
Timed Automata as Task Models for Event-Driven Systems

Christer Norström� and Anders Wall�
�Mälardalen University

Department of Computer Engineering
P.O. Box 883, S-721 23 Västerås, Sweden

�awl,cen� @mdh.se

Wang Yi���
�Uppsala University

Department of Computer Systems
P.O. Box 325, S-751 05 Uppsala, Sweden

yi@docs.uu.se

Abstract

In this paper, we extend the classic model of timed automata
with a notion of real time tasks. The main idea is to asso-
ciate each discrete transition in a timed automaton with a
task (an executable program). Intuitively, a discrete tran-
sition in an extended timed automaton denotes an event re-
leasing a task and the guard on the transition specifies all
the possible arriving times of the event (instead of the so–
called minimal inter-arrival time). This yields a general
model for hard real-time systems in which tasks may be pe-
riodic and non-periodic.

We show that the schedulability problem for the extended
model can be transformed to a reachability problem for
standard timed automata and thus it is decidable. This al-
lows us to apply model-checking tools for timed automata
to schedulability analysis for event-driven systems. In ad-
dition, based on the same model of a system, we may use
the tools to verify other properties (e.g. safety and func-
tionality) of the system. This unifies schedulability analysis
and formal verification in one framework. We present an
example where the model–checker UPPAAL is applied to
check the schedulability and safety properties of a control
program for a turning lathe.

1. Introduction

The traditional approach to the development of hard real-
time system is often based on scheduling theory. There are
various methods [5, 12, 7] e.g. rate monotonic scheduling,
which have been very successful for the analysis of time-
driven systems as tasks are periodic. To deal with non-
periodic tasks in event–driven systems, the standard method
is to consider non-periodic tasks as periodic using the mini-
mal inter-arrival times as task periods. Clearly, the analysis
result based on such a task model would be pessimistic in

many cases, e.g. a task set which is schedulable may be con-
sidered as non-schedulable as the inter-arrival times of the
tasks may vary over time, that are not necessary minimal.

In recent years, in the area of formal methods, there have
been several advances in formal modeling and analysis of
real time systems based the theory of timed automata due to
the pioneering work of Alur and Dill [2]. Notably, a num-
ber of verification tools have been developed (e.g. KRONOS

and UPPAAL [6, 4]) in the framework of timed automata,
that have been successfully applied in industrial case studies
(e.g. [3, 13, 11]). Timed automata have proved expressive
enough for many real-life examples, in particular, for event-
driven systems. The advantage with timed automata is that
one may specify very relaxed timing constraints on events
(i.e. discrete transitions) than the traditional approach in
which events are often considered to be periodic. However,
it is not clear how the model of timed automata can be used
for schedulability analysis. In this paper, we present an ex-
tended version of timed automata with real-time tasks to
provide a model for event-driven systems. We show that the
extended model can be used for both schedulability analy-
sis and verification of other properties, e.g. safety and live-
ness properties of timed systems. This unifies schedulabil-
ity analysis and formal verification in one framework.

The main idea is to associate each discrete transition in a
timed automaton with a task (or several tasks in the general
case). A task is assumed to be an executable program with
two given parameters: its worst execution time and dead-
line. Intuitively, a discrete transition in an extended timed
automaton denotes an event releasing a task and the guard
(clock constraints) on the transition specifies all the possi-
ble arrival times of the associated task. Whenever a task is
released, it will be put in the scheduling queue for execu-
tion. We assume that the tasks will be executed according
to a given scheduling strategy e.g. earliest deadline first.
Then a delay transition of the timed automaton corresponds
to the execution of the task with earliest deadline and idling
for the other waiting tasks.

Thus, the sequences of discrete transitions of an extended
timed automaton will correspond to the sequences of ar-
rivals of non-periodic tasks. We say that such a sequence of
tasks is schedulable if all the tasks can be executed within
their deadlines. Naturally an automaton is schedulable if
all the task sequences are schedulable. We shall show that
under the assumption that the tasks are non-preemptive, the
schedulability problem can be transformed to a reachabil-
ity problem for ordinary timed automata and thus it is de-
cidable. This allows us to apply model-checking tools for
timed automata to schedulability analysis for event-driven
systems. We present an example where the model–checker
UPPAAL is applied to check the schedulability and safety
properties of a control program in control applications.

The rest of this paper is organized as follows: Section 2
presents the syntax and semantics of the extended timed
automata with tasks. Section 3 shows how to transform
the scedulability analysis problem for extended model to a
reachability problem for ordinary timed automata, and thus
schedulability analysis may be performed by the existing
verification tools for timed automata. Section 4 provides an
example to illustrate our approach. Section 5 concludes the
paper with summarized results and future work.

2. Timed Automata with Real-Time Tasks

The theory of timed automata was first introduced in [2] and
has since then established as a standard model for real time
systems. We first give an brief review to fix the terminology
and notation and then present an extended version of the
model with tasks.

