
Towards a Unified Architecture Methodology for Product 
Service Systems 

Johan Cederbladh and Jagadish Suryadevara. 

johan.cederbladh@.mdu.se  

Abstract.  

There is ongoing digital transformation in many industrial contexts including non-digital 
hardware-intensive domains such as heavy construction equipment machinery. This 
transformation is augmented by the latest technologies, increasing sustainability regulations, 
as well as integrated customer needs. This paradigm shift is causing transformation of current 
product-centric business models towards complex business models enabled by so-called 
Product Service Systems (PSS) offering advanced “capabilities” and “services”. However, the 
development of PSSs requires a holistic approach to unify underlying solution domains such as 
mechatronic systems, embedded software control as well as information systems. In this paper, 
we describe a holistic “unified” architecture description methodology towards aligning the 
underlying domain-specific design and development contexts. The framework, developed in 
construction domain, consists of two main parts: a minimalistic reference model as the 
“common language” for cross-functional stakeholder communication; a modeling 
methodology based on existing standard modeling frameworks. We illustrate the methodology 
using examples from the construction equipment domain. 

Introduction 

Construction Equipment manufacturing is a heavy industry with major brands such as 
Caterpillar, Volvo, Komatsu, JCB etc. The equipment ranges from compact small machines to 
very large, heavy machines, e.g., road-paving equipment often requiring multiple operators. 
This equipment caters to major industrial segments such as construction, forestry, mining etc. 
Currently, the Construction Equipment domain is undergoing paradigm shifts from hardware-
intensive machinery products towards software/data intensive integrated mechatronic 
information systems. The latter are complex System-of-Systems (SoS) (Maier 1998) referred to 
as Product Service Systems (PSS), where the physical product is part of a much larger entity, 
consisting of other physical products as well as information systems, providing “capabilities” 
and “services” beyond the scope of the functionality of a single product (Fakhfakh 2020). 
Capabilities can be summarized as “the power or ability to do something” and are attributed to 
systems or SoS (Martin et al. 2022). Capabilities are central to SoS as integrated systems form 
the foundation for the overall emerging SoS capabilities. A service instead can broadly be 
considered as “an abstract product that is intangible and non-storable” and PSS considers 
products that range from traditional “pure” products and “pure” services (Ashlin et al. 2016). 
The customers as well as the industry in entirety increasingly avail the benefit of integrated 
services and capabilities to enhance not only the profitability but also the sustainability through 
new business models that enable so-called “circular economy”.  

Historically the business models within the Construction Equipment industry evolved around 
the individual machine types so-called “product-families” offering customized machine 

mailto:johan.cederbladh@.mdu.se


features or functionality. In this context, the standard Product Lifecycle Management (PLM) 
(Stark 2022) approach is based on implementing “Modular Product Architectures” (Bruun et al. 
2013). In construction domain, the PLM approach is largely influenced by hardware and 
mechanical design as the major costs are attributed to the physical components of the 
machinery. The other technology domains such as electronics and software have been 
traditionally treated as “black-box” subsystems having independent development life-cycle 
besides standalone methodologies and tools often disconnected from the overall “architecture 
development" at machine level (latter in turn disconnected from the associated Information 
Systems). To enable the “digital transformation”, a unified common approach is needed across 
the various developmental teams, sometimes referred to “silos”. This work presents and 
evaluates a case where a unified common framework has been leveraged for cross-domain 
integration. To formulate a unified framework, a core ontology is presented for Construction 
Equipment. A core ontology centralizes knowledge by anchoring it in well-defined concepts in 
the domain (Martin et al. 2023). The presented core ontology is an enabler for a common 
architecture realized through the increased opportunities for collaboration and 
communication. This paper does not intend to propose an all-encompassing framework, but 
rather a “unifying” approach that aligns existing way-of-working across multiple domains. A 
minimalist “architecture language” is defined that can be mapped onto various solution 
domains such as hardware, systems, software, information, applications, and processes. 
Furthermore, a model-based development methodology proposed based on general systems 
engineering principles and existing modeling techniques is presented in this work. Based on a 
unified framework, the first steps towards a common architecture for PSS are taken, and we 
discuss the broader implications of such a framework in this work in the Construction 
Equipment domain.  

