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Abstract—Safety systems, i.e., systems whose malfunction can
result in catastrophic consequences, are usually designed with
redundancy in mind to reach high levels of reliability. However,
Common Cause Failures (CCF), i.e., single failure events affecting
multiple components or functions in a system, can threaten the
desired reliability. To solve this problem, practitioners must use
proven methods, such as those recommended by standards, to
support CCF quantification. In particular, the β-factor model has
become the de-facto model since the safety standard IEC 61508
considers it. As such standard applies to all industries, prac-
titioners must figure out the industrial-specific implementation
procedures. In this paper, we conducted a systematic literature
review to understand how the β-factor model has been used in
practice. As a result, we found 20 different models, which are
industry/project-specific extensions of the first β-factor model
proposed for the nuclear sector. We further classified those
models by considering how the β-factor is estimated, and the level
of redundancy support. Tool support for the models and their
industrial use are also outlined. Finally, we present a discussion
that covers the implication of our findings. Our study targets
practitioners and researchers interested in using current β-factor
models or evolving new ones for specific project needs.

Index Terms—Common Cause Failure, β-factor model, Sys-
tematic Literature Review

I. INTRODUCTION

Reliability is the probability that a system or component

performs the intended function properly over a given period

of time. In designing high-reliable systems it is common

practice to include redundancy to critical elements to make

the system work despite single failures. However, Common

Cause Failures (CCFs) may lead to the failure of multiple

units or components due to a single cause. The significance

of CCFs has been demonstrated in almost all Probabilistic

Safety Assessment (PSA) reports of nuclear power plants in

the past [1]. The reports show that the CCFs are the main

reason for the unavailability of redundant systems and their

associated risks. A lot of research was carried out globally

in many countries such as the US [1], UK [2], and Nordic

countries [3] to address the common cause failures.

Safety standards, such as IEC 61508 [4], suggest the

modeling of CCF by using the β-factor model, where β%

of the failure rate is attributed to CCF and (1 − β)% to

the random failure rate. In particular, to derive the β value,

the standard proposes a methodology applicable to Electri-

cal/Electronic/Programmable Electronic (E/E/PE)-based sys-

tems that reflects the effect of diagnostic tests in estimating the

likely value of β. However, such methodology is too general

leaving the implementation details up to the practitioners.

In the research area, there is an absence of research studies

that explicitly focus on the β-factor model and its development

toward the quantification of CCFs. Hence, to close this gap we

conducted a systematic literature review (SLR) by following

the guidelines provided by Kitchenham and Charters [5] which

led to the identification of a set of β-factor models. We briefly

described all the identified β-factor models and classified

them based on their β-factor estimation methods. We further

distinguished the models based on their redundancy support

and required expert judgment. We also gave information on

identified CCF modeling tools, models usage in industries,

and implications for industry and research.

This paper is structured as follows. Section II presents

the essential background. Section III discusses related work.

Section IV gives an overview of the research methodology.

Section V presents the research result. Section VI discusses the

implications for industry and research. Section VII discusses

the threats to the validity of our work. Section VIII explains

the conclusion and future work.

II. BACKGROUND

A. Redundancy

A modern industrial system typically is an interconnection

of more than one sub-system or component. The systems can

be electrical, mechanical, or digital. In addition, the systems

are usually designed with redundancy and output voting tech-

niques to achieve some desired reliability. The safety standard

IEC 61508:2010 [6] defines redundancy as “the existence
of more than one means of performing a given function”.

Redundancy is used to improve reliability or availability. A

safety instrumented system, for example with MooN voting

redundancy in its architecture can be explained as a system

with N units (i.e., components, channels, etc.,) where M is

less than or equal to N, in which M out of N units are

required to execute a safety function. That means M units must

function for the system to be successful [7]. For instance, in

configuration 1oo2 at least one of the two components must

function to guarantee the safety function.

B. Common Cause Failures

The definition and use of the term Common Cause Failure

(CCS) were initially made by Fleming & Hannaman [8], as

follows: “A CCF is an occurrence of multiple equipment
failures caused by a single (common) event”. Standards and

industries also developed similar definitions. For example,
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in IEC 61508, CCF is “the result of one or more events,
causing concurrent failures of two or more separate channels
in a multiple channel system leading to system failure”. The

author in [9] separates CCF definitions for component-level

and system-level functions. At the component level, a CCF is

“an event where a component is failed due to a certain cause,
and the same cause has the potential to fail other redundant
components” while at the system level is, “an event where
multiple redundant component failures are due to a shared
cause, and multiple component failures lead to system failure.”

