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The human factor plays a key role in the automotive field since most accidents

are due to drivers’ unsafe and risky behaviors. The industry is now pursuing

two main solutions to deal with this concern: in the short term, there is the

development of systems monitoring drivers’ psychophysical states, such as

inattention and fatigue, and in the medium-long term, there is the development

of fully autonomous driving. This second solution is promoted by recent

technological progress in terms of Artificial Intelligence and sensing systems

aimed at making vehicles more andmore accurately aware of their “surroundings.”

However, even with an autonomous vehicle, the driver should be able to take

control of the vehicle when needed, especially during the current transition

from the lower (SAE < 3) to the highest level (SAE = 5) of autonomous driving.

In this scenario, the vehicle has to be aware not only of its “surroundings”

but also of the driver’s psychophysical state, i.e., a user-centered Artificial

Intelligence. The neurophysiological approach is one the most e�ective in

detecting improper mental states. This is particularly true if considering that

the more automatic the driving will be, the less available the vehicular data

related to the driver’s driving style. The present study aimed at employing

a holistic approach, considering simultaneously several neurophysiological

parameters, in particular, electroencephalographic, electrooculographic,

photopletismographic, and electrodermal activity data to assess the driver’s

mental fatigue in real time and to detect the onset of fatigue increasing. This

would ideally work as an information/trigger channel for the vehicle AI. In all,

26 professional drivers were engaged in a 45-min-lasting realistic driving task

in simulated conditions, during which the previously listed biosignals were
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recorded. Behavioral (reaction times) and subjective measures were also collected

to validate the experimental design and to support the neurophysiological

results discussion. Results showed that the most sensitive and timely parameters

were those related to brain activity. To a lesser extent, those related to ocular

parameters were also sensitive to the onset of mental fatigue, but with a delayed

e�ect. The other investigated parameters did not significantly change during the

experimental session.
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1 Introduction

Road transportation is an essential service of modern society
relating to working activity and spare time. In particular, with
respect to working activity, before the COVID outbreak, 70% of
European citizens needed to commute to work, with more than
50% of them having <30min one-way commuting time every day
and another 25 of them having at least 30min one-way commuting
time every day (Passenger Mobility Statistics., 2023). Since the
majority of people in Europe travel by private automobile (50%
do so daily compared to only 16% who use public transportation
and 12% who use bicycles) (Giménez-Nadal et al., 2022), time
spent driving can be estimated to be a relevant part of daily
activity. The trend is similar in the US where the Department
of Transportation (Transportation Statistics Annual Report and
Bureau of Transportation Statistics, 2023) estimates that 87% of
persons use private vehicles for daily trips (both for work and spare
time) and 91% commute to work using personal vehicles, with a
total of 55min spent driving per day.

Autonomous Driving (AD) could free humans from the burden
of this daily driving routine. The level of driving autonomy is
ranked using the acronym SAE (derived from the Society of
Automotive Engineering) from level 0 – total manual driving –
to SAE level 5 – fully autonomous. AD vehicles (SAE > 3) are
supposed to be the main modality of driving in the future. In
a survey from 2015 (Kyriakidis et al., 2015), AD was supposed
to be commercially available in 2025 and participants seemed to
be enthusiastic to have the possibility of performing other tasks
instead of driving such as emailing, reading, and watching a movie.
Today in 2023, partially and fully autonomous vehicles are on
the market even if legislation must be refined with AD being a
reality in just a few countries and with strict limitations. Apart
from the cost, the major factor limiting the drastic adoption of
AD is the one related to safety. In fact, AD vehicles need to
be extremely accurate and reliable before totally entrusting them
with the task of transporting people. This is especially true for
highly automated vehicles (from SAE Level 3 to SAE level 5)
which do not require user intervention in most (SAE 3 and 4)
or every condition (SAE 5). But with lower levels of SAE (SAE
0 to 2), human intervention is required (Eriksson and Stanton,
2017; Vogelpohl et al., 2019), raising a concern in the opposite
direction. This concern is related to the capacity of the driver
to take control of the vehicle (i.e., takeover) when the Artificial
Intelligence (AI) driving the car prompts the request. This capacity

to timely intervene appears to be crucial with intermediate levels of
autonomy, i.e., SAEs 1–3. In order to react properly to the takeover
request, the drivers must be alert and focused on the surrounding
environment (Huang et al., 2020; Weaver and DeLucia, 2022).
This means that even if the drivers are not actually driving, they
should be conscious that their intervention may be needed and
for this reason, they should keep their focus on the driving.
Many experimental pieces of evidence have reported that when
performing a task, the automatization of different features may
lead to mind-wandering and to a phenomenon called “out-of-the-
loop” (Di Flumeri et al., 2019; Merat et al., 2019; Schnebelen et al.,
2020). This was first noticed in the aviation field where autonomous
piloting has long existed (Endsley and Kiris, 1995). Endsley and
Kiris noticed that when supervising an automated process, pilots
may enter a passive state, losing information coming from the
environment and lacking situational awareness. In the automotive
field, with increasing automation, the driver acts as a supervisor of
the automation system, potentially increasing the chance of being
“out-of-the-loop” and therefore increasing the risk of accidents for
themselves and others. In other words, monitoring the state of
the drivers in an effective and reliable way will be as crucial as
monitoring the surroundings through traditional cameras, radar,
and LiDAR systems.

In fact, in order to reduce the risk of humans failing the
takeover request, the AI driving the cars should be aware of the
state of the drivers (i.e., “in-” or “out-of-the-loop”) and able to
modulate their activity to keep a constant and functional level of
engagement (Aricò et al., 2016; Di Flumeri et al., 2019), or at least
to provide feedbacks and suggestions accordingly (Boelhouwer
et al., 2020). Also, the drivers could be “in-the-loop” without
actually being in the proper mental state for a driving task when
a takeover intervention is requested. For example, the drivers
could be over-stressed or overloaded from previous activities other
than driving or they could just be drowsy or fatigued. Even if
drivers are just supervising the AD system, their mental resources
to face the takeover request could be insufficient and thus the
drivers might not be completely aware of the situation and so not
ready to intervene/react promptly. In other words, the Artificial
Intelligence playing autonomous functions in the vehicle has to
be user-centered.