Background 

Systems Engineering (SE) has evolved as a holistic discipline ushering in broader “systems 
perspective” in product development as well as structured life-cycle management of 
corresponding system elements (Walden et al. 2015). The industry standard PLM 
methodologies are primarily based on ISO 15288 (Software and Systems Engineering) and ISO 
26550 (Product line engineering) and deal with the following main areas such as systems 
engineering, product (and portfolio) management, manufacturing process management, and 
Product Data Management (PDM). The “unified” framework proposed in this paper is based on 
the “modularity principle” from methodologies described above. The standard ISO 42010 
defines the concept of “architecture descriptions” in terms of Views and Viewpoints of a 
system-of-interest. An architecture “view” relates to specific system stakeholder concern and 
describes the system elements and corresponding relationships that are essentially impacted 
or governed by the concerns. The systems views are documented (or “modeled” using tool 
support) as part of the system specification. The standard ISO 42010 is the basis for evolution 
of several industrial frameworks (such as UAF (OMG 2022) and TOGAF (The Open Group 2023)), 
methodologies and tools for Systems and Software engineering domains. In the rest of this 
section below, we present an overview of current development methodologies in software, 
hardware, and emerging frameworks dealing with SoS development. 

Software development methodologies have evolved over the past decades through object 

oriented (OO) design and analysis techniques. The use of abstraction techniques separates the 

specification and design processes from technical implementation, paving the way for reuse of 



software designs. The standard Software Engineering methodologies employ the use of semi-

formal languages like the Unified Modeling Language (UML) for specification and design of 

software architectures (OMG 2017). There exist domain-specific software Architecture 

Description Languages (ADLs). For automotive domain and embedded software development, 

the EAST-ADL has emerged as the de-facto standard language (EAST-ADL association 2021). The 

EAST-ADL language employs the general OO techniques and defines the software-centric 

“system model” through abstraction levels (i.e., architecture views) namely Technical Feature 

Model (Vehicle Level), Functional Analysis Architecture (Analysis Level), Functional Design 

Architecture and Hardware Design Architecture (Design Level). Model-Based Systems 

Engineering (MBSE) (Madni and Sievers 2018) is growing as a discipline where the holistic 

“system models” and the corresponding architecture views are the primary artefacts during 

the development (Suryadevara and Tiwari 2018). The term “model” loosely refers to any part 

or view of the system-of-interest that is in focus for development. The SysML has become the 

de facto industry standard language for systems engineering practices (OMG 2019). SysML is 

an extension of UML, for Systems Engineering domain. In SysML, views correspond to different 

types of diagrams, for example Requirements (Requirement tables/diagrams), Structure 

(blocks), Behavior (use case, activity, statemachine), and Parametrics (attributes, valuetypes).  

As SE evolves further into SoS, both OMG and The Open Group have developed frameworks 

such as UAF and TOGAF respectively. These frameworks are supported by architecture 

methodologies and tools based on the underlying modeling languages i.e., SysML/UML and 

ArchiMate respectively (The Open Group 2022). There exist other languages and notations e.g., 

Business Process Modeling Notation (BPMN) (OMG 2023) supported by corresponding tools 

which can be easily mapped within enterprise frameworks such as UAF and TOGAF. For 

Construction Equipment domain, a well-defined enterprise framework can facilitate not only 

bridge the gap towards holistic development of PSS together with traditional machines but also 

support automation and digital transformation of the corresponding eco-system. There exist 

some established “unified” frameworks e.g., ARCADIA and CESAMES in the avionics domain 

(Roques 2016, CESAMES 2021). ARCADIA describes the stages of Operational analysis, System 

needs (functional and non-functional), Logical and Physical architectures. The shared 

architecture models that can be used by several domains. Similarly, the CESAMES framework 

describes operational (why), functional (what), and constructional (how) “views” of the system. 

RAMI 4.0 (Hankel & Rexroth 2015), the Reference Architecture Model Industry 4.0 is a 

reference model for structured description and management of architectures for cross-

functional domains in a distributed industry 4.0. The framework defines a toolbox (RAMI 4.0-

Toolbox) to implement a service-oriented architecture methodology for development in 

Industry 4.0. 