C. IEC 61508 Standard based CCF Quantification

The standard IEC 61508 [6] suggest a methodology for

defining the β-factor model required for quantifying the

hardware-related CCF in E/E/PE systems. The methodology

permits the calculation of overall CCF dangerous rates by

considering both dangerous detected (DD) and dangerous

undetected (DU) failure rates. β is the CCF factor for DU,

while βD is the CCF factor for DD. The equation to calculate

CCF rate as per the standard is:

λCC = λDUβ + λDDβD (1)

III. RELATED WORK

Most available research studies discuss individual β-factor

models or compare two or more models by considering case

studies. Few identified secondary studies present reviews of

different models, which capture some of the aspects we

present. For example, in [10], the authors present a compre-

hensive list of models that practitioners can use as a reference

for searching models. However, [10] does not contain such a

detailed analysis as we do in this paper. In [11], the authors

show the development of CCF models, including some of the

β-factor models that we also list in our review. However, this

work was done in the ’90s, which means that many of the later

developed β-factor models are not included. More reviews are

presented in [12], [13] and [14], where the authors characterize

the CCF modeling status, including the β-factor models. In

[14], the authors also evaluate some of the β-factor models,

providing the readers with a more rich view of such models

and their adopted defense measures. Previous reviews present

the role of the β-factor models as a part of other CCF models.

In contrast, our study focuses only on the β-factor models

existing in the state of the art. We also compare them by

considering parameters such as the redundancy support of the

models and the needed expert judgment. We also present their

tool support and applicability in industrial settings.

IV. RESEARCH METHOD

For performing the SLR, we follow the research process

proposed by Kitchenham and Charters [5]. We present the

review protocol in Section IV-A and the data collection

procedure in Section IV-B.

A. Review Protocol

The purpose of this SLR is to identify and characterize

all the available models that have similarities or are derived

from the β-factor model. We first got to know about the β-

factor model from the standard IEC 61508 [6] (recalled in

Section II-C). Accordingly, we define the research questions

that should be addressed in this study (see Table I).

TABLE I: Research Questions

Id Question

RQ1
How did the β-factor models evolve over time, and how could we
classify them?

RQ2
How do the identified models provide support in the quantification
of CCFs with respect to redundancy and expert judgment?

RQ3
What are the identified tools to model the β-factor models and
the list of industries that are using different β-factor models?

For reaching the maximum amount of primary studies, we

tried and compared different search strings and hits between

them. The final search string is the following:

(“Beta factor model” OR “β-factor model” OR “common
cause failure model” OR “CCF model”)

Primary studies are searched on five popular scientific

online digital libraries: 1) Google Scholar, 2) ScienceDirect,

3) Springer Link, 4) Web of Science, and 5) IEEE Ex-

plore. Google Scholar permits the identification of papers

in databases beyond the ones previously mentioned. All the

databases except Google Scholar accepted all the words de-

fined in the search string. For Google Scholar, we divided

the search string into four strings and did four different

searches. We did not make any restrictions related to the year

of publication. The search was performed between December

2022 and January 2023. Papers published after this date are

outside of the scope of our review. We made a checklist

questionnaire to identify the primary studies (see [15]). The

primary studies included in the selection are peer-reviewed

articles and technical reports written in English that discuss β-

factor models. In contrast, primary studies that do not provide

appropriate answers to the checklist questionnaire, studies

that are not peer-reviewed, and secondary/tertiary studies are

excluded from the selection. Such criteria were adopted during

the different filters of the SLR process (see Fig. 1).

B. Data Collection

The selection of primary studies was performed through

multiple rounds as presented in Fig. 1. At first, we conducted

title screening of the identified 2541 studies, in which we

select the papers that match any one of the inclusion criteria.

