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Abstract. Gearbox bearing maintenance is one of the major overhaul
cost items for railway electric propulsion systems. They are continuously
exposed to challenging working conditions, which compromise their per-
formance and reliability. Various maintenance strategies have been intro-
duced over time to improve the operational efficiency of such components,
while lowering the cost of their maintenance. One of these is predictive
maintenance, which makes use of previous historical data to estimate a
component’s remaining useful life (RUL). This paper introduces a ma-
chine learning-based method for calculating the RUL of railway gearbox
bearings. The method uses unlabeled mechanical vibration signals from
gearbox bearings to detect patterns of increased bearing wear and pre-
dict the component’s residual life span. We combined a data smoothing
method, a change point algorithm to set thresholds, and regression mod-
els for prediction. The proposed method has been validated using real-
world gearbox data provided by our industrial partner, Alstom Trans-
port AB in Sweden. The results are promising, particularly with respect
to the predicted failure time. Our model predicted the failure to occur
on day 330, while the gearbox bearing’s actual lifespan was 337 days.
The deviation of just 7 days is a significant result, since an earlier RUL
prediction value is usually preferable to avoid unexpected failure dur-
ing operations. Additionally, we plan to further enhance the prediction
model by including more data representing failing bearing patterns.

Keywords: Railway · Gearbox bearing · Predictive maintenance · Re-
maining useful life · Machine learning.

1 Introduction

The maintenance of a railway system plays an important role in ensuring its
safety, dependability, and efficiency [1]. Train reliability is a daily requirement
for millions of people, and as such, it is a perpetual challenge for all vehicle man-
ufacturers. The reliability expectation is met by using electrical and mechanical
components such as robust pantographs, transformers, and an optimized propul-
sion system. These components are subject to significantly demanding operation
conditions, and to preserve their operational performance, effective maintenance
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strategies are essential. In the context of predictive maintenance, safe and ef-
ficient train operation [2] is relied on accurate estimation of RUL of railway
components. In this respect, traditional methods, like model-based prediction,
leverage complex models, such as non-linear ones [3] or temperature models
[4], which can potentially impact the accuracy of the prediction [5]. Machine
learning (ML) techniques, on the other hand, offer increasingly popular alter-
natives that provide improved efficiency and accuracy [2, 6, 7]. ML models can
utilize sensor data and other operational parameters to predict the remaining
lifespan of bearings, enabling proactive maintenance and minimizing downtime.
Data analytics, feature extraction, and ML techniques have shown promising
potentials for predicting component failures and estimating RUL [8, 5]. The use
of ML techniques for RUL estimation has been explored in various fields, such
as wind turbines [9, 10, 5], where high operation and maintenance costs make
it essential to predict component failures. However, these techniques have been
rarely applied to train propulsion systems or their components. In fact, although
there are some similarities between gearbox bearings in different contexts, there
exist significant differences. Train propulsion systems operate under specific op-
erational conditions and encounter various environmental variables, including
temperature, vibration levels, humidity, etc. As a result, the wear patterns and
degradation mechanisms exhibited by train propulsion systems differ from those
observed in other domains, influencing the various methods used to assess them.
Typically, vibration data from propulsion system gearbox bearings are analyzed
using techniques such as Fourier or time-frequency analysis to detect anomalous
patterns associated with bearing problems. There data can then be fed to fur-
ther steps of anomaly detection system, such as, ML algorithms to classify and
locate bearing problems.

The current study focuses on the challenges presented by train propulsion
system gearbox bearings and their wear. Due to the limitation in obtaining real-
world gearbox bearing data, existing works usually depend on simulated data or
controlled operating condition data in laboratory settings. Instead, this paper
presents a method that has been validated using real data from a train propul-
sion system with a maximum speed of 300 km/hour given by our industrial
partner Alstom. The approach proposes a preprocessing phase that uses low
pass filtering to reduce oscillations in raw data [11] and increase RUL estimation
accuracy. The obtained data is employed in a regression model to predict RUL.
The proposed techniques also includes a change point algorithm, necessary to
derive thresholds for assessing degradation trends. By going into more details,
the process begins with an analysis of sensor data acquired from a real-world
propulsion system. A combination of one class support vector machine (One-
class SVM) and interpolation is used, allowing signal outlier identification and
trend analysis. In the case of deteriorating trends, a change point technique,
Pruned Exact Linear Time (PELT) is applied to the data to identify the sig-
nal’s variation instances. Based on the variation points thresholds are built. To
develop a prediction model, regression models such as the polynomial and the
exponential ones are created and trained on the data. The RUL of the bearings