SoS examples from Construction Equipment Domain  

A SoS is a system consisting of interconnected collaborating Constituent Systems (CS) with 
operational and managerial independence, apart from the overall SoS goals and objectives 
(Maier 1998). The increased complexity of SoS compared to traditional systems introduces 
several challenges as domains should be aligned to collaborate efficiently. Requirements need 
to be adequately captured for several stakeholders and contexts, that is capture individual CS 



and the SoS concerns. There is a need to enable interoperability, a common language, 
traceability, among others, between the involved stakeholders and domains. There is many 
potential SoS in the Construction Equipment domain, as it often involves large construction or 
quarry sites that operate for long periods of time. And many operational scenarios in above 
contexts can be considered as SoS perspective. Figure 1 provides a high-level view of many 
operational contexts related to the Construction Equipment domain and corresponding 
industry segments such as Roads and Building, Material Transport, Forestry, Quarry and Mining, 
Waste management etc.  

 

Figure 1 – Operational scenarios in construction domain: The SoS contexts 

To further demonstrate SoS context in construction domain, and corresponding PSS 
“capabilities” and “services”, we describe an ongoing proof-of-concept project. The example is 
a partially electrified autonomous material production site (E-site) (Sjöberg et al. 2017). Figure 
2 illustrates the operational scenarios involved. 

  



Figure 2 – Partially electrified autonomous production site (E-site) 

The scenarios involve both conventional machines e.g., heavy-duty excavators, loader, and 
stone crushers as well as the electrified autonomous material transporters (i.e., compact 
autonomous haulers). The latter requires periodic charging at a dedicated location within the 
site. While the material (i.e., crushed stones) is autonomously transported to second crushing 
location within the site, the material loading (onto the autonomous units) is handled both 
conventionally (using a heavy loader) as well as automatically (through transport band). The 
operational scenarios are deceptively simplistic but involve several operational/performance 
requirements and constraints. For instance, the autonomous units need to transport material 
along the fixed paths in a non-collision, timely no-waiting mode interspersed with charging 
cycles as per individual machine needs. Further, work-safety and other security (e.g., cyber 
security) requirements need to be fulfilled. These constraints and requirements need to be 
considered during the development of the corresponding PSS responsible for the operational 
scenarios and ensure required productivity throughput. The main system components are the 
E-site Control (an operational station physically manned with supervisory role(s)), onboard 
autonomous control units communicating with the E-site Control. The manually operated units 
(i.e., heavy loaders, excavators) have secondary display/control units (co-pilot systems) to assist 
the operator with productivity cycles as well as other assist functionality (additional safety, 
diagnostic, v2v communication etc.). Thus, all the constituent systems and subsystems need to 
communicate and collaborate effectively to meet the productivity of the E-site.  

A Unified Architecture Framework 

In this section we present an overview of the proposed framework for development of PSSs. 
The framework defines an (abstract) architecture language consisting of a minimal set of 
architecture concepts for overall architecture and design management for a PSS of interest. As 
described later in following sections, the abstract architecture language can be mapped to 
concrete modeling languages and architecture methodologies in corresponding solution 
domains towards a unified model-based architecture methodology for a PSS.  

The reference model of the framework, as shown in Figure 3.a illustrates multiple contexts 
involved in architecture development and the deployment of a PSS, its constituent systems and 
other system elements. The top of the model corresponds to enterprise “offerings” to 
customers i.e., capabilities and services provided by a PSS. A conventional machine product, as 
a constituent system, may represent either a capability, or a service or a mere physical product 
(i.e., a resource) in the PSS context. The other contexts and “layers” of the framework, and 
corresponding architecture views and main terminology, are briefly described below. 

 



          

Figure 3.a – An Enterprise Reference model for 
PSS. 

Customers and Business Processes. The customer processes correspond to the operational 
scenarios of a SoS and the corresponding stakeholders’ needs, whereas the business processes 
correspond to the capabilities (or services) “provided” by the PSS (using the resources already 
developed such as machines, systems, processes, personnel etc.). While a customer process is 
an external view (complimented further by detailed operational scenarios described later), the 
business processes represent the internal view of a PSS (and consists of elements from other 
layers of the framework described later). The clear separation-of-concerns prescribed by the 
framework enables architecture analysis and development of enterprise resources to meet the 
required capabilities. 

Application Layer (Off-board). This layer represents the enterprise capabilities and services 
mostly in terms of enterprise Applications, to automate the business processes as well as 
support the functionality of both product (e.g., On-board applications) and non-product 
resources e.g., maintenance and support personnel etc. The application views describe the 
corresponding architecture in terms of life-cycle management of corresponding PSS, as shown 
in Figure 4. 