2.1. Timed Automata

A timed automaton is a standard finite-state automaton ex-
tended with a finite collection of real-valued clocks. The
transitions of a timed automaton are labelled with a guard
(a condition on clocks), an action, and a clock reset (a sub-
set of clocks to be reset). Intuitively, a timed automaton
starts execution with all clocks set to zero. Clocks increase
uniformly with time while the automaton is within a node.
A transition can be taken if the clocks fulfill the guard. By
taking the transition, all clocks in the clock reset will be set
to zero, while the remaining keep their values. Thus transi-
tions occur instantaneously. Semantically, a state of an au-
tomaton is a pair of a control node and a clock assignment,
i.e. the current setting of the clocks. Transitions in the se-
mantic interpretation are either labelled with an action (if it
is an instantaneous switch from the current node to another)
or a positive real number i.e. a time delay (if the automaton
stays within a node letting time pass).

For the formal definition, we assume a finite set of alpha-
bets ��� for actions and a finite set of real-valued variables
� for clocks. We use �� � etc to range over ��� and��� ��

etc. to range over �. We use ���� ranged over by 	 and
later by
 etc, denote the set of conjunctive formulas of
atomic constraints in the form: ���� or�������where
��� �� � � are clocks, � � ���
��� ��, and ��� are
natural numbers. The elements of ���� are called clock
constraints.

Definition 1. A timed automaton over actions ��� and
clocks � is a tuple 	�� ��� �
 where

� � is a finite set of nodes,

� �� � � is the initial node, and

� � � �
����
���
 ��
� is the set of edges.

When 	�� 	� �� �� ��
 � �, we write �
�����
�� ��.

Formally, we represent the values of clocks as functions
(called clock assignments) from� to the non–negative reals
���. We denote by � the set of clock assignments for �. A
semantical state of an automaton is now a pair ��� ��, where
� is a node of the automaton and � is a clock assignment
and the semantics of the automaton is given by a transition
system with the following two types of transitions (corre-
sponding to delay–transitions and action–transitions):

� ��� ��
�
����� �� ��

� ��� ��
�
������ ��� if �

�����
�� ��, � � 	 and �� � �� �� ���

where for � � ���, � � � denotes the clock assignment
which maps each clock � in � to the value ���� � �, and
for � � �, �� �� ��� denotes the assignment for � which
maps each clock in � to the value � and agrees with � over
���. By � � 	 we denote that the clock assignment �
satisfies the constraint 	.

2.2. Extended Timed Automata with Tasks

We shall view a timed automaton as an abstract model of a
running process. The model describes the possible events
(alphabets accepted by the automaton) that may occur dur-
ing the execution of the process and the occurrence of the
events must follow the timing constraints (given by the
clock constraints). But the model gives no information on
how these events should be handled. In many cases, for ex-
ample in a control system, when an external event occurs,
some computation must be performed to handle the event.
A more concrete example is an interrupt handling system.

m n

x>2 x:=0

x<4

y:=0

y>2

a

b

a

Figure 1. An Example Timed Automaton with
Tasks.

Whenever an interrupt signal occurs, the associated inter-
rupt handling program will be executed.

Now, assume that each action symbol in a timed automaton
is associated with a program called task. Let � ranged over
by � etc, denote the set of tasks. We further assume that
the worst case execution time and hard deadline of the tasks
in � are known. We shall use clock constraints to specify
the arrival times of the tasks. Thus, each task � in � is
characterized as a pair ��� �� of natural numbers with � �
� where � is the execution time of � and � is the relative
deadline for �.

The deadline � is a relative deadline meaning that when task
� is released, it should finish within � time units.

Definition 2. An extended timed automaton with tasks
(TAT), over actions ���, clocks � and tasks � is a tuple
	�� ��� �� �
 where

� 	�� ��� �� �
 is a standard timed automaton,

� � 	 ��� �� � is a partial function assigning tasks to
actions.

Semantically, an extended automaton may perform two
types of transitions just as an ordinary timed automaton. In
addition, an action transition will release a new instance of
the task associated with the action. Assume that there is
a queue holding all the task instances generated by action
transitions and ready to run. The queue corresponds to the
ready queue in an operating systems. A semantic state of
an extended automaton is a triple consisting of a node (the
current control node), a clock assignment (the current set-
ting of the clocks) and a task queue (the current status of
the ready queue).

Consider the automaton of Figure 1. Let �
 and �� be tasks
handling the interrupt signals � and � respectively. Assume
that the initial state is ��� �� � �� � � ��� ��� where the

clocks are � and the task queue is empty. Then the automa-
ton may demonstrate the following sequence of transitions:

��� �� � �� � � ��� ���
�
�� ��� �� � �� � � ��� ���

�
�� ��� �� � �� � � ��� ��
��
�
�� ��� �� � �� � � ��� ��
� �
��
�
�� ��� �� � �� � � ��� ��
� �
��
�
�� ��� �� � �� � � ��� ��
� �
� �
��
�
�� ��� �� � �� � �
�� ��
� �
� �
��
	
�� ��� �� � �� � �
�� ��
� �
� �
� ����
� � �

Note that several instances of the same task may be re-
leased. However, the number of copies may be bounded by
the clock constraints. For example, in state ��� �� � �� � �

�� ��
� �
� �
��, no more instance of �
 will be released be-
cause the clock values will not satisfy the constraint �
 �
and � � �, but an instance of �� may be released by the
�-transition (which has no timing constraint).

