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ABSTRACT
To utilize edge and cloud in real-time industrial applications, com-
munication with the edge and cloud servers should be predictable
in timing. However, the predictability of offloading from device to
servers cannot be guaranteed in an environment where multiple
devices compete for the same edge and cloud resources due to poten-
tial server-side scheduling conflicts. To the best of our knowledge,
the state-of-the-art lacks a technique for offloading real-time appli-
cations from multiple devices to a set of heterogeneous edge/cloud
servers. To this end, this paper proposes a centralized resource
reservation technique that enables the offloading of real-time appli-
cations to the edge and cloud in a predictable time-schedule. The
proposed technique enables end-devices to request the server’s time
for offloadable real-time applications in advance, allowing a desig-
nated offloading server that guarantees the tasks’ timely execution.
Furthermore, the proposed technique is capable of optimizing the
reservation scheduling strategy with the goal of minimizing the
energy consumption of edge servers while meeting the stringent
timing requirements of real-time applications. The results showed
that the number of deadline satisfied jobs improved by 65%, and
total energy consumption by 3%, compared to the second best algo-
rithm among the ones that have been compared with the proposed
algorithm when the number of jobs is changed.

CCS CONCEPTS
•Computingmethodologies→ Self-organization; •Computer
systems organization→ Real-time system architecture.
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1 INTRODUCTION
As the world moves towards the fifth generation of network con-
nectivity (5G) and computing services become closer to users, the
digitalization opportunities promise to revolutionize even the most
traditional industries. This increased network capacity together
with diverse on-demand computing platforms (e.g., Cloud and Edge
Computing) creates opportunities to enable resource-intensive in-
dustrial applications that were not feasible before, including in-
frastructure monitoring, smart manufacturing, and collaborative
robots [7].

The cloud computing paradigm offers support for a wide range
of computation-intensive applications. Although cloud computing
provides enhanced storage and computing capacity, it can cause

high and unpredictable latencies [9, 11]. Edge computing is a dis-
tributed computing paradigm and ecosystem, where the execution
environment (e.g., computing and storage resources) is located
closer to the data source compared to the traditional cloud comput-
ing paradigm. Edge computing also enables offloading of certain
functionality from resource-constrained devices to edge and cloud
servers. By offloading, it is possible to improve the performance
of the local device, e.g., reduce energy consumption and extend its
capabilities by accessing advanced services only possible to run
in the edge-cloud [3]. Certainly, edge computing has lower laten-
cies compared to the cloud; however, these latencies are still not
consistent enough to meet the timing requirements of time-critical
applications.

Supporting timing predictability of offloading in an environment
where multiple devices compete for the same edge and cloud re-
sources due to potential server-side scheduling conflicts is still an
open challenge. To provide real-time computing as a service at the
edge/cloud would require the optimization of the decision of where
to offload, along with the determination of the best allocation of
communication and computation resources as in general-purpose
offloading schemes [5]. This paper focuses on the offloading de-
cision problem of “where to offload a time-critical application?".
Real-time tasks and jobs can be classified as periodic or aperiodic.
A periodic task execution repeatedly at regular intervals. However,
executions of aperiodic tasks are requested unpredictably. The time
interval between the arrivals of two consecutive requests in a peri-
odic task is called its period. In this paper, we focus only on periodic
tasks and propose a solution considering specific charactristic of
periodic tasks. Apart from that, the system model in this paper
does not consider communication between the device and the edge
layers, and also at the edge.

In this paper, we propose a server time reservation technique
for periodic real-time tasks to be offloaded to the edge. The pro-
posed technique allows end devices to request external resources
in advance for tasks that will be generated in the future; therefore,
when such a task is created, it already has a designated offloading
server that guarantees its timely execution. The main advantage of
the proposed technique is that when no server is able to accept a
reservation, the reservation is rejected, and since the actual job is
an event in the future, the device still has time to allocate resources
to execute the task locally. This reservation system is capable of
optimizing the reservation scheduling strategy with the goal of
minimizing energy consumption on the server side while meeting
the stringent timing requirements of the applications.

The remainder of this paper is organized as follows. Section II
discusses related work; and Section III presents the system model.



Section IV shows the offloading orchestrator, and the algorithms
proposed in this paperwere explained in Section V. Section VI shows
the simulation configuration and results. Section VII concludes the
paper and discusses future work.

