
Mälardalen University Licentiate Thesis
No.44

A Software Component
Technology for Vehicle

Control Systems

Mikael Åkerholm

February 2005

Department of Computer Science and Electronics
Mälardalen University

Västerås, Sweden



Copyright c© Mikael Åkerholm, 2005
ISSN 1651-9256
ISBN 91-88834-92-1
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press



Abstract

Software is fantastic! Numereous modern high-tech products incorporate soft-
ware. This thesis focus on software for vehicles. As high-tech products, mod-
ern vehicles contain much software that provides advanced functionality, e.g.,
efficient engine control, anti-spin systems, and adaptive-cruise control.

However, software engineering is not without problems! Software can con-
tain errors, is often delivered later than promised and the cost of its devel-
opment constitutes a major part of the total development cost of the vehicle.
These problems are consequences of the complexity of the systems we build
with software, in combination with the immaturity of an evolving discipline.

We therefore need improved approaches to software engineering. Comp-
onent-based software engineering is a promising approach. It is analogous with
approaches used in other engineering domains. For examples, mechanical en-
gineers build systems using well-specified components such as nuts and bolts,
and the building industry uses components as large as walls and roofs (in turn
assembled from smaller components). It has proven to be effective in applica-
tion domains such as desktop and web-applications. However, it has not yet
been widely adopted for use in the development of vehicular software; one of
the reasons being that the commercial component technologies are developed
specifically for other domains and to support other types of applications.

This research aims at developing a component technology for embedded
control systems in vehicles. Such a technology would enable software engi-
neers in the vehicular domain to make use of component-based software engi-
neering. We have addressed questions concerning quality attributes, and how
component-based applications should be built and modelled, in the context of
vehicular systems. Furthermore, based on our answers we have implemented,
and evaluated a prototype component technology in cooperation with industry.
The results confirm the suitability of our prototype, but also show that it must
be further developed if it is to meet wider industrial requirements.

i





Till Jenny och Lucas





Preface

I have learned much during my two years as Ph.D. student, but most important
during the journey has been all workmates that has made it such a good and fun
time. Thank you all! That include all personnel at the Department of Computer
Science and Engineering, in the SAVE project, and people at companies I have
been in contact with.

I especially want to thank my supervisors Prof. Ivica Crnkovic and Dr.
Kristian Sandström. I have really appreciated to work with you, you are the
best! I also want thank Prof. Hans Hansson, Dr. Mikael Nolin, and Prof.
Christer Norström for your advices and invaluable guidance during the time.

This work had not been possible without all fruitful cooperation and dis-
cussions with my fellow Ph.D. students. The closest cooperation has been with
Johan Fredriksson and Anders Möller. Thank you both!

Thanks also to Jörgen Hansson and Ken Lindfors at CC Systems for invit-
ing us to test our ideas. To Johan Strandberg and Fredrik Löwenhielm at CC
Systems for all time and energy spent on all our technical questions. Among
all helpful people I have met at different companies I want to thank Joakim
Fröberg, Jakob Axelsson, Mattias Ekman, Ola Larses, Bo Neidenström, and
Bertil Emmertz, for your time discussing my questions.

Finally, I want to thank my mother and father, relatives and friends, for all
your love and support.

Mikael Åkerholm
Västerås, January, 2005

v





List of Publications

Reports included in the thesis

Conferences and Workshops

Paper A Anders Möller, Mikael Åkerholm, Johan Fredriksson, and Mikael
Nolin, Evaluation of Component Technologies with Respect to Industrial
Requirements, In Euromicro Conference, Component-Based Software
Engineering Track Rennes, France, August 2004.

This paper is an evaluation of the suitability of exiting component tech-
nologies for vehicular systems. The evaluation is based on a literature
survey of existing component technologies for embedded systems, and
a study based on interviews capturing requirements on component tech-
nologies from the vehicle industry.

Mikael’s part of the work has been to provide knowledge about the com-
ponent technologies and participate in the evaluation process. He has
not participated in collection of the industrial requirements, but he has
adopted and used the requirements in this work.

