Light-Weight MBSE Approach for Construction
Equipment Domain - An Experience Report *

15" Johan Cederbladh Madlardalen University
Visteras, Sweden
johan.cederbladh@mdu.se

284 Jagadish Suryadevara Volvo Construction Equipment
Eskilstuna, Sweden
jagadish.suryadevara@volvo.com

December 15, 2023

Abstract

Model-Based Systems Engineering (MBSE) has emerged as a de facto
standard practice for complex systems development. However, despite
standard frameworks, methods, and tools, the MBSE practices in indus-
trial contexts are far from mature. This is particularly true for tradition-
ally hardware-intensive industrial systems and complex products such as
heavy construction machinery. This paper outlines a light-weight MBSE
methodology developed within the construction equipment domain. The
approach is based on customizing a general MBSE methodology, such as
RFLP, guided by a core ontology for architecture modeling. The ontol-
ogy defines the main architecture concepts and corresponding modeling
views to develop an architecture baseline for the corresponding system
model. The initial architecture baseline is developed bottom-up instead
of a traditional top-down approach. As we demonstrate in this paper,
the minimalist approach paves the way for faster deployment of MBSE in
industrial contexts with low modeling experience and legacy development
silos across electronics, software, and hardware domains.

MBSE, Methodology, Architecture, Bottom-up

1 Introduction

Volvo Construction Equipment is a global manufacturer of heavy machinery
and equipment in the Construction domain. Construction Equipment (CE)

*This is a pre-preint of a paper in the APSEC30 conference. This work was partly funded
by the AIDOaRt project, an ECSEL Joint Undertaking (JU) under grant agreement No.
101007350.

https://orcid.org/0000-0003-2021-8341

is utilized in a wide array of operational contexts and environments, such as
mining, forestry, road paving, excavation, etc. Traditionally, the Systems Engi-
neering (SE) approach within the CE domain has been hardware (HW)-centric
despite the multi-disciplinary contexts involved, e.g., software (SW), electron-
ics, electrical domains, etc. However, with the increasing complexity of machine
functionality and the increase of SW concerns, the traditional HW-centric SE
approach is increasingly ineffective. The CE domain is transforming towards
digitalization with increased SW systems (embedded or inter-connected), ever-
increasing functionality (e.g., business services), and corresponding data needs,
in this context, establishing traceability (so-called digital thread [31]) through
various system elements enable continuous development (e.g. DevOps [26]) of
the involved systems and functionality throughout the machine lifecycle.

Model-Based Systems Engineering (MBSE), where digital models represent
system specification and design artifacts, is becoming the standard industry
practice during development and operational phases [10,/34]. Compared to tra-
ditional document-centric development (especially in the CE domain), the SE
processes in model-based approaches are centered around developing various vi-
sual and machine-readable models, even from the very early stages of develop-
ment [15]. Increased use of digital models enables enhanced SE capabilities such
as traceability, early analysis, etc. [8,/17}{18]. Models additionally can help lever-
age abstraction for cross-domain integration and more holistic processes [31].
However, as experience and various studies have established, the application of
MBSE, especially for industrial-scale projects, requires a steep learning curve
and a long-term enterprise investment [6,[33,/36]. At the same time, MBSE is
seeing a significant increase in industrial attention with corresponding success
stories [2,[7]. So although MBSE is becoming a standard practice with several
observed benefits, it still remains a challenge for industrial adoption. Partic-
ularly non-modeler engineers struggle to conform to languages and tools used
with traditional model-based methods.

In this paper, we outline a light-weight MBSE methodology developed within
the CE context and discuss the experience of introducing a model-based ap-
proach in an industrial setting. The methodology is based on adopting general
systems modeling principles, however, customized for the CE context. The
methodology facilitates an incremental and iterative approach in developing an
architecture baseline for a system model, later used for detailed design and de-
velopment. The approach emphasizes method and process-centric rather than
learning specific modeling languages or tools. Experience shows that this has
facilitated a faster understanding of modeling techniques and communication
between non-expert modelers and other stakeholders. To facilitate the lan-
guages agnostic approach, we re-use a core ontology for CE and later highlight
a practical application in a real system using a standard modeling language.

The rest of the paper is structured as follows. Section [2] presents an overview
of SE concepts and some standard methodologies in SW and HW domains in
addition to related work. Section [3| presents the motivation and overview of the
proposed systems (architecture) modeling methodology. Section describes the
deployment of the methodology in a project context. The overall experience

and related issues are discussed in Section [5] followed by conclusions in Section
§

2 Background and Related work

Systems Engineering (SE) is a multi-domain discipline that considers the en-
tirety of a system life-cycle, from needs and requirements to finalized products
and their operation [34]. The following standards govern SE practices. ISO
15288 " Software and systems engineering”ﬂ defines standard SE processes. ISO
26550 ” Reference model for product line engineering and management”ﬂ extends
the previous standard for product line development. ISO 42010 ”Systems and
software engineering — Architecture description”EL defines a reference model
for architecture description for a System-of-Interest (Sol). As defined by the
architecture standard, we consider the notion of architecture views central to a
MBSE methodology. An architectural view addresses a particular stakeholder
concern and describes the system elements and their relationships with respect
to the concern. In the proposed light-weight methodology, we define a set of
architecture views as a baseline for the system model.

Architectural description languages (ADLs) are widely used in SW engi-
neering domains. For example, the EAST-ADL language is a de-facto standard
for embedded SW development in the automotive domain [11]. The EAST-
ADL language defines SW architecture views-stack (based on abstraction and
refinement). The implementation layer of the stack is defined by AUTOSAR
standarﬂ AADL (Architecture Analysis and Description Language) is used for
the specification of both SW and HW (electronic) architecture views primarily
in the Avionics domain [13]. These mentioned SW views, mainly EAST-ADL,
apply in the CE domain. However, the methodology in this paper focuses on
defining system-level architecture views.