 

Figure 4 – The Architecture Life-cycle Management of a PSS (Business Process view) 

Application Layer (On-board). This layer represents the “product” context within a PSS. For 
construction domain, this represents the traditional product-families and corresponding 

Figure 3.b – An Architecture Language – 

The Core Ontology. 



machine “features” of onboard applications. The architecture views are mainly software-
oriented whereas the resource layer described below deals with hardware elements.  

Resource Layer. This layer represents the physical and tangible system elements including 
human resources (e.g., enterprise roles), as well as the third-party systems, that act as the 
“building blocks” for constituent systems of a PSS. Resource architecture deals with the detailed 
design management of a PSS. 

The onboard application layer and the resource layer described above represent the traditional 
solution domains such as hardware, software, electronics etc. that constitute the main 
development silos and often contribute to the overall complexity of a PSS. It is critical to 
integrate these development domains within the architecture methodology for a PSS. It can be 
noted that a physical product may represent a sufficiently complex PSS as a “constituent 
system”, and thus suitable itself for application of the unified approach described in this paper. 
The layers described above constitute the “enablers” i.e., the building-blocks for ready 
deployment of a PSS. This also represents the “As-Is” architecture for current enterprise 
capabilities as well as the basis for future development of the corresponding enterprise layer. 
The vertical layers of the framework described below represent architecture information 
concerning all the other layers described above. 

Information Layer. This layer overlaps all the layers of the framework described above as the 
information is both produced and consumed at several contexts during the life-cycle of a PSS.  

Functional Views and Operational Scenarios. This layer represents the general “problem 
domain” for application of PSS capabilities and services. The functional views enable mapping 
the operational contexts to specific PSS elements as well as necessary for evaluation of “As-Is” 
architecture maturity and gap-analysis of current and future enterprise capabilities of a PSS.  

Unified Language. The abstract architecture ontology, described in Figure 3.b, separates 
architecture concerns from detailed design issues. An architecture view consists of main 
architecture elements which represent specific capability or functionality that is realized in 
corresponding solution domains such as process, application, and resources. An architecture is 
realized in terms of design elements such as hardware and software which are outside the 
scope of the unified framework. The dependencies among architecture elements are 
represented by the logical interactions based on the corresponding resource exchanges and 
information flows. At the architectural level, the interactions do not constitute any constraints. 
The language incorporates a modularity approach based on the functional aspects of the 
corresponding architecture elements. For instance, a collection of architecture elements 
belongs to the same “module” to facilitate reuse in faster development and deployment of 
constituent parts of the corresponding PSS. These principles are same as the principle of 
“modularity” from product development (hardware engineering) context, as illustrated in 
Figure 6.  

Model-based Methodology. For practical application of the unified framework described in this 
section, we propose to integrate existing MBSE techniques and modeling approaches. As 
described in the next section, the abstract architecture language can be mapped onto 
architecture concepts in the underlying solution domains. Further, the modeling techniques in 
the solution domains can be integrated into a unified architecture methodology as 
demonstrated in the following sections.   



Unified Architecture Modeling – A Mapping Approach 

In this section we describe architecture modeling techniques by mapping the general 
architecture concept model (Figure 3.b) onto general architecture concepts from solution 
domains described in previous section. Table 1 presents an overview of all the mappings in a 
“modeling-grid” form where each column represents general architecture concepts from 
corresponding solution domain context. The grid enables uniform dissemination of architecture 
information among PSS stakeholders. To model the architecture information, further mappings 
using standard modeling language SysML are also defined. We demonstrate the approach using 
PSS examples from the Construction domain.  

Systems Engineering. Though this is an all-encompassing discipline in general, here we focus on 
the early phases e.g., architecture definition, in system development. This phase is gaining 
prominence with emerging MBSE methodologies. As shown in Table 1, the SE is further divided 
into architecture development in SoS, Systems and SW contexts, as each of these correspond 
to distinct life-cycle phase and different architecture development approaches.  

 

Table 1 - Mappings to solution domain unified architecture concepts (abstract). 