Paper B Mikael Åkerholm, Johan Fredriksson, Kristian Sandström, and Ivica
Crnkovic, Quality Attribute Support in a Component Technology for Ve-
hicular Software, In Fourth Conference on Software Engineering Re-
search and Practice in Sweden Linköping, Sweden, October 2004.

This paper is based on a survey were representatives from different ve-
hicular companies have placed priorities on a list of quality attributes.
The paper presents the results of the survey, and in addition, a discus-
sion of how the quality attributes could be supported by a component
technology.

vii



viii

Mikael has been involved in all parts of the work in this paper; he has
initiated the study and led the process.

Paper C Hans Hansson, Mikael Åkerholm, Ivica Crnkovic, and Martin Törn-
gren, SaveCCM - a component model for safety-critical real-time sys-
tems, In Euromicro Conference, Special Session Component Models for
Dependable Systems Rennes, France, September 2004.

This paper presents the SaveCCM component model, intended for em-
bedded control applications in vehicular systems. SaveCCM is a simple
model in which flexibility is limited to facilitate analysis of real-time and
dependability.

This paper is based on discussions within a group of researchers’, even
larger than the set of authors. Mikael has participated in the discussions,
and in the writing process.

Paper D Kristian Sandström, Johan Fredriksson, and Mikael Åkerholm, In-
troducing a Component Technology for Safety Critical Embedded Real-
Time Systems, In International Symposium on Component-based Soft-
ware Engineering (CBSE7) Edinburgh, Scotland, May 2004.

In this paper we show how to use component based software engineering
for low footprint embedded systems. The key concept is to provide ex-
pressive design time models and yet resource effective run-time models
by statically resolve resource usage and timing by powerful compile-
time techniques.

The compile-time method is based on earlier research, in particular ex-
periences from Kristian’s (first author) previous work. Mikael has been
involved in all parts of the work, with focus on the component model
and compile-time step.

Paper E Mikael Åkerholm, Anders Möller, Hans Hansson, and Mikael Nolin,
Towards a Dependable Component Technology for Embedded System
Applications, In Tenth IEEE International Workshop on Object-oriented
Real-time Dependable Systems (WORDS2005), Sedona, Arizona, febru-
ary, 2005

This paper describes a prototype component technology developed for
control applications in vehicles. The component technology has been
evaluated with an application in cooperation with industry.

Mikael’s main contribution to this work is implementation of the com-
ponent model, and the compile-time allocation to the operating systems.



ix

There has been an equal amount of efforts between Anders and Mikael
in implementation of the test application, and evaluation of the result.

Other reports, not included in the thesis

Conferences and Workshops

• Jan Carlson, and Mikael Åkerholm, An event algebra extension of the
triggering mechanism in a component model for embedded systems, In
Formal Foundations of Embedded Software and Component-Based Soft-
ware Architectures (FESCA), Edinburgh, Scotland, April 2005.

• Johan Fredriksson, Mikael Åkerholm, and Kristian Sandström, Calcu-
lating Resource Trade-offs when Mapping Component Services to Real-
Time Tasks, In Fourth Conference on Software Engineering Research
and Practice in Sweden Linköping, Sweden, October 2004.

• Anders Möller, Mikael Åkerholm, Johan Fredriksson, and Mikael Nolin,
Software Component Technologies for Real-Time Systems - An Industrial
Perspective, In WiP Session of Real-Time Systems Symposium (RTSS)
Cancun, Mexico, December 2003.

• Johan Fredriksson, Mikael Åkerholm, Kristian Sandström, and Radu
Dobrin, Attaining Flexible Real-Time Systems by Bringing Together Com-
ponent Technologies and Real-Time Systems Theory, In Proceedings of
the 29th Euromicro Conference, Component Based Software Engineer-
ing Track Belek, Turkey, September 2003.

• Tobias Samuelsson, Mikael Åkerholm, Peter Nygren, Johan Stärner, and
Lennart Lindh, A Comparison of Multiprocessor Real-Time Operating
Systems Implemented in Hardware and Software, In International Work-
shop on Advanced Real-Time Operating System Services (ARTOSS)
Porto, Portugal, July 2003.