Generally, "models” are abstract representations of reality used for some
cognitive purpose |24]. The use of models is quite widespread in design engi-
neering, and typical examples might include CAD, SW models, schematics, and
various physics-based simulation models [21}23,[25,[29]. In the MBSE context,
the use of models has increasingly been motivated for early phases of system
development prior to detailed system designs [1,28]. SysMIﬂ is the de facto
standard language for system modeling [14] and provides visual notation for
documenting various system aspects such as requirements, behaviour, structure,
and parameters. Correspondingly, various diagrammatic views can be created
using the above notation. SysML is a general-purpose modeling language that
requires domain-specific methodologies and tool support for industrial applica-

11SO 15288 standard available at: https://www.iso.org/standard/63711.html

2ISO 26550 standard available at: https://www.iso.org/standard/69529.html

31SO 42010 standard available at: https://www.iso.org/standard/74393.html

4https://www.autosar.org/. AUTOSAR enables integration of multi-vendor SW and elec-
tronics components to implement EAST-ADL specifications

5SysML standard available at: https://www.omg.org/spec/SysML/

tions. Besides general methodologies [14], [27], there exist some domain specific
frameworks such as ARCADIA [30], and others [12].

While many approaches, methods, and methodologies are defined for MBSE
[10,127,135], it is often difficult to apply for new adopters. In this paper, we
specifically consider the CE domain, and although many works present domain-
specific extensions for SysML, there is little work in our considered domain. In
previous work, we have presented the experience of adopting MBSE in CE [33].
The work has highlighted the perceived usefulness of MBSE but also pinpointed
the lack of added analytical capabilities in off-the-shelf tool solutions and the
overall poor integration in tooling landscapes. Similarly, the other works of
MBSE in the CE domain have shown initial success. However, these works
have also demonstrated the need for more robust integration and development
of underlying methodologies and frameworks [32,(33]. In this regard, we aim
to use previous knowledge and extend the existing approaches to accommodate
expressed limitations and realize perceived benefits.

Several model management approaches known as ”grids” exist in literature
[3,22/27]. At this stage, these approaches are common practice for using MBSE,
and combines abstraction with stakeholder concerns to create intersecting grids
that can drive development through various standard views. While separating
concerns is useful, the existing methodologies are often hard to apply ”as is”
due to the overly abstract definition and high-level application descriptions.
Similarly, the approaches expect traditional top-down workflows, which is not
always suitable in a industrial SE context. The typical grids are also overly
comprehensive and inhibit the creation of baseline views by overly complex
methods often mapped to specific languages like SysML. As such, the need for
more light-weight and, in the case of some HW-intensive systems, bottom-up
approaches could improve adoption efforts. Our work additoinally focuses on
enabling a holistic light-weight approach to MBSE. Literature has few examples
of light-weight approaches. Hanna et al. highlight a modular light-weight MBSE
approach |16]. Their work focuses on the process of modeling methodically, and
the main contribution is how to perform the modular approach systematically.
The work emphasizes the need for processes and data to be linked and traced
through development. Their work has similarities with what is presented in this
paper, but our focus is different as the application of the approaches is not the
same. Also, our work is based on the industrial focus and needs. While light-
weight MBSE is more scarce, holistic approaches exist for other domains [4,/19]
20,[37]. These approaches are seeing increasing interest with the improvements
to MBSE maturity, particularly tool integration and exchange of data. While
these works are closely related, ours focuses on the CE domain, particularly
highlighting a bottom-up rather than a typically top-down approach.

3 Methodology motivation and overview

In the CE domain, system development has traditionally been HW-centric, and
HW modularity has been a driving factor for cost-effective design and modular

production. The HW modules are the main building blocks for designing con-
figurable product platforms and overall management of corresponding product
families. The individual product types are configured (through modules and
containing design elements) from corresponding product platforms. Fig. [1| cap-
tures the core architecture ontology behind the modular architecture designs,
albeit from the HW perspective, but applicable for other solution domains. The
other solution domains of increasing interest are SW and electronics develop-
ment. The latter solution domains have corresponding architecture methodolo-
gies, as described in Section 2} The mentioned solution domains have become
development silos hindering the successful deployment of MBSE methodologies
and realizing the stakeholder functionality required at the system level. In this
paper, we present a light-weight MBSE approach for developing an architecture
model at the System level that fulfills the following objectives:

e Traceability of SW and HW elements to stakeholder needs and system
requirements.

e Specification of functionality at the system level.

e Specification of system (logical) architecture, i.e., logical partitioning of
system functionality.

e A system model for stakeholder (non-expert modelers) communication.

Many standard methodologies described in the literature cater to the above
objectives in general. However, as the experience points out, the industrial
deployment of MBSE has not been very successful often due to the following
reasons.

e Legacy methodologies disconnected from traditional top-down approach
prescribed by MBSE.

e The commonly used general purpose modeling language SysML is per-
ceived as SW-centric and incomprehensible.

e Non-modeling system stakeholders often prefer office-tools such as Power-
point, Excel, Visio artifacts

e Lack of a unified architecture methodology with clear separation-of-concerns
(e.g., architecture vs design).

e Lack of principles and guidelines to handle traceability, variability, etc

e Lack of leverage/synergy with HW modularity principles and methodolo-
gies, especially in the CE domain.

The light-weight approach described in this paper considers the above pain-
points in defining a modeling approach, albeit leveraging existing methodolo-
gies. The architecture ontology described in Fig. [I| provides the conceptual
framework for defining a minimal set of modeling views to develop a system

model. The approach emphasizes the quick adoption for non-modelers via the
bottom-up approach that bases the models on already well formed machine so-
lutions. Using existing machine solutions as a blueprint, the model represents
a compact architecture view of the System-of-Interest (Sol), which can later be
extended /complimented, as this paper shows, with other views, e.g., functional
(behavior) as prescribed by standard modeling methodologies. In the rest of
this section, we describe the transformation of the ontology into a baseline of
system (architecture) views and corresponding building blocks. The approach
is aligned with traditional RFLP modeling techniques, as shown in Fig. [2] and

Fig.

Architecture baseline
< System Model >

........................

System Element

{abstract} Design/Development
Hierarch}l'/"'"""""""""“‘ DesignElement
(aggregation) Specilization < Structure >
ArchitectureElement (logical) Aggregation Variable,
< Structure > < Configurable,
o Parameterized,
Domains - Requirements, | Specilization
Functional, Software,
Hardware | ‘
0 Hierarchy
Aggregation Specilization |[Exchange (Composistion)
InterfaceElement 4|_l> <I_L
< Flow > System
Engineer
Architect Designer

Figure 1: A core ontology for architecture baseline and design/development.