RUL Estimation for Railway Gearbox Bearings Using ML 3

is then determined by using the best-performing model. The obtained prediction
results are promising, as our prediction model is very close to the actual bearing
failure, with only a 7-day difference 1. In other words, in real-life condition the
bearing lasted an additional 7 days before failing. In fact, such a margin would
prevent downtime due to in-service failures, while at the same time avoiding ex-
cessive waste of remaining lifespan. Moreover, in contrast to previous research,
the proposed approach enables the provision of explanations about how thresh-
olds for degradation trends are established through the application of a change
point algorithm without the use of domain-specific knowledge. The remainder
of the paper is structured as follows: Section 2 provides background information
about the research effort, including railway maintenance, the propulsion system,
and estimation of RUL. Moreover, Section 3 discusses existing related works and
the proposed solutions. Section 4 presents an overview of the adopted research
methodology and discusses the data preparation, exploratory data analysis, and
prediction models. A summary of the obtained results and findings is illustrated
in Section 5, while Section 6 provides conclusive remarks and discusses the pos-
sibilities for further development.

2 Background

2.1 Railway Maintenance

Railway maintenance focuses on boosting operating availability and safety of
its components, while reducing expenses and downtime [12], and detecting po-
tential issues. To achieve these goals, maintenance should be systematic, with
thorough planning and continual monitoring of different components conditions.
The maintenance activities are broadly categorized into: reactive, preventive,
predictive [13, 14], as further discussed below. Historically, train maintenance
has been reactive, also known as run-to-failure maintenance. This technique
entails simply examining and repairing equipment after it has failed. This is
the most basic but least effective strategy, as the cost of interventions and ac-
companying downtime after failure will be prohibitively expensive, including the
potential growth of safety concerns. Preventive maintenance is planned and
scheduled to reduce the chance of equipment failure while also enhancing pro-
duction efficiency; in particular, inspections and replacement of components on
specific pieces of equipment are performed on a regular basis. Even if better
than the reactive approach, preventive maintenance is still more expensive than
the predictive one, since while most failure issues are avoided, there exists a
high chance of carrying out unneeded remedial activities. Predictive mainte-
nance seeks to estimate the failure time of a system or its components based
on experience and/or historical data and replace them before they fail. By pre-
dicting the need for maintenance in advance, this strategy also helps in improv-
ing maintenance planning, which takes time and resources. Condition-based

1 Our model forecasts the failure to occur on day 330, and in reality, the gearbox
bearing lasts for 337 days.
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maintenance (CBM) is a form of predictive maintenance that shifts the scope
of inspections towards changes that could indicate possible failures rather than
performing general inspections at regular intervals. In particular, CBM aims at
detecting early symptoms of oncoming failures and hence predicting the need
for maintenance; typically, it employs sensors measuring variables that may af-
fect the machine’s efficiency. Moreover, to assess when/if a defect is detected
CBM leverages thresholds to preclude unnecessary replacements and carry out
maintenance activities only when required.