In this scenario, monitoring drivers’ mental state appears to
be crucial to prevent fatal and/or non-fatal accidents and this is
true for AD as well as human driving. Indeed, the automotive
market is already developing driver monitoring systems to detect
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improper mental states while driving (Doudou et al., 2020). These
systems are mainly focused on the detection of fatigue, including
its degradation to drowsiness and inattention, which are two
of the most impacting impairing factors while driving. These
systems belong to three categories of driver-monitoring devices:
(i) driving behavior-based, (ii) driver behavior-based, and (iii)
driver physiological signal-based. Since the study focuses on the
assessment of mental fatigue, a short description of the previous
categories with respect to fatigue assessment is provided below:

i. Driving behavior-based systems have been developed by several
vehicle manufacturers with the aim of using information
coming from the vehicle to detect any driving pattern related
to a drowsy or fatigued state. The measures collected for this
kind of detection focus mainly on different driving parameters
that have been experimentally demonstrated to be related to the
fatigue and drowsy levels of drivers such as steering wheel angle
(Fairclough and Graham, 1999; Eskandarian and Mortazavi,
2007; Borghini et al., 2014), vehicle deviation and position
(Ingre et al., 2006; Forsman et al., 2013), and vehicle speed and
acceleration (Fairclough and Graham, 1999; Arnedt et al., 2001;
Chen et al., 2015).

ii. Drivers’ behavior-based systems aim to directly monitor
drivers’ activity (driver behavior-based) in order to detect any
symptoms of a fatigued or drowsy state. Drivers’ behaviors
are usually monitored using a camera and thus this approach
is referred to as a video-based measure. Research in this
area mainly focused on eye movements [eyeblink rate – EBR
(Papadelis et al., 2007), eyeblink duration – EBD (Häkkänen
et al., 1999; Danisman et al., 2010; Shekari Soleimanloo
et al., 2019), percentage of eye closure – PERCLOS (Sommer
and Golz, 2010), facial expression (Fan et al., 2007; Knapik
and Cyganek, 2019) and head position (Brandt et al., 2004;
Ghourabi et al., 2020)].

iii. It is known that internal mental states are reflected in
changes in several physiological parameters that can be
measured to monitor drivers’ conditions. In contrast to the
other two already described families, such systems include
large, hefty amplifiers and preprocessing components in the
acquisition module. Since there are typically many cables
between the electrodes and the acquisition component,
connecting wires might be challenging. These factors lead
to a lengthy preparation period while monitoring signals.
Additionally, the user’s ability to move is constrained
by cable restrictions. Fatigue detection based on these
technologies is therefore usually aimed at providing a reference
measure and result to be only applicable in a laboratory
environment even if technological advances are starting to
allow the recording of good quality signals using wearable
devices out of controlled environments nowadays. There are
several physiological measures to monitor drivers’ mental
states in a laboratory condition and the most used are
Electroencephalography (EEG), Electrooculography (EOG),
Electrocardiography (ECG), Photopletismography (PPG), and
Electrodermal Activity (EDA). EEG measures brain cortical
activity by placing electrodes on the scalp. Its high temporal
resolutions (milliseconds) would make it the best candidate
to intervene timely to prevent accidents due to an improper

mental state to drive (Islam et al., 2020). Indeed, several
studies highlighted the possibility of monitoring vigilance and
drowsiness levels with EEG (Zhang et al., 2016; Guo et al.,
2017; Majumder et al., 2019; Stancin et al., 2021). There is
broad agreement on the fact that low-frequency rhythms are
indicative of a level of a fatigued or drowsy state even if
some studies focused on Alpha rhythm (Fujiwara et al., 2018;
Di Flumeri et al., 2022) while others investigated Theta and
Delta (Nguyen et al., 2017; Arefnezhad et al., 2022). EOG
monitors eye behavior using electrodes placed near the ocular
bulb to detect movements and blinks (Barea et al., 2002).
Given the constraint of such a method, EOG can be estimated
from EEG signal (Sciaraffa et al., 2021; Simonetti et al., 2023).
This approach reduces the invasiveness of EOG monitoring
while keeping the information suitable for estimating the
physiological parameters relevant to fatigue and drowsiness
detection. The measures obtained with this approach are
the same as the video-based measures. Another source of
information regarding drivers’ states is represented by the
analysis of parameters estimated from the autonomic response.
In particular, ECG and PPG signals, which are related to
heart activity, and EDA which is related to skin sweating,
are relatively easy to record and they can bring relevant
information about the fatigue and drowsy state. Heart Rate
(HR) is one of the most common features extracted from ECG
and it represents the number of heart beats in a temporal unit.
The variation over time of the distance between two heart beats,
namely, Heart Rate Variability (HRV), has been demonstrated
to be correlated with the state of drowsiness and it was found
to decrease in sleepiness compared to alertness (Fujiwara et al.,
2018; Alaimo et al., 2020). From the EDA signal, it is possible
to extract two features, the Skin Conductance Level (SCL)
and the Skin Conductance Response (SCR) that were found
to be correlated with drivers’ mental fatigue and drowsiness
levels. The research on these parameters is more immature with
respect to the previous ones; however, there are some findings
about a possible relation between skin conductance variations
and mental fatigue (Geldreich, 1939; Bundele and Banerjee,
2009).