3.1 Architecture Ontology to a Baseline Model

The architecture ontology, as shown in Fig. [1} was defined in an earlier work (9],
as a foundation for a cross-domain unified framework for developing Product
Service Systems (PSS). This paper uses this ontology to define an architecture
baseline model for a Sol (or Constituent System for a PSS) to be realized in
HW and SW. The ontology is the basis for modeling the architecture baseline
described further in the remaining part of this section.

ArchitectureElement and corresponding specialization DesignElement are
the main building blocks for developing architecture views corresponding to
specific stakeholders, e.g., System Architect (or Design Engineer) concerns.
The DesignElement belongs to the leaf-level of logical decomposition of an
ArchitectureElement. Special kinds of ArchitectureElement are defined
corresponding to solution domains, e.g., SoftwareBlock for SW development,
Module for HW engineering, etc. The logical architecture elements at the system
level are concepts such as System and SubSystem. The domain-specific archi-
tecture elements are further decomposed in terms of detailed design elements,
e.g., SoftwareComponent in the SW domain, DesignUnit, Part, HW_Interface
etc in the HW domain. It can be observed that ArchitectureElement is based
on the principle of low-cohesion and low-coupling (corresponding to L in Fig.
, whereas the DesignElement is based on high-cohesion and high-coupling
(corresponding to P in Fig. [5]. The detailed designs in corresponding so-
lution domains are out of the scope of the light-weight methodology described
in this paper. The methodology is aimed at developing an architecture baseline
(model) with views consisting of ArchitectureElements and its specializations
in corresponding solution domains. The baseline architecture views are further
detailed for System Architecture and Traceability.

Architecture R Diagrams F Diagrams E SYSML Use Cases Activities
Baseline Model Stakeholder Requiremems, Systerq Use cases, E O
1 o« System Requirements, Use Case ' ftream}-
[View Jo Sub-System Requirements, | decomposition, Use :
_______________________ Requirements Traceability | Case Traceability |
System |7 U Diagrams . BDD's IBD's
Views SySML Functional allocalion,i
System Architecture, Requirement Tables | Sub-Sys Architecture; | Bl sigaa| B2
(Sub)-System Integration, Req. Table Sub-Sys functional ; et 1 oA ok |:)
System Allocation T T Traceability
T T
HW 'SW Requirement Diagrams Diagrams

SW-HW allocation, E
Hardware architecture}
allocation

Views 1 Views
Architecture, | Architecture,
Traceability : Traceability

CANBUS_Node

CCANBUS_Node

Figure 2: Proposed reduced grid approach following the RFLP classification for
architecture baseline models. The baseline consists of Views which are based on
diagrams. The grid details which diagram belongs to which modeling abstrac-
tion and are mapped to the SysML language.

System Architecture Views The logical partitioning of the Sol in terms
of System and SubSystem elements. In the proposed methodology, the initial
version of this architecture view is influenced by the HW architecture often
established early (in the CE domain) during the development phase. The view
consists of largely HW-centric subsystems (whose dynamic behavior is controlled
by corresponding SW blocks). The architecture views of the subsystems are
also modeled in terms of SW and HW architecture elements (seen in the core
ontology). The stakeholder concerns of these views correspond to the SW and
HW integration and establishing the logical interfaces between the subsystems.

It should be noted that the SW-centric subsystems, e.g., HMI, Telematics etc
are not part of the baseline architecture.

Traceability Views The architecture baseline model includes the traceabil-
ity and allocation views. These views (largely based on the tool support) enable
stakeholder communication and overall project management. The traceability
views are based on the stakeholder allocation of requirements and system be-
havior onto the architecture elements seem om Fig[l] These views influence the
overall quality and effectiveness of the MBSE process.

The following subsection describes the modeling approach to develop the
architecture baseline model described above.

3.2 Architecture Baseline Modeling

As illustrated in Fig. the light-weight approach is based on developing the
architecture baseline within general top-down approaches such as RFLP. The
architecture baseline model (mainly system structure views, i.e., logical, HW,
SW) described in previous sections is complimented with the functional view
(i-e., the system behavior) and corresponding decomposition and allocation to
architectural elements in the baseline model. Fig. illustrates the overall
modeling process/workflows of developing the baseline model.

As shown in Fig. the baseline model consists of system and subsystem
architecture views and the HW and SW subsystem integration views. The
requirement traceability views are included in the baseline. Unlike the tradi-
tional top-down approach followed in general methodologies, the initial baseline
model is developed in a bottom-up fashion, i.e., HW and SW integration views
are modeled based on preliminary architecture data available from design en-
gineers based on pre-existing/legacy designs. The preliminary HW designs (at
the architecture level) are often available as far as the CE domain is concerned
(e.g. so called A-Release phase) due to established modular product platforms.
In CE context, mainly system development activities consist of complimenting
the HW platform with corresponding functional and SW concerns.

The initial version of the baseline model acts as a reference model for project
management, model organization, stakeholder communication, etc. The vari-
ous architecture elements of the model may represent the ”place-holders” for
revised/updated elements resulting from the normal top-down process shown
in Fig. The bottom-up approach is amenable to the legacy processes and
supports quicker adoption of MBSE methodologies. In essence, the baseline is
created based on already well-documented physical designs. The transition to
model-based from legacy methods is therefore minimal, and the non-modeler
audience can use their existing expertise, while producing a valuable baseline
for further development of missing concerns in the current setup (e.g, functional
concerns or SW). The baseline then acts as the product-line representation which
can be leveraged for top-down methods of capturing specific Sol requirements
and specifications while engaging non-modeling engineers.

—Detailed Design—>» <€ - Architecture Baseline - - -

L P
Functional Logical Physical
Use Case Diagram / BIOCk Definition Internal Block
Activity diagram Diagram / Internal diagram
y Block Diagram
A A A
A \ 4 Y

R
Requirements

Requirement Tables /
Requirement Diagrams

Figure 3: The bottom-up flow applied for the architecture baseline. Conversely,
the detailed design considers a traditional top-down approach.

An architecture ”view” consists of one or more SysML diagrams (it requires
defining a model-management approach described later in this paper). The
baseline architecture views described above are mapped onto SysML diagrams
as illustrated in Fig. 2| We describe below the general modeling workflows (Fig.
3) corresponding to the RFLP methodology.

