
ISBN 978-91-7485-522-7
ISSN 1651-4238

Address: P.O. Box 883, SE-721 23 Västerås. Sweden
Address: P.O. Box 325, SE-631 05 Eskilstuna. Sweden
E-mail: info@mdh.se Web: www.mdh.se

Industrial System Level Test
Automation

Daniel Flemström

Mälardalen University Doctoral Dissertation 336

D
a

n
ie

l Fle
m

strö
m

 IN
D

U
STR

IA
L SYSTEM

 LEV
EL TEST A

U
TO

M
A

TIO
N

2021

1

2

3

4

To my family To my family

5

6

If something’s hard to do, then it’s not worth doing

Homer Simpson

If something’s hard to do, then it’s not worth doing

Homer Simpson

7

8

Sammanfattning
Datorsystemen i våra fordon styr och övervakar många säkerhetskritiska funktioner,
såsom automatiserade nödbromsar och antispinn. Dessa funktioner är integrerade
och testade på systemnivå för att säkerställa att hela systemet fungerar som avsett.
Traditionellt testas dessa funktioner eller utvalda kombinationer av funktioner var för
sig. Detta tillvägagångssätt kräver många testfall som ofta är utförda efter varandra,
med liten eller ingen variation. Eftersom programvarutestning redan står för upp till
60% av kostnaden för utveckling av programvara, och exekveringstiden i testriggar
är dyr, måste ytterligare testning uppnås genom att köra testfall mer parallellt.
Vidare måste nya testfall vara återanvändbara i olika körscenarier. Dessa måste täcka
fler kombinationer av funktioner utan att testlogiken, som kontrollerar att kraven
uppfylls, behöver dupliceras eller skrivas om. En lösning är att göra testlogiken
oberoende av test stimuli, så att testlogiken kan köras parallellt och återanvändas för
olika stimulisekvenser eller scenarier. Passiv testning är en sådan metod som ännu
inte har använts mycket för fordonsprogramvara, även om den är väl etablerad inom
andra områden. De problem som behöver lösas är t.ex. hur man specificerar och
utvärderar passiva testfall för fordonssystem på ett intuitivt och enkelt sätt. Vidare
behövs verktygsstöd och kunskap om hur man effektivt tillämpar passiv testning i
ett industriellt sammanhang. Därför är den här avhandlingens övergripande mål att
föreslå och utvärdera industriellt tillämpbara metoder och verktyg för passiv testning
på systemnivå för fordonsprogramvarusystem. Avhandlingen baseras på en serie
artiklar och fallstudier genomförda inom fordonsindustrin. Huvudbidragen inkluderar,
ett för testingenjören, intuitivt beskrivningsspråk för passiva testfall som är lätt
att skriva och läsa, en interaktiv utvecklingsmiljö för passiva testfall och kunskap
om hur man lyckas med passiv testning i en industriell mjukvaruutvecklingsprocess.
Resultaten bidrar till att göra passiv testning attraktivt och lättillgängligt för testning
på systemnivå samt att främjar återanvändning av testlogik. Ett konkret exempel
på detta är ett kontrollsystem för tåg som studerades. Här skulle passiv testning
kunna bidra till att återanvända upp till 50% av testlogiken för de säkerhetskritiska
kraven och upp till 10% av de icke-säkerhetskritiska kraven.

v

Sammanfattning
Datorsystemen i våra fordon styr och övervakar många säkerhetskritiska funktioner,
såsom automatiserade nödbromsar och antispinn. Dessa funktioner är integrerade
och testade på systemnivå för att säkerställa att hela systemet fungerar som avsett.
Traditionellt testas dessa funktioner eller utvalda kombinationer av funktioner var för
sig. Detta tillvägagångssätt kräver många testfall som ofta är utförda efter varandra,
med liten eller ingen variation. Eftersom programvarutestning redan står för upp till
60% av kostnaden för utveckling av programvara, och exekveringstiden i testriggar
är dyr, måste ytterligare testning uppnås genom att köra testfall mer parallellt.
Vidare måste nya testfall vara återanvändbara i olika körscenarier. Dessa måste täcka
fler kombinationer av funktioner utan att testlogiken, som kontrollerar att kraven
uppfylls, behöver dupliceras eller skrivas om. En lösning är att göra testlogiken
oberoende av test stimuli, så att testlogiken kan köras parallellt och återanvändas för
olika stimulisekvenser eller scenarier. Passiv testning är en sådan metod som ännu
inte har använts mycket för fordonsprogramvara, även om den är väl etablerad inom
andra områden. De problem som behöver lösas är t.ex. hur man specificerar och
utvärderar passiva testfall för fordonssystem på ett intuitivt och enkelt sätt. Vidare
behövs verktygsstöd och kunskap om hur man effektivt tillämpar passiv testning i
ett industriellt sammanhang. Därför är den här avhandlingens övergripande mål att
föreslå och utvärdera industriellt tillämpbara metoder och verktyg för passiv testning
på systemnivå för fordonsprogramvarusystem. Avhandlingen baseras på en serie
artiklar och fallstudier genomförda inom fordonsindustrin. Huvudbidragen inkluderar,
ett för testingenjören, intuitivt beskrivningsspråk för passiva testfall som är lätt
att skriva och läsa, en interaktiv utvecklingsmiljö för passiva testfall och kunskap
om hur man lyckas med passiv testning i en industriell mjukvaruutvecklingsprocess.
Resultaten bidrar till att göra passiv testning attraktivt och lättillgängligt för testning
på systemnivå samt att främjar återanvändning av testlogik. Ett konkret exempel
på detta är ett kontrollsystem för tåg som studerades. Här skulle passiv testning
kunna bidra till att återanvända upp till 50% av testlogiken för de säkerhetskritiska
kraven och upp till 10% av de icke-säkerhetskritiska kraven.

v

9

10

Abstract
Vehicular software systems control and monitor many safety-critical functions, such as
automated emergency brakes and anti-spin. These functions are integrated and tested
at system level to ensure that the entire system works as intended. Traditionally,
these functions or selected combinations of functions are tested in isolation. Although
desired, rigorous testing of combinations of functions prior to deployment is seldom
possible. One reason is the overwhelming work required to write new test cases for the
nearly infinite combinations of functions and driving scenarios. Since software testing
already accounts for up to 60 % of the software development cost and the execution
time in test rigs is expensive, further testing must be achieved by running test cases
more in parallel. Moreover, new test cases must be reusable in different driving
scenarios to cover more combinations of functions. One solution is to express the test
logic in a new way so that it can be executed in parallel, independently of other tests
and independent of the input stimuli. This would allow reusing the test logic for
different sequences or drive scenarios. Passive testing is one such approach that has
not yet been used much for vehicular software due to perceived difficulties, although
it is well-established in other domains. One particular problem is how to specify and
execute passive test cases for vehicular systems in an intuitive and straightforward
manner. Further, there is a lack of tool support and knowledge on efficiently applying
passive testing in an industrial context. Thus, the overall research goal of this thesis
is to propose and evaluate industrially applicable methods and tools for passive
testing at the system level of vehicular software systems. The research is based on a
series of papers and case studies within the vehicular industry. In contrast to existing
specification languages based on formal mathematical expressions, considerable
effort was spent creating an intuitive language and an interactive tool, simple but
powerful enough, to encourage the industrial application of passive testing. The
main contributions include an easy-to-write and easy-to-read description language
for passive test cases, an interactive development environment, and knowledge on
how to succeed in passive testing in an industrial software development process.
The findings of this thesis contribute to making passive testing a viable method
for system-level testing and a way of reusing test logic. In the case of a studied
train control management system, using passive testing may reuse up to 50% of
the test logic for the safety-related requirements and 10% of the non-safety-related
requirements.

vii

Abstract
Vehicular software systems control and monitor many safety-critical functions, such as
automated emergency brakes and anti-spin. These functions are integrated and tested
at system level to ensure that the entire system works as intended. Traditionally,
these functions or selected combinations of functions are tested in isolation. Although
desired, rigorous testing of combinations of functions prior to deployment is seldom
possible. One reason is the overwhelming work required to write new test cases for the
nearly infinite combinations of functions and driving scenarios. Since software testing
already accounts for up to 60 % of the software development cost and the execution
time in test rigs is expensive, further testing must be achieved by running test cases
more in parallel. Moreover, new test cases must be reusable in different driving
scenarios to cover more combinations of functions. One solution is to express the test
logic in a new way so that it can be executed in parallel, independently of other tests
and independent of the input stimuli. This would allow reusing the test logic for
different sequences or drive scenarios. Passive testing is one such approach that has
not yet been used much for vehicular software due to perceived difficulties, although
it is well-established in other domains. One particular problem is how to specify and
execute passive test cases for vehicular systems in an intuitive and straightforward
manner. Further, there is a lack of tool support and knowledge on efficiently applying
passive testing in an industrial context. Thus, the overall research goal of this thesis
is to propose and evaluate industrially applicable methods and tools for passive
testing at the system level of vehicular software systems. The research is based on a
series of papers and case studies within the vehicular industry. In contrast to existing
specification languages based on formal mathematical expressions, considerable
effort was spent creating an intuitive language and an interactive tool, simple but
powerful enough, to encourage the industrial application of passive testing. The
main contributions include an easy-to-write and easy-to-read description language
for passive test cases, an interactive development environment, and knowledge on
how to succeed in passive testing in an industrial software development process.
The findings of this thesis contribute to making passive testing a viable method
for system-level testing and a way of reusing test logic. In the case of a studied
train control management system, using passive testing may reuse up to 50% of
the test logic for the safety-related requirements and 10% of the non-safety-related
requirements.

vii

11

12

Acknowledgments

Many people have supported me on this long and sometimes winding journey. Above
all, I thank my family that has put up with my mental and physical absence these
years. I have also been very fortunate to have a team of supervisors curling me
beyond expectations: Prof. Wasif Afzal, Dr. Eduard Enoiu, and Prof. Daniel
Sundmark. Thank you for pushing me forward when my inner doubts threatened to
take over. Without you, this path would have been much duller and at least a decade
longer. I also have been very fortunate to have such a supportive and knowledgeable
primary industrial contact as Ola Sellin.
Of course, I would not forget to mention the people at Alstom (former Bombardier
Transportation Sweden AB) in Västerås, RISE, Mälardalen University, Volvo Con-
struction Equipment and ABB HVDC that have contributed with their kind support
and fruitful discussions.

Finally, I would like to thank the Swedish Governmental Agency of Innovation
(Vinnova), Mälardalen University, Volvo Construction Equipment, Alstom (former
Bombardier Transportation Sweden AB), and ABB HVDC. Your support has made
this thesis possible via IMPRINT, TESTMINE, ADEPTNESS and the XIVT projects.

Västerås, October 2021

ix

Acknowledgments

Many people have supported me on this long and sometimes winding journey. Above
all, I thank my family that has put up with my mental and physical absence these
years. I have also been very fortunate to have a team of supervisors curling me
beyond expectations: Prof. Wasif Afzal, Dr. Eduard Enoiu, and Prof. Daniel
Sundmark. Thank you for pushing me forward when my inner doubts threatened to
take over. Without you, this path would have been much duller and at least a decade
longer. I also have been very fortunate to have such a supportive and knowledgeable
primary industrial contact as Ola Sellin.
Of course, I would not forget to mention the people at Alstom (former Bombardier
Transportation Sweden AB) in Västerås, RISE, Mälardalen University, Volvo Con-
struction Equipment and ABB HVDC that have contributed with their kind support
and fruitful discussions.

Finally, I would like to thank the Swedish Governmental Agency of Innovation
(Vinnova), Mälardalen University, Volvo Construction Equipment, Alstom (former
Bombardier Transportation Sweden AB), and ABB HVDC. Your support has made
this thesis possible via IMPRINT, TESTMINE, ADEPTNESS and the XIVT projects.

Västerås, October 2021

ix

13

14

List of Publications

Publications Included in the Thesis12

This thesis is based on the following studies:

Paper A: Similarity-Based Prioritization of Test Case Automation. Daniel Flem-
ström, Pasqualina Potena, Daniel Sundmark, Wasif Afzal, Markus Bohlin. Published
in the Software Quality Journal, Special Issue on Automation of Software Test: Im-
proving Practical Applicability (SQJ’2018).

Paper B: From Natural Language Requirements to Passive Test Cases using Guarded
Assertions. Daniel Flemström, Eduard Enoiu, Wasif Azal, Daniel Sundmark,
Thomas Gustafsson, Avenir Kobetski. Published at the International Conference on
Software Quality, Reliability and Security (QRS’18).

Paper C: A Case Study of Interactive Development of Passive Tests. Daniel
Flemström, Thomas Gustafsson, Avenir Kobetski. Published at the International
Workshop on Requirements Engineering and Testing (RET’18).

Paper D: Specification of Passive Test Cases using an Improved T-EARS Language.
Daniel Flemström, Wasif Afzal, Eduard Paul Enoiu. Accepted to the International
Conference on Software Quality (SWQD’22).

Paper E: Industrial-Scale Passive Testing with T-EARS. Daniel Flemström, Hen-
rik Jonsson, Eduard Enoiu, Wasif Azal Published at the International Conference on
Software Testing, Verification and Validation (ICST’21) (Best Paper Award).

Statement of Contribution
In the included publications the first author was the primary driver and contributor to
the research, approach and tool development, study design, data collection, analysis
and reporting of the research work. However, the initial prototype of T-EARS and
the tool in Paper B and C was a joint effort by all the authors.

1The included publications are reformatted to comply with the thesis printing format.
2All published studies included in this thesis are reprinted with explicit permission from the

copyright holders (i.e. IEEE and Springer).

xi

List of Publications

Publications Included in the Thesis12

This thesis is based on the following studies:

Paper A: Similarity-Based Prioritization of Test Case Automation. Daniel Flem-
ström, Pasqualina Potena, Daniel Sundmark, Wasif Afzal, Markus Bohlin. Published
in the Software Quality Journal, Special Issue on Automation of Software Test: Im-
proving Practical Applicability (SQJ’2018).

Paper B: From Natural Language Requirements to Passive Test Cases using Guarded
Assertions. Daniel Flemström, Eduard Enoiu, Wasif Azal, Daniel Sundmark,
Thomas Gustafsson, Avenir Kobetski. Published at the International Conference on
Software Quality, Reliability and Security (QRS’18).

Paper C: A Case Study of Interactive Development of Passive Tests. Daniel
Flemström, Thomas Gustafsson, Avenir Kobetski. Published at the International
Workshop on Requirements Engineering and Testing (RET’18).

Paper D: Specification of Passive Test Cases using an Improved T-EARS Language.
Daniel Flemström, Wasif Afzal, Eduard Paul Enoiu. Accepted to the International
Conference on Software Quality (SWQD’22).

Paper E: Industrial-Scale Passive Testing with T-EARS. Daniel Flemström, Hen-
rik Jonsson, Eduard Enoiu, Wasif Azal Published at the International Conference on
Software Testing, Verification and Validation (ICST’21) (Best Paper Award).

Statement of Contribution
In the included publications the first author was the primary driver and contributor to
the research, approach and tool development, study design, data collection, analysis
and reporting of the research work. However, the initial prototype of T-EARS and
the tool in Paper B and C was a joint effort by all the authors.

1The included publications are reformatted to comply with the thesis printing format.
2All published studies included in this thesis are reprinted with explicit permission from the

copyright holders (i.e. IEEE and Springer).

xi

15

Additional Publications not Included in the Thesis

1. Vertical Test Reuse for Embedded Systems: A Systematic Mapping Study. Daniel
Flemström, Daniel Sundmark and Wasif Afzal. Published at The 41st Euromicro
Conference on Software Engineering and Advanced Applications (SEAA’15).

2. Similarity Function Evaluation. Daniel Flemström. Published at Mälardalen
Real TIme Research Centre, Mälardalen University), Västerås, Sweden.

3. Exploring Test Overlap in System Integration: An Industrial Case Study. Daniel
Flemström, Wasif Afzal, Daniel Sundmark. Published at The 42nd Euromicro
Conference on Software Engineering and Advanced Applications (SEAA’16).

4. A Research Roadmap for Test Design in Automated Integration Testing of Ve-
hicular Systems. Daniel Flemström, Thomas Gustafsson, Avenir Kobetski, Daniel
Sundmark. Published at The Second International Conference on Fundamentals and
Advances in Software Systems Integration (FASSI’16).

5. SAGA Toolbox: Interactive Testing of Guarded Assertions. Daniel Flem-
ström,Thomas Gustafsson, Avenir Kobetski. Published at the IEEE International
Conference on Software Testing, Verification and Validation (ICST’17).

6. Improving Introductory Programming Courses by Using a Simple Accelerated
Graphics Library. Thomas Larsson, Daniel Flemström. Published at The An-
nual SIGRAD Conference; Special Theme: Computer Graphics in Healthcare
(SIGRAD’07).

7. A Prototype Tool for Software Component Services in Embedded Real-time Systems.
Frank Lüders, Daniel Flemström, Anders Wall and Ivica Crnkovic. Published at
The International Symposium on Component-Based Software Engineering (CBSE’06).

8. Software Components Services for Embedded Real-Time. Frank Lüders, Daniel
Flemström/ and Anders Wall. Published at The Working IEEE/IFIP Conference
on Software Architecture (WICSA’05).

Additional Publications not Included in the Thesis

1. Vertical Test Reuse for Embedded Systems: A Systematic Mapping Study. Daniel
Flemström, Daniel Sundmark and Wasif Afzal. Published at The 41st Euromicro
Conference on Software Engineering and Advanced Applications (SEAA’15).

2. Similarity Function Evaluation. Daniel Flemström. Published at Mälardalen
Real TIme Research Centre, Mälardalen University), Västerås, Sweden.

3. Exploring Test Overlap in System Integration: An Industrial Case Study. Daniel
Flemström, Wasif Afzal, Daniel Sundmark. Published at The 42nd Euromicro
Conference on Software Engineering and Advanced Applications (SEAA’16).

4. A Research Roadmap for Test Design in Automated Integration Testing of Ve-
hicular Systems. Daniel Flemström, Thomas Gustafsson, Avenir Kobetski, Daniel
Sundmark. Published at The Second International Conference on Fundamentals and
Advances in Software Systems Integration (FASSI’16).

5. SAGA Toolbox: Interactive Testing of Guarded Assertions. Daniel Flem-
ström,Thomas Gustafsson, Avenir Kobetski. Published at the IEEE International
Conference on Software Testing, Verification and Validation (ICST’17).

6. Improving Introductory Programming Courses by Using a Simple Accelerated
Graphics Library. Thomas Larsson, Daniel Flemström. Published at The An-
nual SIGRAD Conference; Special Theme: Computer Graphics in Healthcare
(SIGRAD’07).

7. A Prototype Tool for Software Component Services in Embedded Real-time Systems.
Frank Lüders, Daniel Flemström, Anders Wall and Ivica Crnkovic. Published at
The International Symposium on Component-Based Software Engineering (CBSE’06).

8. Software Components Services for Embedded Real-Time. Frank Lüders, Daniel
Flemström/ and Anders Wall. Published at The Working IEEE/IFIP Conference
on Software Architecture (WICSA’05).

16

Contents

Sammanfattning v

Abstract vii

Acknowledgments vii

List of Publications xi

I Thesis Summary 1

1 Introduction 3

2 Background 5
1 Software Testing . 5
2 System Level Testing . 7
3 Requirements, Test Cases And Test Automation 10
4 Passive Testing . 11

3 Research Summary 15
1 Research Goals . 15
2 Scope and Limitations . 16
3 Empirical Research in an Industrial Context 16

3.1 Challenges in Empirical Research 16
3.2 The Technology Transfer Model 18

4 Research Contributions 21
1 RG1 - Methods and Tools For Passive Testing 23

1.1 C1: An Intuitive and Easy To Use Specification Language . . 23
1.2 C2: An Interactive Passive Test Case Development Environ-

ment . 25
1.3 C3: Research Framework . 33
1.4 C4: Way of Working . 37

2 RG2 - Evaluation . 43

5 Related Work 47

6 Conclusions 49

xiii

Contents

Sammanfattning v

Abstract vii

Acknowledgments vii

List of Publications xi

I Thesis Summary 1

1 Introduction 3

2 Background 5
1 Software Testing . 5
2 System Level Testing . 7
3 Requirements, Test Cases And Test Automation 10
4 Passive Testing . 11

3 Research Summary 15
1 Research Goals . 15
2 Scope and Limitations . 16
3 Empirical Research in an Industrial Context 16

3.1 Challenges in Empirical Research 16
3.2 The Technology Transfer Model 18

4 Research Contributions 21
1 RG1 - Methods and Tools For Passive Testing 23

1.1 C1: An Intuitive and Easy To Use Specification Language . . 23
1.2 C2: An Interactive Passive Test Case Development Environ-

ment . 25
1.3 C3: Research Framework . 33
1.4 C4: Way of Working . 37

2 RG2 - Evaluation . 43

5 Related Work 47

6 Conclusions 49

xiii

17

7 Future Work 51

Bibliography 52

II Papers 57

A Similarity-Based Prioritization of Test Case Automation 59
1 Introduction . 61
2 Background . 63

2.1 Previous Work . 63
2.2 Preliminaries . 65
2.3 Problem Statement . 66

3 Reducing Manual Test Execution Effort
Using Similarity-based Reuse and
Automation Order Prioritization. 67
3.1 Assumptions . 67
3.2 Test Case Automation . 68
3.3 Measuring Manual Execution Effort 70
3.4 Comparing Approaches . 71
3.5 An Example of Similarity-Based Reuse 72
3.6 Formal Problem Definition . 74
3.7 Potential/Effort (P/E) Prioritization 74

4 Industrial Case Study . 76
4.1 Case Study Context . 77
4.2 Units of Analysis . 77
4.3 Variables and Measurements 79
4.4 Assumptions and Simplifications 79
4.5 Experimental Settings . 79
4.6 Execution and Data Collection Procedures 81

5 Industrial Case Study Results . 81
5.1 Execution Performance of the Prioritization Algorithms 87

6 Threats to Validity . 89
7 Conclusions and Future Work . 89
References . 90

B From Natural Language Requirements to Passive Test Cases us-
ing Guarded Assertions 95
1 INTRODUCTION . 97
2 Background . 98
3 Guarded Assertions, T-EARS and the SAGA Tool Chain 99

3.1 Concepts and Principles . 100
3.2 Event-driven Guarded Assertion 101
3.3 State-driven Guarded Assertion 102
3.4 Guarded Assertions for Ubiquitous Requirements 103

4 Translating Requirements into T-EARS Guarded Assertions 104

7 Future Work 51

Bibliography 52

II Papers 57

A Similarity-Based Prioritization of Test Case Automation 59
1 Introduction . 61
2 Background . 63

2.1 Previous Work . 63
2.2 Preliminaries . 65
2.3 Problem Statement . 66

3 Reducing Manual Test Execution Effort
Using Similarity-based Reuse and
Automation Order Prioritization. 67
3.1 Assumptions . 67
3.2 Test Case Automation . 68
3.3 Measuring Manual Execution Effort 70
3.4 Comparing Approaches . 71
3.5 An Example of Similarity-Based Reuse 72
3.6 Formal Problem Definition . 74
3.7 Potential/Effort (P/E) Prioritization 74

4 Industrial Case Study . 76
4.1 Case Study Context . 77
4.2 Units of Analysis . 77
4.3 Variables and Measurements 79
4.4 Assumptions and Simplifications 79
4.5 Experimental Settings . 79
4.6 Execution and Data Collection Procedures 81

5 Industrial Case Study Results . 81
5.1 Execution Performance of the Prioritization Algorithms 87

6 Threats to Validity . 89
7 Conclusions and Future Work . 89
References . 90

B From Natural Language Requirements to Passive Test Cases us-
ing Guarded Assertions 95
1 INTRODUCTION . 97
2 Background . 98
3 Guarded Assertions, T-EARS and the SAGA Tool Chain 99

3.1 Concepts and Principles . 100
3.2 Event-driven Guarded Assertion 101
3.3 State-driven Guarded Assertion 102
3.4 Guarded Assertions for Ubiquitous Requirements 103

4 Translating Requirements into T-EARS Guarded Assertions 104

18

4.1 Requirements Analysis . 106
4.2 Abstract G/A Construction 107
4.3 Implementation Analysis . 110
4.4 G/A Concretization . 111
4.5 Tuning and Validation . 111

5 Proof of Concept Evaluation . 111
5.1 Requirements Analysis . 112
5.2 Abstract G/A Construction 113
5.3 Implementation Analysis . 117
5.4 G/A Concretization . 117
5.5 Tuning and Validation . 118

6 Related work . 119
7 Discussion . 120

7.1 Towards Industrial Adoption of SAGA and G/As 120
7.2 Limitations . 120

8 Conclusion and Future Work . 120
References . 121

C A Case Study of Interactive Development of Passive Tests 125
1 Introduction . 127
2 Background . 128

2.1 Guarded Assertions . 128
2.2 Timed Easy Approach to Requirements Syntax (T-EARS) . . 129
2.3 Toolbox . 129

3 Case Study Design . 130
3.1 Objective and Method Selection 130
3.2 Context . 130
3.3 Preparation and Data Collection 131
3.4 Analysis Procedures . 133
3.5 Validity . 135

4 Case Study Results . 136
4.1 GA Approach . 136
4.2 Language . 138
4.3 Tool . 141

5 Related Work . 143
6 Conclusions and Future Work . 143
References . 144

D Specification of Passive Test Cases using an Improved T-EARS
Language 147
1 Introduction . 149
2 Background . 150