2 RELATEDWORK
There are several existing works that provide various offloading
schemes to optimize the migration and scheduling of tasks from
end-devices to general-purpose edge/cloud servers [3, 6]. These
works mainly focus on minimizing energy consumption and delays.
Resource reservation for computation offloading has also received
attention in the state of the art. For instance, Kim et al. [4] study the
optimization of communication resources, particularly the network
access reservation when offloading data with high volume. The
authors propose a protocol to manage network access reservation
and encapsulate partitioned data offloading.

Toma et al. [10] use the total bandwidth server which claims the
free background time of periodic tasks to schedule aperiodic tasks
that are offloaded to servers. The offloading decisions of what and
where to offload are made on the client-side employing greedy and
dynamic programming algorithms.

Zhang et al. [12] predict the computation demand for offloading
in mobile environments using Deep Learning with historical data.
They present a reservation strategy for edge servers’ resources
based on the initial prediction. The resource scheduling and co-
ordination is done by a server in the cloud layer, which sends
reservation requests to bind geographical regions to nearby edge
servers based on a resource demand prediction. The goals of this
reservation scheduling is to achieve an efficient utilization of edge
resources.

Regarding the problem of offloaded task scheduling on the server-
side, it involves the allocation of resources following given schedul-
ing goals [2]. Misra et al. [8] propose Detour, an offloading scheme
for software-defined fog networks where devices locally decide
which server to use for offloading by choosing the one with the
shortest waiting and execution time. Then, the optimal network
path to offload is selected. Azizi et al. [1] study the scheduling of
offloaded tasks from multiple internet of things (IoT) devices to
heterogeneous fog networks. The proposed algorithm is based on a
randomized greedy strategy that can balance the energy consump-
tion of the system and tasks’ deadline satisfaction.

Our proposed algorithm transforms the server resource reser-
vation problem into a scheduling problem where devices submit
reservation requests ahead of time to ensure that the execution of
real-time tasks can meet the timing requirements.

3 SYSTEM MODEL
In an industrial environment consisting of multiple real-time de-
vices and edge/cloud servers, the possibility of offloading real-time
tasks raises the question of what is the best way of distributing
these tasks among the available servers without having scheduling
conflicts. In this section, we describe our centralized server time
reservation system aimed at optimizing the distribution of tasks
among servers with the goal of minimizing energy consumption
while meeting task deadlines.

Figure 1: Device-edge-cloud architecture.

For clarity, each instance of a periodic task created by a device
will be called a job, and it is assumed that each job can be offloaded
independently.

The benefit of working with periodic tasks is that devices can
anticipate the amount of resources that they will need to execute
task instances (jobs) periodically in the future.

3.1 Job Model
Let a periodic task 𝑅𝑇𝑥 = {𝑥1, ..., 𝑥𝑚} be a collection of jobs where
a single job is defined as follows:

𝑥𝑖 = {𝑝𝑠𝑥𝑖 ,𝑤𝑥𝑖 , 𝑑𝑥𝑖 , 𝑑𝑡𝑥𝑖 , 𝑡𝑜𝑢𝑡𝑥𝑖 , 𝑖𝑛𝑥𝑖 , 𝑜𝑢𝑡𝑥𝑖 }, (1)

where 𝑝𝑠𝑥𝑖 is the starting time of a job at theOffloadingOrchestrator
(OO) server,𝑤𝑥𝑖 is the worst-case execution time in the local device,
𝑑𝑥𝑖 is the deadline for job completion such that 𝑑𝑥𝑖 ≤ 𝑝𝑠𝑥𝑖+1 , 𝑑𝑡𝑥𝑖
is the deadline type of the job that is either hard or soft, 𝑡𝑜𝑢𝑡𝑥𝑖 is
the timeout of the job, 𝑖𝑛𝑥𝑖 is the size of the input data in bytes and
𝑜𝑢𝑡𝑥𝑖 is the size of the output data in bytes.

3.2 Device-edge-cloud Architecture
We consider a multi-tier architecture that contains local, edge, and
cloud tiers. Each tier contains heterogeneous processing platforms
that can be utilized to perform various types of tasks on different
processors. This multi-tier architecture is suitable for applications
that contain time-critical as well as non-time-critical but resource-
intensive tasks. Time-critical tasks can be executed on the edge,
while non-time-critical tasks can be executed on the cloud [5]. Fig. 1
shows a high-level overview of the interactions of our reservation
technique in the multi-tier architecture. Devices in the local tier
can send reservation requests to schedule the offloading of jobs in
the edge and cloud tiers.