Modeling Physical Views The HW architectures corresponding to base
subsystems are modeled first using BDDs (Block Definition Diagrams) and IBDs
(Internal Block Diagrams). The subsystems consist of HW architecture elements
such as Modules and DesignUnits described earlier. These correspond to the
preliminary HW designs, e.g., modular HW platforms (often documented using
Microsoft Visio tool) and are part of proven HW development methodology.

Modeling Logical Views As shown in Fig. [2| the logical architecture view,
i.e., system and subsystem architectures, are modeled using SysML BDD and
IBDs. Initially, the base subsystems correspond to those identified in the HW
architecture views in the previous section. However, in the modeling context, the
mechanical interfaces are replaced with logical interfaces capturing the energy,
material, and information flows, if any. Further, the subsystem architectures
include logical entities SoftwareBlocks described in previous sections. These
serve as SW-HW (logical) interfaces in the context of subsystem behavior.
The views may be referred to as ”deployment” as well as ”integration” views
as the functional entities, i.e., requirements (resp. behavior) are traced (resp.

deployed) to subsystem and architecture elements (both HW and SW) modeled
in these views. It should be noted that the behavior diagrams, such as Use Cases
(UCs) and Activities, are modeled (as described in coming sections) after the
baseline model is established and agreed upon among the project stakeholders.

Modeling Functional Views The traditional MBSE methodologies follow
a top-down approach which implies modeling system behavior (for an Sol) in
black-box (e.g., use cases modeling) and in grey-box (e.g., statemachine and/or
activities modeling). However, as the baseline architecture is available, the func-
tional entities can be readily deployed onto the logical architectures. Specifi-
cally, the functional modeling is performed via use case and activity diagrams.
UCs capture stakeholder requirements and customer needs, while the activities
decompose these UCs further. Besides the system behavior modeling, archi-
tecture elements in logical views are assigned detailed behavior specifications,
e.g., statemachine modeling for SoftwareBlock (for development of SW archi-
tectures during the design phase).

Modeling Requirements Views Requirements are modeled using the SysML
requirement elements, and subsequent relevant diagrams and tables. Traceabil-
ity is achieved by using various ”links” (e.g, satisfy, allocate, trace, etc.) in
requirement diagrams between requirement elements and other model elements
(such as UCs or activities). The functional requirements are modeled later in
the development phase, i.e., after the baseline architecture (driven by HW plat-
form design) is established. The requirements decomposition is handled during
the functional modeling described in previous sub-sections. The derived re-
quirements are assigned to subsystems and other architecture elements already
modeled. Both the functional and requirements traceability views are developed
(with tool support) and included in the subsequent releases of the architecture
baseline.

As shown in Fig[3] and described above, the overall development of the
baseline architecture model (in the CE domain) follows non-sequential itera-
tive phases due to the pre-existence of many system artifacts.

4 Modeling architecture views - examples

In this Section, we demonstrate the methodology on an example in the form of
an Autonomous Hauler seen in Fig. [4

We highlight our modeling methodology through the application of the ma-
chine in an autonomous site context and demonstrate the proposed approach
through model views discussed in the previous Section. The machine considers
many interconnected domains and acts as a representation of typical CE de-
velopment. We limit our reporting to the SW and HW domains in the paper,
but the approach is not limited to only these domains. Furthermore, we use
the machine brake function/system as a recurring model element to make the
reporting cohesive. In the excerpts of the models in later Sections, the ”TA”

10

= . e

Figure 4 The Autonomous Hauler machine.

or "machine” naming refers to the autonomous hauler machine. The rest of
this Section highlights the previously defined modeling views through SysML
diagrams.

4.1 Physical hardware architecture view

Physical HW architecture views are created with IBDs, visualized in Fig.
Corresponding BDD’s are made to detail the decomposition, we refer to the
next Section for an example.

The modularity concept drives physical HW, and Modules are created based
on DesignUnits. A Module is a re-usable configuration of HW DesignUnits. In
Fig. | a Modules is represented as a container of DesignUnits. The diagram
consists of Modules and DesignUnits for the brake system HW-architecture. In
the SysML language, blocks are used for the components/parts and flow ports
for exchanges between blocks with corresponding connectors. In particular, each
of the two Modules considers a brake system Module, instantiated for the front
and rear brake respectively. Exchanges connect DesignUnits and should have a
physical meaning, for example, electrical or hydraulic, and flow ports are typed
with respective properties. This type of diagram is useful to detail the physical
architecture of a system and attribute physical properties, such as the type of
exchanges between Modules and DesignUnits. We note that this diagram only
specifies HW concerns, as that is the standard practice for CE architectures,
while later views add SW concerns as well.

11

Front brake valva body assambly.

Fluid Flow

Front brake check valve

1 & ruron

Front brake vaive (PWI45206)

Frontbrake & parking brake caliper Front brake sk

Fuid Flow Piston Forca :Machanical Powar

DOLS_Cs1.1A

Frontbrake supply pressure sensor (SE5201)

TTE3: Alceo (aKonm)

Fluid Flow,

Frontbrake valve pressure sensor (SE5203)

3 AceD (sKonm)

Fluid Flow,

Rear Brake System

Rear braka valve body assembly

Fluid Flow

Rearbrake check vaive

1 g5 ruarion

Raarbraka valva (PIM5205)

Rearbrake & parking brake caliper

Fluid Flow

DOWHS_204

Boes o

Rear brake supply prassura sen

- wceD (sKonm)

Fluid Flow,

Rear brake valve pressire sensor (SE5204)

{5 ceD (sKonm)

Fluid Flow,

Figure 5: A IBD that shows the Physical HW architecture. The figure extracts
a few Modules of the Brake System, internally made up of physical components
and parts. An exchange between parts is modeled with flow ports.

4.2 Logical architecture Views

Logical architecture views highlight the components composing various systems
and sub-systems and the corresponding interfaces. In the SysML language,
decomposition is made using BDDs, and we highlight a BDD excerpt from the
Machine in Fig. [f] We note that the physical HW BDD’s are modeled the same
way.