2.1 Passive Testing . 150
2.2 Guarded Assertions . 151
2.3 Easy Approach to Requirements Syntax (EARS) 151

4.1 Requirements Analysis . 106
4.2 Abstract G/A Construction 107
4.3 Implementation Analysis . 110
4.4 G/A Concretization . 111
4.5 Tuning and Validation . 111

5 Proof of Concept Evaluation . 111
5.1 Requirements Analysis . 112
5.2 Abstract G/A Construction 113
5.3 Implementation Analysis . 117
5.4 G/A Concretization . 117
5.5 Tuning and Validation . 118

6 Related work . 119
7 Discussion . 120

7.1 Towards Industrial Adoption of SAGA and G/As 120
7.2 Limitations . 120

8 Conclusion and Future Work . 120
References . 121

C A Case Study of Interactive Development of Passive Tests 125
1 Introduction . 127
2 Background . 128

2.1 Guarded Assertions . 128
2.2 Timed Easy Approach to Requirements Syntax (T-EARS) . . 129
2.3 Toolbox . 129

3 Case Study Design . 130
3.1 Objective and Method Selection 130
3.2 Context . 130
3.3 Preparation and Data Collection 131
3.4 Analysis Procedures . 133
3.5 Validity . 135

4 Case Study Results . 136
4.1 GA Approach . 136
4.2 Language . 138
4.3 Tool . 141

5 Related Work . 143
6 Conclusions and Future Work . 143
References . 144

D Specification of Passive Test Cases using an Improved T-EARS
Language 147
1 Introduction . 149
2 Background . 150

2.1 Passive Testing . 150
2.2 Guarded Assertions . 151
2.3 Easy Approach to Requirements Syntax (EARS) 151

19

2.4 The Ohm Grammar Language 151
3 Method . 152
4 Result: The Updated T-EARS Language 152

4.1 Keyword Terminals . 155
4.2 Structural Elements . 156
4.3 Basic Data Types . 156
4.4 Signals Data Type . 157
4.5 Intervals Data Type . 158
4.6 Events Data Type . 160
4.7 Boolean Expressions . 161
4.8 Guarded Assertion Rules . 161
4.9 Miscellaneous Modifiers . 162
4.10 Timing Considerations . 162
4.11 General Structure of a T-EARS Test Case 163

5 Related Work . 164
6 Discussion on T-EARS Improvement 164
7 Conclusion and Future Work . 166
References . 166

E Industrial-Scale Passive Testing with T-EARS 171
1 Introduction . 173
2 Background to T-EARS and its Tool chain 175
3 Method . 177

3.1 Study Objective . 177
3.2 Case organization & Unit of Analysis 177
3.3 Safety Related Requirements 178
3.4 Case Study Procedure . 179

4 Results and Discussion . 180
4.1 Phase I - Gold Standard and Requirements Selection 181
4.2 Phase II - Requirement Analysis Results 181
4.3 Phase II - Abstract G/A Construction Results 182
4.4 Phase II - Implementation Analysis Results 183
4.5 Phase II - Concretization Results 185
4.6 Phase II - Tuning and Validation Results 185
4.7 Phase III - Final Evaluation 191

5 Related Work . 192
6 Conclusions and Future Work . 193
References . 194

2.4 The Ohm Grammar Language 151
3 Method . 152
4 Result: The Updated T-EARS Language 152

4.1 Keyword Terminals . 155
4.2 Structural Elements . 156
4.3 Basic Data Types . 156
4.4 Signals Data Type . 157
4.5 Intervals Data Type . 158
4.6 Events Data Type . 160
4.7 Boolean Expressions . 161
4.8 Guarded Assertion Rules . 161
4.9 Miscellaneous Modifiers . 162
4.10 Timing Considerations . 162
4.11 General Structure of a T-EARS Test Case 163

5 Related Work . 164
6 Discussion on T-EARS Improvement 164
7 Conclusion and Future Work . 166
References . 166

E Industrial-Scale Passive Testing with T-EARS 171
1 Introduction . 173
2 Background to T-EARS and its Tool chain 175
3 Method . 177

3.1 Study Objective . 177
3.2 Case organization & Unit of Analysis 177
3.3 Safety Related Requirements 178
3.4 Case Study Procedure . 179

4 Results and Discussion . 180
4.1 Phase I - Gold Standard and Requirements Selection 181
4.2 Phase II - Requirement Analysis Results 181
4.3 Phase II - Abstract G/A Construction Results 182
4.4 Phase II - Implementation Analysis Results 183
4.5 Phase II - Concretization Results 185
4.6 Phase II - Tuning and Validation Results 185
4.7 Phase III - Final Evaluation 191

5 Related Work . 192
6 Conclusions and Future Work . 193
References . 194

20

Part I

Thesis Summary

Part I

Thesis Summary

21

22

Chapter 1

Introduction

From being purely mechanical constructs, vehicles now have an increasing number
of functions that are controlled by software. The execution of that software is
divided and distributed on numerous onboard computers, and the software eventually
controls physical entities, e.g., brakes or steering. Thus, the software in a vehicle
is a large and complex software system that must be tested meticulously. However,
the increasing number of possible function combinations is challenging to test, and
even when the testing is fully automated, there are numerous problems such as
repetitive testing and wasted testing resources [18]. One suggested way to improve
such testing is to use passive testing approaches [6, 8]. The idea is to continuously
observe the system and test each requirement whenever it makes sense. Although
some initial work [21, 31] has proven the approach viable for the vehicular industry,
passive testing has met some resistance from practitioners [3, 10, 14] due to its
formal approach to specify the test cases. While current approaches to reduce such
resistance include pre-defined patterns [3, 14] and graphical representations [13] to
facilitate the formalization of either requirements or test cases, this thesis follows
the path of [17, 21, 31], focussing on creating a more industrially acceptable, highly
intuitive description language together with an interactive development environment
for passive test cases. The overall research goal of this thesis is to propose and
evaluate industrially applicable methods and tools for passive testing at the system
level of vehicular software systems. The main contributions of this thesis are:

(C1) - An intuitive and easy to use specification language (T-EARS),
(C2) - An interactive integrated development and analysis environment (Napkin),
(C3) - A modular open source research platform for passive testing tools,
(C4) - A structured process for translating natural language requirements to passive

test cases (Way of Working), and
(C5) - Industrial evaluations of the proposed solutions (Industrial Evaluations).

The thesis is organized into two parts: “Thesis Summary” and “Papers’. The thesis
summary aims to outline the preliminaries and the research goals and ultimately
combine and present the main findings at a higher level. In contrast, specific details
of the results and research methods are found in the “Papers” part in the included
published papers.

3

Chapter 1

Introduction

From being purely mechanical constructs, vehicles now have an increasing number
of functions that are controlled by software. The execution of that software is
divided and distributed on numerous onboard computers, and the software eventually
controls physical entities, e.g., brakes or steering. Thus, the software in a vehicle
is a large and complex software system that must be tested meticulously. However,
the increasing number of possible function combinations is challenging to test, and
even when the testing is fully automated, there are numerous problems such as
repetitive testing and wasted testing resources [18]. One suggested way to improve
such testing is to use passive testing approaches [6, 8]. The idea is to continuously
observe the system and test each requirement whenever it makes sense. Although
some initial work [21, 31] has proven the approach viable for the vehicular industry,
passive testing has met some resistance from practitioners [3, 10, 14] due to its
formal approach to specify the test cases. While current approaches to reduce such
resistance include pre-defined patterns [3, 14] and graphical representations [13] to
facilitate the formalization of either requirements or test cases, this thesis follows
the path of [17, 21, 31], focussing on creating a more industrially acceptable, highly
intuitive description language together with an interactive development environment
for passive test cases. The overall research goal of this thesis is to propose and
evaluate industrially applicable methods and tools for passive testing at the system
level of vehicular software systems. The main contributions of this thesis are:

(C1) - An intuitive and easy to use specification language (T-EARS),
(C2) - An interactive integrated development and analysis environment (Napkin),
(C3) - A modular open source research platform for passive testing tools,
(C4) - A structured process for translating natural language requirements to passive

test cases (Way of Working), and
(C5) - Industrial evaluations of the proposed solutions (Industrial Evaluations).

The thesis is organized into two parts: “Thesis Summary” and “Papers’. The thesis
summary aims to outline the preliminaries and the research goals and ultimately
combine and present the main findings at a higher level. In contrast, specific details
of the results and research methods are found in the “Papers” part in the included
published papers.

3

23

24

Chapter 2

Background

This section outlines the central concepts and principles used in this thesis. First out
is an overview of software testing’s purpose and concepts in Section 1. The overview
is followed by further details on applicable concepts and principles at one particular
level of software testing: system level testing in Section 2. Section 3 introduces
concepts such as requirements, test cases and test automation. Finally, Section 4
presents a discussion on passive testing.

1 Software Testing

Intuitively, the purpose of software testing is to make sure that the developed system
works as expected [1]. However, the focus of software testing has shifted over time,
from being a debugging aid to a structured approach for revealing bugs.

Today, there are many different testing approaches for different kinds of software
systems [30]. In this thesis, the focus is on vehicular embedded system software.
Embedded systems typically interact with hardware that controls physical entities,
such as actuators and sensors [5], as opposed to desktop applications such as Microsoft
Word™, that mainly interacts with a user. Another difference is that the addressed
systems are signal-based. While a C++ or Java program communicates using function
calls with complex data as arguments between different system modules, signal-based
systems have an interface that resembles an electrical wire diagram. Each wire, or
signal, represents a value over time of a simple type (e.g., Integer, Float, or Binary).
Furthermore, the flow of such programs is more deterministic than a C++ program:
All program modules are collected into tasks that executes at a fixed cycle time, e.g.,
each 250ms. At the beginning of each execution cycle, all input signals of a task are
read. Then each module calculates its resulting output. Finally, all out-signals of
the task are written and thus available to other tasks. This principle of signal-based
communication is maintained at all levels of abstraction, although several signals
are in practice packed together and transported as data bus telegrams at the system
level. When testing or debugging such a system, the signals are recorded at various
sample rates. A set of test cases can then observe and compare the input and output
signals to determine whether the system fulfills its requirements or not.

The safety critical nature of vehicular software requires a well-documented software

5

Chapter 2

Background

This section outlines the central concepts and principles used in this thesis. First out
is an overview of software testing’s purpose and concepts in Section 1. The overview
is followed by further details on applicable concepts and principles at one particular
level of software testing: system level testing in Section 2. Section 3 introduces
concepts such as requirements, test cases and test automation. Finally, Section 4
presents a discussion on passive testing.

1 Software Testing

Intuitively, the purpose of software testing is to make sure that the developed system
works as expected [1]. However, the focus of software testing has shifted over time,
from being a debugging aid to a structured approach for revealing bugs.

Today, there are many different testing approaches for different kinds of software
systems [30]. In this thesis, the focus is on vehicular embedded system software.
Embedded systems typically interact with hardware that controls physical entities,
such as actuators and sensors [5], as opposed to desktop applications such as Microsoft
Word™, that mainly interacts with a user. Another difference is that the addressed
systems are signal-based. While a C++ or Java program communicates using function
calls with complex data as arguments between different system modules, signal-based
systems have an interface that resembles an electrical wire diagram. Each wire, or
signal, represents a value over time of a simple type (e.g., Integer, Float, or Binary).
Furthermore, the flow of such programs is more deterministic than a C++ program:
All program modules are collected into tasks that executes at a fixed cycle time, e.g.,
each 250ms. At the beginning of each execution cycle, all input signals of a task are
read. Then each module calculates its resulting output. Finally, all out-signals of
the task are written and thus available to other tasks. This principle of signal-based
communication is maintained at all levels of abstraction, although several signals
are in practice packed together and transported as data bus telegrams at the system
level. When testing or debugging such a system, the signals are recorded at various
sample rates. A set of test cases can then observe and compare the input and output
signals to determine whether the system fulfills its requirements or not.

The safety critical nature of vehicular software requires a well-documented software

5

25

6 1. Software Testing

development process. The workflow of such software development processes are often
described using the V-model [19]. Since its introduction in the 90s, the V-model has
been widely accepted in the embedded software community, and it has been adopted
in numerous variants [5, 22]. This section uses a simplified version of the V-model to
illustrate the concepts and principles used in this thesis. Figure 2.1 illustrates the
relevant concepts of that model. For a more extensive introduction to the V-model,
the reader is referred to the work of Forsberg et al. [19].

At the left side of the V-model, the system is broken down into several abstraction
levels that correspond to an increasing level of detail in the specification. The top-level
specifies the complete product with software and hardware, while the bottom level
specifies the software implementation units. These units are successively integrated
and tested on the V-model’s right side to form the complete product finally.

Figure 2.1: V-Model Adapted to Illustrate the Studied Projects. The model shows
requirements and test specifications created at the left side of the V. Integration
and testing takes place at the right side.

Looking into more detail at the V-model, the functional specifications and their
corresponding test specifications are developed iteratively at each level. The func-
tional specifications are passed on to the next level of abstraction as soon as they
have been approved. As the level of detail increases, more details are added to the
design. At the bottom of the V-model, the specifications have been divided into
implementable units that can be tested in (more or less) isolation. As soon as units
are implemented and tested, the integration work begins. The integration work is
illustrated in Figure 2.1 by the right process flow arrow in the V-model. At the
integration level(s), the implemented units are integrated into larger subsystems
until the integrated subsystems, together with the target hardware, form a complete
product. A set of test cases with level-specific test objectives are created at each
such level. Examples of such objectives are code coverage (at the unit level) and
interface compliance or timing accuracy at the system integration levels [30]. These
differences are further discussed in Section 2.

6 1. Software Testing

development process. The workflow of such software development processes are often
described using the V-model [19]. Since its introduction in the 90s, the V-model has
been widely accepted in the embedded software community, and it has been adopted
in numerous variants [5, 22]. This section uses a simplified version of the V-model to
illustrate the concepts and principles used in this thesis. Figure 2.1 illustrates the
relevant concepts of that model. For a more extensive introduction to the V-model,
the reader is referred to the work of Forsberg et al. [19].

At the left side of the V-model, the system is broken down into several abstraction
levels that correspond to an increasing level of detail in the specification. The top-level
specifies the complete product with software and hardware, while the bottom level
specifies the software implementation units. These units are successively integrated
and tested on the V-model’s right side to form the complete product finally.

Figure 2.1: V-Model Adapted to Illustrate the Studied Projects. The model shows
requirements and test specifications created at the left side of the V. Integration
and testing takes place at the right side.

Looking into more detail at the V-model, the functional specifications and their
corresponding test specifications are developed iteratively at each level. The func-
tional specifications are passed on to the next level of abstraction as soon as they
have been approved. As the level of detail increases, more details are added to the
design. At the bottom of the V-model, the specifications have been divided into
implementable units that can be tested in (more or less) isolation. As soon as units
are implemented and tested, the integration work begins. The integration work is
illustrated in Figure 2.1 by the right process flow arrow in the V-model. At the
integration level(s), the implemented units are integrated into larger subsystems
until the integrated subsystems, together with the target hardware, form a complete
product. A set of test cases with level-specific test objectives are created at each
such level. Examples of such objectives are code coverage (at the unit level) and
interface compliance or timing accuracy at the system integration levels [30]. These
differences are further discussed in Section 2.

26

Chapter 2. Background 7

2 System Level Testing

As previously discussed in Section 1, the purpose of the right hand side of the
V-model is to assemble all software units into a resulting, complete software system.

Depending on the system’s characteristics under development, a different number
of system integration levels and integration strategies may be applied. Pezzè and
Young [30] suggest an integration level where the test objective is based on software
module compatibility, followed by a system-level that explicitly targets the end-to-end
functionality, also referred to as end-to-end testing [36]. Major differences between
these levels, as observed during the work with this thesis, include the input/output
space, and the communication format. The input space is a lot bigger at the system
level since there are tens of thousands of signals with values that vary over time.
A unit typically has a handful signals as input and output. Further, the different
functions constituting a system may or may not interfere with each other. Another
word for this is feature interaction [7] that can be intended or unintended. One
important job of the system level tester is to find unknown or unintended feature
interactions that some time cause the system to diverge from its specification. The
other observed difference between the different levels of abstraction is the means of
communication. This poses some challenges when logging signals, since it requires
different logger hardware that may have clocks that are slightly out of synch. This is
especially evident when parts of the system is simulated in a PC, while the tested
software artifacts execute in a cycle correct real-time context. The PC has one time
domain (wall clock time), while the simulator may need several seconds to simulate
one second. Even though the software attempts to compensate, the experiences from
Papers B, C and E show that the difference is still substantial and non deterministic.
Finally, the sheer amount of available signals at the system level is a challenge on its
own. Oftentimes there are limits on the number of signals that can be logged.

Pezzè and Young [30] describe different integration strategies, where the simplest
strategy is the “no strategy” or big-bang integration. This means that no integration
work is done until all software has been implemented. As a consequence, all modules
are integrated and tested at the same time. Other strategies such as “bottom up”
or “top down” integration, promotes successive integration of the system in small
increments with thorough testing at each increment. Such a successive approach
requires that the parts of the system that have not yet been implemented must be
stubbed or simulated. The difference between a stub and a simulated subsystem is
that the former returns some default value for each request, regardless of the input
values, while the latter returns some estimated value based on the input. Sometimes
a combination of the bottom up and top down approach is required (Pezzè and
Young define this as the sandwich approach in [30]).

Figure 2.2 illustrates the motivation behind a successive integration strategy. In
particular, it shows the difference between unit-level tests and system level tests.
Figure 2.2a shows that a unit-level approach allows the tester to verify the units
U1 and U2 independently, keeping the focus of the tests on the functional and non-
functional behavior of the tested unit. Any faults are most probably confined to
either U1 or U2, narrowing the search scope. Further, as illustrated in the topmost

Chapter 2. Background 7

2 System Level Testing

As previously discussed in Section 1, the purpose of the right hand side of the
V-model is to assemble all software units into a resulting, complete software system.

Depending on the system’s characteristics under development, a different number
of system integration levels and integration strategies may be applied. Pezzè and
Young [30] suggest an integration level where the test objective is based on software
module compatibility, followed by a system-level that explicitly targets the end-to-end
functionality, also referred to as end-to-end testing [36]. Major differences between
these levels, as observed during the work with this thesis, include the input/output
space, and the communication format. The input space is a lot bigger at the system
level since there are tens of thousands of signals with values that vary over time.
A unit typically has a handful signals as input and output. Further, the different
functions constituting a system may or may not interfere with each other. Another
word for this is feature interaction [7] that can be intended or unintended. One
important job of the system level tester is to find unknown or unintended feature
interactions that some time cause the system to diverge from its specification. The
other observed difference between the different levels of abstraction is the means of
communication. This poses some challenges when logging signals, since it requires
different logger hardware that may have clocks that are slightly out of synch. This is
especially evident when parts of the system is simulated in a PC, while the tested
software artifacts execute in a cycle correct real-time context. The PC has one time
domain (wall clock time), while the simulator may need several seconds to simulate
one second. Even though the software attempts to compensate, the experiences from
Papers B, C and E show that the difference is still substantial and non deterministic.
Finally, the sheer amount of available signals at the system level is a challenge on its
own. Oftentimes there are limits on the number of signals that can be logged.

Pezzè and Young [30] describe different integration strategies, where the simplest
strategy is the “no strategy” or big-bang integration. This means that no integration
work is done until all software has been implemented. As a consequence, all modules
are integrated and tested at the same time. Other strategies such as “bottom up”
or “top down” integration, promotes successive integration of the system in small
increments with thorough testing at each increment. Such a successive approach
requires that the parts of the system that have not yet been implemented must be
stubbed or simulated. The difference between a stub and a simulated subsystem is
that the former returns some default value for each request, regardless of the input
values, while the latter returns some estimated value based on the input. Sometimes
a combination of the bottom up and top down approach is required (Pezzè and
Young define this as the sandwich approach in [30]).

Figure 2.2 illustrates the motivation behind a successive integration strategy. In
particular, it shows the difference between unit-level tests and system level tests.
Figure 2.2a shows that a unit-level approach allows the tester to verify the units
U1 and U2 independently, keeping the focus of the tests on the functional and non-
functional behavior of the tested unit. Any faults are most probably confined to
either U1 or U2, narrowing the search scope. Further, as illustrated in the topmost

27

8 2. System Level Testing

(a) Unit Level Testing (b) System Level Testing

Figure 2.2: Testing at Different Levels of Abstraction

C:\

Figure 2.3: Conceptual Overview of a Test Setup. The System Under Test (SUT)
is driven by a test framework and interacting with a physical environment using
stubs and simulation for the parts of the system that are not available.

unit U1, any dependencies to other units (U2 in the figure) are stubbed or simulated.
This is indicated by the dashed line around U2 in Figure 2.2a.

As units get ready, they are passed on to the integration level. Although a fault
may origin from inside either U1 or U2, the tester assumes that the units work
according to their specification and focus the testing on, e.g., interactions between
units. When the system is complete, as illustrated in Figure 2.2b, focus is moved to
testing of end-to-end behavior (System Level Testing). Note that, in Figure 2.2b,
the level of abstraction only allows access to the interface (S), since lower-level
interfaces such as A,B,C may be hidden. For larger systems, one integration level
may not be sufficient. Instead the system is built from levels of successively larger
sub-systems until the whole system is complete. The number of abstraction layers
may also vary from project to project. A project that concerns software that works
closely to hardware, may include an additional hardware-software integration level.
Figure 2.3 illustrates an embedded system test environment adapted from the work of
Broekman [5]. The most central part in the figure is the SUT which is an abbreviation
for System Under Test. The SUT is the part(s) of the system that is currently
subject to testing. Any other parts of the system, such as sub-systems not yet
implemented, are often implemented as stubs. A stub is a minimal implementation
of an interface (e.g., returning hardcoded default values). The SUT in the Figure

8 2. System Level Testing

(a) Unit Level Testing (b) System Level Testing

Figure 2.2: Testing at Different Levels of Abstraction

C:\

Figure 2.3: Conceptual Overview of a Test Setup. The System Under Test (SUT)
is driven by a test framework and interacting with a physical environment using
stubs and simulation for the parts of the system that are not available.

unit U1, any dependencies to other units (U2 in the figure) are stubbed or simulated.
This is indicated by the dashed line around U2 in Figure 2.2a.

As units get ready, they are passed on to the integration level. Although a fault
may origin from inside either U1 or U2, the tester assumes that the units work
according to their specification and focus the testing on, e.g., interactions between
units. When the system is complete, as illustrated in Figure 2.2b, focus is moved to
testing of end-to-end behavior (System Level Testing). Note that, in Figure 2.2b,
the level of abstraction only allows access to the interface (S), since lower-level
interfaces such as A,B,C may be hidden. For larger systems, one integration level
may not be sufficient. Instead the system is built from levels of successively larger
sub-systems until the whole system is complete. The number of abstraction layers
may also vary from project to project. A project that concerns software that works
closely to hardware, may include an additional hardware-software integration level.
Figure 2.3 illustrates an embedded system test environment adapted from the work of
Broekman [5]. The most central part in the figure is the SUT which is an abbreviation
for System Under Test. The SUT is the part(s) of the system that is currently
subject to testing. Any other parts of the system, such as sub-systems not yet
implemented, are often implemented as stubs. A stub is a minimal implementation
of an interface (e.g., returning hardcoded default values). The SUT in the Figure

28

Chapter 2. Background 9

interacts with a physical environment (sometimes also called the “Plant”), consisting
of actuators and sensors. This environment is typically realized partly by hardware
and partly by real-time simulation models. If the testing objective is functional
verification, i.e., switching on a lamp in a train cabin, a purely simulated environment
may be sufficient. On the other hand, if the objective of the test activity is to verify
that the timing behavior is according to specification, a software simulated approach
is often not adequate. In such cases, the software needs to be executed on the target
hardware, while most of the remaining environment may be realized as a real-time
simulation model.

Figure 2.3 also illustrates a generic test environment, controlled and managed by
a Test Framework. A test framework provides means of managing and operating the
system under test, either for Manual Testing or Automated Testing. Typical tasks
for such a framework are handling configuration data and providing a programmable
interface to facilitate scripting stimuli to the SUT.

Chapter 2. Background 9

interacts with a physical environment (sometimes also called the “Plant”), consisting
of actuators and sensors. This environment is typically realized partly by hardware
and partly by real-time simulation models. If the testing objective is functional
verification, i.e., switching on a lamp in a train cabin, a purely simulated environment
may be sufficient. On the other hand, if the objective of the test activity is to verify
that the timing behavior is according to specification, a software simulated approach
is often not adequate. In such cases, the software needs to be executed on the target
hardware, while most of the remaining environment may be realized as a real-time
simulation model.

Figure 2.3 also illustrates a generic test environment, controlled and managed by
a Test Framework. A test framework provides means of managing and operating the
system under test, either for Manual Testing or Automated Testing. Typical tasks
for such a framework are handling configuration data and providing a programmable
interface to facilitate scripting stimuli to the SUT.