The details of our reservation technique within this multi-tier
architecture are presented below.

• Local device tier: Industrial devices in the local tier generate
periodic tasks with hard and soft deadlines.
A device autonomously decides whether to execute a job
locally or offload it to an external processor based on a util-
ity function [8]. A utility function could consider different
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criteria, such as job characteristics, device internal status,
and edge/cloud status. If a device identifies that it may ben-
efit from offloading a job, it can reserve processing capacity
in an external server by sending a reservation request to
the OO, a centralized entity at the edge tier that acts as a
gateway to all the available edge and cloud servers. If a job
could not be scheduled by OO, the device is quickly noti-
fied and possibly still has time to allocate local resources to
execute the job without missing its deadline.

• Edge tier: The edge level consists of a distributed network
of edge servers with heterogeneous computing capabilities,
which are all connected to the OO server. The OO server
receives reservation requests from devices in its reservation
queue, then, the scheduling of jobs to servers at specific
time slots becomes an optimization problem. The OO server
computes a solution to the optimization problem that best
meets the objectives of minimizing the energy consumption
of the servers and the number of missed deadlines for the
job. The OO server can accept or reject a reservation request
accordingly and notify the device of the decision.

• Cloud tier: The cloud tier consists of a set of resource-rich
servers with high computing power and storage capacity.
However, due to the considerable physical distance between
the servers and devices, processing of offloaded jobs in this
environment may suffer from high and unpredictable laten-
cies, which is not suitable for time-critical jobs. Neverthe-
less, the cloud environment is well-suited for jobs that can
tolerate latencies.

4 OFFLOADING ORCHESTRATOR
The Offloading Orchestrator (OO) operates at an edge server and
has five main functions: receive reservation requests from devices,
assign server execution time to requests via scheduling optimiza-
tion, receive accepted jobs from devices, assign jobs to proper pro-
cessing units according to the schedule, and monitor the status
of the servers on the network as shown in Fig. 2. Reservation re-
quests from devices are placed in a reservation queue that the OO
server periodically reviews to send the accumulated requests to
the job scheduler. Then, the job scheduler component of the OO
server runs an optimization algorithm called Real-time Priority-
aware Semi-greedy (RT-PSG) to schedule job reservation requests
to servers.

Details of the RT-PSG algorithm are provided in Section 5. Finally,
the resource monitoring component of the OO server constantly
scans the status of the other edge servers and the cloud generated
by a management service running on each server. This monitoring
component is able to report the status of the edge-cloud servers
before each scheduling cycle.

4.1 Timing model
The response time of a job 𝑥𝑖 is determined by 1) the transmission
time from the OO to the edge server 𝑣 , 𝑇 𝑡𝑥

𝑥,𝑂𝑂→𝑣
, 2) the waiting

time at edge server 𝑣 while higher priority jobs are executed, 𝑇𝑤
𝑣 ,

3) the execution time at edge server 𝑣 ,𝑇 𝑒𝑥𝑒
𝑥𝑖 ,𝑣

, and 4) the reverse path
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Figure 2: Offloading Orchestrator architecture.

of transmission of results back to the OO,𝑇 𝑡𝑥
𝑥,𝑂𝑂←𝑣

. Note that a job
that has a reservation does not need to be in a queue at the OO.

The transmission time from source to destination defined as

𝑇 𝑡𝑥
𝑥𝑖 ,𝑠𝑟𝑐→𝑑𝑠𝑡

=
data size
𝑏𝑠𝑟𝑐→𝑑𝑠𝑡

, (2)

where the data size is either 𝑖𝑛𝑥𝑖 or 𝑜𝑢𝑡𝑥𝑖 depending on the case
and 𝑏𝑠𝑟𝑐→𝑑𝑠𝑡 is the bandwidth of the link between the source and
destination.