• Ivica Crnkovic, Igor Cavrak, Johan Fredriksson, Rikard Land, Mario
Zagar, and Mikael Åkerholm, On the Teaching of Distributed Software
Development, In 25th International Conference Information Technology
Interfaces Dubrovnik, Croatia, June 2003.



x

Technical Reports

• Mikael Åkerholm, Anders Möller, Hans Hansson, and Mikael Nolin,
SaveComp - a Dependable Component Technology for Embedded Sys-
tems Software, MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-165/
2004-1-SE, Mälardalen Real-Time Research Centre, Mälardalen Univer-
sity, December 2004.

• Mikael Åkerholm, Kristian Sandström, and Johan Fredriksson, Interfer-
ence Control for Integration of Vehicular Software Components, MRTC
Report ISSN 1404-3041 ISRN MDH-MRTC-162/2004-1-SE,Mälardalen
Real-Time Research Centre, Mälardalen University, May 2004.

• Anders Möller, Mikael Åkerholm, Johan Fredriksson, and Mikael No-
lin, An Industrial Evaluation of Component Technologies for Embedded-
Systems, MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-155/2004-
1-SE, Mälardalen Real-Time Research Centre, Mälardalen University,
February 2004.

• Mikael Nolin, Johan Fredriksson, Jerker Hammarberg, Joel G Huselius,
John Håkansson, Annika Karlsson, Ola Larses, Markus Lindgren, Goran
Mustapic, Anders Möller, Thomas Nolte, Jonas Norberg, Dag Nyström,
Aleksandra Tesanovic, and Mikael Åkerholm, Component Based Soft-
ware Engineering for Embedded Systems - A literature survey, MRTC
Report ISSN 1404-3041 ISRN MDH-MRTC-102/2003-1-SE,Mälardalen
Real-Time Research Centre, Mälardalen University, June 2003.

• Ivica Crnkovic, Goran Mustapic, and Mikael Åkerholm, Modern tech-
nologies for modeling and development of process information systems,
MRTC Report ISSN 1404 - 3041 ISRN MDH - MRTC - 100/2003 -
1 - SE, Mälardalen Real-Time Research Centre, Mälardalen University,
May 2003.

• Mikael Åkerholm, and Johan Fredriksson, A Sample of Component Tech-
nologies for Embedded Systems, Technical Report, Mälardalen Univer-
sity, November 2004.



Contents

I Thesis 1

1 Introduction 3
1.1 Component Technology Terminology . . . . . . . . . . . . . 5

1.2 Vehicle Electronic Systems . . . . . . . . . . . . . . . . . . . 7

1.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Research Summary 11
2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Related work 21
3.1 Component Technologies in Different Domains . . . . . . . . 21

3.1.1 Vehicular Systems . . . . . . . . . . . . . . . . . . . 21

3.1.2 Consumer Electronics . . . . . . . . . . . . . . . . . 22

3.1.3 Automation Systems . . . . . . . . . . . . . . . . . . 23

3.2 Domain Independent CBSE Research . . . . . . . . . . . . . 25

3.2.1 Quality Attribute Prediction . . . . . . . . . . . . . . 25

3.2.2 Adopting General Purpose Technologies . . . . . . . . 26

4 Conclusions and Future Work 29

Bibliography 31

xi



xii Contents

II Included Papers 37

5 Paper A:
Evaluation of Component Technologies with Respect to Industrial
Requirements 39
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.1 Technical Requirements . . . . . . . . . . . . . . . . 42
5.2.2 Development Requirements . . . . . . . . . . . . . . 44
5.2.3 Derived Requirements . . . . . . . . . . . . . . . . . 45

5.3 Component Technologies . . . . . . . . . . . . . . . . . . . 46
5.3.1 PECT . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3.2 Koala . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.3 Rubus Component Model . . . . . . . . . . . . . . . 49
5.3.4 PBO . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.5 PECOS . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.6 CORBA Based Technologies . . . . . . . . . . . . . 52