The extracted BDD is somewhat simplified, as there are more sub-systems
for the entire machine, and there can in turn be a decomposition of sub-systems
as well. The use of SysML associations defines that the machine consists of
several sub-systems. In this figure, colors are additionally used to separate
concerns for various development teams. While we do not highlight it in the
diagram, different relationships can be used from the SysML language to high-
light optional/variable blocks or multiplicity (for example aggregation). The
logical interfaces of sub-systems are modeled in IBDs. Fig. is an excerpt
of the IBD for the Machine, considering, for example, the Brake System and
Motion System.

The aim is to show logical interfaces and exchanges between the sub-systems,
modeled with ports and connectors. At this abstraction, there are no physical
properties allocated to the ports and signals compared to the HW architecture,
even if the names can give a suggestion. The model abstracts the previously
defined physical models to the logical domain in preparation for later functional

12

Machine

<System>
1
1
Brake System ! Power System
<Sub-System> <Sub-System>
Steering System 1 1 Propulsion System
<Sub-System> <Sub-System>

Figure 6: BDD decomposition highlighting the Machine system and some of its
compositional sub-systems. The elements are modeled as SysML blocks and are
connected with SysML associations, and different colors are used in the diagram
to separate responsibilities for operational teams.

: Motion System

/4ake System
#BRK Information

: BRK System State

: ~BRK System State

: MOV Sub information | | €

: ~Parking Brake Information

O Parking Brake Information
: ~BRK Deactivate request

» : BRK Deactivate request
: ~Service Brake Information

> : Bervice Brake Information

Electric emergency brake

: BRK Electric emergency brat

: Propulsion System
: PRO Sub Mechanical Power

: BRK Mechanical Power
Front axle power : ~BRK Front axle power

O ont axle power : BRK Front &

Rear axle power : ~BRK Rear axle power

O par axle power : BRK Rear ax

Figure 7: A IBD displaying the logical architecture in the Machine system. In
the figure, the Brake System is shown to be interfaced with both the Motion
System and the Propulsion System with logical interfaces.

views. When models become large, creating several IBDs at a given hierarchy
is often useful. The diagram, for example, highlights the interfaces of the Brake
System. It omits elements not interfaced with the system from the diagrammatic
view. Another similar diagram might instead be focused on the Power System
from Fig. [6] and in this case, omit the Brake System. It is important to reduce
the duplication of information and instead aim to keep the overall model as a
single source of truth. However, different views are often a valuable means of

13

better organizing the information instead of large cluttered diagrams.

Based on logical architectures like in Fig. [7 activities can be allocated
to sub-systems via swim-lanes. Fig. [8|is an excerpt from the AD (Activity
Diagram) Regulate Machine Velocity highlighting the activity partition and
interfacing.

T
1 J !
| 1
| 1
| 1
| |
! FrontAxIeEI!rakeTorque
I
£ ! |
o | RearAxleBrakgTorque
21 |
a1y
Q
X |
jud |
ri]
- I
1
1
1
1
1
[
1
£
Q
D
>
@
c
o
w
=
o
<l
a
5
7 FrontAxlePower]: Mechanical Power
&
[}
g RearAxlePower : Mechanical Power
a

Figure 8: ADs highlighting the activities performed for a particular UC and the
relation between them. Activities are connected via ports that have a direc-
tion and exchange of information. On the left-hand side, swim-lanes partition
the activities into corresponding owning systems or sub-systems. The diagram
highlights the behavior of a system/sub-system.

The different swim-lanes allocate different activities to a particular sub-
system in the architecture. For example, the Actuate Service Brake activity
is allocated to the Brake System in the AD. This way, the activities are cre-
ated and allocated for the previously defined logical architecture defined in Fig.
[l This type of partitioning is used for HW concerns in the model to separate
concerns further. At this stage, the system is considered from the logical per-

14

spective, and the diagram, for example, only specifies a signal to be of type
”information” or "mechanical”. It is important to note that activities often are
defined in a hierarchy and decomposed. For example, Fig. [§] details an AD that
is a sub-AD of a higher-level AD.

4.3 Functional Views

Functional concerns are modeled in two ways via UCDs and ADs. UCDs are
first created from the breakdown of the stakeholder requirements and customer
needs, while activity diagrams decompose the UCs. The functional views should
match the high-level requirements (in UCs) with the logical architecture (in
ADs) for complete traceability. Top-level ADs are, in turn, mapped from UCs.
UCs are defined in UCDs and are decomposed by high-level activities. An
example is provided in Fig. [0] where we consider the remote control for the
autonomous machine.

_ ~ Remote Control
Operation

Remote-Cont-
rol Operator -

-

[New demand] '
¢ VelocityDemand

-
e -

Figure 9: Excerpt from a High-level UCD depicting the autonomous operation
of the vehicle. The Remote-Control Operator actor is linked with the Remote
Control Operation, which has the sub-UC of Move TA.

In this type of diagram, the stakeholders are visualized and linked with
related UCs. UCs can also be linked. In the figure, the site UC Remote Control
Operation generalizes the Move TA which belongs to the machine. UCs can,
in turn, be decomposed into corresponding high-level functional activities. In
the figure, several activities are performed in a loop to maneuver the machine

15

continuously. One of these seen activities is further decomposed into the diagram
in Fig. [§] defining a traceable hierarchy of UCs and ADs which can be used to
navigate across diagrams and the model browser.

4.4 Integration views

Integration views can be created by leveraging the physical and logical archi-
tecture. Integration views aim to explicitly partition SW and HW, indicating
what activities and components are allocated to SW and HW. Fig. is an
excerpt from the Brake System integration IBD.

: Pressure sensor, £

: AICPD (5KOhm)

—
! k__. : Brake Control System
L—l ~HYD-BRK]

O

: BRK Information :

] |

I

Figure 10: A IBD displaying the HW-SW integration of the Brake System.
Internal elements are connected via ports and signals. The signals and elements

are partitioned between SW and HW, where SW is visible in the bottom left
and HW in the top right.

In the diagram, we see a similar view as in Fig. but for the internal
of the Brake System. Largely the aim of the view is the same, but there is
added information in the interfaces and signals with the allocation of HW and
SW. The diagram only shows two elements, the Pressure Sensor component
(HW) and the Brake Control System component (SW). They are interfaced
with an electrical signal (typed on the sensor port). Adding explicit partitions
between domains such as SW and HW also significantly increases the model
detail and emphasizes the design of required interfaces and signals. Integration
views can also be made for the system’s logical architecture, for example, in the
case of functional views such as Fig. These views act as a final piece of the
architecture baseline.