The waiting time at edge server 𝑣 while previously scheduled
jobs are executed is defined by

𝑇𝑤
𝑣 =

∑︁
𝑦𝑖 ∈𝑌𝑣

𝑇 𝑒𝑥𝑒
𝑦𝑖 ,𝑣

(3)

where 𝑌𝑣 is the set of previously scheduled jobs on server 𝑣 .
Let 𝑠𝑢𝑝𝑣 be the speedup of edge server 𝑣 with respect to the local

device. Then, the processing time of job 𝑥𝑖 at edge server 𝑣 is defined
as

𝑇 𝑒𝑥𝑒
𝑥𝑖 ,𝑣

=
𝑤𝑥𝑖

𝑠
𝑢𝑝
𝑣

. (4)

Therefore, the offloading time of job 𝑥𝑖 when offloaded to edge
server 𝑣 is given by

𝑇
𝑜 𝑓 𝑓

𝑥𝑖 ,𝑣
= 𝑇 𝑡𝑥

𝑥,𝑂𝑂→𝑣 +𝑇
𝑤
𝑣 +𝑇 𝑒𝑥𝑒

𝑥𝑖 ,𝑣
+𝑇 𝑡𝑥

𝑥,𝑂𝑂←𝑣 (5)

Note that the edge server running the OO can also execute offloaded
jobs, in which case 𝑇 𝑡𝑥

𝑥,𝑂𝑂→𝑣
= 𝑇 𝑡𝑥

𝑥,𝑂𝑂←𝑣
= 0.

4.2 Energy Model
The energy model follows the model proposed in [1]. We only
present the edge energy model, in which we have two components
of the server being active and idle during execution of the edge
servers. The edge energy consumption is shown in Eq.(6). The
detailed calculation can be found in [1].

𝐸𝑆𝑦𝑠 = 𝐸𝑎𝑐𝑡𝑆𝑦𝑠 + 𝐸
𝑖𝑑𝑙𝑒
𝑆𝑦𝑠 , (6)
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4.3 Resource allocation optimization
Let J be the set of all job reservation requests submitted to the
reservation queue in OO. Let T be the time slots available at each
scheduling cycle. The problem consists of mapping the set of jobs
J to the set of edge-cloud servers 𝑉 , and into a specific time slot,
S : J → (𝑉 ,T), such that each server runs only one job at a time,
while minimizing edge energy consumption, 𝐸𝑆𝑦𝑠 , and the time
violation of the system, 𝑇 𝑣𝑖𝑜𝑙 . Moreover, let 𝑇 𝑣𝑖𝑜𝑙 be the total time
violation in the system:

𝑇 𝑣𝑖𝑜𝑙 =
∑︁

(𝑥𝑖 ,𝑣,𝑡𝑚 ) ∈S
max(𝑝𝑠𝑥𝑖 +𝑇

𝑜 𝑓 𝑓

𝑥𝑖 ,𝑣
− 𝑑𝑥𝑖 , 0) (7)

Formally, this multi-tier offloading reservation scheduling prob-
lem can be expressed as:

min𝐸𝑆𝑦𝑠 ,min𝑇 𝑣𝑖𝑜𝑙

subject to 𝐶1 : (𝑥𝑖 , 𝑣, 𝑡𝑚) ∈ S s.t. (𝑥𝑖 ,𝑤, 𝑡𝑙 ) ∉ S,
∀𝑤 ∈ 𝑉𝑤 ≠ 𝑣,∀𝑡𝑙 ≠ 𝑡𝑚 ∈ T

𝐶2 : 𝑇𝑜 𝑓 𝑓

𝑥𝑖 ,𝑣
≤ 𝑑𝑥 ,∀𝑥𝑖 ∈ Jℎ,

(8)

whereJℎ is the set of jobswith hard deadline. Constraint𝐶1 ensures
that a job is only scheduled to strictly one combination of server
and time slot during a scheduling cycle, and constraint 𝐶2 requires
that each job with hard deadline meets its deadline. If a job cannot
be scheduled to the system due to missed deadlines or a lack of free
slots on all servers, the job is rejected.

To solve this optimization problem efficiently, we propose a low-
complexity heuristic algorithms, which is described in the next
section.

5 PROPOSED ALGORITHM: RT-PSG
(REAL-TIME PRIORITY-AWARE
SEMI-GREEDY)

In this section, we propose a heuristic algorithm, which is called
RT-PSG, to schedule real-time job reservations that have been sub-
mitted by devices to the OO. RT-PSG extends the algorithms in-
troduced by Azizi et al. [1] in which a semi-greedy approach was
used for job scheduling in a fog environment to minimize energy
consumption while meeting job deadlines. However, the problem
defined in this paper is different from the one described in [1] as
this work intends to schedule job reservations with multiple start
times while in [1] jobs have the same start time that needs to be
scheduled as soon as possible. Scheduling jobs with multiple start
times requires not only the mapping of jobs to servers, but also a
time slot assignment according to each jobs start time and deadline.