Thus, there is the feeling that all the listed neurophysiological
parameters are, to different degrees, linked to mental fatigue.
Their multimodal analysis could increase the sensitivity and
reliability of a monitoring system in detecting the onset of fatigue.
They would become a valuable resource for developing in-car
human-machine interfaces that allow the vehicle to recognize
the user’s state and act accordingly. It could be argued that,
as introduced, these neuro-technologies are still far from being
deployable seamlessly in a real scenario. However, their application
would be paramount, especially considering the limitations of
the two other strategies: on one hand, the driver behavior-based
systems have been demonstrated to be sometimes not reliable
mostly because of lighting conditions (Sahayadhas et al., 2012) and
a further decrease in reliability was found in the real environment
compared to control environment (Philip et al., 2005); on the
other hand the driving behavior-based systems, apart from arguable
reliability as well as depending on road geometric characteristics
and traffic conditions (Sahayadhas et al., 2013), are not suitable
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for vehicles with increasing autonomy (SAE > 2) since in this
case the driving behavior will depend on AI and so is not linked
to the drivers’ state. To achieve optimal decision-making on AI
driving the car, it should be fed with data collected from the drivers.
Dedicated algorithms would perform analysis of the information
coming from sensors in order to detect the drivers’ suitability
for the driving activity. In order to do this, a machine-learning
approach is usually adopted. Several studies have demonstrated
the feasibility of using neurophysiological parameters to recognize
drowsiness occurrence using a machine learning approach (Leng
et al., 2015; Choi et al., 2017; Kundinger et al., 2020). In these
studies, several neurophysiological parameters such as EEG, EDA,
heart-related measures, and temperature are used to recognize
fatigue and drowsiness occurrence in the drivers. In this approach,
supervised learning is used to train the machine learning model.
Ground truth is usually represented by subjective ratings of the
drivers or by image processing analyzing facial expressions and eye
closure. Classification models like these have been demonstrated to
be reliable in recognizing drowsy and fatigued states.

In any case, none of the cited studies handle this topic in
a holistic way, i.e., by simultaneously considering all the listed
biosignals in order to provide a clear overview of which of
them are the most informative and timely. Also, in the majority
of the studies, participants had to drive for hours, sometimes
under conditions of sleep deprivation, and the two extreme
“boundaries” of the experience, i.e., the period when the driver
was fully awake vs. the period when the driver was highly drowsy,
were compared in terms of neurophysiological markers. This
comparison undoubtedly allows us to obtain significant outcomes
since the two conditions are very different, but at the same time,
it is still far from daily situations and requirements since mental
impairment and unsafe driving behaviors begin long before fatigue
becomes extreme.

In this study, the main aim is to investigate whether it is
possible, and by which parameters, to detect the onset of fatigue
at a very early stage since anticipation will be crucial for developing
safer vehicles. Most of the previous studies found in the literature
focused either on vigilance or severe sleepiness thus not filling the
gap existing between the two. Indeed, fatigue could be interpreted
and defined as a precursor of the drowsy state. On the other
hand, a decrease in vigilance, often a topic of investigation in this
field, could be one of the early symptoms of a fatigued mental
state, which is recognized to reduce the ability to perform a task
adequately (Shen et al., 2006; Shahid et al., 2010). Not surprisingly,
vigilance decrease and fatigue increase are often linked to similar
physiological reactions, such as the increase in alpha activity and
eye blink rate (Tejero Gimeno et al., 2006; Borghini et al., 2014). In
other words, all these mental states can be considered a continuum
(alertness, fatigue, and drowsiness).

To achieve the intended purpose, 26 professional drivers were
engaged in a simulated monotonous driving task. A multimodal
approach was adopted in order to understand which physiological
parameters could better detect the onset of fatigue occurrences
while driving. Data collection of the physiological variables was
performed using high-quality wearable devices in order to collect
reliable data without interfering with the driving activity. EEG,
EOG, EDA, and PPG signals were then acquired from healthy
volunteers and derived features were used to estimate their level

of mental fatigue. In particular, in terms of EEG data, a previously
validated neurometric index of mental fatigue/drowsiness derived
index (Di Flumeri et al., 2022; Ronca et al., 2022) was used.
Performance in a realistic secondary task and subjective measures
were also collected to validate the experimental design and to
support the eventual findings.

2 Materials and methods

2.1 Participants and experimental setup

Twenty-six (26) professional drivers (26 men, 37.7 years old ±

10.8), with normal or corrected-to-normal vision were recruited to
take part in the study. The experiment was conducted following the
principles outlined in the Declaration of Helsinki of 1975, as revised
in 2008, and it was approved by the Sapienza University of Rome
and Roma Tre Ethical Committee. Experiments took place in the
afternoon to ease a higher level of mental fatigue.

2.2 Experimental protocol

The research tool was a driving simulator constituted of a real
car seat, a real dashboard with steering wheel, manual gearshift and
pedals, and a 3-monitor-based display with a 160◦ view.

After an initial training phase, the neurophysiological activity in
a resting state was collected. Participants were asked to sit and close
their eyes for 1min (EC condition). Then they were instructed to
look at the main monitor for 1min without performing any task
(EO condition, EO1). Subsequently, participants were provided for
the first time with questionnaires (described below).

Then, participants had to drive in two simulated environments,
a challenging and a monotonous one, in a fixed order, according to
what was suggested by scientific literature (Thiffault and Bergeron,
2003; García et al., 2010). Specifically, fatigue is supposed to be
promoted by an intense task load, followed by a low stimulating
and monotonous task (Thiffault and Bergeron, 2003; García et al.,
2010). The protocol we designed was constituted of the first high-
demanding driving simulation which aimed to challenge themental
resources of the participants. On the contrary, the second simulated
environment was designed to be extremely easy and repetitive.
The first simulated environment consisted of a 15-min high-
demanding circuit driving task. This task was designed to challenge
participants’ driving abilities in order to increase the probability
of fatigue episodes in the following easy and monotonous driving
task. After the Circuit task, the Eyes Open condition (EO2) was
performed again and participants were provided with the second
round of questionnaires. The monotonous driving task lasted
45min and it consisted of driving in an easy and repetitive path,
reproducing urban road infrastructure, without traffic. The speed
limit was set at 40 km/h. Participants were asked to perform a
secondary task that aimed to collect their Reaction Times (RT)
(Blanco et al., 2006; Collet et al., 2009) while driving in this
monotonous environment. During this secondary task, a fake
engine failure alarm was presented both acoustically and visually.
Participants had to address the issue by pushing a button on the
steering wheel to turn off the alarm. The reaction time needed to
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push the button was taken as the performance of the secondary
task. At the end of the monotonous driving task, the last Eyes
Open condition (EO3) and questionnaire phase were performed.
A scheme depicting the entire experimental protocol is given below
(Figure 1).