In this case, the system’s activities are partitioned instead of the components
and modules from the physical architecture. The AD is modeled similarly to
Fig. 8] only that the level of detail is increased with explicit exchanges between

16

Regulate service brake

Power : Fluid Flow

:Request : Information

Figure 11: Functional allocation to SW and HW via AD partitioning. The
signals are all described via physical and information properties, and SW/HW
is visible and distinct via the activity color.

activities and clear partition. Visually the partition is performed with separate
colours, but the types of the involved elements are also specific for their par-
ticular domain. The diagram highlights the Regulate Service Brake activity,
and we see SW (in blue) and HW (in green) integration in terms of activities.
In the case of HW this might also detail the physical properties, such as Fluid
Flow in the figure, while for SW it can instead be Information flow.

In this way, the model is ”living” and is refined based on the continuous
efforts of the involved engineers. Practically it is not feasible to consider the
development of any model view completely sequentially due to the often large
collaborative effort and continuous requirement/design refinements.

4.5 Requirements views and traceability

Requirements are modeled as SysML requirements in requirement diagrams.
Requirements are allocated to model elements via links. An example of how
such a diagram is used is given in Fig.

The diagram highlights the requirements Emergency stop activates parkingbrake,
and its allocation to the Brake System package. Additionally, the requirement
is also traced to the activity Actuate Parking Brake. The requirement has
a corresponding table view, highlighted in the figure, where additional infor-
mation can be more easily read. Importantly, the allocate association enables
the requirements to be gathered in specific tables, while the traces allow for
backward and forward traceability. Requirements are allocated continuously to
the elements of the model, and tables can be generated dynamically. Types and
stereotypes can be created and added per the user needs. By enforcing language
extension mechanisms in addition to linkage with other model elements, the re-

17

Product::4. Payload
Transportation (PTS)::Braking
System (BRK)
Emergency stop activates parkingbrake
o _Reguir?r?emgvpe | ces «activitys
ngineering meguiatory Requiremen | == Actuate parking brake (electrical)
abcates N~
- ~ T
- atraces .- -~ 1
5 = ~ I
- ~
- S
- - ~
- ~
- ~
P ~
- ~ ~
- ~
Name txt rationale derivedFrom o tracesTo
Type
l=Activity= Actuate
lparking brake
=Requirement» 4.1.1.2 electrical
Emergency stop function Productz4. Payload
Autonomous machine [Transportation
[domain:L &R requirements:0. PTS):Braking
Emergency Normative references:i. d System
stop activates [When emergency stopped the machine shall activate parking brake. Standards acc to Requlatory [Regulatory BRK}:Functional
parkingbrake Framework - Production Start [Requirement |architecture
2023::1. Europe |=Block= Safety Unit
ISO/EN):13850:2015 EN 150 Product:7.
Emergency stop function Emergency Stop
Principles for design System - On board
ESOB):=Physical
larchitecture

Figure 12: Requirements are modeled as requirement elements in SysML and
allocated to different packages. Tables are then generated detailing the struc-
tured information whenever the user retrieves the information.

quirements become a powerful traceability tool, and the requirement diagrams
can be leveraged for traceability views. For example, the diagram shows the
requirement allocated to a particular model package while it is also traced to a
particular activity. Requirements can be represented in tables or diagrams per
the user needs.

4.6 Architecture baseline model management

We highlight the management of modeling elements and diagrams via the use of
the model browser tool. Fig. shows an excerpt of the corresponding Archi-
tecture baseline model management for the previously extracted diagrams and
views. The annotations on the figure highlight where the elements originally are
located, but we have moved them from their original packages for visualization
purposes.

This hierarchy is useful for navigation and managing the abstraction in clear
boundaries in the system, which enables useful partitioning of requirements for
the different hierarchy levels. The model management enables separation of
concerns, assisting configuration and change management which is a typical
shortcoming of MBSE. Particularly the separation of concerns facilitates modu-
lar view creation, with clear boundaries and traceability of the model elements.
Implementing a clear model hierarchy makes it easy for users to navigate ef-

18

EE] +Architecture Baseline

=-F5 +1. Requirements

E +Requirement Traceability
E +5takeholder Requirements
E| +5ub-5System Requirements
E +5ystern Requirements
= +2. Functional

E| +5ystemn Use Cases

E +Use Case Decomposition
E +Use Caze Traceability
=3 +3. Logical Architecture

EI +Functional Element Definitions
| +Functional Elerments

] +5ub-Systemn Architecture Views
O'-— +5ub-5ystern Functional Traceability
1)_J +Payload Transportation
E +[Block] Logical architecture [1]
--@ +Regulate Machine Velocity
D +Brake System
D +Power System
D +5Steering System
D +Propulsion System
I
o +[Package] 3. Payload Transporation Functional Traceability
=3 +4. Physical Architecture

E] +Physical Allocation Views

E +Physical Architecture Elements

&-F5 +Physical Element Definition

+[Package] 3. Logical Architecture Baseline decomposition

Figure 13: The model browser highlighting some previous examples in the ar-
chitecture baseline model management. RFLP is separated into packages, con-
taining the corresponding diagrams and elements.

ficiently, especially if the same structure is kept across different development
efforts.

19

5 Discussion

The paper results from work aiming to introduce a robust adoption of MBSE
in the CE domain. Previous efforts have faced several challenges when applying
industrially proven methodologies and frameworks. Experience has shown that
when the target engineers come from legacy domains, such as HW-intensive
system development, applying top-down best practice approaches is met with
resistance. Adding functional views and requirements traceability is one of the
main motivations for applying MBSE in the CE domain, but also significantly
different from legacy methods. It is intuitive to start from similar views to what
already exists, for example, Visio views on the HW architecture. Our experi-
ence shows that it is sometimes easier to adapt the modeling views bottom up,
even though it goes against traditional MBSE knowledge, as it lowers the learn-
ing curve for the initial phases in adoption (particularly for non-model-based
practitioners). While the architecture development phase is well-emphasized in
both SE and modeling standards, it is low-prioritized in project processes due
to a shorter time-to-deliver and other project constraints. Other reasons are
development silos in solution domains, e.g., HW, SW. The architecture ontol-
ogy and the corresponding system baseline model described in the light-weight
MBSE methodology emphasize on the logical model to bridge the architecture
and design phases besides enabling traceability views. Further, the logical mod-
els provide deployment and system integration benefits. The time saved later
in the design phase is the return on investment (in terms of time and effort) in
the architecture phase as experienced by the project stakeholders.