29

10 3. Requirements, Test Cases And Test Automation

3 Requirements, Test Cases And Test Automation

At any level of abstraction in the V-model, there is a set of requirements that
describe the expectations of the system at that level. These expectations may
concern aspects like functional behavior or non-functional behavior such as timing
or robustness. There are many ways to express such requirements. A few examples
are natural language (NL), natural language with some restrictions such as REG [3]
and EARS [26]. There are also numerous model-based approaches such as UML1,
SYSML2 etc. In this thesis, the focus is on near-natural language requirements.
The projects at Alstom Transport AB in Västerås studied in this thesis concern
the Train Control and Management Software(TCMS) for different trains. These
projects used natural language for the regular (not safety-critical) requirements
and a semi-formal natural language for the safe(safety-critical) requirements. The
semi-formal requirements start with a natural language description, followed by a
list of inputs and the expected outputs, expressed as abstract signal expressions.
According to our industrial partner, this semi-formal expression of requirements is
aligned with the railway safety standards [11, 9, 12] for safety-critical functions.

Given a set of requirements, the test team must figure out how to show that the
tested item works according to the specified requirements. This can be done by
defining a set of plausible scenarios, or situations, that reflect realistic use of the
tested item. The standard ISO 29119-1[23] defines a scenario as: “A scenario can
be a user story, use-case, operational concept, or sequence of events the software
may encounter etc.”. Especially in safety-critical parts of the software, the scenario
keeps track of the requirements it coverers. Often several scenarios or situations are
required to show that a particular requirement is met. Each scenario then results
in a set of test cases. ISO 29119-1[23] defines a test case as “A test case is a set of
test case preconditions, inputs (including actions, where applicable), and expected
results, developed to drive the execution of a test item to meet test objectives ...”.
These actions and expected results vary, depending on what the covered part of
the system is. The test item (or test object) can be a unit or a complete system.
Furthermore, the test objectives describe what to focus on. For example, at the
unit testing level, the unit (e.g., a function) is the test object, a test objective may
concern the correctness of a calculation made by the test object while the test goal
can be a coverage criterion such as covering each line of code. During the system
integration level(s), the test object is a combination of two or more subsystems, and
the test objective concerns the interaction between the (sub) systems or how well
the overall integrated system functions. The test goal may be a coverage criterion,
such as covering all interfaces or combinations of subsystems. At the system level,
the test object is a complete (sub) system, and a test objective may concern the
end-to-end timing or result of a system request. The test goal can be to cover a set
of system requirements in a number of critical situations or scenarios.

As stated in the ISO 29119-1 definition of a (traditional) test case, the instructions
for checking that the reaction is correct (also called the test logic) would be intertwined

1https://www.uml.org/
2https://sysml.org/

10 3. Requirements, Test Cases And Test Automation

3 Requirements, Test Cases And Test Automation

At any level of abstraction in the V-model, there is a set of requirements that
describe the expectations of the system at that level. These expectations may
concern aspects like functional behavior or non-functional behavior such as timing
or robustness. There are many ways to express such requirements. A few examples
are natural language (NL), natural language with some restrictions such as REG [3]
and EARS [26]. There are also numerous model-based approaches such as UML1,
SYSML2 etc. In this thesis, the focus is on near-natural language requirements.
The projects at Alstom Transport AB in Västerås studied in this thesis concern
the Train Control and Management Software(TCMS) for different trains. These
projects used natural language for the regular (not safety-critical) requirements
and a semi-formal natural language for the safe(safety-critical) requirements. The
semi-formal requirements start with a natural language description, followed by a
list of inputs and the expected outputs, expressed as abstract signal expressions.
According to our industrial partner, this semi-formal expression of requirements is
aligned with the railway safety standards [11, 9, 12] for safety-critical functions.

Given a set of requirements, the test team must figure out how to show that the
tested item works according to the specified requirements. This can be done by
defining a set of plausible scenarios, or situations, that reflect realistic use of the
tested item. The standard ISO 29119-1[23] defines a scenario as: “A scenario can
be a user story, use-case, operational concept, or sequence of events the software
may encounter etc.”. Especially in safety-critical parts of the software, the scenario
keeps track of the requirements it coverers. Often several scenarios or situations are
required to show that a particular requirement is met. Each scenario then results
in a set of test cases. ISO 29119-1[23] defines a test case as “A test case is a set of
test case preconditions, inputs (including actions, where applicable), and expected
results, developed to drive the execution of a test item to meet test objectives ...”.
These actions and expected results vary, depending on what the covered part of
the system is. The test item (or test object) can be a unit or a complete system.
Furthermore, the test objectives describe what to focus on. For example, at the
unit testing level, the unit (e.g., a function) is the test object, a test objective may
concern the correctness of a calculation made by the test object while the test goal
can be a coverage criterion such as covering each line of code. During the system
integration level(s), the test object is a combination of two or more subsystems, and
the test objective concerns the interaction between the (sub) systems or how well
the overall integrated system functions. The test goal may be a coverage criterion,
such as covering all interfaces or combinations of subsystems. At the system level,
the test object is a complete (sub) system, and a test objective may concern the
end-to-end timing or result of a system request. The test goal can be to cover a set
of system requirements in a number of critical situations or scenarios.

As stated in the ISO 29119-1 definition of a (traditional) test case, the instructions
for checking that the reaction is correct (also called the test logic) would be intertwined

1https://www.uml.org/
2https://sysml.org/

30

Chapter 2. Background 11

with the stimulus instructions. An advantage is that since test case execution always
starts from a known system state, the current system state is known at each step
since the tester knows what he has done in the previous steps. One of the drawbacks
is that the automated code for the test logic must be repeated if tested in different
scenarios. A concrete example from the train-software TCMS studied in Paper E is
that the safety-critical part had 116 requirements tested at 207 places in different
test cases. A great deal of the effort could be saved if the test logic could be written
once and reused for the remaining 91 occurrences. This indicates that it would be
beneficial to separate the test logic from the stimulus sequence. The possibility of
such separation and thus reusing the test logic is one of the expected benefits of
passive testing, presented in the next section.

4 Passive Testing
While traditional test cases, like the ones in Section 3, contain test steps including
both stimuli to the system under test and instructions for evaluating the system’s
response, passive testing focuses entirely on observations of the tested system and
compares this with the expected response. This separation of concerns may facilitate
reuse of the test logic for many different stimuli sequences. Further, such passive
test cases are typically automated, and since passive test cases do not interfere with
the state of the system at all, they can execute in parallel and independently of
each other. One consequence is that the tester (or a test sequence generator) may
focus on creating realistic input sequences that put the system under test in as many
testable states as possible.

Even though passive test cases do not alter the system state, they are highly
dependent on it. A passive test needs to “know” when it is meaningful to perform a
test and when it is not. E.g., there is no point in checking a requirement concerning
top speed, when the vehicle is not even started.

When a tester writes a test case for active testing, he/she has full control over
the system state. This means that the current system state can be inferred since
it always starts from a known starting point followed by a known sequence of test
stimuli. In contrast, when writing a test case for passive testing, the test case needs
to infer the current state of the system entirely by reading trace output of the system.
There is no known restart points as the test case is evaluated over the complete
execution.

Figure 2.4 illustrates the in-practice difference between the two approaches. Be-
ginning with the case of active testing, Figure 2.4a shows an example of how a test
case is executed. Before executing each such test case, the tester or automation
framework would reset the system under test. As described in Section 3, a test case
in active testing consists of a series of test steps. Each test step describes a stimulus
to send to the system under test, and an (optional) expected response to the given
stimulus. Executing a test step thus means that the stimulus is sent to the system
under test, either manually by a tester or using a test automation framework as
described in Section 2. To be sure that the system has had time to respond, testers
tend to wait for a long period to make sure that the system has got time to respond

Chapter 2. Background 11

with the stimulus instructions. An advantage is that since test case execution always
starts from a known system state, the current system state is known at each step
since the tester knows what he has done in the previous steps. One of the drawbacks
is that the automated code for the test logic must be repeated if tested in different
scenarios. A concrete example from the train-software TCMS studied in Paper E is
that the safety-critical part had 116 requirements tested at 207 places in different
test cases. A great deal of the effort could be saved if the test logic could be written
once and reused for the remaining 91 occurrences. This indicates that it would be
beneficial to separate the test logic from the stimulus sequence. The possibility of
such separation and thus reusing the test logic is one of the expected benefits of
passive testing, presented in the next section.

4 Passive Testing
While traditional test cases, like the ones in Section 3, contain test steps including
both stimuli to the system under test and instructions for evaluating the system’s
response, passive testing focuses entirely on observations of the tested system and
compares this with the expected response. This separation of concerns may facilitate
reuse of the test logic for many different stimuli sequences. Further, such passive
test cases are typically automated, and since passive test cases do not interfere with
the state of the system at all, they can execute in parallel and independently of
each other. One consequence is that the tester (or a test sequence generator) may
focus on creating realistic input sequences that put the system under test in as many
testable states as possible.

Even though passive test cases do not alter the system state, they are highly
dependent on it. A passive test needs to “know” when it is meaningful to perform a
test and when it is not. E.g., there is no point in checking a requirement concerning
top speed, when the vehicle is not even started.

When a tester writes a test case for active testing, he/she has full control over
the system state. This means that the current system state can be inferred since
it always starts from a known starting point followed by a known sequence of test
stimuli. In contrast, when writing a test case for passive testing, the test case needs
to infer the current state of the system entirely by reading trace output of the system.
There is no known restart points as the test case is evaluated over the complete
execution.

Figure 2.4 illustrates the in-practice difference between the two approaches. Be-
ginning with the case of active testing, Figure 2.4a shows an example of how a test
case is executed. Before executing each such test case, the tester or automation
framework would reset the system under test. As described in Section 3, a test case
in active testing consists of a series of test steps. Each test step describes a stimulus
to send to the system under test, and an (optional) expected response to the given
stimulus. Executing a test step thus means that the stimulus is sent to the system
under test, either manually by a tester or using a test automation framework as
described in Section 2. To be sure that the system has had time to respond, testers
tend to wait for a long period to make sure that the system has got time to respond

31

12 4. Passive Testing

(a) Active Test Cases Contain Intertwined Stimulus and Test Logic

(b) Passive Test Cases Only Contain the Test Logic

Figure 2.4: Sequential Active vs Parallel Passive Testing

12 4. Passive Testing

(a) Active Test Cases Contain Intertwined Stimulus and Test Logic

(b) Passive Test Cases Only Contain the Test Logic

Figure 2.4: Sequential Active vs Parallel Passive Testing

32

Chapter 2. Background 13

as expected. The system is then probed and compared to the expected response.
Depending on how well the response matches the expected response, the test cases
are noted as “passed”, or “failed”. If a test step fails, the whole test case is noted as
failed.

Some shortcomings of the active approach include:

• Restarting the system under test between each test is time consuming,

• a requirement is only tested at one point in time, and

• time may be wasted due to the long to-be-sure timeouts.

Turning to the case of passive testing, the stimulus has been separated from the
actual testing, as illustrated in Figure 2.4b. This separation of concerns opens up
some attractive possibilities: As shown in the figure, all test cases can be executed
in parallel. The tester may now create or generate stimuli for different purposes
without the need of rewriting the test logic in the test case. Further, passive testing
contributes to mitigate the shortcomings mentioned above as:

• Restarting the system under test between each test is no longer necessary, and

• a requirement is tested as many times as the system enters the corresponding
testable state,

• Instead of time-outs, as soon as the system enters a testable state, the corre-
sponding test case can be evaluated to pass or fail directly.

A more in depth general review of passive testing methods can be found in [8].
While those methods primarily target test protocols and web services, another
approach to passive testing has shown promising results for system-level testing of
vehicular systems. The approach is called Independent Guarded Assertions [21, 31]
or G/A for short. A G/A is a test case that only observes the system under test.
It consists of a guard and its assertions. The guard part describes under which
circumstances a set of assertions should hold. The assertion part carries the test
logic of a requirement that should be met.

Consider the example of a light that should always be lit as long as a push-button
is pressed. The test logic, evaluating whether the light is lit or not, corresponds to
the assertion part. The part ensuring that the assertion is only considered whenever
the button is pressed corresponds to the guard part.

Describing such guards and assertions is challenging since they contain logical
expressions (maybe the engine needs to be on, AND the button is pressed) and
temporal constraints or expectations (how long is a button press and how long is
it acceptable to wait until the lamp is lit?). Although there are several ways of
expressing temporal logic, such as timed automata using UPPAAL as in [31] or by
more mathematical means as in [8] , the test engineers at the system level participating
in the studies behind this thesis requested more intuitive and straightforward means
of expressing passive test cases. Finding ways of expressing passive test cases thus
plays a central role in this thesis.

Finally, the terms Passive Test Case, Independent Guarded Assertion, and Guarded
Assertion (G/A for short) are used interchangeably throughout the thesis.

Chapter 2. Background 13

as expected. The system is then probed and compared to the expected response.
Depending on how well the response matches the expected response, the test cases
are noted as “passed”, or “failed”. If a test step fails, the whole test case is noted as
failed.

Some shortcomings of the active approach include:

• Restarting the system under test between each test is time consuming,

• a requirement is only tested at one point in time, and

• time may be wasted due to the long to-be-sure timeouts.

Turning to the case of passive testing, the stimulus has been separated from the
actual testing, as illustrated in Figure 2.4b. This separation of concerns opens up
some attractive possibilities: As shown in the figure, all test cases can be executed
in parallel. The tester may now create or generate stimuli for different purposes
without the need of rewriting the test logic in the test case. Further, passive testing
contributes to mitigate the shortcomings mentioned above as:

• Restarting the system under test between each test is no longer necessary, and

• a requirement is tested as many times as the system enters the corresponding
testable state,

• Instead of time-outs, as soon as the system enters a testable state, the corre-
sponding test case can be evaluated to pass or fail directly.

A more in depth general review of passive testing methods can be found in [8].
While those methods primarily target test protocols and web services, another
approach to passive testing has shown promising results for system-level testing of
vehicular systems. The approach is called Independent Guarded Assertions [21, 31]
or G/A for short. A G/A is a test case that only observes the system under test.
It consists of a guard and its assertions. The guard part describes under which
circumstances a set of assertions should hold. The assertion part carries the test
logic of a requirement that should be met.

Consider the example of a light that should always be lit as long as a push-button
is pressed. The test logic, evaluating whether the light is lit or not, corresponds to
the assertion part. The part ensuring that the assertion is only considered whenever
the button is pressed corresponds to the guard part.

Describing such guards and assertions is challenging since they contain logical
expressions (maybe the engine needs to be on, AND the button is pressed) and
temporal constraints or expectations (how long is a button press and how long is
it acceptable to wait until the lamp is lit?). Although there are several ways of
expressing temporal logic, such as timed automata using UPPAAL as in [31] or by
more mathematical means as in [8] , the test engineers at the system level participating
in the studies behind this thesis requested more intuitive and straightforward means
of expressing passive test cases. Finding ways of expressing passive test cases thus
plays a central role in this thesis.

Finally, the terms Passive Test Case, Independent Guarded Assertion, and Guarded
Assertion (G/A for short) are used interchangeably throughout the thesis.

33

34

Chapter 3

Research Summary

1 Research Goals
Software testing, and especially vehicular system testing at an industrial scale, faces
many challenges. One such challenge is testing a large set of safety-critical functions
that are supposed to work under a large number of scenarios and situations. Passive
testing has been suggested to meet these challenges by, e.g., allowing reuse of test logic
between situations. Although successfully used in other areas, industrial usage in the
vehicular domain has been hindered by perceived difficulties due to the mathematical
formalisms traditionally used for expressing the test cases and the lack of efficient
ways of working with passive testing.

The overall research goal is to propose and evaluate industrially applicable
methods and tools for passive testing at the system level of vehicular
software systems.

The overall research goal can be sub-divided into two research goals. The first
goal concerns the solutions needed to make passive testing achievable for industrial
practitioners and the second goal concerns the usefulness of the identified solutions.

RG 1. Propose methods and tools for the industrial application of passive testing at
the system level of vehicular systems.

Research goal 1 (RG 1) concerns challenges such as specification of passive test
logic, the required tooling and ways of working with passive testing that can be
aligned with industrial software testing processes. This goal directly contributes to
the overall research goal.

RG 2. Evaluate the proposed methods and tools for passive testing concerning
practical applicability in an industrial setting.

Research goal 2 (RG 2) concerns the extent to which the thesis results can be used
on industrial data without contradicting current results and what new information
the proposed methods and tools provide. This research goal contributes to the overall
goal by ensuring that practitioners can use the proposed solution for their data and
industrial context.

15

Chapter 3

Research Summary

1 Research Goals
Software testing, and especially vehicular system testing at an industrial scale, faces
many challenges. One such challenge is testing a large set of safety-critical functions
that are supposed to work under a large number of scenarios and situations. Passive
testing has been suggested to meet these challenges by, e.g., allowing reuse of test logic
between situations. Although successfully used in other areas, industrial usage in the
vehicular domain has been hindered by perceived difficulties due to the mathematical
formalisms traditionally used for expressing the test cases and the lack of efficient
ways of working with passive testing.

The overall research goal is to propose and evaluate industrially applicable
methods and tools for passive testing at the system level of vehicular
software systems.

The overall research goal can be sub-divided into two research goals. The first
goal concerns the solutions needed to make passive testing achievable for industrial
practitioners and the second goal concerns the usefulness of the identified solutions.

RG 1. Propose methods and tools for the industrial application of passive testing at
the system level of vehicular systems.

Research goal 1 (RG 1) concerns challenges such as specification of passive test
logic, the required tooling and ways of working with passive testing that can be
aligned with industrial software testing processes. This goal directly contributes to
the overall research goal.

RG 2. Evaluate the proposed methods and tools for passive testing concerning
practical applicability in an industrial setting.

Research goal 2 (RG 2) concerns the extent to which the thesis results can be used
on industrial data without contradicting current results and what new information
the proposed methods and tools provide. This research goal contributes to the overall
goal by ensuring that practitioners can use the proposed solution for their data and
industrial context.

15

35

16 2. Scope and Limitations

2 Scope and Limitations
The scope of this thesis is limited in three dimensions: The topic, the targeted system
type and the software development process scope. The topic scope is the challenges
and solutions encountered when introducing passive testing into an industrial context.
Although a research framework for passive testing is presented as one such solution,
formal methods, language theory, and mathematical proofs are out of scope for this
thesis. The main concern is to present methods and tools that the average tester can
use in a real industrial setting. The second dimension is the targeted system type.
Although the presented ideas may be applied to other system types, this thesis’s
research has been conducted on vehicular embedded systems. Compared to the
ordinary embedded software or even desktop software, an essential property of the
studied systems is that the systems are signal-based. Another property is that they
are large (many thousands of signals) and consist of many subsystems developed
separately and integrated into a complete distributed system. Many of these systems
are safety-critical and require testing under more than one condition and system
configuration. The third dimension is the software development process scope.
Although the proposed methods and tools can probably be used when specifying
requirements at any level, the work focuses on testing requirements on the system
level.

3 Empirical Research in an Industrial Context
Both regular software development activities and empirical research in an industrial
context aim to find industrially viable solutions to industrial problems. However,
Basili [4] distinguishes development work from empirical research by the use of
structured methods and body of knowledge provided by the academic community.
Further, research follows an inductive or analytical paradigm, including a purposeful
data collection, solution proposal, and an evaluation of the result. Gorschek et al.
illustrate the bigger picture as a journey from problem formulation to deployed
technology in their technology transfer model [20]. During each step of the model,
the researcher selects and applies applicable scientific methods in cooperation with
industrial experts. In theory, working with and within the boundaries of this model
is straightforward. However, within the work of this thesis, many challenges were
encountered. The remainder of this section presents challenges, the technology
transfer model, and finally, the journey of this thesis.

3.1 Challenges in Empirical Research

The work behind this thesis has met (at least) two kinds of challenges. The first is
the type of solution to the investigated problem. The thesis proposes three types of
solutions: An algorithm, a tool, and additions to a software process. The solution
type influences the overall challenges throughout the technology transfer model and
has had the biggest impact on the level of support required from the industrial
partner, particularly for evaluation.

16 2. Scope and Limitations

2 Scope and Limitations
The scope of this thesis is limited in three dimensions: The topic, the targeted system
type and the software development process scope. The topic scope is the challenges
and solutions encountered when introducing passive testing into an industrial context.
Although a research framework for passive testing is presented as one such solution,
formal methods, language theory, and mathematical proofs are out of scope for this
thesis. The main concern is to present methods and tools that the average tester can
use in a real industrial setting. The second dimension is the targeted system type.
Although the presented ideas may be applied to other system types, this thesis’s
research has been conducted on vehicular embedded systems. Compared to the
ordinary embedded software or even desktop software, an essential property of the
studied systems is that the systems are signal-based. Another property is that they
are large (many thousands of signals) and consist of many subsystems developed
separately and integrated into a complete distributed system. Many of these systems
are safety-critical and require testing under more than one condition and system
configuration. The third dimension is the software development process scope.
Although the proposed methods and tools can probably be used when specifying
requirements at any level, the work focuses on testing requirements on the system
level.

3 Empirical Research in an Industrial Context
Both regular software development activities and empirical research in an industrial
context aim to find industrially viable solutions to industrial problems. However,
Basili [4] distinguishes development work from empirical research by the use of
structured methods and body of knowledge provided by the academic community.
Further, research follows an inductive or analytical paradigm, including a purposeful
data collection, solution proposal, and an evaluation of the result. Gorschek et al.
illustrate the bigger picture as a journey from problem formulation to deployed
technology in their technology transfer model [20]. During each step of the model,
the researcher selects and applies applicable scientific methods in cooperation with
industrial experts. In theory, working with and within the boundaries of this model
is straightforward. However, within the work of this thesis, many challenges were
encountered. The remainder of this section presents challenges, the technology
transfer model, and finally, the journey of this thesis.

3.1 Challenges in Empirical Research

The work behind this thesis has met (at least) two kinds of challenges. The first is
the type of solution to the investigated problem. The thesis proposes three types of
solutions: An algorithm, a tool, and additions to a software process. The solution
type influences the overall challenges throughout the technology transfer model and
has had the biggest impact on the level of support required from the industrial
partner, particularly for evaluation.

36

Chapter 3. Research Summary 17

The second kind of challenge concerns the differences between academia and
industry concerning Goal, Knowledge and Environment, Size and Complexity, IPR,
and Data. The following is a brief description of these challenges, starting with
the goal of industrial development versus the goal of industrial research. Industrial
development aims at developing a product, something to sell. The success criteria
concerns aspects like production cost, time to market and price. If other companies
can use the solution, it is often avoided by patents and non-disclosure agreements.
The novelty of solutions is only meaningful if it results in novel benefits from the
customer’s perspective or cost-saving. On the other hand, academic research aims
to develop knowledge (or artifacts that can produce such knowledge). Here novelty
of the solution is an imperative success criterion itself. Other fundamental criteria
for an academic are how well the evaluation was performed, how generalizable the
results are, and how prestigious the dissemination conference or journal was. The
next challenge is knowledge and environment. Even when using the best scientific
methods, not much can be accomplished without a substantial amount of domain
knowledge. In reality, time and resources that can be set aside for a Ph.D. student
are limited. Consequently, a ph.D. student spends a great deal of effort in studying
documents, tool-chains and development environments. While the Ph.D. student
needs domain knowledge to understand the problem and be more independent, the
industrial partner also needs knowledge in the chosen research method to set realistic
expectations on the outcome. The challenge of size and complexity concerns, except
for the obvious that industrial systems may be large and complex, the size of the
published solutions. The problem, its solution, and evaluation of the solution gets
published in an academic conference or a journal, often with a page limit. The goal of
being published leads to the next challenge: the view on intellectual property rights
IPR. Anything published must be anonymized and generalized so it cannot be traced
back to the industrial partner or leak any business-critical IPR. Thus, academia has
a vast body of knowledge, providing solutions and proof of concepts to generalized
(small) problems. The last challenge is access to industrial Data. This thesis met
this challenge by creating a private clone of the entire development tool-chain and a
complete simulation environment. Such a sandbox allowed testing the solutions in
an actual industrial environment without disturbing the production. The drawback
was the significant investment of domain knowledge required to operate it properly.

Chapter 3. Research Summary 17

The second kind of challenge concerns the differences between academia and
industry concerning Goal, Knowledge and Environment, Size and Complexity, IPR,
and Data. The following is a brief description of these challenges, starting with
the goal of industrial development versus the goal of industrial research. Industrial
development aims at developing a product, something to sell. The success criteria
concerns aspects like production cost, time to market and price. If other companies
can use the solution, it is often avoided by patents and non-disclosure agreements.
The novelty of solutions is only meaningful if it results in novel benefits from the
customer’s perspective or cost-saving. On the other hand, academic research aims
to develop knowledge (or artifacts that can produce such knowledge). Here novelty
of the solution is an imperative success criterion itself. Other fundamental criteria
for an academic are how well the evaluation was performed, how generalizable the
results are, and how prestigious the dissemination conference or journal was. The
next challenge is knowledge and environment. Even when using the best scientific
methods, not much can be accomplished without a substantial amount of domain
knowledge. In reality, time and resources that can be set aside for a Ph.D. student
are limited. Consequently, a ph.D. student spends a great deal of effort in studying
documents, tool-chains and development environments. While the Ph.D. student
needs domain knowledge to understand the problem and be more independent, the
industrial partner also needs knowledge in the chosen research method to set realistic
expectations on the outcome. The challenge of size and complexity concerns, except
for the obvious that industrial systems may be large and complex, the size of the
published solutions. The problem, its solution, and evaluation of the solution gets
published in an academic conference or a journal, often with a page limit. The goal of
being published leads to the next challenge: the view on intellectual property rights
IPR. Anything published must be anonymized and generalized so it cannot be traced
back to the industrial partner or leak any business-critical IPR. Thus, academia has
a vast body of knowledge, providing solutions and proof of concepts to generalized
(small) problems. The last challenge is access to industrial Data. This thesis met
this challenge by creating a private clone of the entire development tool-chain and a
complete simulation environment. Such a sandbox allowed testing the solutions in
an actual industrial environment without disturbing the production. The drawback
was the significant investment of domain knowledge required to operate it properly.