The RT-PSG semi-greedy approach prioritizes job reservation
requests first by deadline type and then by urgency. Priority by
deadline type is defined to give more priority to requests with
hard deadlines over soft deadlines. The reason for this is that jobs
with soft deadlines can tolerate delayed results, while jobs with
hard deadlines will fail. The priority by urgency is given to jobs
that have an earlier start time. Then, RT-PSG goes through the
prioritized list of job reservations and successively assigns to a
job the best server and time-slot available at the moment. The

best server is determined by estimating the response time, 𝑇𝑜 𝑓 𝑓

𝑥𝑖 ,𝑣
,

the edge energy consumption, 𝐸𝑆𝑦𝑠 , and the time violation, 𝑇 𝑣𝑖𝑜𝑙 .
Greedy approaches select the best possible result at the current
decision point, while RT-PSG is semi-greedy because it includes
a randomized step in the server selection. Our proposed RT-PSG
consists of the following steps:

Step 1: Jobs are sorted by deadline type and by urgency in
ascending order.

Step 2: Find a suitable time slot to start the job on each server
that doesn’t conflict with any other higher priority job previously
scheduled to the servers.

Step 3: Calculate the response time of the job on each server
using Eq. (5). Add all servers with response time to ValidSList. Add
the servers that can meet the job deadline to the list of deadline
satisfying servers, DSList.

Step 4: If DSList is not empty, such that at least one edge/cloud
server can meet the job deadline, estimate the energy consumption
of the system (Eq. 6) for each server up until this point where the
current job is tentatively scheduled to such server. Add the least
energy consuming servers to the Restricted Candidate List (RCL).
Finally, randomly choose one server from RCL to schedule the job
at the time slot previously identified.

Step 5: If DSList is empty, i.e. none of the edge/cloud servers can
meet the specified job deadline, check if the job has a hard or a soft
deadline.

Step 6: If DSList is empty and the job has a hard deadline, reject
the job.

Step 7: If DSList is empty and the job has a soft deadline, select
the server with the shortest response time in ValidSList, i.e., the one
that violates the deadline the least. If ValueSList is empty, that is,
all servers are full and no one is able to fit this job, reject the job.

The algorithm 1 demonstrates the process of finding a free time
slot in a specific server in Step 2. First, we iterate over the list of
jobs assigned to each server in search for one free slot per server
that meets the requirements of the new job. A slot is found in a
server when it is sufficiently large to accommodate the new job
and it is free within the job’s start time and the job’s deadline.
When a free slot is found in a server, the job is added to a copy
of the current list of jobs assigned to the server which represents
one scheduling option for the job. When the FIND-FREE-SLOT
algorithm finds many scheduling options, i.e., many servers with a
free slot, the optimized server selection process is handled by the
succeeding algorithms. When none of the servers has a free slot,
the job reservation is rejected.

Apart from that, other Steps are performed similar to [1], in-
cluding the semi-greedy strategy to select the most energy saving
servers, and the strategy to select the least time violating server
when there is no server that can meet a soft deadline.

6 SIMULATION CONFIGURATION AND
RESULTS

The proposed RT-PSG algorithm has been evaluated using a simu-
lated scenario in which a set of job reservation requests arrive to a
centralized entity, named OO, connected to a network of cloud and
edge servers. In this section, we describe the simulation configura-
tion and present the results.
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Algorithm 1 FIND-FREE-SLOT

Input: 𝑥𝑖 , 𝑠′,𝑇 𝑒𝑥𝑒
𝑥𝑖 ,𝑠′

Output: updated 𝑠′ jobs with 𝑥𝑖 in a suitable 𝑡
1: 𝑑𝑙 ← 𝑑𝑥𝑖 if 𝑥𝑖 has hard deadline else 𝑡𝑜𝑢𝑡𝑥𝑖
2: 𝑖𝑛𝑖𝑡 ← 𝑝𝑠𝑥𝑖