In the above example, we have only shown that the task
queue is growing due to action transitions. Now we discuss
the effect of delay transitions on task queue. We shall see
that the queue will be shrinking due to delay transitions.
Let �
 � �� � ���
� i.e. the computation time of both �

and �� is � and the deadline is
. We assume that there is a
processor running the task instances according to a certain
scheduling strategy. A delay transition with � time units is
to execute the tasks in the queue with � time units. After the
transition, a task will be removed from the queue (shrink-
ing) if its computation time becomes � and the deadlines
of all tasks in the queue will be decreased by � (since time
has progressed by t). Now we have a precise description
on the state changes for the above transition sequence:

��� �� � �� � � ��� ���
�
�� ��� �� � �� � � ��� ���

�
�� ��� �� � �� � � ��� ����
���
�
�� ��� �� � �� � � ��� ����
�� ���
���
�
�� ��� �� � �� � � ��� ��
� ����
�
�� ��� �� � �� � � ��� ��
� ��� ���
���
�
�� ��� �� � �� � �
�� ���� ����
	

�� ��� �� � �� � �
�� ���� ��� ���
���
� � �

More precisely we have the following assumptions on the
underlining execution model:

1. A ready queue holding the task instances released and
waiting for execution. A task instance will be removed
from the queue when its computation time becomes �.

2. An on-line scheduler ��� sorting the queue according
to a given scheduling strategy. It will report � if the
queue becomes non-schedulable when a new task in-
stance is added.

3. A single processor executing the tasks according to
the ordering of the queue. It will always execute the
task in the first position. The tasks are executed non-
preemtive.

Further we use ������ �� to denote the resulted task queue
after � time units of execution. The meaning of ������ ��
should be obvious. For example, let � � ���� ��� ���
�� and
� � � then ������ �� � ��
� ��� in which the first task is
finished and the second has been executed for
 time unit.
Now we are ready to present the transitional rules for ex-
tended timed automata.

Definition 3. The semantics of an extended automaton is a
transition system defined by the following transition rules
(corresponding to release of new task and execution of ex-
isting tasks):

� ��� �� ��
�
�� ���� ��� �������� if �

�����
�� ��, � � 	, �� �

��� �� ��, and �� � � 		 � ���

� ��� �� ��

�� ��� �� �������� ���

We shall write ��� �� �� �� ���� ��� ��� if ��� �� ��
�
��

���� ��� ��� for an action � or ��� �� ��
�
�� ���� ��� ��� for a

delay �.

Finally, to handle concurrency and synchronization, paral-
lel composition of extended timed automata may be intro-
duced in the same way as for ordinary timed automata (e.g.
see [10]) using the notion of synchronization function [8].
For example, consider the parallel composition ���� of �
and � over the same set of actions ���. The set of nodes
of ���� is simply the product of �’s and �’s nodes, the
set of clocks is the (disjoint) union of �’s and �’s clocks,
the edges are based on synchronizable �’s and �’s edges
with enabling conditions conjuncted and reset-sets unioned.
Note that due to the notion of synchronization function [8],
the action set of the parallel composition will be ��� and
thus the task assignment function for ���� is the same as
for � and �.

3. Schedulability Analysis as Reachability
Analysis

Traditionally, the temporal attributes for a real-time com-
puter systems are derived from their environment, e.g. pe-
riod times, etc. These attributes are used for constructing
a model of the system in terms of its temporal behavior.
Such a temporal model is often called a task model, which
is used to verify whether the system is schedulable or not,

but other properties such as functional and safety properties
can not be verified based on such a model. In our approach,
we may construct a model for the whole system including
the environment and tasks in the control system. The par-
allel composition of these models give us the possibility of
not only verifying temporal constraints, but also its other
aspects such as synchronization between tasks and simple
computations within tasks etc.

Normally, a system is said to be schedulable if all tasks can
always be executed within their deadlines, i.e. no deadlines
are violated. The objective of the schedulability analysis is
to verify that there are no violation of deadlines in all situ-
ations where the system may evolve to. Now we formalize
the notion of schedulability for extended timed automata.

Definition 4. An extended timed automaton � is non-
schedulable if it may reach a non-schedulable state, that
is: ���� ��� ��� ��

� ��� ���� where ���� ��� ��� is the initial
state of�, and��� is the transitive closure of ��. We say
that � is schedulable if and only if all its reachable states
are schedulable.

Thus, the schedulability of extended automata can be
checked by reachability analysis, to prove that ��� ���� is
not reachable in the automaton. However, it is not obvious
that the reachability problem for extended automata is de-
cidable. In fact, the decidability of this problem is closely
related to the preemptiveness of the tasks � . The following
is one of our main results in this paper.

Theorem 1. The problem of checking schedulability for ex-
tended timed automata over non-preemptive tasks � is de-
cidable.

Proof idea: It is based on the fact that the problem of
schedulability checking for extended timed automata can be
transformed to the reachability problem for standard timed
automata, which is known to be decidable [1]. See the fol-
lowing subsection for details on the transformation.

3.1. Transformation from TAT to ordinary timed
automata

The idea is to construct a timed automaton simulating a
ready queue and a scheduler that code all possible scenarios
of the system described by a TAT, including the tasks in the
queue and schedules. For example, consider the temporal
attributes of the two tasks �� and task �	, where �� had a
worst-case-execution time (wcet), of 4 time units (tu), and
a deadline (d), of 7 tu. The second task �	 has a wcet of 3
tu and a deadline of 5 tu.