37

18 3. Empirical Research in an Industrial Context

3.2 The Technology Transfer Model

Figure 3.1 illustrates a journey from problem formulation to deployed technology
according to Gorschek et al. [20], the technology transfer model.

Figure 3.1: Technology Transfer Model [20]

The first step, (1) in Figure 3.1, is to identify the problem at hand. In this step, a
case study [32, 35] with interviews can be used, for example, in combination with
content analysis to reveal issues or problems. The second step, problem formulation,
concerns formulating the problem to guide the search for related work in the academic
discourse. One typical result is a set of research questions. The questions help the
researcher to focus when searching the literature for related work. The result of this
activity may be a State of the Art (SOTA) that summarizes the academic discourse
or a State of Practice that summarizes the industrial solutions. Examples of such
methods are snowballing [37], mapping study [29] or a Literature Review [24]. The
third step, (3) in Figure 3.1, is the candidate solution. Here, the researcher uses the
results from step 2 and formulates a first candidate solution. The fourth step, (4) in
Figure 3.1, is validation in academia. To do this, the researcher may use a limited
but representative data set from the company on the solution candidates. Examples
of applicable research methods are exploratory case study [32] and a controlled
experiment [35]. The fifth step, (5) in tFigure 3.1, is Static Validation, where the
industry experts examine the candidate solution but not necessarily testing it in
practice. This may be done in different ways such as informally, during a number of
iterations, as in step 3 or more formally in a case study with interviews. In the sixth
step, (6) in the figure, the practitioners test the solution on actual data. Finally, in
the seventh step, (7) in the figure, the solution is released internally in the company.

The journey of this thesis through academia and industrial needs

This section goes into more detail about the research process that led to the con-
tributions of this thesis. The focus is on the rationale behind the papers, the

18 3. Empirical Research in an Industrial Context

3.2 The Technology Transfer Model

Figure 3.1 illustrates a journey from problem formulation to deployed technology
according to Gorschek et al. [20], the technology transfer model.

Figure 3.1: Technology Transfer Model [20]

The first step, (1) in Figure 3.1, is to identify the problem at hand. In this step, a
case study [32, 35] with interviews can be used, for example, in combination with
content analysis to reveal issues or problems. The second step, problem formulation,
concerns formulating the problem to guide the search for related work in the academic
discourse. One typical result is a set of research questions. The questions help the
researcher to focus when searching the literature for related work. The result of this
activity may be a State of the Art (SOTA) that summarizes the academic discourse
or a State of Practice that summarizes the industrial solutions. Examples of such
methods are snowballing [37], mapping study [29] or a Literature Review [24]. The
third step, (3) in Figure 3.1, is the candidate solution. Here, the researcher uses the
results from step 2 and formulates a first candidate solution. The fourth step, (4) in
Figure 3.1, is validation in academia. To do this, the researcher may use a limited
but representative data set from the company on the solution candidates. Examples
of applicable research methods are exploratory case study [32] and a controlled
experiment [35]. The fifth step, (5) in tFigure 3.1, is Static Validation, where the
industry experts examine the candidate solution but not necessarily testing it in
practice. This may be done in different ways such as informally, during a number of
iterations, as in step 3 or more formally in a case study with interviews. In the sixth
step, (6) in the figure, the practitioners test the solution on actual data. Finally, in
the seventh step, (7) in the figure, the solution is released internally in the company.

The journey of this thesis through academia and industrial needs

This section goes into more detail about the research process that led to the con-
tributions of this thesis. The focus is on the rationale behind the papers, the

38

Chapter 3. Research Summary 19

methodological choices, and how the results of the papers have guided the advance-
ment of the process. Further details on what and how the research methods were
used are presented in the included papers.

It all started with a concrete problem at Volvo Construction Equipment (VCE)
in Eskilstuna. They suspected that testers performed similar test-effort at different
levels of integration. A preliminary case study [15] revealed that the problem also
occurred at Alstom Transport AB in Västerås in the form of similar test steps
repeated in several test cases. This knowledge guided the research of Paper A that
capitalizes on knowledge of such similarities to prioritize test case automation. As a
mean of reusing test cases between levels of integration, passive testing seemed to
be an attractive approach. Based on some further preliminary work in [17] Paper
C investigates how testers appreciate the approach and an initial version of the
language and the tool at Scania. Since the purpose of the study was to catch the
testers’ opinions, a case study with interviews analyzed using content analysis was
chosen. Paper C’s interviews belong to the static validation activity in the technology
transfer model, while the tester’s trial period (although small) belongs to the dynamic
validation. Despite the simplistic language, the testers still found challenges fed
back to the candidate solution activity in the technology transfer model. After
continuous informal static validation of the updated solution candidates, Paper B
adds to the candidate solution(s) and makes a new validation. Dynamic validation of
a development tool such as the proposed is challenging to achieve as a Ph.D. student
since it requires company resources over quite some time. In this work, a middle way
was chosen, where the researcher performed the dynamic validation in the industrial
environment and dialog with the practitioners. The work performed in Paper E
corresponds to an iteration between the candidate solution activity and the academic
validation, gradually refining the proposed solutions concerning false positives. It is
completed with a dynamic evaluation of the approach by an expert tester. Finally,
Paper D collects the overall results concerning the language.

Chapter 3. Research Summary 19

methodological choices, and how the results of the papers have guided the advance-
ment of the process. Further details on what and how the research methods were
used are presented in the included papers.

It all started with a concrete problem at Volvo Construction Equipment (VCE)
in Eskilstuna. They suspected that testers performed similar test-effort at different
levels of integration. A preliminary case study [15] revealed that the problem also
occurred at Alstom Transport AB in Västerås in the form of similar test steps
repeated in several test cases. This knowledge guided the research of Paper A that
capitalizes on knowledge of such similarities to prioritize test case automation. As a
mean of reusing test cases between levels of integration, passive testing seemed to
be an attractive approach. Based on some further preliminary work in [17] Paper
C investigates how testers appreciate the approach and an initial version of the
language and the tool at Scania. Since the purpose of the study was to catch the
testers’ opinions, a case study with interviews analyzed using content analysis was
chosen. Paper C’s interviews belong to the static validation activity in the technology
transfer model, while the tester’s trial period (although small) belongs to the dynamic
validation. Despite the simplistic language, the testers still found challenges fed
back to the candidate solution activity in the technology transfer model. After
continuous informal static validation of the updated solution candidates, Paper B
adds to the candidate solution(s) and makes a new validation. Dynamic validation of
a development tool such as the proposed is challenging to achieve as a Ph.D. student
since it requires company resources over quite some time. In this work, a middle way
was chosen, where the researcher performed the dynamic validation in the industrial
environment and dialog with the practitioners. The work performed in Paper E
corresponds to an iteration between the candidate solution activity and the academic
validation, gradually refining the proposed solutions concerning false positives. It is
completed with a dynamic evaluation of the approach by an expert tester. Finally,
Paper D collects the overall results concerning the language.

39

40

Chapter 4

Research Contributions

In practice, the research goal of this thesis concerns how to produce passive test
cases from software requirements in a way that could be accepted and adopted
in an industrial setting. This process is illustrated as a think black arrow at the
top of Figure 4.1 between the requirements and the passive test cases. The text
above the arrow outlines significant steps in the proposed process to accomplish the
translation. The shadowed rectangles in the figure scope individual contributions
from the included papers A through F to the research goals (RG1 and RG2). The
first goal (RG1) concerns the methods and tools, and the second (RG2) concerns
industrial applicability. Finally, the relations between the included papers (yellow
document icons in the figure, marked A through F) and the highlighted contributions
(C1 through C5) are shown as arrows from the papers to where the contribution is
applicable in the process. The remainder of this section outlines these contributions
and how they address the research goals. The outline is followed by a series of
sub-sections covering more details of the individual contributions.

Figure 4.1: Contributions (C1 to C5) and Dependencies of the Included Papers.
C3 constitutes the open source implementation behind C1 and C2. The names of
the papers are abbreviated for clarity.

21

Chapter 4

Research Contributions

In practice, the research goal of this thesis concerns how to produce passive test
cases from software requirements in a way that could be accepted and adopted
in an industrial setting. This process is illustrated as a think black arrow at the
top of Figure 4.1 between the requirements and the passive test cases. The text
above the arrow outlines significant steps in the proposed process to accomplish the
translation. The shadowed rectangles in the figure scope individual contributions
from the included papers A through F to the research goals (RG1 and RG2). The
first goal (RG1) concerns the methods and tools, and the second (RG2) concerns
industrial applicability. Finally, the relations between the included papers (yellow
document icons in the figure, marked A through F) and the highlighted contributions
(C1 through C5) are shown as arrows from the papers to where the contribution is
applicable in the process. The remainder of this section outlines these contributions
and how they address the research goals. The outline is followed by a series of
sub-sections covering more details of the individual contributions.

Figure 4.1: Contributions (C1 to C5) and Dependencies of the Included Papers.
C3 constitutes the open source implementation behind C1 and C2. The names of
the papers are abbreviated for clarity.

21

41

22

The addressed challenges of the first research goal (RG1) include specification of
passive test cases, tool support and ways of working. With the work of Independent
Guarded Assertions [21] as the starting point, the first challenge is to find an intuitive
and effective way to specify the guard that decides when to test and a way to specify
the assertion that constitutes the actual test logic. The solution proposed in this
thesis is a language and its semantics, T-EARS (Contribution C1). The contributions
to T-EARS were collected over time from work with Papers B, C, E and finalized in
Paper D. Highlights of the language are further presented in Section 1.1.

Even though the language is designed to be simple and intuitive, practitioners
find logical expressions with temporal constraints difficult to interpret and error-
prone [16]. Therefore, this thesis proposes an interactive tool for passive test cases
(Contribution C2). With an initial prototype in [16] as a starting point, expectations
from the testers (Paper C) have been gradually realized in the tool. The tool was
also updated continuously with requirements from work with Papers B and E. The
tool contribution (C2) is further described in Section 1.2.

The modular architecture of the tool and the language contributions forms a
research platform (Contribution C3) for experimenting with the proposed grammar,
semantics, and tool features. Scania open-sources the original tool and language
prototype1. The proposed work in this thesis is a fork2 of that repository. The work
with Paper B through E continuously contributed to the platform as the tool and the
language serve as an example of what can be done with the platform. An overview
of the research platform is presented in Section 1.3.

The final challenge is to find a way to work with passive testing aligned with existing
software testing processes. This thesis presents a way of working (Contribution C4)
based on the combined results from Papers A, B, and E. The contribution allows
introducing passive testing to complement an arbitrary software testing process to
adopt the approach gradually. Paper A contributes to this way of working with an
algorithm that helps to order the work of automating test cases. This algorithm has
also been applied to order the work of translating requirements to passive test cases
based on ordering test scenarios covering those requirements. Paper B contributes
with a translation process from natural language requirements to passive test cases.
This process is fine-tuned in Paper E, where false fails are addressed by adding
further tuning steps to the process. The contributions to the workflow are further
presented in Section 1.4.

The second research goal (RG2) is to evaluate the industrial usefulness of the
proposed methods and tools. The individual contributions are, in general, evaluated
in the paper where they are presented. Paper A evaluates the prioritization algorithm
of test cases for automation against other prioritization approaches. Paper B provides
a proof of concept by applying the proposed translation process on an industrial
requirement. Paper C evaluates the approach, language and the tool from a testers
perspective. Paper D evaluates the expressfulness of the final language by analyzing
a large set of safety critical requirements. Paper E uses and evaluates the whole
resulting way-of-working process (except requirement prioritization) for a set of safety-

1https://github.com/scania/saga
2https://bitbucket.org/danielFlemstrom/napkin

22

The addressed challenges of the first research goal (RG1) include specification of
passive test cases, tool support and ways of working. With the work of Independent
Guarded Assertions [21] as the starting point, the first challenge is to find an intuitive
and effective way to specify the guard that decides when to test and a way to specify
the assertion that constitutes the actual test logic. The solution proposed in this
thesis is a language and its semantics, T-EARS (Contribution C1). The contributions
to T-EARS were collected over time from work with Papers B, C, E and finalized in
Paper D. Highlights of the language are further presented in Section 1.1.

Even though the language is designed to be simple and intuitive, practitioners
find logical expressions with temporal constraints difficult to interpret and error-
prone [16]. Therefore, this thesis proposes an interactive tool for passive test cases
(Contribution C2). With an initial prototype in [16] as a starting point, expectations
from the testers (Paper C) have been gradually realized in the tool. The tool was
also updated continuously with requirements from work with Papers B and E. The
tool contribution (C2) is further described in Section 1.2.

The modular architecture of the tool and the language contributions forms a
research platform (Contribution C3) for experimenting with the proposed grammar,
semantics, and tool features. Scania open-sources the original tool and language
prototype1. The proposed work in this thesis is a fork2 of that repository. The work
with Paper B through E continuously contributed to the platform as the tool and the
language serve as an example of what can be done with the platform. An overview
of the research platform is presented in Section 1.3.

The final challenge is to find a way to work with passive testing aligned with existing
software testing processes. This thesis presents a way of working (Contribution C4)
based on the combined results from Papers A, B, and E. The contribution allows
introducing passive testing to complement an arbitrary software testing process to
adopt the approach gradually. Paper A contributes to this way of working with an
algorithm that helps to order the work of automating test cases. This algorithm has
also been applied to order the work of translating requirements to passive test cases
based on ordering test scenarios covering those requirements. Paper B contributes
with a translation process from natural language requirements to passive test cases.
This process is fine-tuned in Paper E, where false fails are addressed by adding
further tuning steps to the process. The contributions to the workflow are further
presented in Section 1.4.

The second research goal (RG2) is to evaluate the industrial usefulness of the
proposed methods and tools. The individual contributions are, in general, evaluated
in the paper where they are presented. Paper A evaluates the prioritization algorithm
of test cases for automation against other prioritization approaches. Paper B provides
a proof of concept by applying the proposed translation process on an industrial
requirement. Paper C evaluates the approach, language and the tool from a testers
perspective. Paper D evaluates the expressfulness of the final language by analyzing
a large set of safety critical requirements. Paper E uses and evaluates the whole
resulting way-of-working process (except requirement prioritization) for a set of safety-

1https://github.com/scania/saga
2https://bitbucket.org/danielFlemstrom/napkin

42

Chapter 4. Research Contributions 23

critical requirements. This and relevant results from Papers A-D are summarized in
Section 2.

1 RG1 - Methods and Tools For Passive Testing

This section outlines the contributions that together fulfill the first research goal
(RG1), to “Propose methods and tools for the industrial application of passive testing
at the system level of vehicular systems”. Section 1.1 outlines an intuitive language
including templates for intuitive specification of passive test cases. The resulting
development environment is outlined in Section 1.2 and Section 1.3 describes the
open-source research platform behind that tool. Finally, Section 1.4 presents a way
of working with passive test cases in an industrial context.

1.1 C1: An Intuitive and Easy To Use Specification Language

T-EARS was first introduced in [17] as a specification syntax for independent guarded
assertions (G/As) [21, 31]. The G/A approach in [21] separates the passive test case
into a guard, deciding when to test and an assertion expression, deciding what to
test. The improved T-EARS proposed in this thesis is the collective result from the
work of all the included papers. While the details are presented in Paper D, this
section gives an overview and highlights selected features of the language.
1 ’Bp -1’ = while true shall <system response state A>
2 ’Bp -2’ = while <system state G > shall <system response state A> within t
3 ’Bp -3’ = when <events G> shall <system response state A> within t
4 ’Bp -4’ = when <events G> shall <response events A> within t
5 ’Bp -5’ = when <events G> shall <system response state A> for tf within tw
6 ’Bp -6’ = when <events G> shall <system response state A> within tw for tf

Listing 4.1: Resulting Boilerplates

Boilerplates: The boilerplates in Listing 4.1 ensure the tester a good starting
point when writing a test case. Their purpose is also to rule out confusing or
ambiguous expressions. The boilerplates, or templates, are closely related to the
patterns identified in Easy Approach to Requirements Specification (EARS) [26].
In fact, Table 4.1 shows a more detailed mapping, how to use the boilerplates to
realize the EARS patterns. The while keyword suggests that the guard is described
by a system state expression and the keyword when that the guard is described by a
system event expression. The expected system response is described by the shall
keyword followed by an assertion expression. The assertion expression may describe
either an event or a state response depending on the boilerplate. The keywords
within and for specifies timing constraints and allowance, further described in the
timing section below.

Types: An important contribution of this thesis is the more strict use of types in
T-EARS. In the boilerplate section, system states and events were discussed. States
are represented by the Intervals data type in T-EARS and can be specified manually,
as shown in row 2 in Listing 4.2, or by an expression as shown in row 3. Essentially
the Intervals data type consists of a series of [tstart, tend] for each interval the system

Chapter 4. Research Contributions 23

critical requirements. This and relevant results from Papers A-D are summarized in
Section 2.

1 RG1 - Methods and Tools For Passive Testing

This section outlines the contributions that together fulfill the first research goal
(RG1), to “Propose methods and tools for the industrial application of passive testing
at the system level of vehicular systems”. Section 1.1 outlines an intuitive language
including templates for intuitive specification of passive test cases. The resulting
development environment is outlined in Section 1.2 and Section 1.3 describes the
open-source research platform behind that tool. Finally, Section 1.4 presents a way
of working with passive test cases in an industrial context.

1.1 C1: An Intuitive and Easy To Use Specification Language

T-EARS was first introduced in [17] as a specification syntax for independent guarded
assertions (G/As) [21, 31]. The G/A approach in [21] separates the passive test case
into a guard, deciding when to test and an assertion expression, deciding what to
test. The improved T-EARS proposed in this thesis is the collective result from the
work of all the included papers. While the details are presented in Paper D, this
section gives an overview and highlights selected features of the language.
1 ’Bp -1’ = while true shall <system response state A>
2 ’Bp -2’ = while <system state G > shall <system response state A> within t
3 ’Bp -3’ = when <events G> shall <system response state A> within t
4 ’Bp -4’ = when <events G> shall <response events A> within t
5 ’Bp -5’ = when <events G> shall <system response state A> for tf within tw
6 ’Bp -6’ = when <events G> shall <system response state A> within tw for tf

Listing 4.1: Resulting Boilerplates

Boilerplates: The boilerplates in Listing 4.1 ensure the tester a good starting
point when writing a test case. Their purpose is also to rule out confusing or
ambiguous expressions. The boilerplates, or templates, are closely related to the
patterns identified in Easy Approach to Requirements Specification (EARS) [26].
In fact, Table 4.1 shows a more detailed mapping, how to use the boilerplates to
realize the EARS patterns. The while keyword suggests that the guard is described
by a system state expression and the keyword when that the guard is described by a
system event expression. The expected system response is described by the shall
keyword followed by an assertion expression. The assertion expression may describe
either an event or a state response depending on the boilerplate. The keywords
within and for specifies timing constraints and allowance, further described in the
timing section below.

Types: An important contribution of this thesis is the more strict use of types in
T-EARS. In the boilerplate section, system states and events were discussed. States
are represented by the Intervals data type in T-EARS and can be specified manually,
as shown in row 2 in Listing 4.2, or by an expression as shown in row 3. Essentially
the Intervals data type consists of a series of [tstart, tend] for each interval the system

43

24 1. RG1 - Methods and Tools For Passive Testing

is in a particular state. System events are represented by the Events data type, a
series of points in time where a particular event occurred.

Besides Intervals, and Events there are Signals, which are essentially a series of
[timestamp, value] pairs. Signals are used for creating Intervals or Events together
with trivial types such as Boolean, Float, and Time.
1 // Intervals
2 def intervals door_is_open = [[12s.30s],[90s,120s]] // manually defined , or
3 def intervals door_is_open = door_position > 2 // using signal expression
4

5 // Events
6 def events door_opens = [12s,90s] //manually , or
7 def events door_opens =
8 rising_edge(door_is_open == true) // Events expression
9 def events door_closes =

10 falling_edge(door_is_open == true)

Listing 4.2: Examples of T-EARS Types and the def Structural Element

Expressions (logical): The Signal, Interval, and Event data types can be
combined into logical expressions such as two system states that should be fulfilled
at the same time. A practical example is the expression “engine on” AND “gear
in reverse”. Expressions can also be used for specifying a system state from signal
expressions, e.g. S1 > 1 and S2 > 5 would yield a series of intervals where the signal
value for S1 is above 1 at the same time as the signal value for S2 is above 5.

Expressions (time): In T-EARS, the temporal specification has been restricted
to a minimum to keep the resulting expressions intuitive. As a result, the case

EARS Pattern T-EARS Realization

Ubiquitous:
A shall always hold BP1 while true shall A

State pattern:
while preconditions
the system name shall system response

BP2 while G
shall A within t

Event Pattern:

when preconditions
the system name shall system response

BP3 when G
BP4 shall A within t
BP5 when G

shall A for t1 within t2
BP6 when G

shall A within t1 for t2
Option:
where expression [requirement] where B [Any BP1-6]
Unwanted Behavior:
if unwanted behavior then
shall system name system response

[Modeled using any BP1-6]

Complex:
Mix of above patterns

Accomplished by logical
conjunctions of G or A

Table 4.1: How the Resulting T-EARS Boiler plates Realizes the EARS Patterns.
G denotes a Guard Expression and A is the Assertion Expression

24 1. RG1 - Methods and Tools For Passive Testing

is in a particular state. System events are represented by the Events data type, a
series of points in time where a particular event occurred.

Besides Intervals, and Events there are Signals, which are essentially a series of
[timestamp, value] pairs. Signals are used for creating Intervals or Events together
with trivial types such as Boolean, Float, and Time.
1 // Intervals
2 def intervals door_is_open = [[12s.30s],[90s,120s]] // manually defined , or
3 def intervals door_is_open = door_position > 2 // using signal expression
4

5 // Events
6 def events door_opens = [12s,90s] //manually , or
7 def events door_opens =
8 rising_edge(door_is_open == true) // Events expression
9 def events door_closes =

10 falling_edge(door_is_open == true)

Listing 4.2: Examples of T-EARS Types and the def Structural Element

Expressions (logical): The Signal, Interval, and Event data types can be
combined into logical expressions such as two system states that should be fulfilled
at the same time. A practical example is the expression “engine on” AND “gear
in reverse”. Expressions can also be used for specifying a system state from signal
expressions, e.g. S1 > 1 and S2 > 5 would yield a series of intervals where the signal
value for S1 is above 1 at the same time as the signal value for S2 is above 5.

Expressions (time): In T-EARS, the temporal specification has been restricted
to a minimum to keep the resulting expressions intuitive. As a result, the case

EARS Pattern T-EARS Realization

Ubiquitous:
A shall always hold BP1 while true shall A

State pattern:
while preconditions
the system name shall system response

BP2 while G
shall A within t

Event Pattern:

when preconditions
the system name shall system response

BP3 when G
BP4 shall A within t
BP5 when G

shall A for t1 within t2
BP6 when G

shall A within t1 for t2
Option:
where expression [requirement] where B [Any BP1-6]
Unwanted Behavior:
if unwanted behavior then
shall system name system response

[Modeled using any BP1-6]

Complex:
Mix of above patterns

Accomplished by logical
conjunctions of G or A

Table 4.1: How the Resulting T-EARS Boiler plates Realizes the EARS Patterns.
G denotes a Guard Expression and A is the Assertion Expression

44

Chapter 4. Research Contributions 25

of filtering intervals of a particular length has been separated from creating an
event whenever an interval is long enough. As an example, the keyword for always
produces an event each time an interval has exceeded a specified amount of time.
Another example of time expressions in T-EARS is the within keyword that specifies
an acceptable system response delay in relation to the guard.

Expressions (filter): As previously discussed, the use of the for keyword would
have different semantic meanings depending on where it occurs in an expression.
Therefor the keywords longer than, shorter than are used for filtering intervals
longer or shorter than a threshold.

Structural Elements: Structural elements are used for increasing the readability
of the expressions. Constants can be defined to replace numbers with a meaningful
name. The structural elements also have an integral part of abstract vs concrete
signal handling. Using the def as shown in Listing 4.2, abstract signals can be
mapped to example signals, or concrete expressions of a particular system release.
In the listing, the def keyword followed by either intervals, events binds the
expression to the right to the identifier and ensures type-safe operations. Paper D
also gives examples on how the structural elements can be used for increasing the
density of the log files by logging whole telegrams, carrying several binary signals.
The resulting state from the signals can then be extracted as Intervals using T-EARS
expressions.