2.3 Subjective assessment

Two questionnaires were adopted to validate the experimental
designs collecting perceived feelings of fatigue and drowsiness.
Karolinska Sleepiness Scale (KKS) (Kaida et al., 2006) and
Chalder Fatigue Scale (Chalder) (Cella and Chalder, 2010)
were presented at the arrival and after each driving task for
fatigue rating. From a conceptual and psychological point of
view, mental fatigue and drowsiness are slightly different even
if they are usually considered just as two different degrees
of intensity on a scale from alertness to sleepiness (Kamran
et al., 2019). Because of that, the redundant choice to ask the
participants to fill out both questionnaires was made because,
being contiguous phenomena, they are often hard to distinguish
between each other, especially if considering the poor sensitivity of
subjective measures.

2.3.1 Karolinska Sleepiness Scale
KSS (Kaida et al., 2006) asks participants to rate their current

state of sleepiness on a scale from 1 (extremely alert) to 9 (extremely
sleepy – fighting sleep). This scale measures the subjective level of
sleepiness at a particular time during the day and therefore it is
sensitive to fluctuations.

2.3.2 Chalder Fatigue Scale
Chalder questionnaire (Cella and Chalder, 2010) asks

participants to answer several questions about fatigue-related
symptoms on a scale from 0 (none) to 3 (very high). In the original
form, Chalder questions refer to two different dimensions called
“physical symptoms” and “mental symptoms.” Given the focus
of this study (i.e., mental fatigue), only the questions related
to this dimension were used (questions from 9 to 14 of the
original questionnaire).

2.4 Behavioral assessment

During the Monotonous condition, nine fake engine failure
alarms were presented at fixed intervals of around 5min (all
the intervals were different to avoid any anticipation/habituation
effect). The participants’ task was to push a button on the
steering wheel to solve the issue. The assumption was that if
the participants were impaired by any not-proper-to-drive mental
state, their performance in this task would decrease (slower,
i.e., higher reaction times) (Blanco et al., 2006; Collet et al.,
2009).

2.5 Neurophysiological assessment

2.5.1 Electroencephalographic signal
EEG signal was collected using the Mindtooth device

(developed and validated during Mindtooth Project, GA 950998)
(Sciaraffa et al., 2022a,b). It consists of eight Ag/AgCl water-based
electrodes placed according to the International 10–20 system (AFz,
AF3, AF4, AF7, AF8, Pz, P3, and P4) plus ground and reference
electrodes placed on mastoids. The device has been validated and is
capable of recording the EEG signal extremely accurately (Sciaraffa
et al., 2022a). The sampling frequency was 125 (Hz). To remove
interferences due to mainline power interference, a 50-Hz notch
filter was applied. The EEG recordings were also band-pass filtered
[low-pass filter cut-off frequency: 40 (Hz), high-pass filter cut-off
frequency: 2 (Hz)]. Subsequently, the Reblinca (Di Flumeri et al.,
2016) algorithm was used to remove eyeblink artifacts, while for
other sources of artifacts, dedicated algorithms of the EEGLAB
toolbox (Brunner et al., 2013) were applied. We estimated an
average of 21% (± 22.51) of data loss due to artifact rejection
in both EEG and EOG (EEG-derived) signals. In detail, the ICA-
processed signal has been separated into 1-s-long epochs and three
criteria have been applied in order to recognize artifactual data.
Firstly, EEG epochs with a signal amplitude exceeding ±80mV
(Threshold criterion) were labeled as “artifacts”. Then, each EEG
epoch was interpolated in order to check the slope of the trend
within the considered epoch (Trend estimation criterion). If such a
slope was higher than 20mV/s, the considered epochwasmarked as
“artifact.” Finally, the signal sample-to-sample difference (Sample-
to-sample criterion) was analyzed: if such a difference, in terms
of absolute amplitude, was higher than 25mV, i.e., an abrupt
variation (no-physiological) happened, the EEG epoch was marked
as “artifact”. In the end, the EEG epochs marked as “artifacts” were
removed from the EEG dataset with the aim to have a clean EEG
signal to perform the analyses.

The Global Field Power (GFP) was calculated from the artifact-
free EEG with a focus on the EEG frequency band for the mental
state of interest, which was the Alpha band (Di Flumeri et al., 2022).
The GFP was chosen because it describes brain EEG activity with
the advantage of representing, in the time domain, the degree of
synchronization of a specific cortical region of interest in a specific
frequency band (Skrandies, 1990). According to the Individual
Alpha Frequency (IAF) value (Klimesch, 1999), the Alpha band
was computed for each participant. Since the Alpha peak is mainly
prominent during rest conditions, the subjects were asked to keep
their eyes closed for a minute before starting the experiment. Such
a condition was then used to estimate the IAF value specifically
for each participant. Consequently, an EEG “strict” Alpha band
was defined as Alpha = (IAF - 1) : (IAF + 1) Hz. This definition
of the Alpha band is more restrictive (thus “strict”) compared to
the vast majority of Alpha band definitions that can be found in
scientific literature, which is (IAF-2) : (IAF+ 2) Hz. This approach
was selected according to Klimesch (2012), who demonstrated that
a tighter band around the IAF can be considered Alpha to avoid
the impact from closer EEG frequency band (Theta and Beta)
variations on the observed phenomena in the Alpha band. The GFP
was calculated over all the EEG parietal channels for each epoch
using a Hanning window of the same length of the considered
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FIGURE 1

Experimental design to induce fatigue. The 45 mins Monotonous task was preceded by a high demanding Circuit driving task which lasted 15 mins.

Asterisks indicate significance: *p < 0.05; **p < 0.01; ***p < 0.001.

epoch (1 s length, which means 1Hz of frequency resolution). The
EEGwas used to compute aMental Drowsiness index (MDrow) (Di
Flumeri et al., 2022), which is based on the increased Alpha GFP in
parietal regions.