2.2 The Propulsion System

The propulsion system of a train generates the required power and force to
propel the train, allowing it to move and assuring efficient transportation. The
propulsion mechanism comprises of a traction motor attached to the bogie and
a gearbox linked to the wheel axle. The method proposed in this paper is vali-
dated using data from a train propulsion system provided by the world-leading
train manufacturer Alstom. There are eight carriages on the train where the
data is collected from, four of which are traction cars. Each of these cars has
two bogies. A bogie is a train component that sits beneath the train’s body and
holds and links all of the locomotive’s parts, including axles and wheels. Each
bogie has two axles, each with its own traction motor and gearbox. Figure 1 de-
picts a simplified representation of components in the electric propulsion system
analyzed in this study, such as the traction motor, gearbox, and the respective
sensor placement. Gearbox bearings have an important role in the functioning
of the train propulsion system. Bearings are key components that facilitate the
smooth operation and transmission of power within the gearbox. They support
the rotating shafts and gears, ensuring proper alignment and reducing friction,
thus enabling efficient power transfer. Bearings must withstand frequent move-
ment, varied speeds, and severe loads while retaining performance. They are,
however, prone to wear, fatigue, lubrication contamination, and other potential
damage. Contact fatigue is the most common cause of bearing failures [15]. Other
factors include oxidation, fatigue on the rolling elements, and misalignment of
bearings during installation [16]. Many challenges exist in maintaining and en-
suring the performance of propulsion system gearbox bearings. Understanding
the challenges is crucial for designing effective maintenance and optimizing their
performance which ensures the train runs efficiently.

2.3 Estimation of Remaining Useful Life (RUL)

RUL estimate plays a pivotal role as an aspect of predictive maintenance, con-
tributing to the effectiveness of maintenance procedures. RUL for gearbox bear-
ings has attracted considerable attention in the literature, not only in the railway
industry, but also in other manufacturers who rely on machinery [11],[17],[5],[18],
[19]. Models such as similarity, degradation, and survival models have emerged
as tools for forecasting the remaining lifespan of essential railway components.
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Fig. 1. Components within the Electric Propulsion System

These models aim to anticipate the RUL based on criteria such as wear, dete-
rioration patterns, and historical data. Similarity models are based on the RUL
forecast of a testing machine based on a historical comparison of known behavior
of other similar machines. They use run-to-failure data describing the degrada-
tion profile. Degradation models extrapolate previous behavior to predict future
conditions. If the condition indicator is known to signal failure, regression models
are adopted, and the remaining time calculated till some predetermined thresh-
old is reached. In this paper we leverage a degradation model to estimate the
RUL. Survival analysis is a method for analyzing data based on the time it takes
for an event to occur and estimates the probability distribution of failure.

Machine learning approaches and data-driven techniques like as regression
models, neural networks, and support vector machines can be used to analyse
historical data and trends of bearing degradation. In the following section, we
will discuss some of the prior research done in the aforementioned context.

3 Related Work

Carvalho et al. [20] conducted a systematic literature review on predictive main-
tenance using ML techniques. They explored the equipment types studied and
the ML methods used, concluding that there is an increasing trend in using ML
for predictive maintenanced, which helps reduce the cost of unnecessary equip-
ment replacement in various applications. Based on Carvalho et al.’s work, we
identified related works that explored different ML methods. Amruthnath et al.
[21] focused on early failure identification on vibration data from an exhaust
fan. They evaluated various algorithms such as T 2 statistics, PCA, hierarchical
clustering, K-means, and fuzzy C-means clustering. The authors suggested that
clustering techniques can be a cost-effective solution when maintenance costs
are high. By monitoring machine health regularly using clustering, expenses on
machine maintenance can be saved until a critical level is reached. In another
study [22], the same authors proposed an unsupervised learning approach for
fault class prediction and detection in a predictive maintenance system. They
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utilized Gaussian Mixture Models (GMM) and K-means algorithms to forecast
the machine state and achieved an 82.96% accuracy for error prediction. Kundu
et al. [23] proposed a method for predicting the RUL of rolling bearings using a
combination of K-means clustering and change point detection algorithms. By
identifying failure patterns in the data, the authors improved the accuracy of
their RUL predictions. They suggested that their method could be extended
to other applications of predicting RUL and state interference where changing
a state shows degradation of the bearing. This method is useful for calculat-
ing the probability of shifting from a healthy state to damage by using a state
matrix. Hong et al. [24] proposed a method for predicting the RUL of bear-
ings using Gaussian Process Regression (GPR). They utilized RMS, kurtosis,
and crest factor as input features to construct the minimum quantization error
(MQE) through a self-organizing map (SOM). The authors found that using a
composite kernel improved the prediction accuracy and reduced the variance of
the RUL in comparison to using a single kernel, highlighting the importance
of kernel selection in GPR for RUL prediction in machine health monitoring.
Elasha et al. [11] proposed a bearing prognosis approach that used regression
and back-propagation neural networks to estimate the RUL of high-speed shaft
bearings of a wind turbine. They demonstrated the effectiveness of the regres-
sion model in improving the predictive performance of the neural network model,
with the proposed ANN model exhibiting strong performance in predicting the
remaining useful life of a bearing. Li et al. [25] improved the exponential model
and utilized particle filtering to eliminate random faults in bearing degrada-
tion process. Their method was demonstrated on four tests and outperformed
the original exponential model used in their previous work in predicting RUL
of rolling element bearings. While this study enhanced prediction accuracy of
the exponential model by selecting optimal FPT and minimizing random er-
rors, failure threshold remains subjective and few studies have been done to
determine them dynamically in RUL prediction. The authors in [26] developed a
method for estimating the RUL of rolling element bearings in induction motors
using dynamic regression models. They used a gradient-based approach to build
failure thresholds and developed the time to start prediction (TSP) metric to
detect the onset of bearing degradation, after which the trend in the bearing
health indicator should be continuously monitored to estimate the RUL. The
proposed methodology was evaluated on run-to-failure data, nevertheless, the
authors state that further study is required to confirm its efficacy since it was
limited to a single dataset.
The studies in this subsection focus on unsupervised learning for fault detec-
tion, RUL prediction, and improving exponential model accuracy. Techniques
like clustering algorithms, change point detection, Gaussian process regression,
adaptive first prediction time selection, and particle filtering can save costs by
reducing equipment replacements and improving machine uptime [27, 28]. How-
ever, selecting the appropriate technique depends on the equipment, data, and
maintenance goals [20].
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4 Methodology