5.4 Summary of Evaluation . . . . . . . . . . . . . . . . . . . . 53
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Paper B:
Quality Attribute Support in a Component Technology for Vehicu-
lar Software 59
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.4 Discussion of the results . . . . . . . . . . . . . . . . . . . . 67

6.4.1 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4.2 Reliability . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4.3 Predictability . . . . . . . . . . . . . . . . . . . . . . 69
6.4.4 Usability . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4.5 Extendibility . . . . . . . . . . . . . . . . . . . . . . 70
6.4.6 Maintainability . . . . . . . . . . . . . . . . . . . . . 70
6.4.7 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4.8 Testability . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4.9 Security . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4.10 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . 72



Contents xiii

6.4.11 Quality Attribute Support in a Component Technology
for the Automotive Domain . . . . . . . . . . . . . . 72

6.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Paper C:
SaveCCM a Component Model for Safety-Critical Real-Time Sys-
tems 79
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3 The SAVE project . . . . . . . . . . . . . . . . . . . . . . . . 83

7.4 Application Characteristics . . . . . . . . . . . . . . . . . . . 84

7.5 The SAVEComp Component Model . . . . . . . . . . . . . . 86

7.5.1 Architectural Elements . . . . . . . . . . . . . . . . . 86

7.5.2 Specification and Composition Language . . . . . . . 89
7.5.3 Graphical Language . . . . . . . . . . . . . . . . . . 91

7.5.4 Simple examples . . . . . . . . . . . . . . . . . . . . 92

7.6 The Cruise Control Example . . . . . . . . . . . . . . . . . . 94

7.7 Conclusions and further work . . . . . . . . . . . . . . . . . . 98

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8 Paper D:
Introducing a Component Technology for Safety Critical Embed-
ded Real-Time Systems 101
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.2 Component Technology . . . . . . . . . . . . . . . . . . . . . 105

8.3 Component Model . . . . . . . . . . . . . . . . . . . . . . . 106
8.4 Model Transformation . . . . . . . . . . . . . . . . . . . . . 110

8.4.1 Task Allocation . . . . . . . . . . . . . . . . . . . . . 111

8.4.2 Attribute Assignment . . . . . . . . . . . . . . . . . . 112

8.4.3 Real-Time Analysis . . . . . . . . . . . . . . . . . . . 115

8.5 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 118

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



xiv Contents

9 Paper E:
Towards a Dependable Component Technology for Embedded Sys-
tem Applications 123
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.2 CBSE for Embedded Systems . . . . . . . . . . . . . . . . . 126
9.3 Our Component Technology . . . . . . . . . . . . . . . . . . 127

9.3.1 Design-Time - The Component Model . . . . . . . . . 129
9.3.2 Compile-Time Activities . . . . . . . . . . . . . . . . 132
9.3.3 The Run-Time System . . . . . . . . . . . . . . . . . 134

9.4 Application Example . . . . . . . . . . . . . . . . . . . . . . 135
9.4.1 Introduction to ACC functionality . . . . . . . . . . . 135
9.4.2 Implementation using SaveCCM . . . . . . . . . . . . 136
9.4.3 Application Test-Bed Environment . . . . . . . . . . 138

9.5 Evaluation and Discussion . . . . . . . . . . . . . . . . . . . 138
9.5.1 Structural Properties . . . . . . . . . . . . . . . . . . 139
9.5.2 Behavioural Properties . . . . . . . . . . . . . . . . . 140
9.5.3 Process Related . . . . . . . . . . . . . . . . . . . . . 141

9.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 141
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



I

Thesis

1





Chapter 1

Introduction

Building systems from components is an old engineering practice. Cars have
been assembled from components since Henry Ford built the first T-Ford at the
beginning of the 20th century. The component-based assembly of computers
can be considered to have been begun in the 1950’s when several transistors
were first integrated in a single circuit. Software itself has also been built for
many years using a component-based strategy. The development of complex
programs has been made possible through the development of sub-programs,
in a system decomposition process, e.g., client-server, and object-oriented de-
sign [1]. However, with a few exceptions e.g., mathematical and graphical
function-libraries, the component-based strategy has, historically, not been as
successful in the software industry, as in the examples from other industries,
previously mentioned. This is, perhaps, mostly because attempts to reuse soft-
ware components have resulted in serious problems due to architectural mis-
matches between components or components and the surrounding environment
[2]. Before software engineering can be a mature, well founded discipline,
these issues must be resolved. As stated by Szyperski [3]:

Building, using and reusing components is what all other engi-
neering disciplines have done when they have become mature, the
software discipline should also follow.