Intuitively for a system to be schedulable, the ready queue
can contain only a finite number of task instances. More

precisely, there can only be ���� instances of task �,
where���� is given by:

���� �

�
��

��

�

where �� denotes the deadline for task � and �� denotes the
computation time.

By calculating the maximum length of the ready queue, we
know that to be schedulable, the queue in our example can
only contain one instance of �� and one instance of �	. If
at any time point, there are more than one instances of a
particular task in the ready queue waiting for execution, we
know for sure that the system is non-schedulable and the
error state should be reached. This ensures a finite number
of states in our model of the scheduler and the ready queue.
Now, we use the above example to present the algorithm for
constructing the scheduler and queue automaton, which can
be generalized easily to the general case.

1. Create three different nodes, one node in which the
ready queue is empty, one for which there exists task
instances in the ready queue and, finally an error node.

2. Create transitions from the empty node to the running
node, one for every action associated with a task. Fur-
thermore, tasks can arrive while in the run node, conse-
quently we need one transition from run back to run for
every possible task instance as well. In order to keep
track of every new task instance, a unique semaphore
for every instance is introduced (denoted as taska and
taskb in Figure 2). We also need a unique deadline
clock for every instance in order to know which task to
execute and to detect deadline violations.

3. According to EDF, the task having least time left un-
til its deadline should be executed. For all possi-
ble task instances, create a transition from run to run
which compares its relative deadline to all the other
ready tasks. In our example �� should be executing if
� � ��
 � � �	, and �	 if � � �	
 � � �� where
�� and �	 are the deadline clocks. In order to keep
track of execution time of the running task, a clock is
reseted on every release of a task. In our example, this
clock is denoted as c. Furthermore, as we consider
the non-preemptive case, no task can start to execute
while another task already is executing. Thus we need
a semaphore to know whether the processor is idle or
not (denoted r in Figure 2).

4. Introduce one transition from run to run for every pos-
sible instance which terminates the task whenever c
becomes equal to its specified execution time and its
deadline clock is less or equal to its specified dead-
line. Termination is modeled by resetting the instance
semaphore.

5. If ready queue gets empty, i.e. no tasks instances are
present in the queue a transition to the empty node
should be taken.

6. For each possible task instance we introduce a transi-
tion from run to error if:

� An action A occurs, making the number of in-
stances of A exceeding����

� The executing task has overrun its deadline

� A task pending for execution in the ready queue
has exceeded its deadline

Figure 2 shows the result from transforming our example
system shown. This is an ordinary timed automata for
which decidability has been proven in [1].

a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?
taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1
da:=0da:=0da:=0da:=0da:=0da:=0da:=0da:=0da:=0da:=0da:=0da:=0da:=0da:=0da:=0da:=0da:=0

b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?
taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1
db:=0db:=0db:=0db:=0db:=0db:=0db:=0db:=0db:=0db:=0db:=0db:=0db:=0db:=0db:=0db:=0db:=0

taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1
taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0
r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0
c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0
r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1

taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0
taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1
r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0
c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0
r:=2r:=2r:=2r:=2r:=2r:=2r:=2r:=2r:=2r:=2r:=2r:=2r:=2r:=2r:=2r:=2r:=2

taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1
taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1
7-da<5-db7-da<5-db7-da<5-db7-da<5-db7-da<5-db7-da<5-db7-da<5-db7-da<5-db7-da<5-db7-da<5-db7-da<5-db7-da<5-db7-da<5-db7-da<5-db7-da<5-db7-da<5-db7-da<5-db
r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0
c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0
r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1

taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1
taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1
5-db<7-da5-db<7-da5-db<7-da5-db<7-da5-db<7-da5-db<7-da5-db<7-da5-db<7-da5-db<7-da5-db<7-da5-db<7-da5-db<7-da5-db<7-da5-db<7-da5-db<7-da5-db<7-da5-db<7-da
r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0
c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0
r:=2r:=2r:=2r:=2r:=2r:=2r:=2r:=2r:=2r:=2r:=2r:=2r:=2r:=2r:=2r:=2r:=2taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0

taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0
r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0r==0 r==1r==1r==1r==1r==1r==1r==1r==1r==1r==1r==1r==1r==1r==1r==1r==1r==1

c==4c==4c==4c==4c==4c==4c==4c==4c==4c==4c==4c==4c==4c==4c==4c==4c==4
da<=7da<=7da<=7da<=7da<=7da<=7da<=7da<=7da<=7da<=7da<=7da<=7da<=7da<=7da<=7da<=7da<=7
r:=0r:=0r:=0r:=0r:=0r:=0r:=0r:=0r:=0r:=0r:=0r:=0r:=0r:=0r:=0r:=0r:=0
taska:=0taska:=0taska:=0taska:=0taska:=0taska:=0taska:=0taska:=0taska:=0taska:=0taska:=0taska:=0taska:=0taska:=0taska:=0taska:=0taska:=0

r==2r==2r==2r==2r==2r==2r==2r==2r==2r==2r==2r==2r==2r==2r==2r==2r==2
c==3c==3c==3c==3c==3c==3c==3c==3c==3c==3c==3c==3c==3c==3c==3c==3c==3
da<=5da<=5da<=5da<=5da<=5da<=5da<=5da<=5da<=5da<=5da<=5da<=5da<=5da<=5da<=5da<=5da<=5
r:=0r:=0r:=0r:=0r:=0r:=0r:=0r:=0r:=0r:=0r:=0r:=0r:=0r:=0r:=0r:=0r:=0
taskb:=0taskb:=0taskb:=0taskb:=0taskb:=0taskb:=0taskb:=0taskb:=0taskb:=0taskb:=0taskb:=0taskb:=0taskb:=0taskb:=0taskb:=0taskb:=0taskb:=0

taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1
a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?

taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1
b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?

taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1taskb==1
db>5db>5db>5db>5db>5db>5db>5db>5db>5db>5db>5db>5db>5db>5db>5db>5db>5

taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1taska==1
da>7da>7da>7da>7da>7da>7da>7da>7da>7da>7da>7da>7da>7da>7da>7da>7da>7

taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0taskb==0
b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?
db:=0db:=0db:=0db:=0db:=0db:=0db:=0db:=0db:=0db:=0db:=0db:=0db:=0db:=0db:=0db:=0db:=0
taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1taskb:=1

taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0taska==0
a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?
da:=0da:=0da:=0da:=0da:=0da:=0da:=0da:=0da:=0da:=0da:=0da:=0da:=0da:=0da:=0da:=0da:=0
taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1taska:=1

emptyemptyemptyemptyemptyemptyemptyemptyemptyemptyemptyemptyemptyemptyemptyemptyempty

errorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerror

runrunrunrunrunrunrunrunrunrunrunrunrunrunrunrunrun

Figure 2. A model of the ready queue and the
scheduler using ordinary timed automata

For the general case, the scheduler and queue automata is
illustrated in Figure 3 where q denotes a queue, r is the
executing task, c measures how long time the executing
task has been running and d(i) is a vector keeping track of
the time elapsed since the tasks entered the ready queue.
C(i) is a vector holding the worst case execution time of all
tasks. Both are vectors are finite as been discussed above.
Moreover, the function sch() returns the instance among
all tasks residing in the queue having least time left until
its deadline. Task i is returned by sch() if the predicate�
��������� ���� � ���� � � � � is true, where �

denotes the relative deadline specified for task i.

���

c:=0

r:=i

d(i):=0

c=C(r)

c:=0

��������� � ��

� � �	
���

���

� �� ���������� ��

d(i):=0

����
 ��

	 � ����

error

��� � � � ����
 �� � � �� �

Figure 3. A general model of the scheduler
using ordinary timed automata

4. A Case Study with UPPAAL

UPPAAL is a model-checker for timed automata [9]. As
shown in the previous section, the scheduler and ready
queue can be modeled as an ordinary timed automaton. In
this section, we present an example showing how to use UP-
PAAL for schedulability checking.

Our example system is a event-driven application control-
ling the speed of the shaft in a turning lathe. The objec-
tives of the formal verification is to verify that the system
is schedulable and the safety requirement that the engine is
not turned on by the control task while the emergency stop
is active. An event reports the current speed of the shaft
and a control task is checking that the speed is within the
speed limits (in our example speed=3). If the speed is to
high (over 3), the engine is turned off and if the speed is
to low (below 3), the engine is turned on. There is also an
emergency stop function which is implemented in software.
The setup is shown in Figure 4.

Emergency
Task

Control
Task

Engine
On/Off

On/Off

Emergancy
stop

Shaft Velocity

Stop/activate

Figure 4. The setup for our example system

As shown in Figure 4, the parts belonging to the systems
environment are the shaft having an optical sensor generat-
ing an event on every complete revolution, the emergency
stop button having two states: up or down and the engine,

being either on or off. Consequently, we have to model all
these parts as a network of TATs. Moreover, we have two
software tasks, the control task and the emergency stop han-
dler. These parts also have to be modeled in TATs belonging
to the network constituting the complete system.

4.1. Modeling the system

We start by modeling the environment, i.e. the shaft, the
emergency stop button and the engine. This can for instance
be done as shown in Figure 5, 6.

c:esc:esc:esc:esc:esc:esc:esc:esc:esc:esc:esc:esc:esc:esc:esc:esc:es

offsoffsoffsoffsoffsoffsoffsoffsoffsoffsoffsoffsoffsoffsoffsoffsoffs onsonsonsonsonsonsonsonsonsonsonsonsonsonsonsonsons upsupsupsupsupsupsupsupsupsupsupsupsupsupsupsupsups downsdownsdownsdownsdownsdownsdownsdownsdownsdownsdownsdownsdownsdownsdownsdownsdowns

status:=1status:=1status:=1status:=1status:=1status:=1status:=1status:=1status:=1status:=1status:=1status:=1status:=1status:=1status:=1status:=1status:=1

off?off?off?off?off?off?off?off?off?off?off?off?off?off?off?off?off?

on?on?on?on?on?on?on?on?on?on?on?on?on?on?on?on?on?
status:=1status:=1status:=1status:=1status:=1status:=1status:=1status:=1status:=1status:=1status:=1status:=1status:=1status:=1status:=1status:=1status:=1

on?on?on?on?on?on?on?on?on?on?on?on?on?on?on?on?on?