2.5.2 Electrooculographic signal
The electrooculographic (EOG) signal was derived from EEG

data. The vertical EOG pattern was estimated by analyzing the
EEG AFz channel. This analysis was based on the application
of a customized version of the Reblinca method (Di Flumeri
et al., 2016) to isolate and identify the eyeblinks. The Eyeblinks
Rate (EBR), Eyeblinks Amplitude (EBA), and Eyeblinks Duration
(EBD) parameters were then estimated for each minute during the
monotonous driving task.

2.5.3 Electrodermal activity and heart rate
The Empatica E4 wristband (Empatica, Massachusetts,

United States) was adopted for both EDA and PPG signals with
a sampling frequency of 4 and 64Hz, respectively. The device
was placed on the participants’ non-dominant arms. The EDA
signal was first low-pass filtered with a cut-off frequency of
1Hz and subsequently processed with the Ledalab suite (Bach,
2014), a dedicated open-source toolbox implemented within the
MATLAB (MathWorks, Natick, Massachussets) environment
for EDA processing. EDA-derived tonic (Skin Conductance
Level, SCL) (Braithwaite et al., 2013) was estimated with the
continuous decomposition analysis (Benedek and Kaernbach,
2010). The SCL represents the slow-changing component of the
EDA signal and it is recognized to bring information regarding
the global arousal of an individual. A 60-second time resolution
window was used to estimate the EDA components and the other
neurophysiological parameters adopted in this study. Given the
low sampling frequency of Empatica E4 wristband EDA sensors
(4Hz), Skin Conductance Response, the fast-changing component
of EDA usually linked to reactions to a single stimulus, was not
taken into consideration for the low reliability obtainable with the
adopted device (Ronca et al., 2023).

Empatica E4 device was also employed for PPG recording to
derive the Heart Rate (HR) and Heart Rate Variability (HRV)
parameters. PPG signal was filtered using a 5th-order Butterworth
band-pass filter (0.4Hz) in order to reject the continuous
component and the high-frequency interferences, such as that
related to the mains power source. An additional reason to apply

this filtering was to emphasize the “pulse” process of the PPG
signal (Goovaerts et al., 1976; Pankaj et al., 2022). At this point,
the “pulses,” i.e., the phenomena related to the heartbeats, were
detected by the Pan-Tompkins algorithm (Pan and Tompkins,
1985). Finally, the temporal distance (inter-beats interval, IBI)
between consecutive beats was measured to estimate the HR values
every 60 s. The IBI signal was also analyzed to estimate the Heart
Rate Variability (HRV). In particular, the HRV was analyzed in the
frequency domain by computing the Lomb-Scargle periodogram
(Ruf, 1999) of the IBI signal. Analysis has shown that the Lomb-
Scargle periodogram can produce a more accurate estimate of
the Power Spectrum Density (PSD) than Fast Fourier Transform
methods for typical HR data (Simonetti et al., 2023). Since the HR
data are unevenly sampled data, another advantage of the Lomb-
Scargle method is that in contrast to Fast Fourier Transform-based
methods, it is able to be used without the need to resample and
de-trend the RR data (Clifford and Tarassenko, 2005). According
to scientific literature, the PSD of the HRV signal was computed
over the Low (LF: 0.04 ÷ 0.15Hz) and the High Frequencies (HF:
0.15 ÷ 0.4Hz), and then the LF/HF ratio was computed as a
relevant indicator of HRV (Ori et al., 1992). The HRV analysis
was performed by means of the HRVAS MATLAB suite (Ramshur,
2010). When processing EDA and PPG signals, artifacts due to
movements were corrected interpolating between two portions of
good-quality data, thus no data loss was found for these datasets.

2.6 Statistical analysis

In order to compare the data collected from different
participants at a group level, data were normalized by means of Z-
score normalization, with the exception of theMDrow index, which
is directly comparable between participants, and SCL which was
normalized using the minimum and the maximum values recorded
during the experimental session.

Gaussian distribution of the continuous variables (Reaction
Times -RT- of the secondary task, EEG, EOG, EDA, and
PPG-derived parameters) was verified using the Shapiro-
Wilk Test. If normality was confirmed, a parametric test
was performed; otherwise, a non-parametric test was used.
Questionnaires were analyzed with the non-parametric test.
In particular, when comparing three conditions (within the
same subject), repeated measures of ANOVA and Friedman
test were performed as parametric and non-parametric tests,
respectively, for the overall effect. In the case of a significant
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FIGURE 2

Self-report of Karolinska Sleepiness Scale (A) and Chalder Fatigue Scale (B). After the Monotonous driving task participants reported higher level of

sleepiness compared to their Arrival and after the Circuit (A). Chalder Fatigue Scale after the Monotonous task resulted higher than Arrival (B).

Asterisks indicate significance: *p < 0.05; **p < 0.01; ***p < 0.001.

overall effect, pairwise comparisons between conditions were
performed by means of a post-hoc test. The reported “p” parameter
of significance was always corrected for multiple comparisons by
the Bonferroni-Holm method.

We refer to the experimental conditions as “Arrival” (data
collected at participants’ arrival), “Circuit” (data about the first
driving task in the circuit), and “Monotonous” (data about
the second driving task in the monotonous environment). EO
conditions will be referred to as “EO1” (EO collected at participants’
arrival), “EO2” (OE collected just after the Circuit driving task), and
“EO3” (OE collected just after the Monotonous driving task). RT,
EEG, EOG, EDA, and PPG-derived parameters measured during
the monotonous driving task were divided into three segments of
15min each and averaged (1◦, 2◦, and 3◦ segments).