Szyperski

Research in the Component-Based Software Engineering (CBSE) commu-
nity is concerned with developing theories, processes, technologies, and tools

3



4 Chapter 1. Introduction

supporting and enhancing a component-based design strategy for software [4].
In an idealized view of traditional software development, the software is devel-
oped in a sequential process from requirement definition to delivery. CBSE, on
the other hand, includes two separate development processes. A component-
based approach distinguishes component development from system develop-
ment. Component development is the process of creating components that can
be used and reused in many applications. System development with compo-
nents is concerned with assembling components into applications that meet
the system requirements. The overall principles of CBSE are realised through
component technologies. A component technology provides support for as-
sembling component-based software. It includes models for how components
can be assembled, as well as the necessary run-time support that includes com-
ponent deployment and interoperation between components. Some of the most
widely known component technologies are COM [5] and .NET [6] from Mi-
crosoft, and Enterprise JavaBeans [7] from Sun Microsystems.

CBSE has been successfully used in several software development projects,
mainly in the domains of desktop and e-business applications, less frequently
in embedded applications. This thesis addresses the problem of defining a
component technology suitable for the development of software for embedded
control-systems in vehicles. The underlying assumption is that one reason for
the limited success of CBSE practice in the embedded systems domain has
been the inability of commercially available component technologies to pro-
vide solutions that meet typical requirements of embedded applications e.g.,
resource-efficiency (the consumption of a minimum of resources in achieving
an objective), predictability, and safety. In brief, we have addressed the prob-
lem through development of a prototype component technology for embedded
vehicular systems, and the suitability of the result has been evaluated by means
of an experiment in cooperation with industry.

The work has been carried out within the SAVE project [8]. The main goal
of the project is to begin establishing an engineering discipline for system-
atic development of component-based software for safety-critical embedded
systems. The focus of the project is on a single application area (vehicular
systems), to reduce the overall project complexity to a manageable level. The
component-technology presented in this thesis can be seen as one of the core
parts of the project, other results from the project being integrated in future
work.

The two sections following immediately provide introductions to basic tech-
nical concepts of component technologies, and vehicular systems, as a founda-
tion for reading the rest of the thesis.



1.1 Component Technology Terminology 5

1.1 Component Technology Terminology

This section provides a brief introduction to central technical concepts of com-
ponent technologies frequently used in the remainder of the thesis. For more
information about CBSE and component technologies refer to, e.g., Heineman
and Councill’s book [9], Szypeki’s book [3], or Crnkovic and Larsson’s book
[4].

Fundamental to CBSE is that software applications are built from compo-
nents. The components are to be composed (or assembled) into applications,
i.e., combining them to give the desired behaviour. A component technology
provides support for the composition of component-based software. It often
contains various development tools for simplifying the engineering process,
it provides the necessary run-time support for the components, and imposes
certain patterns for assembling components. Figure 1.1 illustrates the basic
concepts of a component technology. It is a photograph of a table top in a
playground, on which is placed a tray on which different building blocks can
be arranged in different combinations. This playground table will be used as a
metaphor for a component technology in the following description of technical
concepts.

One of the most important parts of a component technology is the compo-
nent framework, which provides the necessary run-time support for the compo-
nents not provided by the underlying execution platform (i.e., operating system
or similar). In the playground table metaphor, the blocks represent the compo-
nents, the tray on which they stand represents the framework which provides
the components with support, and the table on which the tray stands represents
the execution platform. In the metaphor the component framework mainly pro-
vides strength to the construction that is not offered by the underlying execu-
tion platform. While for software components, the component framework typ-
ically handles component interactions, and the invocation of services provided
by the components, in addition to providing services frequently used within
the application domain targeted by the technology. For example, Enterprise
JavaBeans targets distributed enterprise applications and the framework then
provides support for database-transactions, and persistence [7]. Component
frameworks are often implemented as a layer between the operating system
and the component-based application.