Partly the need for a bottom-up approach is the already defined concepts
and modular design-units in the HW domain. In this context, it is counter-
productive to start from a top-down design approach without considering the
already-in-place well formed design elements. Furthermore, a bottom-up ap-
proach is a means of creating an architecture suitable for a product-family
rather than a specific product based on the existing design artifacts. The base-
line architecture can then be used for designing new systems as part of a larger
product-family (which is the norm for most CE products). By utilizing our
proposed MBSE methodology we are aiming to allow non-modelers to develop
systems similarly to what is done in the existing HW process, that is leveraging
in place modular design-units for system definition and design. By centering
the approach around modular re-use principles from HW legacy, it paves the
way for eventual SW modularity by defining re-usable SW functionality and de-
sign units. Our approach as such not only promotes modeling via light-weight
legacy inspired methods but also paves the way for more integrated holistic
architectural views across stakeholder domains.

The approach presented in the paper has the aim of a fast light-weight model
and architecture baseline deployment. Current efforts of adopting MBSE have
fallen short in part due to the steep learning curve and poor fit match of meth-
ods compared to legacy (partly due to percieved complexity). Therefore the
quick definition of an architecture baseline, which maps well to traditional arti-
facts, can act as a first milestone for further MBSE development efforts. Due to

20

the scope of an architecture baseline, the eventual architecture baseline model
is somewhat limited in flexibility as it is based on already existing products.
However, as the aim is to get a model’s first definition, this lack of flexibility is
not seen as a significant detriment, and the benefits of reaching an architecture
model, as described in the earlier sections, are significant. In the same way,
the simplification and scalability of these architecture models can are some-
what reduced, and again, we emphasize that the aim is to reduce complexity
at this stage for easier dissemination of models and reproducing similar arti-
facts to the current non-model-based processes. With an architecture baseline
model in place, it is expected that the model will evolve and have additional
views created as development and design progress in a typical top-down work-
flow like best practice MBSE approaches. With the deployed baseline, existing
MBSE development approaches are expected to address scalability, flexibility,
and model simplifications with well-proven and tested methods and principles.

6 Conclusion

This paper presents our experience developing and applying a light-weight MBSE
approach for the CE domain. We highlight the difficulty of adopting MBSE in
industrial processes and the experience that light-weight approaches are more
beneficial than modeling-heavy patterns and methodologies. As a first step, we
defined an architecture (core) ontology for the development of a system (ar-
chitecture) baseline model, separating the architecture concerns from design
(implementation) details. Next, we defined the architecture baseline model
by mapping the proposed architecture ontology onto standard modeling views
using a sub-set of the SysML language within standard RFLP modeling work-
flows. We describe the deployment of the approach in an industrial project
and demonstrate the approach in practice for a autonomous hauler machine. In
contrast with the typical top-down approaches in the system modeling domain,
the overall modeling workflows within the proposed light-weight approach are
iterative and bottom-up, leveraging pre-existing system artifacts for the dis-
semination of an architecture baseline model. In future work, we foresee using
MBSE modeling approaches to enable architecture descriptions that orchestrate
co-simulation for early validation of system (architecture) designs using hetero-
geneous models from domains such as HW, SW, and electronics development.
A necessary next step is the inclusion of more refined SW views to capture and
integrate the corresponding concerns in the wider system context.

References

[1] O. Alello, D. S. D. R. Kandel, J.-C. Chaudemar, O. Poitou, and P. de Saqui-
Sannes, “Populating mbse models from mdao analysis,” in 2021 IEEE In-
ternational Symposium on Systems Engineering (ISSE). TEEE, 2021, pp.
1-8.

21

2]

T. Amorim, A. Vogelsang, F. Pudlitz, P. Gersing, and J. Philipps, “Strate-
gies and best practices for model-based systems engineering adoption in
embedded systems industry,” in 2019 IEEE/ACM 41st International Con-
ference on Software Engineering: Software Engineering in Practice (ICSE-

SEIP). IEEE, 2019, pp. 203-212.

M. Bouaicha, N. Machkour, I. E. Adraoui, and M. Zegrari, “Mbse grid:
Operational analysis for the implementation of hydroelectric group health
monitoring and management unit,” in International Conference on Smart
Applications and Data Analysis. Springer, 2022, pp. 402-410.

L. Bretz, C. Tschirner, and R. Dumitrescu, “A concept for managing in-
formation in early stages of product engineering by integrating mbse and
workflow management systems,” in 2016 IEEE International Symposium
on Systems Engineering (ISSE). IEEE, 2016, pp. 1-8.

H. P. L. Bruun, N. H. Mortensen, and U. Harlou, “Plm support for de-
velopment of modular product families,” in DS 75-4: Proceedings of the
19th International Conference on Engineering Design (ICED13), Design
for Harmonies, Vol. 4: Product, Service and Systems Design, Seoul, Ko-
rea, 19-22.08. 2013, 2013.

A. Bucchiarone, J. Cabot, R. F. Paige, and A. Pierantonio, “Grand chal-
lenges in model-driven engineering: an analysis of the state of the research,”
Software and Systems Modeling, vol. 19, pp. 5-13, 2020.

A. Bucchiarone, F. Ciccozzi, L. Lambers, A. Pierantonio, M. Tichy, M. Tisi,
A. Wortmann, and V. Zaytsev, “What is the future of modeling?” IFEFE
Software, vol. 38, no. 2, pp. 119-127, 2021.

K. X. Campo, T. Teper, C. E. Eaton, A. M. Shipman, G. Bhatia, and
B. Mesmer, “Model-based systems engineering: Evaluating perceived value,
metrics, and evidence through literature,” Systems Engineering, 2022.

J. Cederbladh and J. Suryadevara, “Towards a unified architecture
methodology for product service systems,” in Asia Oceanic Systems
Engineering Conference, October 2023. [Online]. Available: |http:
/ /www.es.mdu.se/publications/6806-

P. De Saqui-Sannes, R. A. Vingerhoeds, C. Garion, and X. Thirioux, “A
taxonomy of mbse approaches by languages, tools and methods,” IFEFE
Access, 2022.