From the title screening, we got a total of 394 papers. In

the second round, we removed duplicates from the papers,

and we got 281 papers. Then in the third round, we did the

abstract screening, from which we got 75 studies. The most

common reasons for discarding many studies are their use

of models for quantifying CCFs different from the β-factor

model. In the fourth round, we found 41 studies relevant

among 75 studies, through careful reading of full papers. Then
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Fig. 1: SLR process steps and models selection

we applied the snowballing process [16] to the 41 articles to

find more papers through reference checking, from which we

got 7 more studies from backward snowballing and 3 more

studies from forward snowballing. Thus, we collected a total of

51 primary studies based on our SLR via database search and

snowballing process. Subsequently, we further analyzed the

51 primary studies and identified 20 distinct models based on

pre-defined model identification criteria. In our data extraction

process, we maintained our selected paper details in Excel

sheets (see [17]), where we provided information about the

paper title, author details, year, venue details, and collected

data.

V. RESEARCH RESULTS

A. Evolution and classification of β-factor models (RQ1)

In our SLR, we identified 20 models (see Table II). Based

on the estimation of the β-values, they can be quantitative,

qualitative, and hybrid approaches. Three types of models

of recent times (21st century) are identified in the journal

reliability engineering & system safety [18]. Five types of

models of old times (’80s) are found in the reliability engi-

neering journal [19]. Two models are identified in probabilistic

safety assessment and management conference proceedings.

The remaining ten models are identified in different types

of venues. The first model evolution happened in the ’70s.

Consequently, six types of quantitative approaches and three

types of qualitative approaches evolved in the ’80s. In the ’90s,

only two types of qualitative approaches evolved. Whereas

in the 21st century, two types of quantitative approaches,

four types of qualitative approaches, and two types of hybrid

approaches evolved. The historical evolution of the models is

shown in Figure 2.

0

2

4

6

1974-1984 1984-1994 1994-2004 2004-2014 2014-2023

Quantitative Qualitative Hybrid

Fig. 2: Models Evolution Timeline

Quantitative Models: This classification estimates the β
value from the existing historical CCF data sources. The first

model is the β-factor model [M1] or BMF. This model, which

TABLE II: Historical Evolution of Beta Factor Models

Model Name Year Ref.
Quantitative approaches

BFM model 1974 [M1]
MDFF method 1982 [M2]
Specialized BFM approach 1983 [M3]
MGL method 1983 [M4]
C-factor model 1984 [M5]
Extended MDFF method 1984 [M6]
Event-based method 1987 [M7]
Modified BFM approach 2012 [M8]
Advanced MGL method 2014 [M9]

Qualitative approaches
BFM with limiting values 1987 [M10]
PBF method 1987 [M11]
Humphreys method 1987 [M12]
Enhanced PBF method 1990 [M13]
UPM approach 1996 [M14]
Multiple BFM approach 2004 [M15]
PDS method 2006 [M16]
IEC 61508 based framework 2013 [M17]
SLV approach 2015 [M18]

Hybrid approaches
Alpha factor and BFM 2020 [M19]
Modified BFM and Humphreys method 2022 [M20]

appeared in 1974, was created to facilitate the calculation

of CCFs in the nuclear industry. The BMF model considers

common and independent failures simultaneously. For this

purpose, the model introduced a new parameter called β,

where the β value is taken from operational experience data.

This model assumes λ as the failure rate, where independent

and common mode failures are regarded as to be λ1 and λ2,

respectively. The failure might be λ1 or λ2 but cannot be

both. The equations defined in paper [M1] are:

λ =
number of failures

part-hours of operation
(2)

β = fraction of unit failures which are common mode (3)

λ1 = (1− β)λ (4)

λ2 = βλ (5)

The BFM model predicts appropriate system reliability for

low levels of redundancy, e.g., 1oo2. However, it indicates

lower reliability than observed for systems with higher redun-

dancy. For accurate quantitative predictions, all the remaining

quantitative approaches were proposed.
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Models that evolved directly for the BFM (see the left side

of Fig. 3) are the Specialized BFM approach [M3], the C-
factor model [M5], the Multiple Dependent Failure Fraction
or MDFF model [M2], the Multiple Greek Letter method
(MGL) [M4] and the Modified BFM [M8].

In addition, improvements are applied to the previous

models, giving birth to new ones. For example, the Multiple
Dependent Failure Fraction or MDFF model [M2] predicts

values much closer to the experienced ones, especially for

a 1oo3 configuration. This work was later extended into the

Extended MDFF method [M6] to derive reliability expressions

for multiple redundant systems.