A component technology is a concrete realisation of a component model.
A component model defines a set of rules to be followed by users. It defines
different component types that are supported by the technology, possible in-
teraction schemes between components, and clarifies how different resources



6 Chapter 1. Introduction

Components

Component Framework

P
la
t
fo

r
m

Components

Component Framework

P
la
t
fo

r
m

Figure 1.1: A Component Technology for Building Arbitrary Shapes

are bound to components. Compliance with a component model distinguishes
a component from other forms of packaged software [10]. In our playground
example, the component model is represented by the abstract rules that the
children must follow when assembling blocks because the blocks can only be
assembled in a certain pattern. The supplier of the blocks also follows the
component model when manufacturing the blocks, to ensure that the blocks
are compatible with each other and the tray on which they are supported.

Finally, software components themselves are of basic importance. In the
playground example, it is obvious that the blocks represent the components but
even in this simple playground metaphor there are philosophical issues which
can be subjects of discussion. For example, do several components assem-
bled together to build an element (such as a wall), make a new component
or should they be treated as a set of assembled components? This and simi-
lar questions continue as subjects of discussion within the CBSE community
[11]. Even the definition of a software component remains unclear to date.
In Szyperki’s book, his attempt to develop a general definition of a software
component is compared with no less than fourteen other attempts [3]. One



1.2 Vehicle Electronic Systems 7

can always question the need for one common component definition, since the
component model defines components for a particular technology. Technolo-
gies might in turn be intended for different purposes, and as a consequence,
different types of components might be suitable. Heineman and Councill pro-
pose the following definition, extracted from other definitions, which tries to
be consistent with the majority of these [9]:

A software component is a software element that conforms to a
component model and can be independently deployed and com-
posed without modification according to a composition standard.

Heineman and Councill

From a practical point of view, components should have well-specified in-
terfaces and be easy to understand, adapt and transfer between organisations.
Components should have well-specified interfaces, since CBSE relies heav-
ily on interfaces. The interfaces must handle all properties that lead to inter-
component dependencies, since the rest of the component is often hidden from
the developer. Components should also be easy to understand, since once cre-
ated, they are intended to be reused by other developers. The possibilities of
reuse of a component are enhanced if it is easy to adapt the component for use
in different environments and in combination with different software architec-
tures and other components.

1.2 Vehicle Electronic Systems

The application domain in this thesis is embedded control systems in modern
vehicles, e.g., in passenger cars, trucks, and heavy vehicles. Modern vehicles
contain electronics that can be classified as follows [12]:

Power train and chassis systems. These include systems that are highly crit-
ical for the vehicles functionality, controlling, e.g., engine, brakes, and
steering. They are characterised by high demands on safety, reliability,
and hard real-time constraints.

Cabin systems. Less critical systems, that also are core parts of the function-
ality, e.g., dashboard instruments, electrically powered windows, and air-
conditioning.



8 Chapter 1. Introduction

Infotainment systems. Systems dedicated to information processing, enter-
tainment, and communication with others outside the vehicle, e.g., audio,
video, and satellite-navigation systems. These systems are not closely
integrated with the core functionality of the vehicle and are easier to re-
place, supplement and remove.

We concentrate on the power train and chassis, and use the common term
vehicular systems, when referring to these systems in different classes of ve-
hicles, e.g., cars, and heavy vehicles. The focus is chosen because these sys-
tems are the most critical for the functionality of the vehicle, with maximum
demands on qualities beyond functionality such as timeliness, safety, and re-
liability. It is these qualities that are not addressed by existing commercial
component technologies (e.g., .NET [6], and Enterprise JavaBeans [7]), and
consequently cannot be developed with the existing commercial component
technologies. We observe however that the existing technologies might be
well-suited in the development of infotainment applications, which are simi-
lar to desktop- and web-applications for personal computers.