V. Debruynel, F. Simonot-Lion, and Y. Trinquet, “East-adl-—an architec-
ture,” in Architecture Description Languages: IFIP TC-2 Workshop on
Architecture Description Languages (WADL), World Computer Congress,
Aug. 22-27, 2004, Toulouse, France, vol. 176. Springer Science & Business
Media, 2005, p. 181.

22

http://www.es.mdu.se/publications/6806-
http://www.es.mdu.se/publications/6806-

[12]

[13]

[17]

[18]

[19]

23]

[24]

J. A. Estefan et al., “Survey of model-based systems engineering (mbse)
methodologies,” Incose MBSE Focus Group, vol. 25, no. 8, pp. 1-12, 2007.

P. H. Feiler and D. P. Gluch, Model-based engineering with AADL: an
introduction to the SAE architecture analysis & design language. Addison-
Wesley, 2012.

S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML: the
systems modeling language. Morgan Kaufmann, 2014.

J. Gregory, L. Berthoud, T. Tryfonas, A. Rossignol, and L. Faure, “The long
and winding road: Mbse adoption for functional avionics of spacecraft,”
Journal of Systems and Software, vol. 160, p. 110453, 2020.

M. Hanna, L.-N. Schwede, J. Schwenke, F. Laukotka, and D. Krause, “Me-
thodical modeling of product and process data of design methods using the
example of modular lightweight design,” in ASME International Mechan-
ical Engineering Congress and Exposition, vol. 85604. American Society
of Mechanical Engineers, 2021, p. VOO6T06A035.

K. Henderson, T. McDermott, E. Van Aken, and A. Salado, “Towards
developing metrics to evaluate digital engineering,” Systems Engineering,
vol. 26, no. 1, pp. 3-31, 2023.

K. Henderson and A. Salado, “Value and benefits of model-based systems
engineering (mbse): Evidence from the literature,” Systems Engineering,
vol. 24, no. 1, pp. 51-66, 2021.

G. Hoepfner, I. Nachmann, T. Zerwas, J. K. Berroth, J. Kohl, C. Guist,
B. Rumpe, and G. Jacobs, “Towards a holistic and functional model-based
design method for mechatronic cyber-physical systems,” Journal of Com-
puting and Information Science in Engineering, vol. 23, no. 5, p. 051001,
2023.

Y. Hooshmand, D. Adamenko, S. Kunnen, P. Kéhler et al., “An approach
for holistic model-based engineering of industrial plants,” in DS 87-3 Pro-
ceedings of the 21st International Conference on Engineering Design (ICED
17) Vol 8: Product, Services and Systems Design, Vancouver, Canada, 21-
25.08. 2017, 2017, pp. 101-110.

N. Hughes, “Functional modelling of electrical schematics,” 2004.

D. Krob, “Cesam: Cesames systems architecting method-a pocket guide,”
2017.

A. M. Law, “How to build valid and credible simulation models,” in 2019
Winter Simulation Conference (WSC). IEEE, 2019, pp. 1402-1414.

E. A. Lee and M. Sirjani, “What good are models?” in International Con-
ference on Formal Aspects of Component Software. Springer, 2018, pp.
3-31.

23

[25]

[26]

[27]

[28]

J. Ludewig, “Models in software engineering—an introduction,” Software
and Systems Modeling, vol. 2, pp. 5-14, 2003.

R. W. Macarthy and J. M. Bass, “An empirical taxonomy of devops in
practice,” in 2020 46th euromicro conference on software engineering and
advanced applications (seaa). IEEE, 2020, pp. 221-228.

A. Morkevicius, A. Aleksandraviciene, and Z. Strolia, “System verifica-
tion and validation approach using the magicgrid framework,” INSIGHT,
vol. 26, no. 1, pp. 51-59, 2023.

C. Nigischer, S. Bougain, R. Riegler, H. P. Stanek, and M. Grafinger,
“Multi-domain simulation utilizing sysml: state of the art and future per-
spectives,” Procedia CIRP, vol. 100, pp. 319-324, 2021.

A. Parkinson, “Robust mechanical design using engineering models,” 1995.

P. Roques, “Mbse with the arcadia method and the capella tool,” in 8th
European Congress on Embedded Real Time Software and Systems (ERTS
2016), 2016.

V. Singh and K. E. Willcox, “Engineering design with digital thread,”
ATAA Journal, vol. 56, no. 11, pp. 4515-4528, 2018.

P. Sjoberg, L.-O. Kihlstrom, and M. Hause, “An industrial example of us-
ing enterprise architecture to speed up systems development,” in INCOSE
International Symposium, vol. 27, no. 1. Wiley Online Library, 2017, pp.
401-417.

J. Suryadevara and S. Tiwari, “Adopting mbse in construction equipment
industry: An experience report,” in 2018 25th Asia-Pacific Software Engi-
neering Conference (APSEC). IEEE, 2018, pp. 512-521.

D. D. Walden et al., “Systems engineering handbook: A guide for system
life cycle processes and activities,” (No Title), 2015.

T. Weilkiens, A. Scheithauer, M. Di Maio, and N. Klusmann, “Evaluating
and comparing mbse methodologies for practitioners,” in 2016 IEEFE In-
ternational Symposium on Systems Engineering (ISSE). TEEE, 2016, pp.
1-8.

S. Wolny, A. Mazak, C. Carpella, V. Geist, and M. Wimmer, “Thirteen
years of sysml: a systematic mapping study,” Software and Systems Mod-
eling, vol. 19, pp. 111-169, 2020.

Y. Zhang, G. Hoepfner, J. Berroth, G. Pasch, and G. Jacobs, “Towards
holistic system models including domain-specific simulation models based
on sysml,” Systems, vol. 9, no. 4, p. 76, 2021.

24

	Introduction
	Background and Related work
	Methodology motivation and overview
	Architecture Ontology to a Baseline Model
	Architecture Baseline Modeling

	Modeling architecture views - examples
	Physical hardware architecture view
	Logical architecture Views
	Functional Views
	Integration views
	Requirements views and traceability
	Architecture baseline model management

	Discussion
	Conclusion