3: 𝑖𝑛𝑑𝑒𝑥 ← 𝑁𝑈𝐿𝐿

4: if 𝑠′ . 𝑗𝑜𝑏𝑠 = ∅ then
5: 𝑖𝑛𝑑𝑒𝑥 ← 0
6: else
7: for each job 𝑦𝑖 in 𝑠′ . 𝑗𝑜𝑏𝑠 do
8: if 𝑦𝑖 . 𝑗𝑜𝑏𝐸𝑛𝑑 ≤ 𝑖𝑛𝑖𝑡 then
9: skip iteration
10: else if 𝑦𝑖 . 𝑗𝑜𝑏𝐼𝑛𝑖𝑡 − 𝑖𝑛𝑖𝑡 ≥ 𝑇 𝑒𝑥𝑒

𝑥𝑖 ,𝑠′
then

11: 𝑖𝑛𝑑𝑒𝑥 ← 𝑦𝑖 .𝑖𝑛𝑑𝑒𝑥

12: break
13: else if 𝑦𝑖 . 𝑗𝑜𝑏𝐸𝑛𝑑 ≥ 𝑑𝑙 then
14: break
15: end if
16: 𝑖𝑛𝑖𝑡 ← 𝑦𝑖 . 𝑗𝑜𝑏𝐸𝑛𝑑

17: end for
18: if 𝑖𝑛𝑑𝑒𝑥 = 𝑁𝑈𝐿𝐿 then
19: if 0 < 𝑑𝑙 − 𝑠′ . 𝑗𝑜𝑏𝑠.𝑙𝑎𝑠𝑡 . 𝑗𝑜𝑏𝐸𝑛𝑑 ≤ 𝑇 𝑒𝑥𝑒

𝑥𝑖 ,𝑠′
then

20: 𝑖𝑛𝑑𝑒𝑥 ← 𝑠′ . 𝑗𝑜𝑏𝑠.𝑙𝑎𝑠𝑡 .𝑖𝑛𝑑𝑒𝑥 + 1
21: 𝑖𝑛𝑖𝑡 =𝑚𝑎𝑥 (𝑠′ . 𝑗𝑜𝑏𝑠.𝑙𝑎𝑠𝑡 . 𝑗𝑜𝑏𝐸𝑛𝑑, 𝑝𝑠𝑥𝑖 )
22: end if
23: end if
24: end if
25: if 𝑖𝑛𝑑𝑒𝑥 ≠ 𝑁𝑈𝐿𝐿 and 𝑖𝑛𝑖𝑡 +𝑇 𝑒𝑥𝑒

𝑥𝑖 ,𝑠′
≤ 𝑑𝑙 then

26: 𝑥𝑖 . 𝑗𝑜𝑏𝐼𝑛𝑖𝑡 ← 𝑖𝑛𝑖𝑡

27: 𝑥𝑖 . 𝑗𝑜𝑏𝐸𝑛𝑑 ← 𝑖𝑛𝑖𝑡 +𝑇 𝑒𝑥𝑒
𝑥𝑖 ,𝑠′

28: 𝑠′ . 𝑗𝑜𝑏𝑠 ← 𝑠′ . 𝑗𝑜𝑏𝑠 [: 𝑖𝑛𝑑𝑒𝑥] ∪ [𝑥𝑖 ] ∪ 𝑠′ . 𝑗𝑜𝑏𝑠 [𝑖𝑛𝑑𝑒𝑥 :]
29: end if

6.1 Simulation Configuration
To simulate the scenario, we need two datasets: one of realistic job
reservation requests and another one of realistic edge and cloud
server characteristics.

To build the jobs dataset, a periodic tasks dataset is created first to
represent offloading devices. This tasks dataset closely follows the
task configuration of [1], with extra values regarding the periodicity
of tasks needed in our case. The tasks are of two catagories; One is
light-weight hard real-time tasks (worst-case execution time 100-
300 ms, deadlines 100-400 ms) and other one is resource-intensive
soft real-time tasks (worst-case execution time 400-800 ms, soft
deadlines 400-1100 ms). Input size for each task is between 100 Kb -
10 Mb and output size is between 1 Kb - 1 Mb. Task periods 1-3 s.

The server dataset consists of Edge and Cloud Servers. The edge
servers have a speedup over local processing of 1.5 to 3 times,
whereas the cloud servers have a speedup over local processing
of 5 to 10 times. The power consumption of the edge and cloud
servers can be found in [1]. To stress the servers in this scenario,
the number of jobs varies between 20 and 100. Half of the jobs have
hard deadlines, while the other half have soft deadlines. During
the simulation, the number of edge and cloud servers are fixed to 3

and 2 respectively, in accordance to an industrial scenario where
devices can reserve time in nearby edge servers through the OO.