This section describes the methodology used in the course of the work. The
approach includes exploratory data analysis, trend analysis, and the use of one-
class SVM and interpolation to identify and handle the outliers. Following the
deployment of the prediction model, PELT is used to detect changes in signal
trend and establish state-definers thresholds. The prediction model is applied to
the signals that are identified as degrading. Using the training data, multiple
regression models are trained, and the best model is chosen to forecast the RUL
of gearbox bearings 2. The whole procedure is presented in Figure 2, and the
subsections that follow describe each step.
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Fig. 2. Proposed Methodology

4.1 Dataset

Accelerometers are mounted on the motor and gearbox casings to capture vibra-
tion signals. Two sensors are installed in the traction motor, and two more are
installed in the same location in the gearbox, also shown in Figure 1. The sensors
are programmed to transmit data to a controller unit, which is then analyzed
to determine the prognosis. Data was collected from a train over a 10-month
period, and specifically from the four traction cars on the train, with the goal
of identifying concerning patterns. The prediction model was constructed using

2 While the source code remains proprietary, the GitHub repository in-
cludes a pseudocode representation https://github.com/lodianabeqiri/

BearingRUL-Estimation-Pseudocode

https://github.com/lodianabeqiri/BearingRUL-Estimation-Pseudocode
https://github.com/lodianabeqiri/BearingRUL-Estimation-Pseudocode
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Fig. 3. Carpet and Max Values:
Damaged Gearbox Bearing Fig. 4. Outlier Detection

data from another train’s damaged gearbox bearing. The gearbox was removed
for inspection by Alstom engineers, and a problem with the transmission’s bear-
ing was discovered. The signals received through the sensors were further filtered
by the engineers to produce two features called as the carpet value and the max-
imum value. The carpet value reflects the energy level of the signal, while the
maximum values represent the signal’s peak values. If there is no damage, the
carpet values can be used to reveal the amount of vibration, or energy inside
the motor and gearbox bearing. Based on domain expertise, when there is bear-
ings deterioration, the carpet value rises as the damage worsens. On the other
hand, the maximum values do not always imply component damage, since they
depend on both external noise and component degradation. For these reasons,
the carpet value is employed as a prediction indication in this paper to uncover
data variation associated to failure.

