and Salakhutdinov [20] for one-shot image recognition where
very limited or sometimes single example is available to
compare in supervised machine learning. They employed the
sigmoid function in convolutional neural networks to find the
similarity between the final and hidden layers of the twin
network. The approach was to scale the absolute distance
between 0 and 1 with the help of training parameters. Since
their problem was binary classification so instead of utilizing
real-value output the values from 0.5 to 1 were taken as
dissimilar. Whereas we use the resultant weighted cost as a
probability of similarity. Moreover, their working sets were
of the same length so one-to-one comparisons were directly
possible which on the contrary was not a viable option for
us. So we provide additional functionality to find the closest
possible match with our holistic and intelligent approach.

VII. CONCLUSION AND FUTURE WORK

We have presented a mechanism that can compute the
proximity of similarity between ordered sequences of uneven
lengths. The met hod based on weighted real-value costs
nicely handles the measure of dissimilarity. The method is also
flexible to choose between firm, rigorous and strict penalties
based on the needs of how strict or moderate comparisons
are to be performed. We outline the method that applies
the appropriate cost by investigating the closest match. The
mechanism was able to group different performance events
based on the segmentation points. We have also argued the
possible leads towards identifying relations and dependence
between different performance events.

Lastly, we continue toward automatically creating an ap-
plication fingerprint based on its resource utilization for de-
tection, identification or even decision-making. An immediate
extension can be relating the trends in the data before and
after the segmentation points to identify the impact between
different resources.

REFERENCES

[1] Intel, “Intel® 64 and ia-32 architectures software developer’s
manual,” Intel, Tech. Rep., 2022.

[2] E. Bingham, A. Gionis, N. Haiminen, H. Hiisilä, and H. Man-
nila, “Segmentation and dimensionality reduction,” in 2006
SIAM International Conference on Data Mining. Society for
Industrial and Applied Mathematics, 2006, pp. 372–383.

[3] MathWorks. (2023) findchangepts - Find
abrupt changes in signal. [Online]. Available:
https://ch.mathworks.com/help/signal/ref/findchangepts.html

[4] S. B. Hariz, J. J. Wylie, and Q. Zhang, “Optimal rate of
convergence for nonparametric change-point estimators for non-
stationary sequences.” 2007, pp. 1802–1826.

[5] D. Zhang, Fundamentals of image data mining, 2nd ed.
Springer International Publishing, 2019.

[6] S. Imtiaz, J. Danielsson, M. Behnam, G. Capannini, J. Carlson,
and M. Jägemar, “Automatic platform-independent monitoring
and ranking of hardware resource utilization,” in 26th IEEE In-
ternational Conference on Emerging Technologies and Factory
Automation (ETFA). IEEE, 2021, pp. 1–8.

[7] S. Imtiaz, M. Behnam, G. Capannini, J. Carlson, and
M. Jägemar, “Automatic segmentation of resource utilization
data,” in 1st IEEE Industrial Electronics Society Annual On-
Line Conference (ONCON 2022). IEEE, 2022, pp. 1–6.

[8] B. Gregg, Systems Performance : Enterprise and the Cloud
Second Edition, 2nd ed. Pearson, 2020.

[9] AMD, “Open-source register reference for amd family 17h
processors models 00h-2fh,” AMD, Tech. Rep., 2018.

[10] ARM, “Arm architecture reference manual - armv8, for armv8-a
architecture profile,” ARM, Tech. Rep., 2017.

[11] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A portable
interface to hardware performance counters,” in Proceedings of
the department of defense HPCMP users group conference, vol.
710, 1999.

[12] M. Studer and G. Ritschard, “What matters in differences
between life trajectories: a comparative review of sequence
dissimilarity measures,” Journal of the Royal Statistical Society:
Series A (Statistics in Society), 179: 481-511,, vol. 179, no. 2,
pp. 481–511, 2016.

[13] A. R. Lahitani, A. E. Permanasari, and N. A. Setiawan, “Cosine
similarity to determine similarity measure: Study case in online
essay assessment,” in 2016 4th International Conference on
Cyber and IT Service Management. IEEE, 2016, pp. 1–6.

[14] S. Niwattanakul, J. Singthongchai, E. Naenudorn, and
S. Wanapu, “Using of jaccard coefficient for keywords similar-
ity,” in International ulticonference of engineers and computer
scientists, vol. 1, no. 6. IEEE, 2013, pp. 380–384.

[15] D. Pedamonti, “Comparison of non-linear activation functions
for deep neural networks on mnist classification task,” in arXiv
preprint arXiv:1804.02763, 2018.

[16] Matlab. (2023) Choose cluster analysis method. [Online].
Available: https://se.mathworks.com/help/stats/choose-cluster-
analysis-method.html

[17] A. H. Murphy, “The finley affair: A signal event in the history of
forecast verification,” Weather and Forecasting, vol. 11, no. 1,
pp. 3 – 20, 1996.

[18] G. O. Ganfure, C.-F. Wu, Y.-H. Chang, and W.-K. Shih,
“Deepware: Imaging performance counters with deep learning
to detect ransomware,” in IEEE Transactions on Computers,
vol. 72, no. 3, 2022, pp. 600–613.

[19] S. Fletcher and M. Z. Islam, “Comparing sets of patterns
with the Jaccard index,” Australasian Journal of Information
Systems, vol. 22, 2018.

[20] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural
networks for one-shot image recognition,” ICML deep learning
workshop, vol. 2, no. 1, 2015.