1.2 C2: An Interactive Passive Test Case Development Envi-
ronment

This section gives an overview of the main functional areas of the proposed interactive
development environment for passive test cases: Napkin Studio3 . The section also
provides a brief discussion on how the different functions can be used together when
writing passive test cases. Napkin Studio is a fork of the SAGA Tool4

Napkin Studio is web based and can be used as a stand-alone tool or be integrated
with a test result database view by forming an URL specifying the passive test case,
log file, and the definition file to load. When used stand alone, a file selection dialog
allows browsing the local file system for a log file in the jsondiff format. The tool
loads the log file and lists all logged signals in the Signal list (nr (1) in Figure 4.2).
Since there may be many signals in a log file, a filter (nr (2) in Figure 4.2) allows
the tester to reduce the list only to show the signals of interest. The tester can then
drag a signal from the Signal list (nr (1) in Figure 4.2) and drop it on the Plot Area
(nr (6) in Figure 4.2) to examine the signal. Another way to examine or edit the
singal is to drop it on the Signal editor (nr (3) in Figure 4.2). It is also possible to
create new signals in the signal editor, using an existing signal as a template or one
of the provided signal generators. Several signals can be viewed and edited at the
same time by adding mini editors to the right pane (the “Add mini editor” button
in Figure 4.2). The Snippet Editor section (nr (4) in Figure 4.2) allows the tester
to develop the expressions interactively using the loaded or created signals. There

3https://bitbucket.org/danielFlemstrom/napkin (contact daniel.flemstrom@mdh.se for access)
4https://github.com/scania/saga

Chapter 4. Research Contributions 25

of filtering intervals of a particular length has been separated from creating an
event whenever an interval is long enough. As an example, the keyword for always
produces an event each time an interval has exceeded a specified amount of time.
Another example of time expressions in T-EARS is the within keyword that specifies
an acceptable system response delay in relation to the guard.

Expressions (filter): As previously discussed, the use of the for keyword would
have different semantic meanings depending on where it occurs in an expression.
Therefor the keywords longer than, shorter than are used for filtering intervals
longer or shorter than a threshold.

Structural Elements: Structural elements are used for increasing the readability
of the expressions. Constants can be defined to replace numbers with a meaningful
name. The structural elements also have an integral part of abstract vs concrete
signal handling. Using the def as shown in Listing 4.2, abstract signals can be
mapped to example signals, or concrete expressions of a particular system release.
In the listing, the def keyword followed by either intervals, events binds the
expression to the right to the identifier and ensures type-safe operations. Paper D
also gives examples on how the structural elements can be used for increasing the
density of the log files by logging whole telegrams, carrying several binary signals.
The resulting state from the signals can then be extracted as Intervals using T-EARS
expressions.

1.2 C2: An Interactive Passive Test Case Development Envi-
ronment

This section gives an overview of the main functional areas of the proposed interactive
development environment for passive test cases: Napkin Studio3 . The section also
provides a brief discussion on how the different functions can be used together when
writing passive test cases. Napkin Studio is a fork of the SAGA Tool4

Napkin Studio is web based and can be used as a stand-alone tool or be integrated
with a test result database view by forming an URL specifying the passive test case,
log file, and the definition file to load. When used stand alone, a file selection dialog
allows browsing the local file system for a log file in the jsondiff format. The tool
loads the log file and lists all logged signals in the Signal list (nr (1) in Figure 4.2).
Since there may be many signals in a log file, a filter (nr (2) in Figure 4.2) allows
the tester to reduce the list only to show the signals of interest. The tester can then
drag a signal from the Signal list (nr (1) in Figure 4.2) and drop it on the Plot Area
(nr (6) in Figure 4.2) to examine the signal. Another way to examine or edit the
singal is to drop it on the Signal editor (nr (3) in Figure 4.2). It is also possible to
create new signals in the signal editor, using an existing signal as a template or one
of the provided signal generators. Several signals can be viewed and edited at the
same time by adding mini editors to the right pane (the “Add mini editor” button
in Figure 4.2). The Snippet Editor section (nr (4) in Figure 4.2) allows the tester
to develop the expressions interactively using the loaded or created signals. There

3https://bitbucket.org/danielFlemstrom/napkin (contact daniel.flemstrom@mdh.se for access)
4https://github.com/scania/saga

45

26 1. RG1 - Methods and Tools For Passive Testing

Figure 4.2: Napkin Studio Functional Area Overview

is also a larger version of the editor in the tabs of the left pane. Each time the
user presses ctrl+enter, the current T-EARS expression in the editor is evaluated.
Feedback on syntax, interpretation, and missing signals is provided by a status bar
(nr (5) in Figure 4.2), and the evaluation result is overlaid in the Signal editor (nr (3)
in Figure 4.2) and the Plot area (nr (6) in Figure 4.2). The Plot area also visualizes
each sub-expression.

Examining and Comparing Execution Log Files

In a signal based system, all communication between program units as well as sub
systems is done via signals that can, to a varying extent, be logged during execution.
These signals, e.g, digital or analog I/O signals captures the system input, the
internal state of the system and the output over time. The proposed approach to
passive testing relies on observing these signals, both to determine when to test
and for the actual test logic. Examining such logs is thus an important part of
understanding the system behavior. Napkin Studio allows such log files to be loaded

26 1. RG1 - Methods and Tools For Passive Testing

Figure 4.2: Napkin Studio Functional Area Overview

is also a larger version of the editor in the tabs of the left pane. Each time the
user presses ctrl+enter, the current T-EARS expression in the editor is evaluated.
Feedback on syntax, interpretation, and missing signals is provided by a status bar
(nr (5) in Figure 4.2), and the evaluation result is overlaid in the Signal editor (nr (3)
in Figure 4.2) and the Plot area (nr (6) in Figure 4.2). The Plot area also visualizes
each sub-expression.

Examining and Comparing Execution Log Files

In a signal based system, all communication between program units as well as sub
systems is done via signals that can, to a varying extent, be logged during execution.
These signals, e.g, digital or analog I/O signals captures the system input, the
internal state of the system and the output over time. The proposed approach to
passive testing relies on observing these signals, both to determine when to test
and for the actual test logic. Examining such logs is thus an important part of
understanding the system behavior. Napkin Studio allows such log files to be loaded

46

Chapter 4. Research Contributions 27

using different formats and sources. If the user wants to compare two or more signal
files, a synchronization strategy must be provided. Currently there is a default
implementation available treating the first sample as time zero.

The Signal List (marked as nr (1) in Figure 4.2) provides information such as a
short name, size of the signal, and the full name (the original name of the signal
together with the log file name to uniquely distinguish each signal). If a signal name
appears in more than one loaded log file, the user can compare the signals. Any
differences between the signals are shown as fail intervals and the equal parts as
pass intervals using a generated A T-EARS expression that shows up in the snippet
editor. The user may also select signals from the signal list to show in the Plot Area
(marked as nr (5) in Figure 4.2). Aside from the Plot Area’s standard panning and
zooming features, signals can be skewed in time by adding a positive or negative
latency. Sometimes the tester needs to find out the cause of a signal change. This is
possible by letting the tool automatically find and view all other signals that have
changed during the visible interval of the currently viewed signal. There is also a
signal generator that can be used for analyzing signals as shown in Figure 4.3. The
“Learn From Current Signal” button (nr (1) in Figure 4.3) analyses the currently
edited signal and lists the different values together with their sample probability (nr
(2) in Figure 4.3). The leftmost fields (nr (3) in Figure 4.3) shows and controls the
timing of the generated samples. The emission cyclicity shows the mean value of how
often the signal has changed. A high jitter means that the cyclicity is not evenly

Figure 4.3: The Signal Generator. The generator can be used for generating new
signals or analyzing existing signals.

Chapter 4. Research Contributions 27

using different formats and sources. If the user wants to compare two or more signal
files, a synchronization strategy must be provided. Currently there is a default
implementation available treating the first sample as time zero.

The Signal List (marked as nr (1) in Figure 4.2) provides information such as a
short name, size of the signal, and the full name (the original name of the signal
together with the log file name to uniquely distinguish each signal). If a signal name
appears in more than one loaded log file, the user can compare the signals. Any
differences between the signals are shown as fail intervals and the equal parts as
pass intervals using a generated A T-EARS expression that shows up in the snippet
editor. The user may also select signals from the signal list to show in the Plot Area
(marked as nr (5) in Figure 4.2). Aside from the Plot Area’s standard panning and
zooming features, signals can be skewed in time by adding a positive or negative
latency. Sometimes the tester needs to find out the cause of a signal change. This is
possible by letting the tool automatically find and view all other signals that have
changed during the visible interval of the currently viewed signal. There is also a
signal generator that can be used for analyzing signals as shown in Figure 4.3. The
“Learn From Current Signal” button (nr (1) in Figure 4.3) analyses the currently
edited signal and lists the different values together with their sample probability (nr
(2) in Figure 4.3). The leftmost fields (nr (3) in Figure 4.3) shows and controls the
timing of the generated samples. The emission cyclicity shows the mean value of how
often the signal has changed. A high jitter means that the cyclicity is not evenly

Figure 4.3: The Signal Generator. The generator can be used for generating new
signals or analyzing existing signals.

47

28 1. RG1 - Methods and Tools For Passive Testing

distributed across the log file.
Finally, using the snippet window (marked as nr (4) in Figure 4.2), T-EARS can

be used as a log query language to mark out interesting regions of a log file. The
T-EARS expression while voltage>10 would mark out all intervals where the value
of the signal voltage is above 10. Each such hit would also be listed in the context
menu. Selecting one such region zooms the Plot Area and centers the timeline around
the selected region.

Working With Implementation Analysis and Signal Interfaces

Figure 4.4: Editing a Main Definitions File

Signal names in industrial systems are often long and hard to read since these
names often contain compressed information on the physical location of the signal
source. Examples of such information are busses, sensors, or program modules.
During development, such information typically changes due to reallocations of signal
routes or functional updates. In addition, the requirements often define signals on a
higher level of abstraction. Where the requirements mention the door open signal,
this may actually be realized by an expression involving many signals in the current
implementation. Napkin Studio allows hiding all such details in the “main definitions”
block or file. The main definitions block consist of a series of T-EARS expressions
that define constants, aliases, or more complicated expressions the tester wants to
hide. Typically these definitions are common to many passive test cases. When
active, the main definitions are evaluated before the current T-EARS expression.
These definitions are created using the regular (large version) of the expression
editor as shown in Figure 4.4. The expressions (nr (2) in Figure 4.4.) end up in the

28 1. RG1 - Methods and Tools For Passive Testing

distributed across the log file.
Finally, using the snippet window (marked as nr (4) in Figure 4.2), T-EARS can

be used as a log query language to mark out interesting regions of a log file. The
T-EARS expression while voltage>10 would mark out all intervals where the value
of the signal voltage is above 10. Each such hit would also be listed in the context
menu. Selecting one such region zooms the Plot Area and centers the timeline around
the selected region.

Working With Implementation Analysis and Signal Interfaces

Figure 4.4: Editing a Main Definitions File

Signal names in industrial systems are often long and hard to read since these
names often contain compressed information on the physical location of the signal
source. Examples of such information are busses, sensors, or program modules.
During development, such information typically changes due to reallocations of signal
routes or functional updates. In addition, the requirements often define signals on a
higher level of abstraction. Where the requirements mention the door open signal,
this may actually be realized by an expression involving many signals in the current
implementation. Napkin Studio allows hiding all such details in the “main definitions”
block or file. The main definitions block consist of a series of T-EARS expressions
that define constants, aliases, or more complicated expressions the tester wants to
hide. Typically these definitions are common to many passive test cases. When
active, the main definitions are evaluated before the current T-EARS expression.
These definitions are created using the regular (large version) of the expression
editor as shown in Figure 4.4. The expressions (nr (2) in Figure 4.4.) end up in the

48

Chapter 4. Research Contributions 29

main definitions search view to the right (nr (3) in Figure 4.4). The test engineer
also uses the latter to find already defined abstract signals to use when translating
requirements to passive test cases. Using the context menu (nr (4) in Figure 4.4),
the definitions can be moved between the evaluation context and the editor.

Working With Requirements or Passive Test Cases

Napkin Studio allows a uniform way of working with requirements, abstract passive
test cases, and concrete passive test cases. The difference between an abstract test
case and a concrete test case is how the signals are defined. Preferably, only the
abstract signals5 defined in the requirements are used in the expressions. For a
requirement (or abstract test case), the user can create hand-made example signals of
situations where the test case should pass or fail. Such hand-made signals are valuable
for validating the expressions’ correctness since the current T-EARS expression is
evaluated with each change of the created signal(s). Such examples may also help a
test engineer to understand the intention behind a requirement. This is illustrated
in Figure 4.7. There are also a few signal generators, as shown in Figure 4.6 and
Figure 4.3, that can generate random signals to verify that the expressions work for
unexpected corner cases. These signals can be saved together with the test case to
distribute or archive the examples.

An abstract passive test case becomes concrete by mapping the abstract signal
names to T-EARS expression. This mapping is typically done in a separate file
containing the “main definitions” block as illustrated in Figure 4.4. In fact, when
the test engineer translates a requirement to a passive test case, one of the most
essential tools for the test engineers is the main definitions search view (nr (3) in
Figure 4.4). This search view allows reusing already defined abstract signals. This
information is also accessible via the editor’s auto-completion, shown in Figure 4.5.
The auto completion function has been adapted according to the needs of the test
engineers in two distinct ways. First, a fuzzy search is done to match identifiers. The
string stinh (the first letters in each word of start inhibit) would match as shown
in Figure 4.5. Second, the auto-completion information not only shows the matching
identifiers but how that identifier is defined (e.g., a signal, alias or constant). This is
important since there may be abstract signals with similar names that only differ in
some specific implementations.

When developing larger passive test cases the larger Editor in the left pane of
the window can be used for the test case and the snippet-editor in the middle of

5Spaces and special chars may be removed to prevent misspells when used in logical expressions.

Figure 4.5: Editor Auto Completion

Chapter 4. Research Contributions 29

main definitions search view to the right (nr (3) in Figure 4.4). The test engineer
also uses the latter to find already defined abstract signals to use when translating
requirements to passive test cases. Using the context menu (nr (4) in Figure 4.4),
the definitions can be moved between the evaluation context and the editor.

Working With Requirements or Passive Test Cases

Napkin Studio allows a uniform way of working with requirements, abstract passive
test cases, and concrete passive test cases. The difference between an abstract test
case and a concrete test case is how the signals are defined. Preferably, only the
abstract signals5 defined in the requirements are used in the expressions. For a
requirement (or abstract test case), the user can create hand-made example signals of
situations where the test case should pass or fail. Such hand-made signals are valuable
for validating the expressions’ correctness since the current T-EARS expression is
evaluated with each change of the created signal(s). Such examples may also help a
test engineer to understand the intention behind a requirement. This is illustrated
in Figure 4.7. There are also a few signal generators, as shown in Figure 4.6 and
Figure 4.3, that can generate random signals to verify that the expressions work for
unexpected corner cases. These signals can be saved together with the test case to
distribute or archive the examples.

An abstract passive test case becomes concrete by mapping the abstract signal
names to T-EARS expression. This mapping is typically done in a separate file
containing the “main definitions” block as illustrated in Figure 4.4. In fact, when
the test engineer translates a requirement to a passive test case, one of the most
essential tools for the test engineers is the main definitions search view (nr (3) in
Figure 4.4). This search view allows reusing already defined abstract signals. This
information is also accessible via the editor’s auto-completion, shown in Figure 4.5.
The auto completion function has been adapted according to the needs of the test
engineers in two distinct ways. First, a fuzzy search is done to match identifiers. The
string stinh (the first letters in each word of start inhibit) would match as shown
in Figure 4.5. Second, the auto-completion information not only shows the matching
identifiers but how that identifier is defined (e.g., a signal, alias or constant). This is
important since there may be abstract signals with similar names that only differ in
some specific implementations.

When developing larger passive test cases the larger Editor in the left pane of
the window can be used for the test case and the snippet-editor in the middle of

5Spaces and special chars may be removed to prevent misspells when used in logical expressions.

Figure 4.5: Editor Auto Completion

49

30 1. RG1 - Methods and Tools For Passive Testing

Figure 4.6: Signal Pulse Train Generator

Figure 4.7: The Four Edit Modes of the Signal Editor: 1) Time-shift Sample, 2)
Change Level, 3) Add Sample, 4) Remove Sample

the screen (nr (4) in Figure 4.2) can be used to develop individual expressions. To
support the work of understanding or debugging more lengthy expressions, each
sub expression is automatically added as a plot in the Plot Area at the lower part
of the screen (nr (6) in Figure 4.2). Each plot shows the used grammar rule and
types matching the expression along with any actual arguments. The result of the
T-EARS expression in the currently active editor case is overlaid each plot. Further,
the user can add other potentially interesting signals to study together with the sub
expressions.

Tuning Passive Test Cases

In a traditional test case, the system’s state is well known during each point of the
test sequence since the test script specifies all actions taken to enter that state along
with the actual test logic. In the case of passive testing, there is no trivial way of
knowing the system’s current state or what previous actions brought us here. The
state of the system needs to be determined by observing the right set of signals. As
a consequence, if the expression specifying when to test is not complete, a passive
test case may evaluate as expected on one log file but would fail on another, even
if the system behaved correctly in the first log. One reason may be undocumented
dependencies in the requirement. A concrete example is a specification of a brake

30 1. RG1 - Methods and Tools For Passive Testing

Figure 4.6: Signal Pulse Train Generator

Figure 4.7: The Four Edit Modes of the Signal Editor: 1) Time-shift Sample, 2)
Change Level, 3) Add Sample, 4) Remove Sample

the screen (nr (4) in Figure 4.2) can be used to develop individual expressions. To
support the work of understanding or debugging more lengthy expressions, each
sub expression is automatically added as a plot in the Plot Area at the lower part
of the screen (nr (6) in Figure 4.2). Each plot shows the used grammar rule and
types matching the expression along with any actual arguments. The result of the
T-EARS expression in the currently active editor case is overlaid each plot. Further,
the user can add other potentially interesting signals to study together with the sub
expressions.

Tuning Passive Test Cases

In a traditional test case, the system’s state is well known during each point of the
test sequence since the test script specifies all actions taken to enter that state along
with the actual test logic. In the case of passive testing, there is no trivial way of
knowing the system’s current state or what previous actions brought us here. The
state of the system needs to be determined by observing the right set of signals. As
a consequence, if the expression specifying when to test is not complete, a passive
test case may evaluate as expected on one log file but would fail on another, even
if the system behaved correctly in the first log. One reason may be undocumented
dependencies in the requirement. A concrete example is a specification of a brake

50

Chapter 4. Research Contributions 31

light, where the requirements engineer forgot to write that, aside from the brake pedal,
there are other systems that may order a brake light. A test case ensuring that the
brake light is not lit when the brake pedal is un-touched would then fail mysteriously
for some execution logs. There are also other sources of false fails. During the work
with Paper E, the tester’s concern about the risk of false positives [16] was confirmed.
In response, an overview showing the working set of passive test cases evaluated
over a set of representative log files was introduced to the tool set (Figure 4.8a and
Figure 4.8b). In the paper, the log files came from known passed test cases. In
reality, each fail needs to be closely examined to ensure that the fail is not due to
a real fault, which brings us to the next section, using the tool for examining the
result and potential faults.

Analyzing the Results

There are currently three options for executing passive test cases. The first has
already been discussed and is the evaluation of the T-EARS expression directly in
the Editor. The second is found in the “Batch Evaluator” tab of the Napkin Studio
and allows evaluating a set of passive test cases over one log file. This view was
used in the paper E to show the requirement coverage of an expert test execution as
shown in Figure 4.8a. The view shows whether each passive test case (G/A) passed
(P), Failed (F), or could not be run due to some reason (-). As seen in the Evaluation
Details column, the number of activations, passes, and fails are also shown. The
column also shows details on missing signal or syntactical problems in the G/A.

(a) Many G/A – one Log File (b) Many G/A – Many Log Files

Figure 4.8: Evaluation Summary Views [Paper E]

The third option is the “many G/As - many logs” overview created by the back-end
server. A working set of passive test cases, a main definition file, and a set of log files
are collected to an overview with clickable links as shown in Figure 4.8b from Paper
E. This view gives a good overview of the requirements coverage of a regression suite
or a higher level smoke test. In paper E, the log files were taken from regression
tests specifically designed to test particular requirements. The corresponding G/As

Chapter 4. Research Contributions 31

light, where the requirements engineer forgot to write that, aside from the brake pedal,
there are other systems that may order a brake light. A test case ensuring that the
brake light is not lit when the brake pedal is un-touched would then fail mysteriously
for some execution logs. There are also other sources of false fails. During the work
with Paper E, the tester’s concern about the risk of false positives [16] was confirmed.
In response, an overview showing the working set of passive test cases evaluated
over a set of representative log files was introduced to the tool set (Figure 4.8a and
Figure 4.8b). In the paper, the log files came from known passed test cases. In
reality, each fail needs to be closely examined to ensure that the fail is not due to
a real fault, which brings us to the next section, using the tool for examining the
result and potential faults.

Analyzing the Results

There are currently three options for executing passive test cases. The first has
already been discussed and is the evaluation of the T-EARS expression directly in
the Editor. The second is found in the “Batch Evaluator” tab of the Napkin Studio
and allows evaluating a set of passive test cases over one log file. This view was
used in the paper E to show the requirement coverage of an expert test execution as
shown in Figure 4.8a. The view shows whether each passive test case (G/A) passed
(P), Failed (F), or could not be run due to some reason (-). As seen in the Evaluation
Details column, the number of activations, passes, and fails are also shown. The
column also shows details on missing signal or syntactical problems in the G/A.

(a) Many G/A – one Log File (b) Many G/A – Many Log Files

Figure 4.8: Evaluation Summary Views [Paper E]

The third option is the “many G/As - many logs” overview created by the back-end
server. A working set of passive test cases, a main definition file, and a set of log files
are collected to an overview with clickable links as shown in Figure 4.8b from Paper
E. This view gives a good overview of the requirements coverage of a regression suite
or a higher level smoke test. In paper E, the log files were taken from regression
tests specifically designed to test particular requirements. The corresponding G/As

51

32 1. RG1 - Methods and Tools For Passive Testing

are marked with brackets in the Figure. Notably, there is not much activation of the
G/As outside the expected ones, however, passive testing allows creating new logs
with actions that potentially activates many more requirements at the same time,
which would fill up the matrix better.

If a G/A fails for a log file, the user clicks on corresponding cell and is directed
to an HTML page where Napkin Studio, the corresponding log file, G/A, and main
definition file are automatically loaded. Primarily, the tester would now use the Plot
Area (nr (6) in Figure 4.2, with a close up in Figure 4.9) where the evaluation of the
selected G/A over the selected log file is shown.

Figure 4.9: Plot Area With Activated Plot Context Menu

Right-clicking on the evaluation brings up the context menu (shown to the left in
Figure 4.9). The context menu lists the failed events or fail regions of the current
passive test case either as a list (nr (1) in Figure 4.9) or as a hierarchical structure
(nr (2) in the figure). Selecting e.g the bottom fail region (nr (1) in the figure) will
center and zoom in to the failed region as shown at nr (3) in the figure. After further
zooming or panning, the user can choose to add all signals that have changed during
the visible time period, to the plot area. This is done using the context menu (the
choice at nr (4) in the figure). The signals are sorted concerning number of changes
and added to the Plot Area for further analysis. Signals in the Plot Area can also be
shifted by adding a latency, or edited in the Signal Editor to find out what caused
the failure.

Finally, removing the within statements from a G/A can also give important
information on how the system behaves concerning latencies and delays.

Alstom Transport AB

32 1. RG1 - Methods and Tools For Passive Testing

are marked with brackets in the Figure. Notably, there is not much activation of the
G/As outside the expected ones, however, passive testing allows creating new logs
with actions that potentially activates many more requirements at the same time,
which would fill up the matrix better.

If a G/A fails for a log file, the user clicks on corresponding cell and is directed
to an HTML page where Napkin Studio, the corresponding log file, G/A, and main
definition file are automatically loaded. Primarily, the tester would now use the Plot
Area (nr (6) in Figure 4.2, with a close up in Figure 4.9) where the evaluation of the
selected G/A over the selected log file is shown.

Figure 4.9: Plot Area With Activated Plot Context Menu

Right-clicking on the evaluation brings up the context menu (shown to the left in
Figure 4.9). The context menu lists the failed events or fail regions of the current
passive test case either as a list (nr (1) in Figure 4.9) or as a hierarchical structure
(nr (2) in the figure). Selecting e.g the bottom fail region (nr (1) in the figure) will
center and zoom in to the failed region as shown at nr (3) in the figure. After further
zooming or panning, the user can choose to add all signals that have changed during
the visible time period, to the plot area. This is done using the context menu (the
choice at nr (4) in the figure). The signals are sorted concerning number of changes
and added to the Plot Area for further analysis. Signals in the Plot Area can also be
shifted by adding a latency, or edited in the Signal Editor to find out what caused
the failure.

Finally, removing the within statements from a G/A can also give important
information on how the system behaves concerning latencies and delays.