off?off?off?off?off?off?off?off?off?off?off?off?off?off?off?off?off?
status:=0status:=0status:=0status:=0status:=0status:=0status:=0status:=0status:=0status:=0status:=0status:=0status:=0status:=0status:=0status:=0status:=0

empos:=1empos:=1empos:=1empos:=1empos:=1empos:=1empos:=1empos:=1empos:=1empos:=1empos:=1empos:=1empos:=1empos:=1empos:=1empos:=1empos:=1
em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0
emb!emb!emb!emb!emb!emb!emb!emb!emb!emb!emb!emb!emb!emb!emb!emb!emb!

em_t>=5em_t>=5em_t>=5em_t>=5em_t>=5em_t>=5em_t>=5em_t>=5em_t>=5em_t>=5em_t>=5em_t>=5em_t>=5em_t>=5em_t>=5em_t>=5em_t>=5
empos:=0empos:=0empos:=0empos:=0empos:=0empos:=0empos:=0empos:=0empos:=0empos:=0empos:=0empos:=0empos:=0empos:=0empos:=0empos:=0empos:=0
em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0em_t:=0
emb!emb!emb!emb!emb!emb!emb!emb!emb!emb!emb!emb!emb!emb!emb!emb!emb!

Figure 6. A model of the engine and the emer-
gency stop button

If the engine is on, the shaft makes a complete revolution
in between 4-8 time units, and an event is generated every
time the optical sensor detects a complete revolution.

Next to model is the emergency stop handler and the control
task. The control task has a calculated wcet of 2 tu and a
hard deadline of 3 tu (Figure 8).

As for the control task, a deadline and a wcet must be speci-
fied for the emergency stop handler. According to our imag-
ined requirement specification, it must respond within 2 tu,
i.e. it has a deadline at 2 tu. The wcet estimation result in
a wcet of 1 tu (see Figure 7). Furthermore, two subsequent
activations/deactivation of the emergency stop can not be
less than 5 tu in between. This gives us a minimum inter-
arrival time for the emergency stop handler of 5 tu.

emhemhemhemhemhemhemhemhemhemhemhemhemhemhemhemhemh

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart
(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)

stopstopstopstopstopstopstopstopstopstopstopstopstopstopstopstopstop
(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)(ex<=1)

embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?
empos==1empos==1empos==1empos==1empos==1empos==1empos==1empos==1empos==1empos==1empos==1empos==1empos==1empos==1empos==1empos==1empos==1
ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0

embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?embr?
empos==0empos==0empos==0empos==0empos==0empos==0empos==0empos==0empos==0empos==0empos==0empos==0empos==0empos==0empos==0empos==0empos==0
ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0ex:=0

on!on!on!on!on!on!on!on!on!on!on!on!on!on!on!on!on!
ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1
em:=0em:=0em:=0em:=0em:=0em:=0em:=0em:=0em:=0em:=0em:=0em:=0em:=0em:=0em:=0em:=0em:=0

off!off!off!off!off!off!off!off!off!off!off!off!off!off!off!off!off!
ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1ex>=1
em:=1em:=1em:=1em:=1em:=1em:=1em:=1em:=1em:=1em:=1em:=1em:=1em:=1em:=1em:=1em:=1em:=1

Figure 7. A model of the emergency handler
in timed automata

sasasasasasasasasasasasasasasasasa
(x<=8)(x<=8)(x<=8)(x<=8)(x<=8)(x<=8)(x<=8)(x<=8)(x<=8)(x<=8)(x<=8)(x<=8)(x<=8)(x<=8)(x<=8)(x<=8)(x<=8)

sbsbsbsbsbsbsbsbsbsbsbsbsbsbsbsbsb
(x<=7)(x<=7)(x<=7)(x<=7)(x<=7)(x<=7)(x<=7)(x<=7)(x<=7)(x<=7)(x<=7)(x<=7)(x<=7)(x<=7)(x<=7)(x<=7)(x<=7)

scscscscscscscscscscscscscscscscsc
(x<=6)(x<=6)(x<=6)(x<=6)(x<=6)(x<=6)(x<=6)(x<=6)(x<=6)(x<=6)(x<=6)(x<=6)(x<=6)(x<=6)(x<=6)(x<=6)(x<=6)

sdsdsdsdsdsdsdsdsdsdsdsdsdsdsdsdsd
(x<=5)(x<=5)(x<=5)(x<=5)(x<=5)(x<=5)(x<=5)(x<=5)(x<=5)(x<=5)(x<=5)(x<=5)(x<=5)(x<=5)(x<=5)(x<=5)(x<=5)

sesesesesesesesesesesesesesesesese
(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)(x<=4)

status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0
x>7x>7x>7x>7x>7x>7x>7x>7x>7x>7x>7x>7x>7x>7x>7x>7x>7
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1
x>7x>7x>7x>7x>7x>7x>7x>7x>7x>7x>7x>7x>7x>7x>7x>7x>7
speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0
vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!