After this first statistical analysis of the entire group, two
different behaviors emerged among participants. Looking at the
performance in the secondary task (i.e., reaction times), it appeared
that some participants improved their performance along the task
while others did not. We hypothesized that during a 45-min easy
secondary task, performance should improve with time (Blanco
et al., 2006; Collet et al., 2009). If this did not happen, it could
be attributed to the occurrence of fatigue phenomena. Therefore,
the sample group was split into two subgroups according to their
behavioral performance. In particular, the difference between z-
scored RT during the third and the first segment was computed
for each participant. Those who showed a positive value (i.e.,
slower reaction times in the third segment of the monotonous
driving task) were assigned to Group 1 (fatigued, n = 12), while
those who showed a negative value (i.e., faster reaction times in
the third segment) were assigned to Group 2 (not fatigued, n =

14). Section 3 first describes the whole sample group (Within-
subjects Analysis) and then the analysis of the two groups separately
(Between-subjects Analysis).

3 Results

3.1 Validation of experimental design —
Subjective reports

3.1.1 Karolinska Sleepiness Scale
KSS questionnaire analysis showed an overall significant effect,

with the level of perceived sleepiness increasing across the protocol
(ANOVA, p < 0.001). As shown in Figure 2A, the post-hoc

tests showed that after the Monotonous driving task, participants
reported higher levels of sleepiness compared to both moments of
the Arrival and after the Circuit driving task (p < 0.001).

3.1.2 Chalder Fatigue Scale
Chalder Fatigue Scale analysis revealed significantly higher

levels of perceived mental fatigue (ANOVA p = 0.006, Figure 2B).
The post-hoc analysis pointed out that the fatigue experienced after
the Monotonous driving task was significantly higher with respect
to the Circuit driving task (p = 0.006), and almost significant
with respect to the Arrival (p = 0.069), while no significant
differences arose from the comparison between Circuit and
Arrival (p= 0.305).

3.2 Within-subjects analysis

3.2.1 Behavioral analysis
Performance of the secondary task improved with time during

the Monotonous driving task (ANOVA, p < 0.001, Figure 3).
Reaction times during the third segment decreased significantly
compared to both the first and second segments (respectively, p <

0.001 and p= 0.02).
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FIGURE 3

Analysis of reaction times in the secondary task. Participants showed

increased performance (lower reaction times) in the third segment

compared to the first two segments. Asterisks indicate significance:

*p < 0.05; **p < 0.01; ***p < 0.001.

3.2.2 Neurophysiological analysis
3.2.2.1 EEG assessment

MDrow EEG-based index was investigated during the three
15-min segments of the Monotonous task. An overall significant
increase (p < 0.001) has been highlighted over time. As shown in
Figure 4, compared to the first segment, statistical analysis revealed
a higher MDrow in the second (p = 0.003) and third segments (p
= 0.001), while no differences arose from the comparison between
the second and third (p= 0.679).

3.2.2.2 EOG assessment

EBR, EBD, and EBA were estimated from the EOG signal.
Figure 5A shows the analysis of EBR, which proved to be significant
(ANOVA, p= 0.004). Post-hoc comparisons revealed an increase in
EBR in the third segment compared to the first (p = 0.003) and
second segments (p = 0.001). Also, EBD proved to be significant
after the analysis (ANOVA, p < 0.001, Figure 5B). During the
second and third segments, participants showed decreased EBD
compared to the first segment (respectively, p = 0.03 and p <

0.001). EBA analysis showed no significant effect (ANOVA, p
> 0.05).

3.2.2.3 EDA and HR assessment

EDA signal was used to estimate the SCL. Statistical analysis
revealed no significant effect on SCL (ANOVA, p= > 0.05).

From the PPG signal, HR, HRV, HRV-LF, and HRV-HF were
estimated, but statistical analysis highlighted no significant effect
on these parameters (ANOVA, p > 0.05).

FIGURE 4

MDrow along the three segments. The level of MDrow increased

significantly in the second and third segments compared to the first

one. Asterisks indicate significance: *p < 0.05; **p < 0.01; ***p <

0.001.

3.3 Between-subjects analysis

3.3.1 Behavioral analysis
Reaction times in the secondary task were used to split the

participants into two groups, as described in the methodology. The
ANOVA performed by including the “Group” variable confirmed
the presence of such a moderating effect since a significant
interaction between factors “Segments” and “Group” was found
(p < 0.001). As shown in Figure 6, the performance of Group
1 (Figure 6A) did not improve along the Monotonous driving
task, while for Group 2 (Figure 6B), statistical analysis showed an
improvement in performance in the second and third segments
compared to the first (p= 0.02 and p< 0.001, respectively). Further
improvement in performance was found in the third segment
compared to the second (p= 0.006).

3.3.2 Neurophysiological analysis
3.2.3.1 EEG assessment

Since the EEG-based MDrow index distributions are not
Gaussian, the non-parametric tests were used; therefore, it was
not possible to investigate the interactive factor but only the effect
on the single Group. For Group 1, a significant increase of the
MDrow level in the second segment compared to the first (p= 0.04,
Figure 7A) was found. For Group 2, the increase was found between
the first and third segments (p= 0.004, Figure 7B).

3.2.3.2 EOG assessment

EBR statistical analysis showed a different effect on the two
Groups (ANOVA interaction effect between the factors Segments
andGroups, p= 0.01, Figure 8). Post-hoc test confirmed an increase
in EBR for Group 1 in the third segment compared to the second
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FIGURE 5

(A, B) Eyeblink behavior analysis. Participants showed increased EBR in the third segment compared to the first. EBD decreased significantly in each

of the three segments. EBA did not change significantly during the experimental session. Asterisks indicate significance: *p < 0.05; **p < 0.01;

***p < 0.001.

FIGURE 6

Reaction times in the secondary task for the two Groups. Analysis showed that Group 1 (A, fatigued) did not improve the performance during the

task. On the contrary, Group 2 (B, not fatigued) improved the performance (lower reaction times). Asterisks indicate significance: *p < 0.05; **p <

0.01; ***p < 0.001.

segment (p= 0.002, Figure 8A). For Group 2, no significant change
was observed (Figure 8B). No significant effect was observed on
EBD and EBA.