Alstom Transport AB

52

Chapter 4. Research Contributions 33

1.3 C3: Research Framework

Figure 4.10: Resulting Research Framework

Figure 4.10 illustrates the research framework that constitutes contribution C3
in this thesis. The framework consists of prototype implementations for the basic
modules (white shapes in the figure) of an intuitive passive test case specification
tool. The language (contribution C1), its evaluation core, and the Napkin interac-
tive studio(contribution C2) are denoted by the yellow parts in Figure 4.10. The
framework is designed to be modular and easy to extend, providing a solid base for
adding and evaluating grammar constructs, visualization of various connections to
industrial information systems. The framework is realized by a web-based editor and
three back-end servers. While the back-end servers are implemented in python, the
web-based editor is implemented in javascript and Vue2.0, and Bootstrap-Vue. The
grammar is expressed with rules in the Ohm grammar language, and a javascript
function realizes the semantics of the rule(s). Adding a grammatical construct can
quickly be done by extending this OHM grammar and adding the corresponding
semantic action to the evaluation core. The evaluation core can also be used remotely
via the evaluation REST server. RESTFul evaluation allows passive test cases to be
evaluated en masse or over large log files at the server-side. There is also a RESTFul
live-view server currently communicating with the Alstom Transport AB logging
system. The view is updated every 2 seconds, and the expression is re-evaluated
over the whole log file, just as for a loaded log file. Finally, since RESTFul servers
are less efficient for data-intense applications, a web-sock-server implements saving /

Chapter 4. Research Contributions 33

1.3 C3: Research Framework

Figure 4.10: Resulting Research Framework

Figure 4.10 illustrates the research framework that constitutes contribution C3
in this thesis. The framework consists of prototype implementations for the basic
modules (white shapes in the figure) of an intuitive passive test case specification
tool. The language (contribution C1), its evaluation core, and the Napkin interac-
tive studio(contribution C2) are denoted by the yellow parts in Figure 4.10. The
framework is designed to be modular and easy to extend, providing a solid base for
adding and evaluating grammar constructs, visualization of various connections to
industrial information systems. The framework is realized by a web-based editor and
three back-end servers. While the back-end servers are implemented in python, the
web-based editor is implemented in javascript and Vue2.0, and Bootstrap-Vue. The
grammar is expressed with rules in the Ohm grammar language, and a javascript
function realizes the semantics of the rule(s). Adding a grammatical construct can
quickly be done by extending this OHM grammar and adding the corresponding
semantic action to the evaluation core. The evaluation core can also be used remotely
via the evaluation REST server. RESTFul evaluation allows passive test cases to be
evaluated en masse or over large log files at the server-side. There is also a RESTFul
live-view server currently communicating with the Alstom Transport AB logging
system. The view is updated every 2 seconds, and the expression is re-evaluated
over the whole log file, just as for a loaded log file. Finally, since RESTFul servers
are less efficient for data-intense applications, a web-sock-server implements saving /

53

34 1. RG1 - Methods and Tools For Passive Testing

and storing the edited passive test cases and loads log files.
The prototype follows a modular architecture with a message bus for synchro-

nization. For efficiency, the evaluation context that contains the information on
the currently loaded signal log is shared between all components. Whenever an
expression or signal is changed, a request for evaluation is sent on the message bus,
the passive test case is evaluated on the loaded log, and the result is sent out on
the message bus. All components subscribing for that message can then take proper
action. This architecture makes it easy to extend the default modules that for most
features of an Integrated Development Environment(IDE) for passive test cases by
adding custom modules that listens to, or sends messages on the, message bus. While
there are other open source IDE´s such as Eclipse or Visual Studio Code, NAPKIN
Studio covers the signal based aspects of the development.

Figure 4.10 shows the logical structure of the functionality of the prototype
implementation. The white boxes denote the default implementation, and the yellow
boxes suggest adaptations or areas of experimentation.

Example of Research Platform Utilization

This section demonstrates how the proposed research platform can be used to try out
an alternative syntax for specifying test cases. The syntax is a GIVEN-THEN-WHEN
format used as an experiment by Alstom to find new optimal ways of specifying
requirements for their Train Control and Management System (TCMS). The syntax
is inspired by, e.g., Cucumbers’ Gherkin 6. A requirement in this format may look
like Listing 4.3.
1 GIVEN Train is at standstill [No zero speed = Zero speed]
2 WHEN At least one door is not closed [All doors closed = false]
3 THEN TCMS shall inhibit traction [Enable traction = false]

Listing 4.3: Original Requirement Text

After a mild rewrite to a passive test case and some minor reformatting to facilitate
parsing, the expression would look like Listing 4.4.
1 const Zero_speed = 1
2 GIVEN No_zero_speed == Zero_speed // Train is at standstill
3 WHEN rising_edge(All_doors_closed == false) //At least one door not closed
4 THEN rising_edge(Enable_traction == false) //TCMS shall inhibit traction

Listing 4.4: Prepared for Evaluation

Analyzing the expression reveals that the expression in Listing 4.4, in fact, is a
guarded assertion with an extra (interval) guard condition defined by the GIVEN
clause. The grammar for a guarded assertion is already implemented in the framework,
so the extra condition can be added as an optional rule in the existing OHM main
rule for guarded assertions as shown in Listing 4.5. The listing also shows that THEN
is added to the existing SHALL rule since they mean the same thing.
1 GA = ((identifier "=")? Config? GivenContext? GuardedAssertion)
2 shall = (caseInsensitive <"shall"> | caseInsensitive <"then" >)

Listing 4.5: Grammar Additions. An optional GivenContext rule is added to the
GA grammar rule. The shall keyword rule is extended to accept either shall or
then

6https://cucumber.io/docs/gherkin/reference/

34 1. RG1 - Methods and Tools For Passive Testing

and storing the edited passive test cases and loads log files.
The prototype follows a modular architecture with a message bus for synchro-

nization. For efficiency, the evaluation context that contains the information on
the currently loaded signal log is shared between all components. Whenever an
expression or signal is changed, a request for evaluation is sent on the message bus,
the passive test case is evaluated on the loaded log, and the result is sent out on
the message bus. All components subscribing for that message can then take proper
action. This architecture makes it easy to extend the default modules that for most
features of an Integrated Development Environment(IDE) for passive test cases by
adding custom modules that listens to, or sends messages on the, message bus. While
there are other open source IDE´s such as Eclipse or Visual Studio Code, NAPKIN
Studio covers the signal based aspects of the development.

Figure 4.10 shows the logical structure of the functionality of the prototype
implementation. The white boxes denote the default implementation, and the yellow
boxes suggest adaptations or areas of experimentation.

Example of Research Platform Utilization

This section demonstrates how the proposed research platform can be used to try out
an alternative syntax for specifying test cases. The syntax is a GIVEN-THEN-WHEN
format used as an experiment by Alstom to find new optimal ways of specifying
requirements for their Train Control and Management System (TCMS). The syntax
is inspired by, e.g., Cucumbers’ Gherkin 6. A requirement in this format may look
like Listing 4.3.
1 GIVEN Train is at standstill [No zero speed = Zero speed]
2 WHEN At least one door is not closed [All doors closed = false]
3 THEN TCMS shall inhibit traction [Enable traction = false]

Listing 4.3: Original Requirement Text

After a mild rewrite to a passive test case and some minor reformatting to facilitate
parsing, the expression would look like Listing 4.4.
1 const Zero_speed = 1
2 GIVEN No_zero_speed == Zero_speed // Train is at standstill
3 WHEN rising_edge(All_doors_closed == false) //At least one door not closed
4 THEN rising_edge(Enable_traction == false) //TCMS shall inhibit traction

Listing 4.4: Prepared for Evaluation

Analyzing the expression reveals that the expression in Listing 4.4, in fact, is a
guarded assertion with an extra (interval) guard condition defined by the GIVEN
clause. The grammar for a guarded assertion is already implemented in the framework,
so the extra condition can be added as an optional rule in the existing OHM main
rule for guarded assertions as shown in Listing 4.5. The listing also shows that THEN
is added to the existing SHALL rule since they mean the same thing.
1 GA = ((identifier "=")? Config? GivenContext? GuardedAssertion)
2 shall = (caseInsensitive <"shall"> | caseInsensitive <"then" >)

Listing 4.5: Grammar Additions. An optional GivenContext rule is added to the
GA grammar rule. The shall keyword rule is extended to accept either shall or
then

6https://cucumber.io/docs/gherkin/reference/

54

Chapter 4. Research Contributions 35

Figure 4.11: Resulting Evaluation of GIVEN-WHEN-THEN Expression With
Example Signals in Napkin Studio

The GivenContext OHM-rule requires a corresponding javascript semantic rule.
The Napkin framework already contains all necessary rules and implementation to
unleash the full power of Intervals expressions. The new function for the GIVEN
semantics thus delegates the expression evaluation as shown in Listing 4.6.
1 GivenContext:function(_given , interval_guard){
2 return interval_guard.eval();
3 }

Listing 4.6: Semantic rule for GivenContext

The semantic rule of the main GA rule is modified to save the result of the GIVEN
expression in the current context (lines 3-4 added to Listing 4.7).
1 GA:function(identifier , _eq , config , given_context , guardedAssertion){
2 var name = evalOptional(identifier ,"");
3 var given_context = evalOptional(given_context ,undefined);
4 moduleContext.currentGiven = given_context;
5 ...
6 }

Listing 4.7: Semantic rule for GivenContext

Chapter 4. Research Contributions 35

Figure 4.11: Resulting Evaluation of GIVEN-WHEN-THEN Expression With
Example Signals in Napkin Studio

The GivenContext OHM-rule requires a corresponding javascript semantic rule.
The Napkin framework already contains all necessary rules and implementation to
unleash the full power of Intervals expressions. The new function for the GIVEN
semantics thus delegates the expression evaluation as shown in Listing 4.6.
1 GivenContext:function(_given , interval_guard){
2 return interval_guard.eval();
3 }

Listing 4.6: Semantic rule for GivenContext

The semantic rule of the main GA rule is modified to save the result of the GIVEN
expression in the current context (lines 3-4 added to Listing 4.7).
1 GA:function(identifier , _eq , config , given_context , guardedAssertion){
2 var name = evalOptional(identifier ,"");
3 var given_context = evalOptional(given_context ,undefined);
4 moduleContext.currentGiven = given_context;
5 ...
6 }

Listing 4.7: Semantic rule for GivenContext

55

36 1. RG1 - Methods and Tools For Passive Testing

Finally, code is added to the state and the event guard evaluation to make use of
the extra GIVEN guard in Listing 4.8. The resulting guard expression is now the
optional GIVEN expression AND the guard.
1 GuardedAssertion_eventGA: function(_when , guard , _shall , _verify , assertion)

{
2 ...
3 if (moduleContext.currentGiven != undefined){
4 var SR = moduleContext.currentGiven.value;
5 G = operators.and(GE.value ,SR);
6 if (typeof moduleContext.currentGiven.plots != ’undefined ’){
7 plots = moduleContext.currentGiven.plots;
8 }
9 }

10 else{
11 G = GE.value;
12 }
13 . . .
14 }

Listing 4.8: Code added to the Semantic rule of the (event) guarded assertion

Although the resulting grammar, in theory, allows writing funny looking expres-
sions mixing T-EARS and the new format, it allows quick experimentation with full
support of code completion, creating signals, as well as examining sub expressions.
As a bonus, the GIVEN-WHEN-THEN can also be used as GIVEN-WHILE-THEN
to properly capture system state requirements, without adding anything to the

Figure 4.12: Creating “Unit tests” For the New GIVEN-WHEN-THEN Grammar
in Napkin Studio

36 1. RG1 - Methods and Tools For Passive Testing

Finally, code is added to the state and the event guard evaluation to make use of
the extra GIVEN guard in Listing 4.8. The resulting guard expression is now the
optional GIVEN expression AND the guard.
1 GuardedAssertion_eventGA: function(_when , guard , _shall , _verify , assertion)

{
2 ...
3 if (moduleContext.currentGiven != undefined){
4 var SR = moduleContext.currentGiven.value;
5 G = operators.and(GE.value ,SR);
6 if (typeof moduleContext.currentGiven.plots != ’undefined ’){
7 plots = moduleContext.currentGiven.plots;
8 }
9 }

10 else{
11 G = GE.value;
12 }
13 . . .
14 }

Listing 4.8: Code added to the Semantic rule of the (event) guarded assertion

Although the resulting grammar, in theory, allows writing funny looking expres-
sions mixing T-EARS and the new format, it allows quick experimentation with full
support of code completion, creating signals, as well as examining sub expressions.
As a bonus, the GIVEN-WHEN-THEN can also be used as GIVEN-WHILE-THEN
to properly capture system state requirements, without adding anything to the

Figure 4.12: Creating “Unit tests” For the New GIVEN-WHEN-THEN Grammar
in Napkin Studio

56

Chapter 4. Research Contributions 37

OHM-grammar nor the javascript semantics code.
When testing out the new grammar, there is a T-EARS Unit test tab on the

rightmost pane as shown in Figure 4.12. The expression and its description can be
entered while the expression is continuously evaluated while typed in. The expected
result may either be OK, an evaluation error (due to undefined signals), or syntax
error. The latter is used for checking that forbidden expressions stay that way.

1.4 C4: Way of Working

Figure 4.13: Generic Software Testing Workflow. The yellow parts shows suggested
additions to the overall software testing workflow and its Artifacts.

Contribution C4 combines Paper A, B, and E results to form a complete way
of working when translating each requirement to one or more passive test cases.
From Paper A, a prioritization algorithm is adapted to prioritize scenarios for a
function. The scenarios are used as a scope of requirements to be translated into
passive test cases. Paper B contributes with an overall translation process from
a selected function with requirements to a concrete passive test case. Finally, the
contribution from Paper E addresses some of the shortcomings identified in Paper C
regarding false positives and concludes the translation process with some fine-tuning
to reduce false positives.

Figure 4.13 shows how these contributions can add to an existing software testing
workflow. The traditional flow of artifacts (bottom row in Figure 4.13) starts with
requirements, a test plan, and an implementation (SUT). From this information,
manual or automated test cases are created. These test cases can be used for
producing execution logs. The proposed way of working (upper row in yellow) starts
with the same information but generates, in addition, the yellow artifacts to the
right in the figure. These artifacts include one or more passive test cases for each

Chapter 4. Research Contributions 37

OHM-grammar nor the javascript semantics code.
When testing out the new grammar, there is a T-EARS Unit test tab on the

rightmost pane as shown in Figure 4.12. The expression and its description can be
entered while the expression is continuously evaluated while typed in. The expected
result may either be OK, an evaluation error (due to undefined signals), or syntax
error. The latter is used for checking that forbidden expressions stay that way.

1.4 C4: Way of Working

Figure 4.13: Generic Software Testing Workflow. The yellow parts shows suggested
additions to the overall software testing workflow and its Artifacts.

Contribution C4 combines Paper A, B, and E results to form a complete way
of working when translating each requirement to one or more passive test cases.
From Paper A, a prioritization algorithm is adapted to prioritize scenarios for a
function. The scenarios are used as a scope of requirements to be translated into
passive test cases. Paper B contributes with an overall translation process from
a selected function with requirements to a concrete passive test case. Finally, the
contribution from Paper E addresses some of the shortcomings identified in Paper C
regarding false positives and concludes the translation process with some fine-tuning
to reduce false positives.

Figure 4.13 shows how these contributions can add to an existing software testing
workflow. The traditional flow of artifacts (bottom row in Figure 4.13) starts with
requirements, a test plan, and an implementation (SUT). From this information,
manual or automated test cases are created. These test cases can be used for
producing execution logs. The proposed way of working (upper row in yellow) starts
with the same information but generates, in addition, the yellow artifacts to the
right in the figure. These artifacts include one or more passive test cases for each

57

38 1. RG1 - Methods and Tools For Passive Testing

requirement and any global definitions or extra logging required to evaluate the
passive test cases on the execution logs.

Prioritizing the work

Both traditional (active) automated test cases and passive test cases are created
over time from the requirements in the scenarios specified by the test plan. During
this time, one or more system releases may occur that require re-testing of the
system. Thus, intuitively, a large amount of automated test cases as early as possible
is beneficial. Further, for safety-critical functions, some requirements should be
tested in several scenarios. For example, consider two scenarios of a brake light
when the brake pedal is pressed: One scenario concerns a vehicle standing still, and
another scenario may concern a vehicle approaching another car. Unfortunately,
these scenarios are traditionally translated to manual or automated test cases without
considering reuse of already translated test logic. The test for the brake light is
repeated in the test cases for both scenarios.

A passive testing approach would allow writing the test logic for each requirement
and reusing it for the remaining scenarios. As a bonus, all produced test logic can
remain active during other scenarios, contributing to a higher requirement coverage
throughout the entire testing process.

The proposed algorithm orders the scenarios to achieve as many parallel passive
test cases as possible as early as possible. The assumption is that requirements
tested by one scenario are completely translated before translating the following
scenario begins. The process is outlined in Figure 4.14. The figure shows how the new

Figure 4.14: Prioritized Translation Activities(green) and Artifacts (yellow) in
relation to a Generic Classic Testing Process (black/white)

38 1. RG1 - Methods and Tools For Passive Testing

requirement and any global definitions or extra logging required to evaluate the
passive test cases on the execution logs.

Prioritizing the work

Both traditional (active) automated test cases and passive test cases are created
over time from the requirements in the scenarios specified by the test plan. During
this time, one or more system releases may occur that require re-testing of the
system. Thus, intuitively, a large amount of automated test cases as early as possible
is beneficial. Further, for safety-critical functions, some requirements should be
tested in several scenarios. For example, consider two scenarios of a brake light
when the brake pedal is pressed: One scenario concerns a vehicle standing still, and
another scenario may concern a vehicle approaching another car. Unfortunately,
these scenarios are traditionally translated to manual or automated test cases without
considering reuse of already translated test logic. The test for the brake light is
repeated in the test cases for both scenarios.

A passive testing approach would allow writing the test logic for each requirement
and reusing it for the remaining scenarios. As a bonus, all produced test logic can
remain active during other scenarios, contributing to a higher requirement coverage
throughout the entire testing process.

The proposed algorithm orders the scenarios to achieve as many parallel passive
test cases as possible as early as possible. The assumption is that requirements
tested by one scenario are completely translated before translating the following
scenario begins. The process is outlined in Figure 4.14. The figure shows how the new

Figure 4.14: Prioritized Translation Activities(green) and Artifacts (yellow) in
relation to a Generic Classic Testing Process (black/white)

58

Chapter 4. Research Contributions 39

activities Prioritize and Translate hooks into a traditional software testing process,
producing passive test cases and extra logging. Whenever any regular (manual or
automated) test cases are executed, these passive test cases can be evaluated over the
execution logs from those regular test cases. In more detail, the activity Prioritize
selects one scenario, and the activity Translate (further outlined in Section 1.4)
creates one or more passive test cases from each requirement in the selected scenario
if the requirement is not already translated. Each passive test case also adds to a list
of signals that need to be logged, denoted as the extra logging in the figure. This
extra logging is applied to all existing manual or automated test cases, allowing a
parallel evaluation of all available passive test cases for all test cases.

Before going into details on how the selection is made, consider the example in
Figure 4.15

t0 t1 t2
Time During Translating the Requirements in the Scenarios (SC)

0

||SC||

R
em

ai
n
in
g
R
eq
u
ir
em

en
ts

to
T
ra
n
sl
at
e

(a)

A

(b)

B C D

No Reuse, Any Order

Reuse, Average Random Order

Reuse, Inefficient Order

Reuse, Efficient Order

Figure 4.15: Successive Translation of Requirements Using an Adapted Prioritiza-
tion Algorithm from Paper A with four test sessions at A,B,C, and, D)

Figure 4.15 illustrates a situation where the requirements of a set of scenarios
are successively translated to passive test cases during a development project. The
work starts at t0 and is completed at t1 if requirements are only translated once (in
the scenario where they first occur, and implicitly reused for the other scenarios).
If such reuse is not considered, the work will continue until t2. The different slopes
show four examples of how the number of remaining requirements to translate is
reduced over time given different prioritization strategies. Since this process takes
considerable time (t0 to t1), a release may be tested before the work is completed.
These testing occurrences are illustrated in the figure with the points A through D.

Point A, in the figure, illustrates a first test of the complete system (e.g., an
early release with a new component that is integrated). Notably, few requirements
have been translated into passive test cases. At point (B), however, things get more
interesting. Some of the requirements have been translated, and some not. Notably,

Chapter 4. Research Contributions 39

activities Prioritize and Translate hooks into a traditional software testing process,
producing passive test cases and extra logging. Whenever any regular (manual or
automated) test cases are executed, these passive test cases can be evaluated over the
execution logs from those regular test cases. In more detail, the activity Prioritize
selects one scenario, and the activity Translate (further outlined in Section 1.4)
creates one or more passive test cases from each requirement in the selected scenario
if the requirement is not already translated. Each passive test case also adds to a list
of signals that need to be logged, denoted as the extra logging in the figure. This
extra logging is applied to all existing manual or automated test cases, allowing a
parallel evaluation of all available passive test cases for all test cases.

Before going into details on how the selection is made, consider the example in
Figure 4.15

t0 t1 t2
Time During Translating the Requirements in the Scenarios (SC)

0

||SC||

R
em

ai
n
in
g
R
eq
u
ir
em

en
ts

to
T
ra
n
sl
at
e

(a)

A

(b)

B C D

No Reuse, Any Order

Reuse, Average Random Order

Reuse, Inefficient Order

Reuse, Efficient Order

Figure 4.15: Successive Translation of Requirements Using an Adapted Prioritiza-
tion Algorithm from Paper A with four test sessions at A,B,C, and, D)

Figure 4.15 illustrates a situation where the requirements of a set of scenarios
are successively translated to passive test cases during a development project. The
work starts at t0 and is completed at t1 if requirements are only translated once (in
the scenario where they first occur, and implicitly reused for the other scenarios).
If such reuse is not considered, the work will continue until t2. The different slopes
show four examples of how the number of remaining requirements to translate is
reduced over time given different prioritization strategies. Since this process takes
considerable time (t0 to t1), a release may be tested before the work is completed.
These testing occurrences are illustrated in the figure with the points A through D.

Point A, in the figure, illustrates a first test of the complete system (e.g., an
early release with a new component that is integrated). Notably, few requirements
have been translated into passive test cases. At point (B), however, things get more
interesting. Some of the requirements have been translated, and some not. Notably,

59

40 1. RG1 - Methods and Tools For Passive Testing

the remaining (un-translated) requirements are fewer than if we had not used the
prioritization. The benefit of using prioritization is the difference between the dotted
line (No Reuse, Any Order) and the slope (Reuse, Efficient Order). At point C, all
requirements have been translated. Finally, point D shows where that there is no
more benefits after point D concerning the selected prioritization.

Definition 1. (Derived From Paper A) The p/e value for a scenario SC is given
by:

p/e(SC) =
gain + potential

effort
=

|SC|+
∑

s∈SA

O[r]

max(|RA|, 1/∞)

RA := s ∈ τ : O[s] > 0

Where SC is the currently evaluated scenario ,|SC| is the number of requirements
of scenario SC, O[r] is the (remaining) requirement occurrence count map for the
requirement r, and RA is the set of requirements that requires translation.

As presented in Paper A, the algorithm initially prioritized which manual test case
to select for automation. However, by exchanging test cases for scenarios and test
steps for the requirements a scenario tests, the approach can be used for prioritizing
which scenarios’ requirements to be translated to passive test cases. The intuition
is that a scenario containing requirements that occur in many other scenarios (and
thus could be reused many times) should be translated early, especially if the effort
of doing so is little.

The idea is to keep track of each requirement’s number of remaining occurrences
in the scenarios. For example, a requirement that occurs in two scenarios will have a
count of two. A translated requirement is always counted as zero. This occurrence
map is updated each time a new scenario shall be selected. A p/e score is calculated
for each scenario as shown in Definition 1, derived from Paper A. A high p/e indicates
a promising candidate to be selected.

When the most promising scenario requirements have been translated, and the
corresponding logging has been adjusted, the p/e score is re-calculated for the
remaining scenarios, and a new candidate scenario is selected. This update-select
procedure is repeated until the set of scenarios is empty.

40 1. RG1 - Methods and Tools For Passive Testing

the remaining (un-translated) requirements are fewer than if we had not used the
prioritization. The benefit of using prioritization is the difference between the dotted
line (No Reuse, Any Order) and the slope (Reuse, Efficient Order). At point C, all
requirements have been translated. Finally, point D shows where that there is no
more benefits after point D concerning the selected prioritization.

Definition 1. (Derived From Paper A) The p/e value for a scenario SC is given
by:

p/e(SC) =
gain + potential

effort
=

|SC|+
∑

s∈SA

O[r]

max(|RA|, 1/∞)

RA := s ∈ τ : O[s] > 0

Where SC is the currently evaluated scenario ,|SC| is the number of requirements
of scenario SC, O[r] is the (remaining) requirement occurrence count map for the
requirement r, and RA is the set of requirements that requires translation.

As presented in Paper A, the algorithm initially prioritized which manual test case
to select for automation. However, by exchanging test cases for scenarios and test
steps for the requirements a scenario tests, the approach can be used for prioritizing
which scenarios’ requirements to be translated to passive test cases. The intuition
is that a scenario containing requirements that occur in many other scenarios (and
thus could be reused many times) should be translated early, especially if the effort
of doing so is little.

The idea is to keep track of each requirement’s number of remaining occurrences
in the scenarios. For example, a requirement that occurs in two scenarios will have a
count of two. A translated requirement is always counted as zero. This occurrence
map is updated each time a new scenario shall be selected. A p/e score is calculated
for each scenario as shown in Definition 1, derived from Paper A. A high p/e indicates
a promising candidate to be selected.

When the most promising scenario requirements have been translated, and the
corresponding logging has been adjusted, the p/e score is re-calculated for the
remaining scenarios, and a new candidate scenario is selected. This update-select
procedure is repeated until the set of scenarios is empty.