Another example is the MGL method, which evolved to

consider explicitly higher-order redundancies by introducing

a different set of parameters in addition to β factor. This

model was used as a base to create the Advanced MGL method
[M9] and the Event-based Method [M7]. The former allows

components that share multiple common characteristics with

more than one group of similar components. The latter uses

parameters that are based on event statistics.

Qualitative Models: In this classification, the β value is

calculated by considering the assessment of different defense

factors against CCFs. The assessment is done by experts and

historical data is not required. As presented in Table III, there

are six types of factors, which in total contain 39 estimation

factors, most of them related to the system design.

In particular, the BFM with limiting values [M10], which

was the first model considering qualitative measures, tackles

design factors, such as the degree of components diversity,

type of system, defense against CCF, and degree of redun-

dancy. The β value, which is determined entirely by an expert,

is inversely proportional to the CCF defenses.

The remaining models of this category base their estimation

of the β factor on checklists. In particular, we see the first

checklist in the Partial Beta Factor method (PBF) [M11],

where 19 defense factors are assessed. This model evolved

into the Enhanced PBF method [M13] and the Unified Partial
Method (UPM) [M14]. The former also considers the same

19 factors but includes more detailed information for audit

purposes. The latter focuses on fewer factors (eight in total)

that describe the impact of the system’s design, as well as

operational and environmental characteristics.

The Humphreys’method [M12] considers eight factors that

are commonly related to electrical/electronic systems. For

example, in the design, there are four factors, i.e., separation of

components, similarities in the components, the complexity of

the system, and analysis of the components. It also considers

operation factors, like procedures and training. A context-

specific model is the one created for the Space Launch Vehicles
(SLV) approach [M18], which is a model resulting from

tailoring a pre-existing methodology for space launch vehicles,

considering eight factors that contribute to CCFs. Scoring such

factors requires expert judgment.

Finally, we have methods that are based on the standard

IEC 61508. Those methods are the PDS method (pålitelighet
for datamaskinbaserte sikkerhetssystemer-Norwegian
acronym) [M16], the Multiple β Factor Method (MBF) [M15]

and the IEC 61508 based Framework [M17]; all of them

estimate the β value based on 13 factors.

Hybrid Approaches: We found two models in this clas-

sification (see the bottom side of Fig. 3). In particular, the

Modified BFM and Humphreys method [M20], in which the

β value is determined by the Humphreys method. The second

model combines the Alpha factor and BFM [M19]. This model

is suitable for multi-unit probabilistic safety assessment (PSA),

which involves a large number of nuclear power plant units.

It uses the Alpha factor for each modeled unit and combines

them as in the BFM model.

B. Analysis of the Models support (RQ2)

The β-factor models are developed to identify and quantify

CCFs for the reliability assessment of the systems. However,

the CCF results produced by different β-factor models, which

depend on different aspects within the system under study,

produce conservative results (careful estimation) or less con-

servative ones (closest to reality). In general, the main factors

of the models that are influencing the CCF results are their

level of redundancy support and level of expert judgment.

Redundancy: In general, all the β-factor models found in

this study claim to support all types of redundancy. However,

better results (or less conservative) are found to be different

for different models. In Table IV, we classify the models,

according to the redundancy support (see Section II-A) that

provides better results from the models. Three different re-

dundancy types are used, such as low redundancy (e.g., 1oo2),

low to medium redundancy (e.g., 1oo2, 1oo3), and low to high

(e.g., 1oo2, 1oo3, 1oo4).

TABLE IV: Redundancy support of the models

Redundancy Model type Models

Low
Quantitative [M1], [M2], [M5]

Qualitative
[M11], [M12], [M13], [M14],
[M18]

Hybrid [M19]

Low to medium
Quantitative [M3], [M6], [M7], [M8], [M9]
Qualitative [M10]
Hybrid [M20]

Low to high
Quantitative [M4]
Qualitative [M15], [M16], [M17]

Experts Judgement: All the models require expert judg-

ment in their implementation. However, qualitative models

require a high level of involvement of experts in the quantifi-

cation of the factors (presented in Table III). In the quantitative

models, the expert is required to estimate the β value giving

her expertise from similar projects by checking the historical

CCF data (e.g., event reports) to estimate the value.