4.2 Exploratory Data Analysis (Eda)

Eda is a crucial step in comprehending the data, making it easier to spot trends
and anomalies. The data has been partitioned into training and test sets in a
80/20 proportion. The MinMaxScaler normalization technique has been used on
the training set for transforming the numerical values to a common scale with-
out distorting the values range or removing information. The test data has been
used to evaluate the model. Figure 3 depicts the maximum value in green and
the carpet value in pink from the damaged bearing 3.
Visualization is a useful tool for understanding the data trends. A time series
trend refers to the pattern or direction of change that can be observed across
time. The moving average and Bollinger Bands were examined in the analysis.
Bollinger Bands are standard deviation envelopes that appear above and below a

3 GitHub repository https://github.com/lodianabeqiri/RULforBearings_images

contains all the figures presented in this paper.

https://github.com/lodianabeqiri/RULforBearings_images
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Fig. 5. Trend Analysis: Damaged
Gearbox Bearing Fig. 6. Trend Analysis: Signal 2

simple moving average. A moving average represents the average value of preced-
ing data points without weighting. The trend of the failed bearing is illustrated
in Figure 5. The moving average with a 30-day time window is represented by the
red line, while the green zone depicts the Bollinger Bands. The signal does not
vary significantly at first, but when the degradation process begins, the values
begin to rise. The signal appears to have a stagnant pattern with consistently
high values as it approaches the failure phase. Figure 6 illustrates another signal,
which shows a slight shift in the trend with a considerable increase in values.

4.3 Outliers

Outliers are observations, also known as abnormalities, that do not fit with the
rest of the data. Summary statistics, including mean and variance, can be af-
fected by outliers. Traditional deterministic methods are often applied in practice
for outlier identification, such as displays of the distribution and labeling each
observation over or below a specific threshold as an outlier. One-class classi-
fication is a subfield of ML that focuses on identifying outliers. In this paper
we use one-class SVM. It is a SVM variant that captures the density of the
majority class and classifies outliers as examples at the density function’s ex-
tremes. It learns the distribution’s bounds referred to as ”support” and can thus
classify any points outside the boundary as outliers. The algorithm parameter
include nu that is used to fine-tune the trade-off between overfitting and gen-
eralization, parameter gamma and the kernel function. The decision boundary
will be increasingly ”linear” as the gamma increases, and the more complex the
model, and the greater the risk of overfitting. The kernel function changes the
training set of data so that a non-linear decision surface can be translated into
a linear equation in a larger number of dimension spaces. Figure 4 depicts the
outliers as red dots discovered by one-class SVM with the optimized parameters:
nu=0.05, kernel=”rbf”, gamma=0.01. Data distribution could be drastically al-
tered by removing outliers. Therefore linear interpolation was chosen to estimate
the missing value by directly linking points in the ascending order.

4.4 Models

This subsection provides an overview of the models used. We examine the ratio-
nale for selecting these models and provide a brief explanation of each.
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Regression analysis is a type of curve fitting optimization problem, where the
objective is to find the best line or curve that fits the data in a way that min-
imizes the difference between the predicted and actual values. We investigated
polynomial and exponential regression models and compared their results to de-
termine the best fit. Polynomial regression is a version of linear regression in
which a polynomial equation is used to describe the data in order to capture the
curvilinear relationship between the independent and dependent variables. The
polynomial equation of degree n is represented as:

y = θ0 + θ1x+ θ2x
2 + · · ·+ θnx

n + ϵ (1)

where y is the dependent variable, x is the independent variable, θ0, θ1, . . . , θn
are the regression coefficients or weights, ϵ is the error term, and n is the degree
of the polynomial. The 1-degree polynomial is a simple linear regression, there-
fore the degree value must be greater than 1. If the n value is low, the model will
struggle to fit the data properly, and if it is high, the model will easily overfit
the data.
Exponential regression is the process of determining the best exponential func-
tion equation for a set of data. The exponential equation is given as:

y = θ0e
θ1x + ϵ (2)

where y is the dependent variable, x is the independent variable, θ0 and θ1 are
the exponential regression coefficients, and ϵ is the error term.
PELT is a change point algorithm that can be used to detect performance de-
clines [29]. There is no unique definition for the term ”change point ”. They can
be regarded as time series points with statistical characteristics that differ from
the data distribution. For a given cost function, penalty score, and model, PELT
is used to locate the change points in a data set by computing the segmentation
of the data that minimizes the cost function. The algorithm uses the pruning rule
where many indices are deleted, resulting in a significant reduction in computa-
tional cost while maintaining the ability to determine the best segmentation. To
find multiple change points, PELT is first applied to the entire dataset and then
iteratively and independently applied to each partition until no change points
are found.