status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0
x>=7x>=7x>=7x>=7x>=7x>=7x>=7x>=7x>=7x>=7x>=7x>=7x>=7x>=7x>=7x>=7x>=7
speed:=0speed:=0speed:=0speed:=0speed:=0speed:=0speed:=0speed:=0speed:=0speed:=0speed:=0speed:=0speed:=0speed:=0speed:=0speed:=0speed:=0
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0
vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!

status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1
x>6x>6x>6x>6x>6x>6x>6x>6x>6x>6x>6x>6x>6x>6x>6x>6x>6
speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0
vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!

status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0
x>=6x>=6x>=6x>=6x>=6x>=6x>=6x>=6x>=6x>=6x>=6x>=6x>=6x>=6x>=6x>=6x>=6
speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1speed:=1
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0
vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!

status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1
x>5x>5x>5x>5x>5x>5x>5x>5x>5x>5x>5x>5x>5x>5x>5x>5x>5
speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0
vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!

status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0
x>=5x>=5x>=5x>=5x>=5x>=5x>=5x>=5x>=5x>=5x>=5x>=5x>=5x>=5x>=5x>=5x>=5
speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2speed:=2
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0
vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!

status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1
x>4x>4x>4x>4x>4x>4x>4x>4x>4x>4x>4x>4x>4x>4x>4x>4x>4
speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0
vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!

status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0status==0
x>=4x>=4x>=4x>=4x>=4x>=4x>=4x>=4x>=4x>=4x>=4x>=4x>=4x>=4x>=4x>=4x>=4
speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3speed:=3
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0
vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!

status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1status==1
x>=4x>=4x>=4x>=4x>=4x>=4x>=4x>=4x>=4x>=4x>=4x>=4x>=4x>=4x>=4x>=4x>=4
speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4speed:=4
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0
vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!vel!

Figure 5. A model of the shaft in timed automata

cscscscscscscscscscscscscscscscscs

c:calcc:calcc:calcc:calcc:calcc:calcc:calcc:calcc:calcc:calcc:calcc:calcc:calcc:calcc:calcc:calcc:calc

tofftofftofftofftofftofftofftofftofftofftofftofftofftofftofftofftoff
(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)

noactnoactnoactnoactnoactnoactnoactnoactnoactnoactnoactnoactnoactnoactnoactnoactnoact
(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)

tontontontontontontontontontontontontontontontonton
(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)(cx<=2)

velr?velr?velr?velr?velr?velr?velr?velr?velr?velr?velr?velr?velr?velr?velr?velr?velr?
cx:=0cx:=0cx:=0cx:=0cx:=0cx:=0cx:=0cx:=0cx:=0cx:=0cx:=0cx:=0cx:=0cx:=0cx:=0cx:=0cx:=0
lspeed:=speedlspeed:=speedlspeed:=speedlspeed:=speedlspeed:=speedlspeed:=speedlspeed:=speedlspeed:=speedlspeed:=speedlspeed:=speedlspeed:=speedlspeed:=speedlspeed:=speedlspeed:=speedlspeed:=speedlspeed:=speedlspeed:=speed

em==1em==1em==1em==1em==1em==1em==1em==1em==1em==1em==1em==1em==1em==1em==1em==1em==1

em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0
lspeed<=2lspeed<=2lspeed<=2lspeed<=2lspeed<=2lspeed<=2lspeed<=2lspeed<=2lspeed<=2lspeed<=2lspeed<=2lspeed<=2lspeed<=2lspeed<=2lspeed<=2lspeed<=2lspeed<=2

em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0
lspeed==3lspeed==3lspeed==3lspeed==3lspeed==3lspeed==3lspeed==3lspeed==3lspeed==3lspeed==3lspeed==3lspeed==3lspeed==3lspeed==3lspeed==3lspeed==3lspeed==3

em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0em==0
lspeed>3lspeed>3lspeed>3lspeed>3lspeed>3lspeed>3lspeed>3lspeed>3lspeed>3lspeed>3lspeed>3lspeed>3lspeed>3lspeed>3lspeed>3lspeed>3lspeed>3

cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2
off!off!off!off!off!off!off!off!off!off!off!off!off!off!off!off!off!

cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2

cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2cx>=2
on!on!on!on!on!on!on!on!on!on!on!on!on!on!on!on!on!

Figure 8. A model of the control task in timed
automata

The model of the scheduler is omitted in the paper. How-
ever, this process will be generated automatically by UP-
PAAL according to the algorithm given in Section 3.1 and
will be invisible for the designer.

4.2. Verifying schedulability and safety

We use model checking and reachability analysis on our
network of TAT for this purpose. UPPAAL uses a timed
CTL language for specifying properties to verify. To ver-
ify that the system is schedulable, we must show that the
error state is never reachable. We will use the always pred-
icate in our example as always not ! is equivalent to never.
This property is specified as shown in the formula below,
scheduler.error means the state error in the process named
scheduler:

���"� #�$%���%��%��"�

For the safety property we need to verify that the system
never reach a state where the control task is in position to
turn the engine on while the emergency stop has been ac-
tivated. For our model, such an expression looks like the
formula given below:

���"���"���"� ��#&��"� ��� %� �
�

First we will verify the schedulability property. As a re-
sult UPPAAL tells us that the property is not satisfied by
giving a counter example. Consequently, the system is not
schedulable. In order to obtain a schedulable system, the
temporal constraints on the tasks have to be modified. The
counter example given by UPPAAL, shows that the emer-
gency handler task misses its deadline if this event happens
just after the control task has been invoked. By changing
the deadlines for the control task and the emergency stop
handler to 4 tu, the system becomes schedulable. This is
verified by the same property, but with an updated sched-
uler model. The model of the scheduler must be updated
since now there can exist two instances of the control task
and four instances of the emergency handler simultaneously
in the ready queue.