60

Chapter 4. Research Contributions 41

Translation

This section outlines the process of translating requirements into passive test cases
as shown in Figure 4.16. While the details of the process presented in Paper C are
still valid, this section contains a few updates. First, since the writing of Paper C,
the tool support of the main definitions file has undergone substantial development.
As a result, abstract signal interface definitions7 in the requirements can reduce the
concretization process to updates in the main definition files. For non-safety-critical
requirements, such abstract interfaces can be constructed by successively adding
the language harmonization results to the main definitions. The concretization step
then connects each abstract interface signal to an expression of physical signals for a
particular system version instead of updating the abstract test case. Second, new
language constructs like select and exist allow expressions with optional signals.
As an example from Paper E, these language constructs may increase the number of
logged signals by skipping, e.g., validity- or redundant signals.

Requirement Analysis: A striking difference between traditional (active) and
passive testing is that while the traditional test case controls the stimulus and thus
“knows” the current status of the system, a passive test case must determine the
system state without relying on the particular stimuli or the order of previous stimuli
to the system. Further, while a classic test case may test the brake light by pressing
the brake pedal and checking the brake light after a short delay, a passive test case
must also consider a potential brake request from, e.g., another subsystem. Thus
the first step in the proposed translation process includes a detailed requirements
analysis. The result of the requirement analysis is knowledge about dependencies and

7required for safety-critical requirements by regulations such as [11, 9]

Figure 4.16: Simplified Overview of the Translation Process

Chapter 4. Research Contributions 41

Translation

This section outlines the process of translating requirements into passive test cases
as shown in Figure 4.16. While the details of the process presented in Paper C are
still valid, this section contains a few updates. First, since the writing of Paper C,
the tool support of the main definitions file has undergone substantial development.
As a result, abstract signal interface definitions7 in the requirements can reduce the
concretization process to updates in the main definition files. For non-safety-critical
requirements, such abstract interfaces can be constructed by successively adding
the language harmonization results to the main definitions. The concretization step
then connects each abstract interface signal to an expression of physical signals for a
particular system version instead of updating the abstract test case. Second, new
language constructs like select and exist allow expressions with optional signals.
As an example from Paper E, these language constructs may increase the number of
logged signals by skipping, e.g., validity- or redundant signals.

Requirement Analysis: A striking difference between traditional (active) and
passive testing is that while the traditional test case controls the stimulus and thus
“knows” the current status of the system, a passive test case must determine the
system state without relying on the particular stimuli or the order of previous stimuli
to the system. Further, while a classic test case may test the brake light by pressing
the brake pedal and checking the brake light after a short delay, a passive test case
must also consider a potential brake request from, e.g., another subsystem. Thus
the first step in the proposed translation process includes a detailed requirements
analysis. The result of the requirement analysis is knowledge about dependencies and

7required for safety-critical requirements by regulations such as [11, 9]

Figure 4.16: Simplified Overview of the Translation Process

61

42 1. RG1 - Methods and Tools For Passive Testing

other relations to the current requirement. If the requirements provide an abstract
signal interface to the function, definitions are added to the main definition files as
illustrated in Figure 4.16(A)

Abstract G/A Construction: Given the information gathered in the previous step,
information on what to test and when is extracted. This information is matched to
the already existing abstract signals or harmonized and added to the main definition
file (C) in Figure 4.16. Finally, a boiler plate is selected from Listing 4.1, and the
passive test case is formalized to a T-EARS expression using the identified abstract
signals. This step may be repeated until all aspects of the requirement are covered.

Concretization and Implementation Analysis: Given the updates in the tool
and the T-EARS language, the concretization and implementation analysis can be
effectively merged. Instead of updating the passive test case, the work is to analyse
the current system release and construct expressions for each abstract signal. This
activity can be performed in parallel with all other activities. The result of the
concretization and implementation analysis is a main definition file, allowing the
passive test cases to be evaluated over a signal log from a test execution.

Validation and Tuning : While the logic of the abstract test case can be validated

(a) Possible Benign Start/End Fails(Paper E)

Guard

Fail

Pass

(b) Possibly Benign Flank Fails

Figure 4.17: Fine Tuning Test Cases. Getting rid of false fails.

using hand-crafted signals during development, this step aims to make sure that
the passive test case is activated when it should on actual execution log files and
not reporting any false positives. In short, the working set of passive test cases are
applied on a set of execution logs. In the paper, these logs came from a well-tested
system, so any fails found could quickly be dismissed as false positives. In real life,
however, the source of each such fail needs a thorough examination.

The tuning process starts with ruling out any system startup or shutdown dis-
turbances. Figure 4.17a shows startup disturbances causing the test case to fail
shortly at the beginning of all scenarios. The three lines (gray,red,green) in each
sub-plots shows the value for the Guards, Pass and Fail over time. For the state
patterns (BP1-3 in Listing 4.1), the tuning is focused on the guard edges as shown
in Figure 4.17b. If the passive test case is passed except for a very short period at
the beginning or end of a guard period, the experience from Paper E is that this
is primarily due to natural latencies or sampling errors. Since the practitioners in
our partner organization strive for using state patterns, due to their inherently more

42 1. RG1 - Methods and Tools For Passive Testing

other relations to the current requirement. If the requirements provide an abstract
signal interface to the function, definitions are added to the main definition files as
illustrated in Figure 4.16(A)

Abstract G/A Construction: Given the information gathered in the previous step,
information on what to test and when is extracted. This information is matched to
the already existing abstract signals or harmonized and added to the main definition
file (C) in Figure 4.16. Finally, a boiler plate is selected from Listing 4.1, and the
passive test case is formalized to a T-EARS expression using the identified abstract
signals. This step may be repeated until all aspects of the requirement are covered.

Concretization and Implementation Analysis: Given the updates in the tool
and the T-EARS language, the concretization and implementation analysis can be
effectively merged. Instead of updating the passive test case, the work is to analyse
the current system release and construct expressions for each abstract signal. This
activity can be performed in parallel with all other activities. The result of the
concretization and implementation analysis is a main definition file, allowing the
passive test cases to be evaluated over a signal log from a test execution.

Validation and Tuning : While the logic of the abstract test case can be validated

(a) Possible Benign Start/End Fails(Paper E)

Guard

Fail

Pass

(b) Possibly Benign Flank Fails

Figure 4.17: Fine Tuning Test Cases. Getting rid of false fails.

using hand-crafted signals during development, this step aims to make sure that
the passive test case is activated when it should on actual execution log files and
not reporting any false positives. In short, the working set of passive test cases are
applied on a set of execution logs. In the paper, these logs came from a well-tested
system, so any fails found could quickly be dismissed as false positives. In real life,
however, the source of each such fail needs a thorough examination.

The tuning process starts with ruling out any system startup or shutdown dis-
turbances. Figure 4.17a shows startup disturbances causing the test case to fail
shortly at the beginning of all scenarios. The three lines (gray,red,green) in each
sub-plots shows the value for the Guards, Pass and Fail over time. For the state
patterns (BP1-3 in Listing 4.1), the tuning is focused on the guard edges as shown
in Figure 4.17b. If the passive test case is passed except for a very short period at
the beginning or end of a guard period, the experience from Paper E is that this
is primarily due to natural latencies or sampling errors. Since the practitioners in
our partner organization strive for using state patterns, due to their inherently more

62

Chapter 4. Research Contributions 43

extensive time coverage, not enough event patterns were used to form any conclusive
advice on how to tune these.

2 RG2 - Evaluation
The second research goal (RG2) addresses the overall usefulness of the proposed
methods and tools in an industrial setting. Paper A evaluates the proposed prioriti-
zation approach to test case automation candidate ordering and concludes that the
algorithm is feasible to use on an industrial-sized problem. Moreover, the algorithm
can be applied as suggested in Section 1.4 to prioritize requirements by scenarios
instead. Figure 4.18 shows a simulation of how the number of remaining requirements
would diminish over time when translating the requirements of one scenario8 one
after another in different orders. One assumption is that all requirements covered
by one scenario are translated before translating the requirements of the following
scenario. Another assumption is that a requirement that has been translated to
a G/A can be “reused” without any further processing. Such reuse is beneficial if
requirements are tested in more than one scenario.

P/E Prioritization

S
A
F
E

Shortest First Longest First

Random Reuse

Algo + Reuse

No Reuse

P/E Prioritization

R
E
G
U
L
A
R

Shortest First Longest First

Figure 4.18: Successive Translation of the Requirements of Test Scenarios.
The plots show the effect of ordering scenarios before translating their requirements
to G/As using P/E Prioritization from Paper A, shortest first, and longest first. The
first row concerns safety-critical requirements and the second row concerns regular
(non safety-critical) requirements. The Y axis shows number of requirements
remaining to translate given the scenario selection order, X axis represents the
time, expressed in terms of number of translated requirements.

In Figure 4.18, the diagonal dashed line shows a comparison if all requirements
are translated to guarded assertions without reusing already translated requirements.

8For clarity, we assume the simplification of one traditional test case testing one scenario,
emphasizing the set of targeted requirements for each scenario/test case.

Chapter 4. Research Contributions 43

extensive time coverage, not enough event patterns were used to form any conclusive
advice on how to tune these.

2 RG2 - Evaluation
The second research goal (RG2) addresses the overall usefulness of the proposed
methods and tools in an industrial setting. Paper A evaluates the proposed prioriti-
zation approach to test case automation candidate ordering and concludes that the
algorithm is feasible to use on an industrial-sized problem. Moreover, the algorithm
can be applied as suggested in Section 1.4 to prioritize requirements by scenarios
instead. Figure 4.18 shows a simulation of how the number of remaining requirements
would diminish over time when translating the requirements of one scenario8 one
after another in different orders. One assumption is that all requirements covered
by one scenario are translated before translating the requirements of the following
scenario. Another assumption is that a requirement that has been translated to
a G/A can be “reused” without any further processing. Such reuse is beneficial if
requirements are tested in more than one scenario.

P/E Prioritization

S
A
F
E

Shortest First Longest First

Random Reuse

Algo + Reuse

No Reuse

P/E Prioritization

R
E
G
U
L
A
R

Shortest First Longest First

Figure 4.18: Successive Translation of the Requirements of Test Scenarios.
The plots show the effect of ordering scenarios before translating their requirements
to G/As using P/E Prioritization from Paper A, shortest first, and longest first. The
first row concerns safety-critical requirements and the second row concerns regular
(non safety-critical) requirements. The Y axis shows number of requirements
remaining to translate given the scenario selection order, X axis represents the
time, expressed in terms of number of translated requirements.

In Figure 4.18, the diagonal dashed line shows a comparison if all requirements
are translated to guarded assertions without reusing already translated requirements.

8For clarity, we assume the simplification of one traditional test case testing one scenario,
emphasizing the set of targeted requirements for each scenario/test case.

63

44 2. RG2 - Evaluation

This line is identical for the three orders. The red dash-dotted line shows the case
when the scenarios are picked by random but requirements are only translated once
(This line is also the same for the three orders). Notably, this line ends later in
the REGULAR case since the requirements in the SAFE case occur more often in
several scenarios. The solid blue line shows the effect of the different scenario orders.
When using the P/E prioritization, the SAFE case shows a quicker early reduction
in the number of requirements to translate compared to the random order. A quicker
reduction is beneficial if the system needs to be tested before the complete translation
is finished since a greater deal of the requirements can be tested in parallel for the
translated scenarios. The benefit is determined by the distance (ΔY) between the
dashed or dash-dotted lines to the solid blue line at a particular point in time. The
win is less for the REGULAR case, probably because the room for improvement is
smaller (less reuse possible). The shortest first and longest first cases show worse
performance than a completely random choice of requirements to translate.

Paper C evaluates the passive testing approach using an initial prototype of the
language from [17] and concludes that the approach should be applicable for 40%-80%
of the Scania test cases (at the system integration level) and that the interactivity
of the tool together with the ability to load and evaluate the expressions on an
actual log file, was a fundamental feature. Paper C also composes a list of proposed
improvements and requirements on the tool and the language to reach industrial
acceptance. The evaluation in Paper B mainly shows a proof of concept evaluation
of the proposed process, core language, and updated tool-support. The evaluation
continues in Paper E, where the process is concluded with fine-tuning, showing that
the language, tool, and process are adequate for translating a set of requirements to
passive test cases. Furthermore, after applying the complete chain of solutions in
this thesis, no false positives were encountered when evaluating the passive test cases
over an execution log from a test expert on an actual Hardware In The Loop (HIL)
test rig (Figure 4.19a). The resulting test cases were also able to find all injected

(a) Expert no faults injected (b) Expert Session Finding Faults.

Figure 4.19: Final Expert Evaluation [Paper E]

44 2. RG2 - Evaluation

This line is identical for the three orders. The red dash-dotted line shows the case
when the scenarios are picked by random but requirements are only translated once
(This line is also the same for the three orders). Notably, this line ends later in
the REGULAR case since the requirements in the SAFE case occur more often in
several scenarios. The solid blue line shows the effect of the different scenario orders.
When using the P/E prioritization, the SAFE case shows a quicker early reduction
in the number of requirements to translate compared to the random order. A quicker
reduction is beneficial if the system needs to be tested before the complete translation
is finished since a greater deal of the requirements can be tested in parallel for the
translated scenarios. The benefit is determined by the distance (ΔY) between the
dashed or dash-dotted lines to the solid blue line at a particular point in time. The
win is less for the REGULAR case, probably because the room for improvement is
smaller (less reuse possible). The shortest first and longest first cases show worse
performance than a completely random choice of requirements to translate.

Paper C evaluates the passive testing approach using an initial prototype of the
language from [17] and concludes that the approach should be applicable for 40%-80%
of the Scania test cases (at the system integration level) and that the interactivity
of the tool together with the ability to load and evaluate the expressions on an
actual log file, was a fundamental feature. Paper C also composes a list of proposed
improvements and requirements on the tool and the language to reach industrial
acceptance. The evaluation in Paper B mainly shows a proof of concept evaluation
of the proposed process, core language, and updated tool-support. The evaluation
continues in Paper E, where the process is concluded with fine-tuning, showing that
the language, tool, and process are adequate for translating a set of requirements to
passive test cases. Furthermore, after applying the complete chain of solutions in
this thesis, no false positives were encountered when evaluating the passive test cases
over an execution log from a test expert on an actual Hardware In The Loop (HIL)
test rig (Figure 4.19a). The resulting test cases were also able to find all injected

(a) Expert no faults injected (b) Expert Session Finding Faults.

Figure 4.19: Final Expert Evaluation [Paper E]

64

Chapter 4. Research Contributions 45

faults in another expert test run, as shown in Figure 4.19b. Finally, the whole set of
safety-critical requirements of TCMS was analyzed against the language presented
in Paper D to see if the requirements can be expressed into passive test cases using
T-EARS.

Figure 4.20: Evaluation Results Derived from Paper D. In total 64% of the
safety-critical requirements were judged to be expressible in T-TEARS.

As seen in Figure 4.20, about 20% of the requirements were not suitable for any
form of passive testing. Given the ones that were suitable for passive testing, a few
(∼ 20%) were judged not to be expressible in T-EARS, while the majority (∼ 80%)
were judged to be expressible in T-EARS. This corresponds to ∼ 64% of the complete
set of requirements. This result is consistent with the Scania testers estimation in
Paper C.

Chapter 4. Research Contributions 45

faults in another expert test run, as shown in Figure 4.19b. Finally, the whole set of
safety-critical requirements of TCMS was analyzed against the language presented
in Paper D to see if the requirements can be expressed into passive test cases using
T-EARS.

Figure 4.20: Evaluation Results Derived from Paper D. In total 64% of the
safety-critical requirements were judged to be expressible in T-TEARS.

As seen in Figure 4.20, about 20% of the requirements were not suitable for any
form of passive testing. Given the ones that were suitable for passive testing, a few
(∼ 20%) were judged not to be expressible in T-EARS, while the majority (∼ 80%)
were judged to be expressible in T-EARS. This corresponds to ∼ 64% of the complete
set of requirements. This result is consistent with the Scania testers estimation in
Paper C.

65

66

Chapter 5

Related Work

When deciding the point in time and which test case to automate first, there
are several factors to consider and many approaches to such work-prioritization.
The prioritization approach in this thesis is similar to the approach of Sabev and
Grigorova [33]. Their effort estimation builds on factors identified by the authors,
such as “large data inputs” and intrinsic information about the test cases. Although
such factors may improve the algorithm’s performance, one implicit goal of this thesis
has been to avoid any factors that cannot be determined automatically from the
test case itself. Further, while their model promotes the automation of test cases
with high manual and low automation efforts, the proposed method in this thesis
also considers the future gain of automation, given the set of already automated test
cases and the remaining test cases.

One way to avoid writing the same test logic over and over again is to divide the
test case into test logic and input stimuli sequence. Such separation of concerns
allows reuse of the test logic independently of the input stimuli. The work presented
in this thesis builds upon the concept of guarded assertions that Gustafsson et
al. [21] introduced as a means of modeling passive test logic using UPPAAL1 models.
While the guarded assertion concept targets system level testing of vehicular systems,
the same approach occurs in other directions of research under different names for
other domains. Other works on passive testing [2, 8] uses the names invariants
or monitors to denote the test logic. Although there exist some works concerning
passive testing within the automotive domain [27, 34], most of the works on passive
testing targets network protocols and program traces at unit or integration level
while the the work in this thesis targets system level testing of signal based vehicular
systems. Close to passive testing, but, with a more proactive purpose, we find
Runtime Verification, that also uses the term ‘monitors’ for the combination of the
guard and the assertion [25]. While (on-line) runtime verification strives to report a
fault with the purpose of mitigating faults turning into failures, the tool in this thesis
currently works off-line and off-target and thus have no intention to interact with the
System Under Test. The off-line approach also allows modification and re-evaluation
of test cases for the same test execution to quickly find root-causes. There are also
model-based approaches such as MiLEST [38] focusing on Model-in-the-Loop (MIL)

1https://uppaal.org/

47

Chapter 5

Related Work

When deciding the point in time and which test case to automate first, there
are several factors to consider and many approaches to such work-prioritization.
The prioritization approach in this thesis is similar to the approach of Sabev and
Grigorova [33]. Their effort estimation builds on factors identified by the authors,
such as “large data inputs” and intrinsic information about the test cases. Although
such factors may improve the algorithm’s performance, one implicit goal of this thesis
has been to avoid any factors that cannot be determined automatically from the
test case itself. Further, while their model promotes the automation of test cases
with high manual and low automation efforts, the proposed method in this thesis
also considers the future gain of automation, given the set of already automated test
cases and the remaining test cases.

One way to avoid writing the same test logic over and over again is to divide the
test case into test logic and input stimuli sequence. Such separation of concerns
allows reuse of the test logic independently of the input stimuli. The work presented
in this thesis builds upon the concept of guarded assertions that Gustafsson et
al. [21] introduced as a means of modeling passive test logic using UPPAAL1 models.
While the guarded assertion concept targets system level testing of vehicular systems,
the same approach occurs in other directions of research under different names for
other domains. Other works on passive testing [2, 8] uses the names invariants
or monitors to denote the test logic. Although there exist some works concerning
passive testing within the automotive domain [27, 34], most of the works on passive
testing targets network protocols and program traces at unit or integration level
while the the work in this thesis targets system level testing of signal based vehicular
systems. Close to passive testing, but, with a more proactive purpose, we find
Runtime Verification, that also uses the term ‘monitors’ for the combination of the
guard and the assertion [25]. While (on-line) runtime verification strives to report a
fault with the purpose of mitigating faults turning into failures, the tool in this thesis
currently works off-line and off-target and thus have no intention to interact with the
System Under Test. The off-line approach also allows modification and re-evaluation
of test cases for the same test execution to quickly find root-causes. There are also
model-based approaches such as MiLEST [38] focusing on Model-in-the-Loop (MIL)

1https://uppaal.org/

47

67

48

testing. Another concept for model-based MIL testing is Automotive Verification
Functions (AFVs) [39]. It uses the terms precondition block for the guard and
assertion block for the assertion and adds a final arbitration block to decide the
final verdict. While this solution is currently implemented in Matlab/Simulink, the
proposed specification language, T-EARS, is based on a formalization of the patterns
of Easy Approach to Software Requirements Syntax (EARS) [26]. There have also
been other attempts to formalize requirement patterns. Autili et al. [3] present a
framework and a tool, PSPWizar, that translates requirements written in Structured
English Grammar to a formal representation. Another example is the SESAMM
Specifier by Filipovikj et al. [13] that simplifies the formalization of requirements into
test cases using predefined patterns and Restricted English Grammar (REG). The
proposed tool in this thesis differs from these tools in that the test engineer can see
how the requirement is evaluated on an execution trace while the engineer is writing
the requirement or test case. Further, the proposed specification language can be
used for formalizing requirements using abstract signals that can be drawn in the
tool as examples to the test engineer. Pange et al. [28] discuss different approaches
to facilitate formalization. However, few solutions seem to have survived outside the
academic context. Further, much focus is on the graphical representation of the test
logic. In contrast, the proposed approach in this thesis builds on a textual model for
the test logic and visualization of the evaluation instead.

48

testing. Another concept for model-based MIL testing is Automotive Verification
Functions (AFVs) [39]. It uses the terms precondition block for the guard and
assertion block for the assertion and adds a final arbitration block to decide the
final verdict. While this solution is currently implemented in Matlab/Simulink, the
proposed specification language, T-EARS, is based on a formalization of the patterns
of Easy Approach to Software Requirements Syntax (EARS) [26]. There have also
been other attempts to formalize requirement patterns. Autili et al. [3] present a
framework and a tool, PSPWizar, that translates requirements written in Structured
English Grammar to a formal representation. Another example is the SESAMM
Specifier by Filipovikj et al. [13] that simplifies the formalization of requirements into
test cases using predefined patterns and Restricted English Grammar (REG). The
proposed tool in this thesis differs from these tools in that the test engineer can see
how the requirement is evaluated on an execution trace while the engineer is writing
the requirement or test case. Further, the proposed specification language can be
used for formalizing requirements using abstract signals that can be drawn in the
tool as examples to the test engineer. Pange et al. [28] discuss different approaches
to facilitate formalization. However, few solutions seem to have survived outside the
academic context. Further, much focus is on the graphical representation of the test
logic. In contrast, the proposed approach in this thesis builds on a textual model for
the test logic and visualization of the evaluation instead.

68

Chapter 6

Conclusions

The goal of the thesis is to propose and evaluate industrially applicable methods and
tools for passive testing at the system level of vehicular software systems.

Specifying such passive test cases poses challenges, such as describing a system’s
state and acceptable temporal variations of logical expressions. The proposed
specification language (T-EARS) sacrifices detailed temporal specifications on each
sub expression, only addressing the leading and trailing edges of the system response,
in favor of intuitiveness. This approximation worked well for the studied systems
at the system level but may not suffice at the unit level or a hard real-time system.
The empirical results indicate that an intuitive language, easy-to-read, and easy-
to-write, requires keeping the language small and providing structured templates
or boilerplates. The overall challenge has been to balance the completeness of the
language with the level of intuition. In line with other works, the provided T-EARS
boilerplates, connects back to a set of standard requirements patterns (EARS).

Research on new languages for describing passive test cases requires a great deal of
infrastructure. This thesis proposes a research framework consisting of open-source
modules, implementing basic data integration, intuitive editing, navigation, and
evaluated test case visualization. The open-source approach enables the researcher
to experiment with, e.g., language constructs.

Introducing passive testing into an industrial setting requires guidance on inte-
grating it into an existing test process. The process presented in this thesis suggests
how to prioritize the requirements using a current test plan to maximize the reuse of
test logic. A structured way of translating and fine-tuning test logic is also proposed.

Keeping the focus on the low to medium complex requirements allowed creating an
intuitive language and IDE for passive testing feasible to test signal-based vehicular
systems at the system level in an industrial context. Finally, the similarity of the
proposed specification language and the requirement specification syntax, together
with the possibility of creating and editing abstract signals, contribute to closing the
gap between requirements specification and testing.

49

Chapter 6

Conclusions

The goal of the thesis is to propose and evaluate industrially applicable methods and
tools for passive testing at the system level of vehicular software systems.

Specifying such passive test cases poses challenges, such as describing a system’s
state and acceptable temporal variations of logical expressions. The proposed
specification language (T-EARS) sacrifices detailed temporal specifications on each
sub expression, only addressing the leading and trailing edges of the system response,
in favor of intuitiveness. This approximation worked well for the studied systems
at the system level but may not suffice at the unit level or a hard real-time system.
The empirical results indicate that an intuitive language, easy-to-read, and easy-
to-write, requires keeping the language small and providing structured templates
or boilerplates. The overall challenge has been to balance the completeness of the
language with the level of intuition. In line with other works, the provided T-EARS
boilerplates, connects back to a set of standard requirements patterns (EARS).

Research on new languages for describing passive test cases requires a great deal of
infrastructure. This thesis proposes a research framework consisting of open-source
modules, implementing basic data integration, intuitive editing, navigation, and
evaluated test case visualization. The open-source approach enables the researcher
to experiment with, e.g., language constructs.

Introducing passive testing into an industrial setting requires guidance on inte-
grating it into an existing test process. The process presented in this thesis suggests
how to prioritize the requirements using a current test plan to maximize the reuse of
test logic. A structured way of translating and fine-tuning test logic is also proposed.

Keeping the focus on the low to medium complex requirements allowed creating an
intuitive language and IDE for passive testing feasible to test signal-based vehicular
systems at the system level in an industrial context. Finally, the similarity of the
proposed specification language and the requirement specification syntax, together
with the possibility of creating and editing abstract signals, contribute to closing the
gap between requirements specification and testing.