C. Identified Industries and Tools (RQ3)

In our review, we found different industries that were the

pioneers of the models. We also found the available tools

supporting some of the models.

Industries: From our analysis, we identified that a large

number of quantitative approaches have been used in the

past probabilistic risk assessment of the nuclear industry. The

models BFM model, Specialized BFM approach, Extended
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Quantitative Approaches 

β-factor Model (BFM)

Specialized BFM 
It derives realistic β value applicable to different levels 

of system redundancy.

Extended MDFF method
It  derives reliability 

expressions for several 
multiple redundant 

systems.

C-factor model 
It estimates common cause parameters in 

accordance with event reports.

MGL method 
It  treats multiple levels of CCFs using different 

parameters.

MDFF method
It supports higher 

orders of redundancy.

Event-based method 
It modifies the MGL 

method with parameters 
based on event statistics.

Modified BFM 
It derives a β-factor for the simultaneous assignment of  

single failure events to multiple CCF groups.

BFM with limiting values
It provides a β value that is inversely proportional to the CCF 

defenses.

PBF method 
It estimate the β value as a product of partial β factors which are 

resulting from an expert judgment.

Humphreys method 
It determines plant-specific β values by identifying the defense measurements.

Enhanced PBF method
It provides more information 

about the judgment of system 
defenses.

Qualitative Approaches 

Advanced MGL method
It allows components that 

share common 
characteristics with more 
than one group of similar 

components.

UPM approach
It estimates the β value by 
analyzing CCF subfactors.

Space Launch Vehicles approach 
It tailors pre-existing methodology and derives β values by scoring eight defense 

measures. 

PDS method 
It suggests configuration 
factor values in CCF rate 

estimation as per 
redundancy.

Multiple BFM
It suggests a CCF rate  

calculation formula for 
every MooN configuration.

IEC 61508-based 
framework

It includes human & 
organizational factor 

effects on β.

β-factor estimation based on IEC 61508 standard

Alpha factor + BFM
It model CCFs for multi-unit PSA. 

Modified BFM + Humphreys method
To model CCFs with Modified BFM but 

determining β with Humphreys method.

Alpha-Factor model
It is a failure event ratio model (out of the 

scope of our research context).

Hybrid Approaches

Fig. 3: Models evolution with distinguishing features and relationships

MDFF method, C-factor model, and Extended MDFF method

are among those quantitative approaches which have been

widely used during the period between 1975-1985 in the

nuclear industry across various countries. The studies that

present these models also show their usability and the avail-

ability of past experience CCF data for the utilization of these

quantitative approaches.

From our analysis, we identified that one of the qualitative

approaches (BFM with limiting value) is also used in the

nuclear industry. As the qualitative models do not depend on

past experience CCF data, it has been used widely in distinct

industries during the period 1987-2015. The UPM approach is

used in the aviation industry, and the PDS method is used in

the offshore and railway industry. Other models, such as the

SLV approach was developed especially to use in the space

industry. The Humphreys method was developed for industries

that are using electrical/electronic systems.

The two types of hybrid approaches are mainly developed

for the nuclear industry in the recent period 2020-2022. The

first hybrid approach (Alpha factor and BFM) was developed

to model CCFs for multi-unit probabilistic safety assessment

of nuclear chemical plants. The second hybrid approach (Mod-

ified BFM and Humpheys method) was developed to model

software CCFs within digital instrumentation and control sys-

tems of the nuclear industry. The evolution and development of

the β-factor model begin initially with a focus on the nuclear

industry and its systems that rely on their past CCF data. In

later years, the industries that are using electrical/electronic

systems developed other methodologies that do not rely on

past CCF data. However, industry-specific β-factor models are

not yet developed/identified.