 

SoS Modeling. As shown in Figure 5, based on the E-site example described earlier, the 
operational architecture captures the “constituent systems” (modeled using SysML Block 
elements) e.g., Excavator, Charging station, Site Control, etc. The material, energy, and data 
flows between the constituent systems are modeled using the SysML Association relationships. 
Additionally, Figure 5 highlights a process activity diagram that represents the high-level 
process of the E-Site general operational scenario. The data flows are part of the “logical 
interface”, also modeling using Association relationship between the constituent systems. 
Table 2 below shows all the mapped concepts to modeling elements, as annotated in Figure 5. 

 



 

Figure 5 – SoS Modeling: Operational Architecture and an Operational Scenario. 

Table 2 – SoS Architecture Modeling using SysML 

Architecture 
Concepts 

OperationalArchitecture LogicalInterface Energy/Material/Data 
Exchange 

Constituent System 
 

SYSML BDD, IBD Association Flow Block 

Process Modeling. Figure 4 includes a process modeling example, based on the autonomous 
operation of the e-site example. The process model represents a BPMN-like notation. The 
different Processes (along with Roles and Actors) are modeled using Activities, Transactions, 
and Actions. Connecting the processes are directed associations and different decision gates 
(e.g, parallel). Specific Triggers are also modeled along with corresponding 
InformationElements using Events and Data Objects.  

Table 3 – Process Modeling. 

Architecture 
Concepts 

Process, Role, Actor ProcessInterface Trigger, 
InformationElement 

System Function 

BPMN Activity, Transaction, Action Association Event, Data Objects Activity 

Hardware Engineering. This is part of the Resource layer (hardware), a well-established 
architecting domain in PSS context. The learnings from this domain (namely, “modularity 
principle” in planning, development, production) forms the basis for the “unified” architecture 
framework and methodology. The architecture descriptions of this domain mainly focus on the 
physical “modularity” of the products (from planning, development, production perspective). 
The architectural elements are of kind Machine, Module, Assembly. The specialized design 
elements are Design Unit, Key Component, Interface, Part etc. Besides mainly the mechanical 
parts, this architecture view also contains physical parts of Electrical and Electronics i.e., ECUs, 
Sensors, Actuators etc. A specialized non-leaf level module (Assembly) namely “E&E 



Architecture Module” can be instantiated to manage elements belonging to this subdomain. 
The leaf-level modules contain Design Units which are also “logical” grouping of the actual 
physical “parts”. All the architecture blocks represent the reuse/sharing among the 
corresponding “product family” (managed through Governance process). The main 
stakeholders for this architecture view are from both development and production domains. 
This architecture view represents the “architecture” (a.k.a., “platform”) of a given product kind 
within corresponding product family and guides the design and implementation phases 
downstream (e.g., A-build, B-build, C-build). Specific design elements (i.e., Design Units) 
selected to configure a specific product kind i.e., “machine model” (built on a production line 
in a factory, i.e., production domain). 

Hardware Architecture Modeling.  

 

Figure 6 - Hardware Engineering - Architecture Modeling (Schematic) 

As shown in Figure 6, the architecture view captures the “Hardware architecture” for the 
constituent system (Conventional Hauler), modeled using Microsoft Visio template (a plugin 
tool developed in-house). The main hardware architecture elements such as Modules and 
Design Units are visualized using Visio elements. An Assembly represents an aggregation of 
containing Module elements more logically than physical binding. Whereas a leaf-level Module 
element containing only Design Units constitutes a tightly coupled physical element that is built 
on an assembly line and integrated with containing Module or Assembly structure. A Module 
represents a reusable element capturing the “modularity principle”. Although the example 
visualizes the Visio “legacy”, the translation to SysML is quite straightforward and new models 
(or even automated translations of older models) can be expected in SysML. The mapping is 
shown in Table 4 below, also annotated in Figure 6. 

 

Table 4 - Hardware Architecture Modeling. 

Architecture 
Concepts 

Assembly Module Design Unit 
(Mandatory, Optional, Variant) 

Part Mechanical 
Interface 

SysML Package Package, Block Block, Stereotypes Block Connector 

Systems & Software Modeling. As shown in Figure 7 the architecture view represents the 
system architecture and software interfaces for a constituent system, modeled using SysML 
IBDs (Internal Block Diagram). SubSystem functions are modeled using SysML Activities. The 
data and signal “Exchanges” are modeled (using SysML InterfaceBlocks and Ports) between 
System and SubSystem elements (modeled using SysML Block element). Table 5 below shows 
the mapped concepts to modeling elements, annotated on Figure 7. 