3.2.3.3 EDA and HR assessment

None of the autonomic parameters (EDA, HR, HRV, HRV-
LF, and HRV-HF) proved to be significant after the analysis of
the interaction between Segments and Groups factors (ANOVA,
p > 0.05).

In conclusion, here below it is reported a table
(Table 1) summarizing all the results obtained over
the full group, that is, the Within-subject Analysis, by

reporting the overview of the neurophysiological features’
behavior, whether each feature showed a significant
effect, and in this case, if it decreased or increased
with fatigue.

4 Discussions

The current automotive scenario is transitioning from manual
to autonomous driving, which is promoted by technological
advancement in terms of sensing technology and Artificial
Intelligence. Manufacturers have been working on developing
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FIGURE 7

MDrow along the three segments for the two Groups. Analysis showed that for Group 1 (A, fatigued) the MDrow increased in the second segment

while for Group 2 (B, not fatigued) the increase was found in the third segment. Asterisks indicate significance: *p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 8

EBR along the three segments for the two Groups. Analysis revealed that for Group 1 (A, fatigued) there was a significant increase in the third

segment, while this was not found for Group 2 (B, not fatigued). Asterisks indicate significance: *p < 0.05; **p < 0.01; ***p < 0.001.

TABLE 1 In the table are summarized the results of the Within-subject Analysis of the monotonous driving task.

Upper and lower red arrows indicate respectively a significant (p < 0.05) increase or decrease of the mentioned parameter. A black arrow indicates a tendency (0.05 > p > 0.1) to an increase or
decrease (upper or lower), while a black circle indicates that the parameter did not change during the task.

technologies that can “read” the traffic situation, “decode” the road
infrastructure, and “sense” the surroundings, in order to make the

AI vehicle able tomake the proper decisions in a safe way. However,
during this transition phase, the driving responsibility will be still
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shared between the human driver and the AI. Even at the higher
levels of autonomy, i.e., when the AI is in charge of the majority of
driving-related tasks, the driver has to supervise the AI’s behavior
and properly intervene when needed, i.e., takeover, for instance,
when the AI makes the wrong decision or is suddenly not able to
handle the driving task. As a practical example, let us think of a
situation when advanced Lane Assistance is enabled but, suddenly,
the car is not able to read the road lane signage anymore. Therefore,
it becomes paramount to monitor not only the surroundings but
also the drivers’ psychophysical state in order to be sure that it
would be able to promptly intervene. In other words, AI has to be
based on a user-centered approach.

To this regard, the present study aimed to investigate a specific
use case, i.e., driving mental fatigue that can dramatically impact
the drivers’ capacities to intervene and take over the car control,
especially after periods of high automation that promote the out-of-
the-loop phenomenon (Endsley and Kiris, 1995; Di Flumeri et al.,
2019).

To achieve this objective, participants were engaged in a 45-
min-long monotonous (i.e., across a repetitive urban path at a
slow speed without traffic) driving task after a 15-min-long high-
demanding driving task. The preliminary driving task was aimed at
“stressing” the drivers in order to promote the onset of fatigue in
the following task, according to what was suggested by scientific
literature (Thiffault and Bergeron, 2003; García et al., 2010).
The analysis of the questionnaires validated such experimental
design since the participants claimed to feel significantly more
fatigued at the end, resulting in a higher score for both KSS and
Chalder questionnaires (Figure 2). Asking participants to rate both
perceived fatigue and sleepiness might seem redundant. However,
it has to be considered that fatigue and sleepiness are often hard to
self-assess. Also, they are contiguous phenomena. While sleepiness
is mainly defined as the tendency to fall asleep and is quite easy to
subjectively recognize, fatigue is a more undefined concept (Shen
et al., 2006; Shahid et al., 2010). In particular, considering that the
aim of the paper was to intercept the early stages (i.e., onset) of
fatigue and for this reason a not excessively exhausting protocol was
adopted and considering also the high inter-individual variability
in terms of fatigue resistance, the perception of the mental state
induced in the participants was not obvious.

From the analysis of neurophysiological parameters during the
monotonous driving task, three parameters, in particular, have
been demonstrated to be sensitive to increasing fatigue, namely,
the EEG-based MDrow index, the Eye Blink Rate, and the Eye
Blink duration. In particular, the former significantly increased
over time, as expected from previous validations (Ronca et al.,
2022), with higher values in the second (16–30min) and the third
(31–45min) segments with respect to the first one (1–15min)
(Figure 4). Ocular blink-related parameters showed a significant
effect as well, with an increased Eye Blink Rate only in the third
segment (Figure 5A) and decreased Eye Blink Duration (Figure 5B)
in all the segments. Despite some previous findings in the scientific
literature (Bundele and Banerjee, 2009; Fujiwara et al., 2018;
Alaimo et al., 2020), no significant effects were found on the other
investigated physiological parameters.

This group analysis points out a first relevant outcome: the
physiological parameters do not react with similar time dynamics,
for instance, the EEG-based parameters can highlight the onset

of fatigue in advance with respect to ocular parameters. This is
crucial information that is not possible to obtain if all the data
are not recorded simultaneously. This is also relevant information
to consider when developing systems that employ a multimodal
approach to increase their sensitivity to the phenomenon: if the
information is not aligned over time, proper countermeasures have
to be investigated and developed; otherwise, the combination of
multimodal data will become a weakness more than a strength for
the system.