The bearing degradation process due to measurement noise is vulnerable to
a variety of fluctuations, which may affect the model’s ability to evaluate the
degradation trend [11]. In this case, the data is smoothed before being used
as input to the prediction models. The Savitzky-Golay is a low pass filter that
smooths out data with certain oscillations using a polynomial function, resulting
in a signal that is easier to understand and analyze. The technique is repeated
for all data points, yielding a new set of data points that closely resembles the
original data.

The following paragraphs discuss the practical application of the discussed
models on the data. We investigate the process of optimizing these models to
ensure their effectiveness in capturing data patterns and discuss their outcomes.
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4.5 Setting the Thresholds

The PELT algorithm locates the points in the damaged gearbox bearing carpet
value where there is a change or an obvious rising trend. These identified points
are used as reference thresholds to assess the health of other signals. The premise
behind this approach is that if any other signals have degraded or failed, they
may exhibit a similar pattern to the damaged bearing. This assumption was
made due to a paucity of data on different failure behavior, and we relied on
known failures to detect the similar failure trend. The PELT model was fed with
the carpet value and a penalty score and detects the variation point of the signal
to build the thresholds. The best parameters for PELT were the Gaussian kernel
as a model with a penalty score of 10 and as the cost function the constrained
sum of approximation errors. To enhance the signal, the Savgol filter was ap-
plied using a window size of 51 and a polynomial order of 3. Subsequently, the
filtered signal was passed to PELT. Three vertical lines in Figure 7 represent the
detected thresholds for illustration reasons. The red line represents the degra-
dation threshold, and the degradation zone extends from the red to the blue
line. When the signal exceed the blue line, it reaches failure. These thresholds
are used to determine whether we proceed to compute the RUL for other signal.
Based on the thresholds, most of the signals that were evaluated for each car
were categorized as healthy. The method was then applied to the damaged bear-
ing signal, the result is that the signal has already failed, and no RUL calculation
is required.

Fig. 7. Thresholds

However, when compared to signal 2 presented in section 4.2 it is classified
as degraded, and for this signal the RUL can be determined. Figure 8 shows in
green the filtered signal 2. The x-axis represents the time at which the signal was
acquired, while the y-axis represents the carpet value of the signal. The signal
exhibits an increasing pattern that begins after 2000 hours and ends before 5000
hours. Unlike the damaged signal in Figure 3 , which has a growing tendency
over time until failure, the signal 2 is susceptible to the ”healing phenomenon”
[30]. After the values increase, possibly due to a defect, the signal returns to low
values. For instance this could happen as a result of newly formed surface defects
caused by the rolling elements of the bearings. Assuming signal 2 will eventually
fail after recovery, we employed extrapolation using numpy polyfit in python
to forecast future data points and observe the potential trend the signal might
follow. Extrapolation is the process of assuming values outside the range of the
currently available data by using data from existing points. It is important to
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Fig. 8. Signal 2 Extrapolation

note that extrapolation might result in inaccurate results, owing to the variety
of gearbox bearing degradation patterns. However, in scenarios with a sufficient
number of samples exhibiting the same failure pattern, or multiple failure cases
for more complex extrapolation tasks, insights into the signal’s future behavior
become possible. We conclude that there is insufficient data to calculate the RUL
for signal 2.

4.6 RUL

To determine the RUL, three main functions were developed: actual or true RUL,
another to estimate the RUL, and yet another to calculate the prediction error.
The actual RUL is defined as the time elapsed between the true failure of the
bearing and the actual time we consider for each point on the training set. The
RUL is calculated in terms of hours. We used the last instance of our provided
data as the time when the bearing failed, which was 8092 hours in the training
data. For the estimated RUL, we used the polynomial regression that best fitted
the data, calculating the estimated RUL as the difference between the estimated
time of bearing’s failure and the time determined by our polynomial function
for each data point on training set by projecting the point to the hour axes. The
estimated time is to be around 7928 hours in the training set by extrapolating
the data and finding this value when the data exceeded the failure threshold.
Finally, the prediction error is defined to determine how well the prediction
model performed, as the difference between the actual and predicted RULs.