Identified Tools: : In our SLR process from primary studies,

we identified four commercial tools that support two of the

identified β-factor models (i.e., [M1] and [M4]). In particular,

the SAPHIRE software, which stands from Systems Analysis

Programs for Hands-on Integrated Reliability Evaluations [20],

is a tool that supports defining a CCF object with a piece

of minimal information like the number of redundant com-

ponents, failure criteria, choosing a CCF model type among

the available models, associated model parameters and other

details. It supports the models M1 and M4. Another tool is

called CAFTA software, which stands for Computer Aided
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TABLE III: β Estimation Factors for Qualitative Models

No. Type of factor Estimation Factor Models
1

Design factors

Degree of component diversity [M10], [M15], [M16], [M17]
2 Type of system [M10]
3 Defense against CCF [M10]
4 Degree of redundancy [M10], [M11], [M13], [M14], [M15], [M16], [M17], [M18]
5 Design control [M11], [M13]
6 Design review [M11], [M13]
7 Functional diversity [M11], [M13]
8 Equipment diversity [M11], [M13]
9 Fail-safe design [M11], [M13]
10 Operational interfaces [M11], [M13]
11 Protection and segregation [M11], [M13], [M15], [M16], [M17], [M18]
12 Derating and simplicity [M11], [M13]
13 Separation of components [M12], [M15], [M16], [M17], [M18]
14 Similarity in the components [M12]
15 Complexity of the system [M12], [M15], [M16], [M17], [M18]
16 Analysis of the components [M12], [M15], [M16], [M17], [M18]
17 Isolation [M14]
18 Understanding [M14]
19 Evaluation [M14]
20

Construction factors

Construction and control [M11], [M13]
21 Testing and commissioning [M11], [M13]
22 Inspection [M11], [M13]
23 Construction standards [M11], [M13]
24

Operation factors

Operational control [M11], [M13]
25 Reliability monitoring [M11], [M13]
26 Maintenance [M11], [M13]
27 Proof test [M11], [M13]
28 Operations [M11], [M13]
29 Procedures [M12], [M15], [M16], [M17], [M18]
30 Training [M12], [M14]
31 Interface [M14]
32

Environment factors
Environmental control [M12], [M15], [M16], [M17], [M18]

33 Environmental test [M12], [M15], [M16], [M17], [M18]
34

Condition factors
Control [M14]

35 Experiment [M14]
36

Other factors

Design/application/maturity/experience [M15], [M16], [M17], [M18]
37 Assessment and feedback of data [M15], [M16], [M17], [M18]
38 Human interface [M15], [M16], [M17], [M18]
39 Competence/training/safety culture [M15], [M16], [M17], [M18]

Fault Tree Analysis system [21]. It is used by both single

analysts and project teams. It supports the modeling of CCF

events with model M4. The Risk Spectrum [22] is a Prob-

abilistic Safety Assessment software, which provides choices

for selecting different hazard analysis techniques such as event

tree, fault tree, and to model CCFs. It supports the models M1

and M4. Finally, we found Isograph [23] tool, which provides

efficient support in safety analysis through its product Fault

Tree+. It supports the models M1 and M4. However, in most

of the studies models are used manually, without tool support.

VI. DISCUSSION

A. Implications for the Industry

There are some aspects related to the review presented in

this paper that we consider worth highlighting and discussing.

The first aspect is related to the selection of models for

industrial applications. In particular, there are various β-factor

models to be chosen. However, not all of them are appropriate

for all systems. Therefore, we need to do an analysis of the

system under study and reflect on the type of results we are

willing to accept (conservative or less conservative) as well as

the implications of those results.

For example, it is important for the practitioners to under-

stand if past information regarding CCFs (for similar models)

exists. In that case, practitioners can select quantitative models

(see the left side of Fig. 3). In the absence of past data, the

most appropriate models are those classified as qualitative (see

the right side of Fig. 3). However qualitative models also

varied according to the type of estimation factor that they

support (see Table III).

In addition, safety systems are configured with different

redundancy levels. To get more appropriate results (or, in other

words, less conservative results), it is better to select a model

that copes with the type of redundancy that is being considered

for the system (see Table IV). Practitioners can also consider

the existing tools (presented in Section V-C) and the models

they support to facilitate their application.

In most cases, industries start their CCFs analysis from

the model provided by the standard IEC 61508 (which is

qualitative) to be able to comply with the standard. However,

they move to more appropriate models as soon as data is

available. The reason for this change is that industries are in

search of better CCF quantification that reduces the number

of safety requirements needed to be considered. Reduction of
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safety requirements means a reduction of cost, which is one

of the goals that drive industries.