 

Table 5 - Systems Modeling 

Architecture 
Concepts 

ContextDiagram, 
SystemArchitecture 

SystemInterface Energy/Material/Data 
Exchange 

Function SubSystem 
Hardware 

SYSML BDD, IBD Port InterfaceBlock, Port Activity Block 

 

 

Figure 7 – Systems/Software Engineering - Architecture Modeling  

Information Modeling. With digital transformation data is exchanged continuously between 
interconnected and interacting systems to fulfill enterprise capabilities and customer “digital 
services”. The enterprise system manages huge amounts of data for both internal (i.e., 
development, production, deployment) as well as external purposes (integration with third-
party suppliers and customer ecosystem). Information and data are not only critical for 
architecture concerns but are often associated with the direct business value. This requires 
architecture management of data sources, as well as information provisioning. As shown in 
Table 1, the main concepts identified for architecture management for information domain are 
Reports, Information, Data, and Data_API (data interface specifications). The Reports enable 
high-level capabilities (e.g., Predictive Maintenance and digital services providing by Fuel 
Utilization). A report consists of specific Information (e.g., Machine Position) which in turn 
made of other Data (e.g., Longitude, Latitude, Timestamp). Simple UML elements are used to 
realize the architecture descriptions (I.e., “Class”, “Composite Class”, Provided/Required 
Interface).  

Table 6 - Information Modeling 

Architecture 
Concepts 

Report Data (API) Interface Information Data 

UML (generated) Document Provided/Required Interface Composite Class Class 

 



 

Figure 8 – Information Domain: The Architecture views 

Domain Reference Architectures. In previous sections we have described the solution domains 
within an enterprise framework for the Construction domain. Also, based on a core ontology, 
a unified “architecture” development methodology proposed, which can be mapped onto 
existing solution domains. However, it is further required to complement the methodology with 
Domain Reference Architectures (i.e., the “functional views”) (See Figure 3.a) corresponding to 
the solution domains mainly Process, Application and Resources. While the functional views 
are the starting point of systems development and part of general SE/MBSE methodologies, we 
emphasize an “architectural approach” and management of these views as part of the unified 
framework, as described further below.  

For domain reference architectures, we can employ the generic principles of the framework as 

described earlier i.e., application of the proposed core ontology (Figure 3.b) and mapping to 

existing modeling techniques, as shown in Table 6. The main architecture concepts are 

Function, Functional Domain, and Capability, the latter two correspond to transparent grouping 

of functions. The function development traditionally applies SE/MBSE techniques such as 

operational scenarios, use case analysis, functional decomposition etc. The main architecture 

views are Functional Domains, and Capability view. A Functional Domain (i.e., functional views 

of the problem contexts) corresponds to one or more Capabilities (i.e., elements of 

corresponding solution domain) and vice versa. It can be noted that the Functional Domains 

represent the problem domain, where as the “capability” (logical groupings shown in Figure 3.a 

within solid boxes i.e. tightly-coupled) represent deployable solution element (e.g., application, 

resources). Both the architectural views described above facilitate stakeholder communication, 

effective use of solution domains as well enable overall architecture management. As shown in 

Table 6, the above architecture views can be modeled using the standard MBSE tools and 

modeling elements. 

Table 6 – Domain Reference architectures: Concepts and Modeling Elements 

CoreOntology 
Concepts 

Architecture Block Logical 
Interface 

Design Element 

Reference 
Architecture 
Concepts 

Capability 
Functional_Domain 

Traceability Stakeholder Need 
System Requirement 

CustomerValueProposition, 
Function 

SysML Package Association Functional_Requirement UseCase 



Block Dependency Non-Functional 
Requirement 

Activity 

 

Discussion 

Traditionally construction domain has been hardware intensive with major costs of 
development involving hardware components. However, the complexity has been shifting 
towards software and electronics intensive solutions with increasingly data-intensive machine 
functionality and digital services. In previous sections we presented an enterprise framework 
based on an abstract architecture language that can be mapped into model-based architecture 
methodologies in underlying solution domains such as hardware, software, electronics, and 
information systems. This is a major step forward as it aligns both embedded control systems 
as well as information systems development through a common framework. As illustrated in 
Figure 3.a, the services and capabilities provided by a PSS is a composition of various 
architecture entities from different solution domains described in this paper. The enterprise 
behind a PSS represents a SoS involving many collaborating organizations providing the 
required capabilities and services as well as other constituent systems to be integrated. With 
increased complexity, PSS development and management will benefit from the application of 
the model-based architecting methodology described in this paper. The model-based 
techniques enable traceability and logical dependencies among architecture elements for 
efficient configuration and deployment of PSS architectures. 
 