The simulation scripts are written in Python 3.10 and executed
on an Intel Xeon CPU E5-2680, with 2.7GHz clock speed, 8 cores, 6
Gb of RAM, and over a Ubuntu 22.04 operating system.

6.2 Baseline algorithms
To compare the performance of RT-PSG, we implement the follow-
ing three baseline algorithms:

• Earliest Deadline First - Random (EDF-Rand): This
algorithm sorts the jobs to be scheduled by their deadline
in ascending order in Earliest Deadline First (EDF) fashion,
then randomly assigns a server to it (Rand).

• First Come First Served - Greedy for Response Time
(FCFS-GfR): This algorithm traverses the list of jobs as
they arrives in First Come First Served (FCFS) fashion and
sequentially assigns to it the serverwith the fastest response
time in a Greedy for Response Time (GfR) strategy.

• First Come First Served - Round Robin (FCFS-RR):
This algorithm traverses the list of jobs as they arrive in
FCFS fashion and rotates the server assignment in a circular
fashion among the available servers in a Round Robin (RR)
strategy.

6.3 Results
In this section, the performance of the RT-PSG algorithm for server
time reservation with the datasets and evaluation scenarios are
presented. The RT-PSG algorithm has been compared with 3 base-
line algorithms: EDF-Rand, FCFS-RR and FCFS-GfR to evaluate its
performance.
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Figure 3: Percentage of deadline satisfied jobs.

Figure 3 displays deadline satisfied jobs, while Figure 3a focuses
on algorithms’ performance with hard deadlines. Among them, RT-
PSG excels in maintaining high deadline satisfaction, significantly
outperforming FCFS-GfR and EDF-Rand, as other algorithms don’t
distinguish between hard and soft deadlines, leading to reservations
that miss hard deadlines. On the contrary, RT-PSG rejects unsatis-
fiable hard deadline jobs, allowing space for others. On the other
hand, FCFS-RR prioritizes fair workload distribution over dead-
lines, resulting in the lowest hard deadline satisfaction, consistently
below 40%.
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Figure 4: Energy consumption of edge servers and system
makespan.

Figure 3b shows how the different algorithms handle reservations
for jobs with soft deadlines. Noticeably, even when RT-PSG gives
priority to hard deadline jobs, it is also able to satisfy soft deadline
jobs by the level of FCFS-GfR, which does not consider the hardness
of job deadlines. FCFS-GfR tends to be superior to RT-PSG when
workload increases; however, this level of satisfaction of deadlines
comes at the cost ofmissing a considerable amount of hard deadlines
in the same reservation cycle. Regarding the performance of the
EDF-Rand algorithm, its random strategy to select servers makes it
choose busy servers more often than the other algorithms, which
does not help with hard or soft deadline satisfaction.

Figure 4a presents the energy consumed by edge servers when
following a schedule, as this is one of the optimization goals of
RT-PSG. In this scenario, RT-PSG is able to save the most edge
energy not only due to the early rejection of hard deadline jobs,
but also due to its randomized selection of servers among the top
performers, which enables it to choose cloud servers more often
compared to FCFS-GfR, which tends to focus on edge servers due
to their fast response time. This is corroborated in Figure 4b, which
estimates the makespan of the system including edge and cloud
servers and shows how the RT-PSG schedule would be executed
faster.

Regarding EDF-Rand and FCFS-RR, have a similar level of edge
server energy consumption for different number of jobs in the test.
Since none of these two algorithms take the server response time
in to account make their scheduling decisions, both are more likely
to schedule jobs in unsuitable servers than their counterparts. In
this scenario, RT-PSG offers a more balanced trade-off between
deadline misses and edge server energy consumption by achieving
a high rate of deadline satisfaction while keeping a low edge server
energy consumption.

7 CONCLUSIONS
This work presented a centralized server reservation system for
real-time applications that offload periodic task instances (jobs)
to the edge/cloud. A semi-greedy heuristic algorithm, RT-PSG, is
proposed to optimize reservation scheduling so that it prioritizes
hard deadline requests over soft deadline requests and produces a

schedule that minimizes the energy consumption of edge servers.
RT-PSG was evaluated against three baseline algorithms and it was
found that the prioritization and server selection strategies of this
algorithm can balance the trade-off between energy consumption
and the percentage of deadline satisfied jobs. The results showed
that RT-PSG achieves higher percentages of jobs with met dead-
line, while energy consumption is lower. In the future, we plan to
compare the proposed algorithms with other related studies. Addi-
tionally, we can extend the simulation configurations and scenarios
to consider more realistic setups. Moreover, we can consider mon-
etary costs and how we can optimize our task scheduling based
on that, and complexity analysis can be added to show how our
proposed algorithm works compared to other algorithms.