5 Results

The polynomial and exponential functions applied to the damaged bearing sig-
nal are shown in Figures 9 and 10, respectively. Figures 11 shows the model
constants and assessment metrics for each regression model. Evaluation tables
indicate that the polynomial function exhibited the lowest Root Mean Square
Error (RMSE) and the highest R squared (R2) value, indicating the best fit to
the data. Consequently, we employ polynomial regression to calculate the RUL.
Similar results can be observed when it comes to the test data.
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Fig. 9. Exponential Function Fig. 10. Polynomial Function

Fig. 11. Assessment Metrics and Regression Coefficients in Training Data

The graph in Figure 12 compares the estimated RUL from polynomial re-
gression, which is visualized in green, to the actual RUL, which is represented
by the diagonal black line. The time at which the fitted carpet value exceeded
the defined threshold as determined by PELT was then used to extrapolate the
expected failure time. Considering only the time the signal entered the degrada-
tion phase until it reached the failure threshold (at 8092 hours or 337 days), the
actual RUL of the signal is calculated to be 2979 hours. As a result, the signal
has 2979 hours until it fails as soon as it enters the degradation phase. Mean-
while, extrapolating the estimated RUL yields 7928 hours or 330 days, implying
that the signal has 2812 hours left when it enters the degradation phase. The
difference between the actual life and the estimated time left for the bearing to
function properly is 168 hours, or 7 days. The green line in Figure 12 regressing
the estimated life time underestimates the signal’s life by a few hours; however,
some time intervals between 1000 and 1500 hours are comparable to the true
RUL. The prediction error, mean square error (MSE) is the distance between
estimated line and the actual line. Since the estimated values can be less or
greater than actual values, a simple sum of differences can be zero and this lead
to the incorrect conclusion that the forecast is correct. As we square and use
RMSE, all errors are positive, and the mean is positive, indicating that there is
some difference between the estimates and the actual. The calculated RMSE is
210. While no RMSE value is universally correct, a lower mean indicates a more
accurate forecast.

5.1 Threats to Validity

As any other experimental work, also this paper needs to take into consideration
threats to validity [31]. Internal and construct validity have to deal with the
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Fig. 12. Regression Model for Predicting RUL

set-up of the experiments and the potential bias of the involved researchers. In
this respect, the developed techniques use standard data cleaning and analysis
techniques and no refinement procedure, e.g. for outliers and thresholds, has
been adopted in accordance with (railway) domain experts. When it comes to
conclusion validity, the availability of bearing data is limited to a single failure
case. This limitation does not allow us to make conclusions about the precision
of the estimation algorithm with an adequate level of confidence. Nonetheless,
the approach is generic into distinguishing between healthy and unhealthy states
by utilizing domain knowledge about signal characteristics. While the approach
accurately detects the states, it is worth mentioning that by integrating more
data depicting failure bearing patterns, the precision of the predictions can be
improved.

6 Conclusion

A RUL prediction method has been developed by leveraging real-world data
from gearbox bearings. Initially, the data was analyzed to identify increasing
trends, and the one-class SVM was used to eliminate any outliers. Moreover, the
PELT algorithm identified changes in signal properties, allowing the construction
of valid degradation thresholds without prior knowledge of them. Two regres-
sion models were trained and compared, with polynomial regression achieving
a higher R2 value of 0.87 compared to exponential regression. RUL prediction
utilized the polynomial function and anticipated the failure with 7 days in ad-
vance to the real failure. Furthermore, it was observed that adding data filtering
techniques to our model, such as a low pass filter, significantly improves the
performance and helps to smooth out the fluctuations in the gearbox degrada-
tion trend. The method, however, is dependent on a certain known degradation
trend, resulting in restricted data for defining the thresholds. More data on
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similar behaviors will allow for the construction of more rigorous degradation
criteria.
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