Next to verify is our safety property, i.e. the control task
should not be able to turn the engine on as long as the emer-
gency stop is activated. In this case UPPAAL reports that the
property is satisfied and consequently, the safety require-
ment is fulfilled.

It is of course possible to verify other functional properties.
For instance, we can verify that the shaft eventually will
rotate with the set value. In our model, the set value is the
speed of 3, i.e. the speed is eventually equal to 3. The
corresponding formula given in UPPAAL logic is:

��#�%%� � �

5. Conclusions

An important step in the development of embedded real-
time systems is ”schedulability analysis” that is to check
whether all tasks in a system can be executed within the
given deadlines in all possible scenarios. The traditional ap-
proach to schedulability analysis is often based on schedul-
ing theory and a task model, which has been very successful
for periodic tasks, but less successful for event-driven tasks.

In this paper, we have developed an extended version of
timed automata with real-time tasks to provide a model

for event-driven systems, which can be used for modeling,
schedulability analysis, formal verification, and code gener-
ation. The main idea is to associate each discrete transition
in a timed automaton with a task (an executable program
e.g. written in C) with its worst case execution time. Intu-
itively, a discrete transition in an extended timed automaton
denotes an event releasing a task and the guard on the tran-
sition specifies all the possible arriving times of the event
(instead of the so–called minimal inter-arrival time). This
yields a general model for hard real-time systems in which
tasks are non-periodic. In this model, an automaton is used
to model control structure of a systems and associated tasks
are used to perform computation. Thus, code generation for
such a model is reduced to transform the automaton into a
runnable program with procedure-call. However, a critical
problem is to guarantee that all the tasks associated with the
automaton can be executed within their deadlines. This is
the so-called schedulability checking problem. As the main
result of this paper, we have shown that the schedulability
checking problem for the extended timed automata with real
time tasks can be transformed to a reachability problem for
standard timed automata and thus it is decidable. This result
allows us to apply model-checking tools for timed automata
to schedulability analysis for event-driven systems. In addi-
tion, based on the same model of a system, we may use the
tools to verify other properties (e.g. safety and functional-
ity) of the system. This unifies schedulability analysis and
formal verification in one framework.

As future work, we plan to extend the UPPAAL model
checker for schedulability analysis. Future work also in-
clude code generation which is to translate extended timed
automata with tasks into executable programs.

References

[1] R. Alur. Model-checking in dense real-time. Information
and computing, 1993.

[2] R. Alur and D. Dill. Automata for modelling real-time sys-
tems. In Proceedings of ICALP’90, volume 443 of Lecture
Notes in Computer Science. Springer, 1990.

[3] Bengtsson, Griffioen, Kristoffersen, Larsen, L. an d Petters-
son, and Yi. Verification of an audio protocol with bus colli-
sion using uppaal. In Proceedings of CAV’96, volume 1102,
1996.

[4] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and
W. Yi. UPPAAL in 1995. In Proc. of the 2nd Workshop on
Tools and Algorithms for the Construction and Analysis of
Systems, number 1055 in Lecture Notes in Computer Sci-
ence, pages 431–434. Springer–Verlag, Mar. 1996.

[5] G. C. Buttazzo. Hard Real-Time Computing Systems.
Kluwer Academic Publishers, 1997.

[6] C. Daws and S. Yovine. Two examples of verification of
multirate timed automata with KRONOS. In Proc. of the 16th

IEEE Real-Time Systems Symposium, pages 66–75, Dec.
1995.

[7] M. L. Dertouzos. Control robotics: The procedural control
of physical processes. Information Processing, 1974.

[8] H. Hüttel and K. G. Larsen. The use of static constructs in
a modal process logic. In Logic at Botik’89, number 363,
pages 163–180. Springer–Verlag, 1989.

[9] K. G. Larsen, P. Pattersson, and Y. Wang. UPPAAL in a
nutshell. Springer International Journal of Software Tools
for Technology Transfer, 1, 1997.

[10] K. G. Larsen, P. Petterson, and Y. Wang. Compositional
and symbolic model-checking of real-time systems. In Pro-
ceedings of the 16th Real-Time Systems Symposium, pages
76–87. IEEE Computer Society Press, 1995.

[11] M. Lindahl, P. Pettersson, and W. Yi. Formal design and
analysis of a gear controller. Lecture Notes in Computer
Science, 1384:281–297, 1998.

[12] C. Liu and J. Layland. Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment. Journal of the
Association for Computing Machinery, 2, 1973.

[13] H. Lönn, P. Pettersson, and W. Yi. Formal Verification of
a TDMA Protocol Start-Up Mechanism. In Proceedings of
1997 IEEE Pacific Rim International Symposium on Fault-
Tolerant Systems, pages 235–242, 1997.