B. Implications for Research

The research and development towards the quantification

of CCFs using β-factor models began in the 1970s. Several

models have been created after this time, for coping with

the different needs of different industries (but especially for

the nuclear industry). However, it is still difficult to find a

more general model that is able to cope with different needs

at the same time. Therefore, the visualization of models and

their support may be a good starting point for practitioners

aiming at using them, but also for researchers wanting to

evolve models into new (and more appropriate) ones without

repeating past efforts. There is also a strong need for research

towards tool support for β-factor models because from our

analysis we found only four tools (see subsection V-C), which

are supporting two β-factor models (among the 20 models

found in our study - see Table II). The high prominence of

models, M1 and M4 in industries has led to the development

of tools only for these models. However, tools like Isograph

[23] supports the standard IEC 61508, and the models which

estimate the β-factor values following this standard could

utilize this Isograph tool support.

VII. THREATS TO VALIDITY

Potential threats that could undermine the validity of an

SLR are publication bias, missing primary studies, and data

extraction inconsistencies. This section presents the strategies

adopted during our review to address these threats. However,

we made an efficient review protocol, following the guidelines

[5] and a thorough review of two research experts. We pro-

vided access to our detailed strategy used in the identification

of primary studies and the data collection (see Section IV).

A. Publication Bias

This threat refers to the problem that positive results are

more likely to be published than negative results. To mitigate

this threat, we designed a review protocol according to best

practices. Such a protocol was done by the first author and

reviewed by the second and third authors who had experience

of performing systematic reviews, e.g., [24], and [25] respec-

tively. Hence, the first author is a data extractor and the other

two authors are data checkers. The data checkers reviewed and

analyzed the results by conducting meetings and discussions.

B. Missing Primary Studies

This threat refers to the inability to collect all possible

primary studies and can be addressed by an appropriate search

strategy. To mitigate this threat, we aimed to ensure the search

addresses our review intentions. We carefully characterized

the topic to discover all possible concepts, synonyms, and

acronyms. Then, we tested it in known digital libraries. How-

ever, the search string may not be sufficient for all possible

studies. To mitigate this threat we perform a snowballing

process. In particular, we manually scanned and analyzed the

references of primary studies obtained from the automated

search (backward snowballing) and citations of those studies

found in Google Scholar (forward snowballing). The first

author performed the process, while the second and third

authors evaluated the work. The inclusion of Google Scholar

amplified the considered sources. However, we found several

old dated studies with difficult accessibility. Some of them

were provided in printed form by the university library.

However, some other identified studies, i.e., original reference

articles of models M4, M14, and M16 were not found. We

based their analysis on newer obtained references.

C. Data Collection Inconsistencies

This threat can be tackled by an appropriate strategy to

extract all data required to address the review questions in a

consistent manner. In particular, the data available contains the

information of primary studies citation and the answers related

to the three research questions. The data extraction process and

the identified studies from the beginning of the database search

till the identification of models are maintained in different

sheets of an Excel file, which is made available online. We

followed the practice of highlighting the important text in the

identified studies. The extracted data is cross-checked by the

senior researchers. Thus, we make sure of collecting data in a

consistent manner.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we conducted a systematic literature review to

understand how the β-factor model has been used in practice.

Our review found 20 different models (listed in Table II). Such

models have a common origin, namely, they are based on the

model [M1], which was proposed for the nuclear industry.

However, different contexts bring different details that make

the first model not suitable for all projects. Therefore, new

models emerged to tackle different projects and industrial

needs (see Fig. 3). In particular, some models require data

from previous project experiences - quantitative approaches,

whereas other models rely on questionnaire results or expert

judgment - qualitative approaches, and there are models that

use a combination of both - hybrid approaches. The results

provided by those models also vary in accordance with the

level of redundancy and the required expert judgment (see

Section V-B). Finally, there are tools available for supporting

some models, but the majority of them lack tool support (see

Section V-C). This information can be useful for practitioners

and researchers that are interested in using a method that better

matches their project-specific needs.

In the future, we plan to perform case studies with selected

β-factor models to contrast their results in practice. We also

plan to create guidelines that can facilitate the selection and

use of different models. In addition, surveys with practitioners

will be conducted, to understand their specific needs regarding

CCFs identification and evaluation. Finally, we plan to test the

accuracy and usability of the available tools to see if they meet

industrial needs or if more appropriate tools are required.
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