49

69

70

Chapter 7

Future Work

The empirical results suggest that passive testing gives additional requirements
coverage, but to really unleash the power of passive testing, research is required
on how to produce test stimuli optimized ,e.g, to cover as many G/As as possible.
The proposed research framework (open-source prototype implementation of Napkin
Studio) makes this possible since evaluation of G/As can be completely automated.

Although the T-EARS language is based on industrial needs in the studied case
organizations, it has been kept bare minimum. While the language constructs are
adequate for most of the addressed requirements, understanding how to extend the
language for more challenging features such as different signal shapes and sequences
without reducing the simplicity of the language poses an attractive challenge.

Further, using passive testing yields, in the optimal case, one or more guarded
assertions per requirement. This increase in information artifacts and complexity
necessitates further research about creating a generic mapping to the corporate
information repositories and tools and processes.

Finally, while there are several benefits of evaluating passive test cases on log files
from a system after the system execution, the ability to perform the evaluation in
real-time as well is desirable for, e.g., exploratory testing of vehicles. This line of
research brings up questions on how to use T-EARS for monitoring purposes.

51

Chapter 7

Future Work

The empirical results suggest that passive testing gives additional requirements
coverage, but to really unleash the power of passive testing, research is required
on how to produce test stimuli optimized ,e.g, to cover as many G/As as possible.
The proposed research framework (open-source prototype implementation of Napkin
Studio) makes this possible since evaluation of G/As can be completely automated.

Although the T-EARS language is based on industrial needs in the studied case
organizations, it has been kept bare minimum. While the language constructs are
adequate for most of the addressed requirements, understanding how to extend the
language for more challenging features such as different signal shapes and sequences
without reducing the simplicity of the language poses an attractive challenge.

Further, using passive testing yields, in the optimal case, one or more guarded
assertions per requirement. This increase in information artifacts and complexity
necessitates further research about creating a generic mapping to the corporate
information repositories and tools and processes.

Finally, while there are several benefits of evaluating passive test cases on log files
from a system after the system execution, the ability to perform the evaluation in
real-time as well is desirable for, e.g., exploratory testing of vehicles. This line of
research brings up questions on how to use T-EARS for monitoring purposes.

51

71

Bibliography

[1] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge
University Press, (2008). isbn: 978-0-521-88038-1 (cit. on p. 5).

[2] César Andrés, Mercedes G Merayo, and Manuel Núñez. “Passive testing of
timed systems”. In: International Symposium on Automated Technology for
Verification and Analysis (ATVA’08). Berlin, Heidelberg: Springer, (2008),
pp. 418–427 (cit. on p. 47).

[3] Marco Autili, Lars Grunske, Markus Lumpe, Patrizio Pelliccione, and Antony
Tang. “Aligning qualitative, real-time, and probabilistic property specification
patterns Using a structured english grammar”. In: IEEE Transactions on
Software Engineering 41.7 (2015), pp. 620–638 (cit. on pp. 3, 10, 48).

[4] Victor R. Basili. “The experimental paradigm in software engineering”. In:
Experimental Software Engineering Issues: Critical Assessment and Future
Directions. Ed. by H. Dieter Rombach, Victor R. Basili, and Richard W. Selby.
Berlin, Heidelberg: Springer, (1993), pp. 1–12. isbn: 978-3-540-47903-1 (cit. on
p. 16).

[5] Bart Broekman. Testing embedded software. Addison-Wesley, (2003). isbn:
0321159861 (cit. on pp. 5, 6, 8).

[6] Krzysztof M Brzeziński. “Active-passive: on preconceptions of testing”. In:
Journal of Telecommunications and Information Technology (2011), pp. 63–73
(cit. on p. 3).

[7] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec.
“Feature interaction: a critical review and considered forecast”. In: Computer
Networks 41.1 (2003), pp. 115–141. issn: 1389-1286. doi: https://doi.org/
10.1016/S1389-1286(02)00352-3 (cit. on p. 7).

[8] Ana R Cavalli, Teruo Higashino, and Manuel Núñez. “A survey on formal active
and passive testing with applications to the cloud”. In: Annals of telecommuni-
cations 3 (2015), pp. 85–93 (cit. on pp. 3, 13, 47).

[9] CENELEC. EN 50657 Railways Applications - Rolling stock applications -
Software on Board Rolling Stock. European Committee for Electrotechnical
Standardization, (2017) (cit. on pp. 10, 41).

52

Bibliography

[1] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge
University Press, (2008). isbn: 978-0-521-88038-1 (cit. on p. 5).

[2] César Andrés, Mercedes G Merayo, and Manuel Núñez. “Passive testing of
timed systems”. In: International Symposium on Automated Technology for
Verification and Analysis (ATVA’08). Berlin, Heidelberg: Springer, (2008),
pp. 418–427 (cit. on p. 47).

[3] Marco Autili, Lars Grunske, Markus Lumpe, Patrizio Pelliccione, and Antony
Tang. “Aligning qualitative, real-time, and probabilistic property specification
patterns Using a structured english grammar”. In: IEEE Transactions on
Software Engineering 41.7 (2015), pp. 620–638 (cit. on pp. 3, 10, 48).

[4] Victor R. Basili. “The experimental paradigm in software engineering”. In:
Experimental Software Engineering Issues: Critical Assessment and Future
Directions. Ed. by H. Dieter Rombach, Victor R. Basili, and Richard W. Selby.
Berlin, Heidelberg: Springer, (1993), pp. 1–12. isbn: 978-3-540-47903-1 (cit. on
p. 16).

[5] Bart Broekman. Testing embedded software. Addison-Wesley, (2003). isbn:
0321159861 (cit. on pp. 5, 6, 8).

[6] Krzysztof M Brzeziński. “Active-passive: on preconceptions of testing”. In:
Journal of Telecommunications and Information Technology (2011), pp. 63–73
(cit. on p. 3).

[7] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec.
“Feature interaction: a critical review and considered forecast”. In: Computer
Networks 41.1 (2003), pp. 115–141. issn: 1389-1286. doi: https://doi.org/
10.1016/S1389-1286(02)00352-3 (cit. on p. 7).

[8] Ana R Cavalli, Teruo Higashino, and Manuel Núñez. “A survey on formal active
and passive testing with applications to the cloud”. In: Annals of telecommuni-
cations 3 (2015), pp. 85–93 (cit. on pp. 3, 13, 47).

[9] CENELEC. EN 50657 Railways Applications - Rolling stock applications -
Software on Board Rolling Stock. European Committee for Electrotechnical
Standardization, (2017) (cit. on pp. 10, 41).

52

72

Bibliography 53

[10] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. “Patterns in
property specifications for finite-state verification”. In: International Conference
on Software Engineering (ICSE’99). Los Angeles, California, USA: Association
for Computing Machinery, (1999), pp. 411–420. isbn: 1-58113-074-0. doi:
10.1145/302405.302672 (cit. on p. 3).

[11] SEK Svensk Elstandard. EN50126 - Railway applications - The specification and
demonstration of Reliability, Availability, Maintainability and Safety (RAMS).
Swedish Institute for Standards, (2017) (cit. on pp. 10, 41).

[12] SEK Svensk Elstandard. EN50129 - Railway applications - Communication, sig-
nalling and processing systems - Safety related electronic systems for signalling.
Swedish Institute for Standards, (2019) (cit. on p. 10).

[13] Predrag Filipovikj, Trevor Jagerfield, Mattias Nyberg, Guillermo Rodriguez-
Navas, and Cristina Seceleanu. “Integrating pattern-based formal requirements
specification in an industrial tool-chain”. In: International Computer Software
and Applications Conference (COMPSAC’16). Vol. 2. IEEE Computer Society,
(2016), pp. 167–173 (cit. on pp. 3, 48).

[14] Predrag Filipovikj, Mattias Nyberg, and Guillermo Rodriguez-Navas. “Reassess-
ing the pattern-based approach for formalizing requirements in the automotive
domain”. In: International Requirements Engineering Conference (RE’14). Los
Alamitos, CA, USA: IEEE Computer Society, (Aug. 2014), pp. 444–450. doi:
10.1109/RE.2014.6912296 (cit. on p. 3).

[15] Daniel Flemström, Wasif Afzal, and Daniel Sundmark. “Exploring test overlap
in system integration: an industrial case study”. In: Euromicro Conference on
Software Engineering and Advanced Applications (SEAA’16). Los Alamitos,
CA, USA: IEEE Computer Society, (2016), pp. 303–312. doi: 10.1109/SEAA.
2016.34 (cit. on p. 19).

[16] Daniel Flemström, Thomas Gustafsson, and Avenir Kobetski. “A case study
of interactive development of passive tests”. In: International Workshop on
Requirements Engineering and Testing (RET’18). Gothenburg, Sweden: As-
sociation for Computing Machinery, (2018), pp. 13–20. isbn: 9781450357494.
doi: 10.1145/3195538.3195544 (cit. on pp. 22, 31).

[17] Daniel Flemström, Thomas Gustafsson, and Avenir Kobetski. “SAGA toolbox:
interactive testing of guarded assertions”. In: International Conference on Soft-
ware Testing, Verification and Validation(ICST’17). IEEE Computer Society,
(2017), pp. 516–523 (cit. on pp. 3, 19, 23, 44).

[18] Daniel Flemström, Thomas Gustafsson, Avenir Kobetski, and Daniel Sundmark.
“A Research roadmap for test design in automated integration testing of
vehicular systems”. In: International Conference on Fundamentals and Advances
in Software Systems Integration (FASSI’16). (2016) (cit. on p. 3).

[19] Kevin Forsberg and Harold Mooz. “The relationship of system engineering
to the project cycle”. In: INCOSE International Symposium. Vol. 1. 1. Wiley
Online Library, (1991), pp. 57–65 (cit. on p. 6).

Bibliography 53

[10] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. “Patterns in
property specifications for finite-state verification”. In: International Conference
on Software Engineering (ICSE’99). Los Angeles, California, USA: Association
for Computing Machinery, (1999), pp. 411–420. isbn: 1-58113-074-0. doi:
10.1145/302405.302672 (cit. on p. 3).

[11] SEK Svensk Elstandard. EN50126 - Railway applications - The specification and
demonstration of Reliability, Availability, Maintainability and Safety (RAMS).
Swedish Institute for Standards, (2017) (cit. on pp. 10, 41).

[12] SEK Svensk Elstandard. EN50129 - Railway applications - Communication, sig-
nalling and processing systems - Safety related electronic systems for signalling.
Swedish Institute for Standards, (2019) (cit. on p. 10).

[13] Predrag Filipovikj, Trevor Jagerfield, Mattias Nyberg, Guillermo Rodriguez-
Navas, and Cristina Seceleanu. “Integrating pattern-based formal requirements
specification in an industrial tool-chain”. In: International Computer Software
and Applications Conference (COMPSAC’16). Vol. 2. IEEE Computer Society,
(2016), pp. 167–173 (cit. on pp. 3, 48).

[14] Predrag Filipovikj, Mattias Nyberg, and Guillermo Rodriguez-Navas. “Reassess-
ing the pattern-based approach for formalizing requirements in the automotive
domain”. In: International Requirements Engineering Conference (RE’14). Los
Alamitos, CA, USA: IEEE Computer Society, (Aug. 2014), pp. 444–450. doi:
10.1109/RE.2014.6912296 (cit. on p. 3).

[15] Daniel Flemström, Wasif Afzal, and Daniel Sundmark. “Exploring test overlap
in system integration: an industrial case study”. In: Euromicro Conference on
Software Engineering and Advanced Applications (SEAA’16). Los Alamitos,
CA, USA: IEEE Computer Society, (2016), pp. 303–312. doi: 10.1109/SEAA.
2016.34 (cit. on p. 19).

[16] Daniel Flemström, Thomas Gustafsson, and Avenir Kobetski. “A case study
of interactive development of passive tests”. In: International Workshop on
Requirements Engineering and Testing (RET’18). Gothenburg, Sweden: As-
sociation for Computing Machinery, (2018), pp. 13–20. isbn: 9781450357494.
doi: 10.1145/3195538.3195544 (cit. on pp. 22, 31).

[17] Daniel Flemström, Thomas Gustafsson, and Avenir Kobetski. “SAGA toolbox:
interactive testing of guarded assertions”. In: International Conference on Soft-
ware Testing, Verification and Validation(ICST’17). IEEE Computer Society,
(2017), pp. 516–523 (cit. on pp. 3, 19, 23, 44).

[18] Daniel Flemström, Thomas Gustafsson, Avenir Kobetski, and Daniel Sundmark.
“A Research roadmap for test design in automated integration testing of
vehicular systems”. In: International Conference on Fundamentals and Advances
in Software Systems Integration (FASSI’16). (2016) (cit. on p. 3).

[19] Kevin Forsberg and Harold Mooz. “The relationship of system engineering
to the project cycle”. In: INCOSE International Symposium. Vol. 1. 1. Wiley
Online Library, (1991), pp. 57–65 (cit. on p. 6).

73

54 Bibliography

[20] Tony Gorschek, Per Garre, Stig Larsson, and Claes Wohlin. “A model for
technology transfer in practice”. In: IEEE Software 23.6 (2006), pp. 88–95
(cit. on pp. 16, 18).

[21] Thomas Gustafsson, Mats Skoglund, Avenir Kobetski, and Daniel Sundmark.
“Automotive system testing by independent guarded assertions”. In: Interna-
tional Conference on Software Testing, Verification and Validation Workshops
(ICSTW’15). IEEE Computer Society, (2015), pp. 1–7. doi: 10.1109/ICSTW.
2015.7107474 (cit. on pp. 3, 13, 22, 23, 47).

[22] Oliver Hoehne. “The SoS-VEE model: mastering the socio-technical aspects
and complexity of systems of systems engineering (SoSE)”. In: INCOSE Inter-
national Symposium. Vol. 26. 1. Wiley Online Library, (2016), pp. 1494–1508
(cit. on p. 6).

[23] ISO/IEC/IEEE. Software and systems engineering — Software testing - Part
1: Concepts and definitions. International Organization for Standardization,
International Electrotechnical Commission, (2013) (cit. on p. 10).

[24] Barbara Kitchenham and Stuart Charters. Guidelines for performing systematic
literature reviews in software engineering. Tech. rep. EBSE 2007-001. Keele
University and Durham University Joint Report, 2007. url: http://www.dur.
ac.uk/ebse/resources/Systematic-reviews-5-8.pdf (cit. on p. 18).

[25] Martin Leucker and Christian Schallhart. “A brief account of runtime veri-
fication”. In: The Journal of Logic and Algebraic Programming 78.5 (2009),
pp. 293–303 (cit. on p. 47).

[26] Alistair Mavin, Philip Wilkinson, Adrian Harwood, and Mark Novak. “Easy
approach to requirements syntax (EARS)”. In: International Requirements
Engineering Conference (RE’09). IEEE Computer Society, (2009), pp. 317–322
(cit. on pp. 10, 23, 48).

[27] Pramila Mouttappa, Stephane Maag, and Ana Cavalli. “Monitoring based
on IOSTS for testing functional and security properties: application to an
automotive case study”. In: Computer Software and Applications Conference
(COMPSAC’13). IEEE Computer Society, (2013), pp. 1–10. doi: 10.1109/
COMPSAC.2013.5 (cit. on p. 47).

[28] Cheng Pang, Antti Pakonen, Igor Buzhinsky, and Valeriy Vyatkin. “A study on
user-friendly formal specification languages for requirements formalization”. In:
Industrial Informatics (INDIN’16). IEEE Computer Society, (2016), pp. 676–
682 (cit. on p. 48).

[29] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. “System-
atic mapping studies in software engineering”. In: International Conference on
Evaluation and Assessment in Software Engineering (EASE’08). Italy: BCS
Learning & Development Ltd., (2008), pp. 68–77 (cit. on p. 18).

[30] Mauro Pezzè and Michal Young. Software testing and analysis: process, prin-
ciples and techniques. Wiley & Sons Inc., (2007). isbn: 13978-0-471-45593-6
(cit. on pp. 5–7).

54 Bibliography

[20] Tony Gorschek, Per Garre, Stig Larsson, and Claes Wohlin. “A model for
technology transfer in practice”. In: IEEE Software 23.6 (2006), pp. 88–95
(cit. on pp. 16, 18).

[21] Thomas Gustafsson, Mats Skoglund, Avenir Kobetski, and Daniel Sundmark.
“Automotive system testing by independent guarded assertions”. In: Interna-
tional Conference on Software Testing, Verification and Validation Workshops
(ICSTW’15). IEEE Computer Society, (2015), pp. 1–7. doi: 10.1109/ICSTW.
2015.7107474 (cit. on pp. 3, 13, 22, 23, 47).

[22] Oliver Hoehne. “The SoS-VEE model: mastering the socio-technical aspects
and complexity of systems of systems engineering (SoSE)”. In: INCOSE Inter-
national Symposium. Vol. 26. 1. Wiley Online Library, (2016), pp. 1494–1508
(cit. on p. 6).

[23] ISO/IEC/IEEE. Software and systems engineering — Software testing - Part
1: Concepts and definitions. International Organization for Standardization,
International Electrotechnical Commission, (2013) (cit. on p. 10).

[24] Barbara Kitchenham and Stuart Charters. Guidelines for performing systematic
literature reviews in software engineering. Tech. rep. EBSE 2007-001. Keele
University and Durham University Joint Report, 2007. url: http://www.dur.
ac.uk/ebse/resources/Systematic-reviews-5-8.pdf (cit. on p. 18).

[25] Martin Leucker and Christian Schallhart. “A brief account of runtime veri-
fication”. In: The Journal of Logic and Algebraic Programming 78.5 (2009),
pp. 293–303 (cit. on p. 47).

[26] Alistair Mavin, Philip Wilkinson, Adrian Harwood, and Mark Novak. “Easy
approach to requirements syntax (EARS)”. In: International Requirements
Engineering Conference (RE’09). IEEE Computer Society, (2009), pp. 317–322
(cit. on pp. 10, 23, 48).

[27] Pramila Mouttappa, Stephane Maag, and Ana Cavalli. “Monitoring based
on IOSTS for testing functional and security properties: application to an
automotive case study”. In: Computer Software and Applications Conference
(COMPSAC’13). IEEE Computer Society, (2013), pp. 1–10. doi: 10.1109/
COMPSAC.2013.5 (cit. on p. 47).

[28] Cheng Pang, Antti Pakonen, Igor Buzhinsky, and Valeriy Vyatkin. “A study on
user-friendly formal specification languages for requirements formalization”. In:
Industrial Informatics (INDIN’16). IEEE Computer Society, (2016), pp. 676–
682 (cit. on p. 48).

[29] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. “System-
atic mapping studies in software engineering”. In: International Conference on
Evaluation and Assessment in Software Engineering (EASE’08). Italy: BCS
Learning & Development Ltd., (2008), pp. 68–77 (cit. on p. 18).

[30] Mauro Pezzè and Michal Young. Software testing and analysis: process, prin-
ciples and techniques. Wiley & Sons Inc., (2007). isbn: 13978-0-471-45593-6
(cit. on pp. 5–7).

74

Bibliography 55

[31] Guillermo Rodriguez-Navas, Avenir Kobetski, Daniel Sundmark, and Thomas
Gustafsson. “Offline analysis of independent guarded assertions in automotive
integration Testing”. In: International Conference on Embedded Software and
Systems (ICESS’15). IEEE Computer Society, (2015), pp. 1066–1073. doi:
10.1109/HPCC-CSS-ICESS.2015.251 (cit. on pp. 3, 13, 23).

[32] Per Runeson and Emelie Engström. “Software Product Line Testing – A
3D Regression Testing Problem”. In: International Conference on Software
Testing, Verification and Validation (ICST’12). Los Alamitos, CA, USA: IEEE
Computer Society, (Apr. 2012), pp. 742–746. doi: 10.1109/ICST.2012.167
(cit. on p. 18).

[33] Peter Sabev and Katalina Grigorova. “Manual to automated testing: An effort-
based approach for determining the Priority of Software Test Automation”.
In: International Journal of Computer, Electrical, Automation, Control and
Information Engineering 9.12 (2015), pp. 2123–2129 (cit. on p. 47).

[34] Konstantin Selyunin, Thang Nguyen, Ezio Bartocci, and Radu Grosu. “Applying
runtime monitoring for automotive electronic development”. In: International
Conference on Runtime Verification (RV’16). Berlin, Heidelberg: Springer,
(2016), pp. 462–469 (cit. on p. 47).

[35] Forrest Shull, Janice Singer, and Dag IK Sjøberg. Guide to advanced empirical
software engineering. Springer, (2008) (cit. on p. 18).

[36] Wei-Tek Tsai, Xiaoying Bai, Richard Paul, Weiguang Shao, and Vijyant Agar-
wal. “End-to-end integration testing design”. In: International Computer Soft-
ware and Applications Conference (COMPSAC’01). Los Alamitos, CA, USA:
IEEE Computer Society, (Oct. 2001), p. 166. doi: 10.1109/CMPSAC.2001.
960613 (cit. on p. 7).

[37] Claes Wohlin. “Guidelines for snowballing in systematic literature studies and a
replication in software engineering”. In: International Conference on Evaluation
and Assessment in Software Engineering (EASE’14). London, England, United
Kingdom: Association for Computing Machinery, (2014). isbn: 9781450324762.
doi: 10.1145/2601248.2601268 (cit. on p. 18).

[38] Justyna Zander-Nowicka. Model-based testing of real-time embedded systems in
the automotive domain. (2008) (cit. on p. 47).

[39] Justyna Zander-Nowicka, Ina Schieferdecker, and Abel Marrero Perez. “Au-
tomotive validation functions for on-line test evaluation of hybrid real-time
systems”. In: Autotestcon. IEEE Computer Society, (2006), pp. 799–805. doi:
10.1109/AUTEST.2006.283767 (cit. on p. 48).

Bibliography 55

[31] Guillermo Rodriguez-Navas, Avenir Kobetski, Daniel Sundmark, and Thomas
Gustafsson. “Offline analysis of independent guarded assertions in automotive
integration Testing”. In: International Conference on Embedded Software and
Systems (ICESS’15). IEEE Computer Society, (2015), pp. 1066–1073. doi:
10.1109/HPCC-CSS-ICESS.2015.251 (cit. on pp. 3, 13, 23).

[32] Per Runeson and Emelie Engström. “Software Product Line Testing – A
3D Regression Testing Problem”. In: International Conference on Software
Testing, Verification and Validation (ICST’12). Los Alamitos, CA, USA: IEEE
Computer Society, (Apr. 2012), pp. 742–746. doi: 10.1109/ICST.2012.167
(cit. on p. 18).

[33] Peter Sabev and Katalina Grigorova. “Manual to automated testing: An effort-
based approach for determining the Priority of Software Test Automation”.
In: International Journal of Computer, Electrical, Automation, Control and
Information Engineering 9.12 (2015), pp. 2123–2129 (cit. on p. 47).

[34] Konstantin Selyunin, Thang Nguyen, Ezio Bartocci, and Radu Grosu. “Applying
runtime monitoring for automotive electronic development”. In: International
Conference on Runtime Verification (RV’16). Berlin, Heidelberg: Springer,
(2016), pp. 462–469 (cit. on p. 47).

[35] Forrest Shull, Janice Singer, and Dag IK Sjøberg. Guide to advanced empirical
software engineering. Springer, (2008) (cit. on p. 18).

[36] Wei-Tek Tsai, Xiaoying Bai, Richard Paul, Weiguang Shao, and Vijyant Agar-
wal. “End-to-end integration testing design”. In: International Computer Soft-
ware and Applications Conference (COMPSAC’01). Los Alamitos, CA, USA:
IEEE Computer Society, (Oct. 2001), p. 166. doi: 10.1109/CMPSAC.2001.
960613 (cit. on p. 7).

[37] Claes Wohlin. “Guidelines for snowballing in systematic literature studies and a
replication in software engineering”. In: International Conference on Evaluation
and Assessment in Software Engineering (EASE’14). London, England, United
Kingdom: Association for Computing Machinery, (2014). isbn: 9781450324762.
doi: 10.1145/2601248.2601268 (cit. on p. 18).

[38] Justyna Zander-Nowicka. Model-based testing of real-time embedded systems in
the automotive domain. (2008) (cit. on p. 47).

[39] Justyna Zander-Nowicka, Ina Schieferdecker, and Abel Marrero Perez. “Au-
tomotive validation functions for on-line test evaluation of hybrid real-time
systems”. In: Autotestcon. IEEE Computer Society, (2006), pp. 799–805. doi:
10.1109/AUTEST.2006.283767 (cit. on p. 48).

75

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 26.36 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1243
 309
 None
 Up
 0.0000
 0.0000

 Both
 8
 AllDoc
 13

 CurrentAVDoc

 Smaller
 26.3622
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 26.36 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1243
 309
 None
 Up
 0.0000
 0.0000

 Both
 8
 AllDoc
 13

 CurrentAVDoc

 Smaller
 26.3622
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut top edge by 26.36 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1243
 309
 None
 Up
 0.0000
 0.0000

 Both
 8
 AllDoc
 13

 CurrentAVDoc

 Smaller
 26.3622
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 547.09 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1243
 309

 None
 Up
 0.0000
 0.0000

 Both
 8
 AllDoc
 13

 CurrentAVDoc

 Smaller
 547.0866
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryList_V1
 qi2base