The analysis of behavioral data, in terms of Reaction Times,
pointed out another relevant concern: it seems that mental fatigue
appeared with a different timing across participants. In fact,
it can be assumed that during a repetitive task, the human
Reaction Times to an external event should improve over time
because of habituation (Mackworth, 1968), but it cannot happen
if interference in terms of mental impairment, such as mental
fatigue, appears (Lorist et al., 2005). On the basis of this assumption,
whether the sample showed different behaviors was investigated;
actually, while one group did not improve its RT performance
over time, the second one did; therefore, these findings can be
interpreted as the fact that Group 1 experienced mental fatigue
earlier, while the Group 2 remained alert for almost all the task
and maybe was mentally fatigued only at the end. The presence of a
significant interaction effect supported this assumption (Figure 6).
We are conscious that this is a speculative hypothesis but it could
explain the difference we found in behavioral response (RT) as well
as the difference found in some neurophysiological parameters.
Indeed, after observing these different behavioral responses, the
neurophysiological indicators were analyzed again by including RT
as a grouping variable; the results observed did not refute this
interpretation. While Group 1, the early fatigued group, showed a
significant increase in the EEG-based index in the second segment,
Group 2 showed a similar increase only in the third segment, i.e., at
the end (Figure 7). At the same time, in terms of ocular parameters,
Group 1 showed an EBR significant increase during the third
segment, while Group 2 showed an increasing trend but without
statistical significance. In other words, these results confirmed what
was found in the overall sample: the ocular parameters look to be
sensitive to mental fatigue, but the effect is delayed with respect to
the EEG parameters.

Also, this outcome points out another important concern, i.e.,
interindividual variability in terms of fatigue experience. Some
of the previous studies in literature, as well as some preliminary
attempts made by automotive industries, were based on data
recording from large populations: the participants are usually asked
to drive for 2 h, and the last 30min were assumed a-priori as
representative of a “fatigued” behavior. The results of the present
study underline that such a-priori hypothesis could not be correct,
potentially leading to inaccurate results. The neurophysiological
monitoring of the driver could allow for a more precise and
comprehensive overview of the driver’s actual behavior and the
mental causes, not only with respect to fatigue but also to
other impairing mental conditions, such as decreasing vigilance
and inattention.

The main limitation of the study is the average long time
windows, i.e., the 15-min-long segments that could have reduced
eventual effects related to other physiological parameters such as
heart activity and skin sweating, previously found in the literature.
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However, the choice of adopting such a window was made in
order to keep the statistic robust regardless of the sample size; the
whole task was divided into three equal segments because with 26
observations (the participants), more segments would have reduced
the statistical power. A further limitation is represented by the
limited duration of the driving task (one hour of driving in total).
Future implementations of the study should take into consideration
a longer driving protocol in order to induce and observe fatigue
in those participants who are more fatigue-resilient. A temporal
dynamic of fatigue occurrence should be studied, also considering
the interplay of subjective response with the intervention of AI
driving the car. Indeed, different levels of automation (high or low)
could affect the onset of fatigue, anticipating or delaying it. In the
current paper, we decided to fix the gender variable by recruiting
only men in order to not introduce a confounding variable
during the analysis. Our choice is also motivated by the actual
gender balance among professional drivers. But even if nowadays
professional drivers are mostly men [94–98% among commercial
good drivers (New IRU Survey Shows Driver Shortages to Soar.,
2021; Scott and Davis-Sramek, 2023)], future studies involving
professional drivers should also recruit female participants to
investigate any possible gender difference in the temporal dynamic
of fatigue insurgence as well as in its neurophysiological correlates.

From a technological point of view, it will be crucial for the
scientific community, as well as the industry, to investigate how
to deal with the different time responsiveness of the different
parameters. In fact, AI methodologies usually benefit from a large
amount of data. A multimodal approach constituting relevant
data sources, i.e., in our case, the time series of the different
neurophysiological parameters, will undoubtedly improve the
effectiveness and the reliability of a model aimed at making
decisions on the basis of its situation assessment. On the other
hand, it is crucial that the information is “synchronized” across
the different data sources instead of using a single data source;
otherwise, their fusion could have a negative more than a positive
effect. Further research on this topic is encouraged. It should
be taken into consideration that in a real application of this
monitoring method, Reaction Times could not be used as they
were in this paper. An AI predictive model in real environments
needs clear and defined measures in order to prevent dangerous
situations. Asking drivers to perform a task in order to collect
behavioral data (i.e., RT) is not safe. Also, drivers could omit a
response (because of inattention or because of a safety matter).
AI relying on this kind of response would not be reliable.
Another adoption of RT that is compatible with the application
of this monitoring system in a real scenario could be during
the calibration of the AI system. RT could be used to evaluate
the subjective neurophysiological parameters related to a fatigued
mental state in order to set a threshold for each individual driver.
In this way, the system could perform profiling of the drivers to
produce individual feedback regarding their state allowing more
accurate monitoring.

Also, good quality of data collection must be ensured. In
this paper, we had 21% of data loss (EEG and EOG) which
is an acceptable level in ecological conditions. Future studies
should investigate the source of data loss which could probably be
addressed by analyzing the driving style of the drivers, leading to
movement artifacts. To do so, driving parameters coming from the

vehicle could help in figuring out how to minimize data corruption
while collecting the data.

Lastly, but not less important, it could be argued that despite the
promising results, a user-centered AI is still far from being deployed
in real contexts because of the invasiveness of the neuromonitoring
systems. However, we believe that the recent progress in terms of
wearable technology (Ronca et al., 2023) will help to overcome this
limitation very soon.

5 Conclusions

The present study aimed to investigate, in the specific use case
of driving mental fatigue, whether neurophysiological parameters
can be used to assess drivers’ mental fatigue online, in order to
enable a new “sensing” channel toward the drivers. The expected
impact is to make the vehicle AI aware not only of the surroundings
but also of the drivers’ psychophysical state in order to continuously
check their ability to take over car control during the current
scenario where the driving responsibility is and will be still shared
between the human driver and AI.

By means of a holistic approach, considering
simultaneously a large set of neurophysiological parameters,
in particular electroencephalographic, electrooculographic,
photopletismography, and electrodermal activity data, it was
possible to determine which neurophysiological parameters could
help to achieve the overarching aim of the study.

Results showed that the most sensitive and timely parameters
are those related to brain activity. To a lesser extent, those related
to ocular parameters are also sensitive to the onset of mental fatigue
but with a delayed effect.

In conclusion, it would be possible to effectively monitor
drivers’ mental fatigue in real-time in order to feed the AI vehicle
with driver-related information; the challenge now is how to
deal with the different time dynamics of the phenomena. Further
research on the implementation of this concept is encouraged.
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