Despite the successful adoption of model-based techniques in certain solution domains, in 
particular software development, general application of MBSE lacks maturity due to 
development silos in product development. The unified approach proposed in this paper 
provides an architecture-centric approach to systems development that facilitates better 
integration of software and hardware development.  As shown in Figure 7, the software context 
(Software Function) is explicitly modeled within the System Architecture view of the system 
model. The software architecture represents the software interfaces and interaction with the 
corresponding hardware components (see Figure 7). The detailed software behavior can be 
specified using behavior diagram (such as SysML Statemachine diagrams, Activity diagrams). 
With model-based techniques and simulation tools, software behavior can be verified and 
validated against the system requirements associated with the system model. In construction 
domain, manufacturing industries have adopted product line management techniques based 
mainly on mechanical modularity. For instance, Figure 6 represents a hardware (mechanical) 
architecture view of a machine product with no information about functional and software 
interfaces. However, using the unified architecture approach described in this paper, the 
hardware architecture (see Figure 7) can be aligned within the overall system model. With 
model-based approach, hardware designs can be verified and validated against the system 
requirements using the system models where hardware components are specified as FMUs 
(Functional Mock-up Units). A set of FMU (based on FMI standard) specifications for hardware 
components enables a simulation model for design trade-off analysis as well as early-phase 
analysis. A unified framework as described in this paper enables seamless development of both 
software and hardware. The main hardware components are represented within the system 
model and interfaces to software and systems behaviors are specified. Similar to Software 
simulation techniques described earlier, there is increasing support towards integrated tools-



based enterprise frameworks and modeling methodologies provided by major tool vendors 
such as PTC, Siemens, Dassault etc. The emerging standard OSLC (Open Services for Lifecycle 
Collaboration) is a welcoming step forward to integrate the domain-specific tools, design 
methodologies and processes towards rigorous SE processes at enterprise level. 

Conclusion 

In this paper we presented a unified architecture methodology for development of Product 
Service Systems. The framework is based on defining a core ontology, as a “common language” 
to document/model main architectural elements from several solution domains such as 
software, hardware, systems, applications, information, as well as business processes. The 
architectural methodology is also used to specify system and functional views enabling the 
traceability of corresponding design elements as well as to system and stakeholder 
requirements. For practical purposes and to achieve the systems engineering rigor, the 
methodology is mapped onto the standard methodologies and tools of the solution domains. 
As a first step, the approach is applied within the product context to bridge the traditional 
development silos e.g., software, electronics, hardware engineering, as well as IT systems 
domains. The proposed unified framework lays the foundation for structured planning of digital 
transformation and enables automation within integrated product and services contexts. 

References 

Ashlin, S. J., Cardow, I., Crawford, A., Davies, J. K., Farncombe, A., & Mason, P. (2016, July). 
Understanding Services: Understanding Stakeholders. In INCOSE International Symposium (Vol. 
26, No. 1, pp. 2226-2240). 

Bruun, H. P. L., Mortensen, N. H., & Harlou, U. (2013). PLM support for development of modular 
product families. In DS 75-4: Proceedings of the 19th International Conference on Engineering 
Design (ICED13), Design for Harmonies, Vol. 4: Product, Service and Systems Design, Seoul, 
Korea, 19-22.08. 2013. 

CESAMES, 2021, CESAMES Systems Architecting Method (CESAM), URL: 
<https://cesam.community/method-and-tools/>, Accessed August 2023 

EAST-ADL Association, 2021, EAST-ADL, URL: <https://www.east-adl.info/Specification.html> 
Accessed August 2023 

Fakhfakh, S., Hein, A. M., Jankovic, M., & Chazal, Y. (2020, May). A meta-model for product 
service systems of systems. In Proceedings of the Design Society: DESIGN Conference (Vol. 1, 
pp. 1235-1244). Cambridge University Press. 