ACKNOWLEDGMENTS
This work was partially supported by the project AORTA (Ad-
vanced Offloading for Real-Time Applications) that has received
funding from Swedish Innovation Agency (VINNOVA) under grant
agreement No 2022-03039.

REFERENCES
[1] Sadoon Azizi, Mohammad Shojafar, Jemal Abawajy, and Rajkumar Buyya. 2022.

Deadline-aware and energy-efficient IoT task scheduling in fog computing sys-
tems: A semi-greedy approach. Journal of network and computer applications 201
(2022), 103333.

[2] Mir Salim Ul Islam, Ashok Kumar, and Yu-Chen Hu. 2021. Context-aware sched-
uling in Fog computing: A survey, taxonomy, challenges and future directions.
Journal of Network and Computer Applications 180 (2021), 103008.

[3] Congfeng Jiang, Xiaolan Cheng, Honghao Gao, Xin Zhou, and Jian Wan. 2019.
Toward computation offloading in edge computing: A survey. IEEE Access 7
(2019), 131543–131558.

[4] Taehoon Kim, Yongjae Kim, Emmanuella Adu, and Inkyu Bang. 2023. On Of-
floading Decision for Mobile Edge Computing Systems Considering Access
Reservation Protocol. IEEE Access (2023).

[5] Hai Lin, Sherali Zeadally, Zhihong Chen, Houda Labiod, and Lusheng Wang.
2020. A survey on computation offloading modeling for edge computing. Journal
of Network and Computer Applications 169 (2020), 102781.

[6] Pavel Mach and Zdenek Becvar. 2017. Mobile edge computing: A survey on
architecture and computation offloading. IEEE communications surveys & tutorials
19, 3 (2017), 1628–1656.

[7] Aamir Mahmood, Luca Beltramelli, Sarder Fakhrul Abedin, Shah Zeb, Nishat I
Mowla, Syed Ali Hassan, Emiliano Sisinni, and Mikael Gidlund. 2021. Industrial
IoT in 5G-and-beyond networks: Vision, architecture, and design trends. IEEE
Transactions on Industrial Informatics 18, 6 (2021), 4122–4137.

[8] Sudip Misra and Niloy Saha. 2019. Detour: Dynamic task offloading in software-
defined fog for IoT applications. IEEE Journal on Selected Areas in Communications
37, 5 (2019), 1159–1166.

[9] Saad Mubeen, Pavlos Nikolaidis, Alma Didic, Hongyu Pei-Breivold, Kristian
Sandström, and Moris Behnam. 2017. Delay Mitigation in Offloaded Cloud
Controllers in Industrial IoT. IEEE Access 5 (2017), 4418–4430.

[10] Anas Toma and Jian-Jia Chen. 2013. Server resource reservations for computa-
tion offloading in real-time embedded systems. In The 11th IEEE Symposium on
Embedded Systems for Real-time Multimedia. IEEE, 31–39.

[11] Peng Yang, Ning Zhang, Yuanguo Bi, Li Yu, and Xuemin Sherman Shen. 2017.
Catalyzing cloud-fog interoperation in 5G wireless networks: An SDN approach.
IEEE Network 31, 5 (2017), 14–20.

[12] Jianhui Zhang, JiachengWang, Zhongyin Yuan, Wanqing Zhang, and Liming Liu.
2023. Offloading Demand Prediction-driven Latency-aware Resource Reservation
in Edge Networks. IEEE Internet of Things Journal (2023).

6


	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	3.1 Job Model
	3.2 Device-edge-cloud Architecture

	4 Offloading Orchestrator
	4.1 Timing model
	4.2 Energy Model
	4.3 Resource allocation optimization

	5 Proposed Algorithm: RT-PSG (Real-time Priority-aware Semi-greedy)
	6 Simulation Configuration and Results
	6.1 Simulation Configuration
	6.2 Baseline algorithms
	6.3 Results

	7 Conclusions
	Acknowledgments
	References