Friedenthal, S., Moore, A. and Steiner, R., 2014. A practical guide to SysML: the systems 
modeling language. Morgan Kaufmann. 

Hankel, M., & Rexroth, B. (2015). The reference architectural model industrie 4.0 (rami 4.0). 
Zvei, 2(2), 4-9. 

IEEE, 2022, 42010-2022 - ISO/IEC/IEEE Systems and software engineering -- Architecture 
description, URL:  <https://standards.ieee.org/ieee/42010/6846/> Accessed August 2023 



(———), 2015, 15288-2015 - ISO/IEC/IEEE Systems and software engineering – System life 
cycle processes, URL:  <https://standards.ieee.org/ieee/15288/5673/> Accessed August 2023 

ISO, 2015, 26550-2015 - ISO/IEC Systems and software engineering – Reference model for 
product line engineering and management, URL:  <https://www.iso.org/standard/69529.html> 
Accessed August 2023 

Madni, A.M. and Sievers, M., 2018. Model‐based systems engineering: Motivation, current 
status, and research opportunities. Systems Engineering, 21(3), pp.172-190. 

Maier, M.W., 1998. Architecting principles for systems‐of‐systems. Systems Engineering: The 
Journal of the International Council on Systems Engineering, 1(4), pp.267-284. 

Martin, J., Axelsson, J., Carlson, J., & Suryadevara, J. (2022, October). The Capability Concept in 
the Context of Systems of Systems: A Systematic Literature Review. In 2022 IEEE International 
Symposium on Systems Engineering (ISSE) (pp. 1-8). IEEE. 

(———). (2023, June). Towards a Core Ontology for Missions and Capabilities in Systems of 
Systems. In 2023 18th Annual System of Systems Engineering Conference (SoSe) (pp. 1-7). IEEE 

Modelica Association, 2022, Functional Mockup Interface (FMI) V3.0, URL: <https://open-
services.net/specifications/> Accessed August 2023 

Object Management Group (OMG), 2023, Business Process Model and Notation (BPMN) V2, 
URL: <https://www.bpmn.org/> Accessed August 2023 

(———), 2022, Unified Architecture Framework (UAF) V1.2, URL: 
<https://www.omg.org/spec/UAF> Accessed August 2023 

(———), 2017, Unified Modeling Language (UML) V2.5.1, URL: 
<https://www.omg.org/spec/UML/2.5.1/About-UML> Accessed May 2023 

(———), 2019, OMG Systems Modeling Language (OMG SysML) V1.6, URL: 
<https://www.omg.org/spec/SysML/1.6/PDF> Accessed August 2023 

OSLC Open Project, 2021, Open Services for Lifecycle Collaboration (OSLC) V3.0, URL: 
<https://open-services.net/specifications/> Accessed August 2023 

Roques, P., 2016, January. MBSE with the ARCADIA Method and the Capella Tool. In 8th 
European Congress on Embedded Real Time Software and Systems (ERTS 2016). 

Sjöberg, Peter, Lars‐Olof Kihlström, and Matthew Hause. "An industrial example of using 
Enterprise Architecture to speed up systems development." In INCOSE International 
Symposium, vol. 27, no. 1, pp. 401-417. 2017.  

Stark, J., 2022. Product lifecycle management (PLM). In Product Lifecycle Management (Volume 
1) 21st Century Paradigm for Product Realisation (pp. 1-32). Cham: Springer International 
Publishing. 

Suryadevara, J., & Tiwari, S. (2018, December). Adopting mbse in construction equipment 
industry: An experience report. In 2018 25th Asia-Pacific Software Engineering Conference 
(APSEC) (pp. 512-521). IEEE. 



The Open Group, 2022, ArchiMate V3.2, URL: 
<https://publications.opengroup.org/standards/archimate/c226> Accessed August 2023 

(———), 2022, TOGAF, URL: <https://www.opengroup.org/togaf> Accessed August 2023 

Walden, D.D., Roedler, G.J. and Forsberg, K., 2015, October. INCOSE systems engineering 
handbook version 4: updating the reference for practitioners. In INCOSE International 
Symposium (Vol. 25, No. 1, pp. 678-686). 

 