Figure 1.2: Overview of the electronic system architecture in Volvo XC90



1.3 Outline of Thesis 9

The physical architecture of the electronic system in vehicles is a complex
distributed computer system. The computer nodes are designated Electronic
Control Units (ECUs), and are often developed by different vendors and use
different hardware. The ECUs are interconnected by one or several networks,
and often different network technologies are used within the same vehicle. As
examples, Volvo Truck Corporation uses two different network technologies
and has six to eight external suppliers of ECUs, depending on the type of ve-
hicle, and Volvo Car Corporation uses four different network technologies, de-
pending on model, and has more than ten suppliers of ECUs [13]. In figure 1.2
from [13], the electronic architecture of a Volvo XC90 is shown. The figure
shows the approximate location of the forty ECUs in the vehicle, and to which
networks each ECU is connected. The location of each ECU is primarily deter-
mined by where the controlled object is in the vehicle to minimize the length
of wiring to sensors and actuators, e.g., the engine controller is placed close to
the engine. Interconnection networks permit the implementation of functions
through collaboration between several ECUs, e.g., the Electronic Stability Pro-
gram (ESP) developed by Mercedes-Benz [14]. ESP utilises ECUs controlling
the engine and brakes, to assist the driver in situations in which the vehicle
skids.

1.3 Outline of Thesis

The remainder of Part I is outlined as follows. Chapter 2 is a summary of the
research. It contains research questions, and summarizes the contributions of
the published papers constituting this licentiate thesis. In Chapter 3, related
work is summarized. Finally, Chapter 4 contains conclusions and discusses
possibilities for future work. Part II, contains the papers included in Chapter 5
to Chapter 9.





Chapter 2

Research Summary

This chapter contains a summary of the research methods, questions, and con-
tributions relevant to the thesis. The research methodology is described in Sec-
tion 2.1. Section 2.2 presents the general picture, i.e., the real-world problem
that the contribution of this thesis helps to solve. Section 2.3 presents the focus
of the thesis, in terms of research questions that define the research setting. Fi-
nally, Section 2.4 presents the contributions of the thesis, how the results have
been obtained, and how they have been evaluated.

2.1 Methodology

We have adopted the research methodology described by Shaw in [15]. The
methodology is derived from experience of more than a decade of the actual
performance of software architecture research. The main activities are:

1. Identification of research problems from real-world software engineer-
ing. Such problems are often complex, and not suitable subjects for
direct research. The research problem is discussed in Section 2.2.

2. Transfer the problem to a research setting, and define research questions.
The research setting is a simplification of the real-world problem, often
focusing on certain aspects of the problem. There are several different
classes of research settings, each associated with different types of prob-
lems, e.g., determining the feasibility of an approach, finding methods to
accomplish some goal, or selection between alternative approaches. The
details are discussed in Section 2.3.

11



12 Chapter 2. Research Summary

3. Answering the research questions. In this phase, the work is aimed at a
well-defined problem suitable for research, and, depending on the nature
of the problem, different methods can be selected. There is a wide range
of different methods, from descriptive models of observations to the de-
velopment of new techniques. Section 2.4 describes the methods and the
answers obtained in this thesis.

4. The research results are validated by demonstrating that the results sat-
isfactorily answer the research questions. This can be done in different
ways, e.g., by formal proofs, by implementation of a prototype, by de-
scribing experiences, and by persuasion through argumentation. Valida-
tion is also addressed in Section 2.4.

2.2 Problem Definition

This thesis addresses the problem of defining a component technology for em-
bedded control systems in vehicles. There are several challenges related to
the problem, in an area relatively unexplored in comparison with component
technologies for desktop- and web-applications.

The existing commercial component technologies have been developed
within the PC domain, which is a domain with requirements fundamentally
different from those of vehicular systems. In comparison with PC software, the
safety requirement for vehicular software is much greater. Unsafe behaviour
of a moving vehicle can result in injury, even death, to persons. The demand
for software reliability is greater since failure could result in financial loss or
loss of goodwill. A minimum of resource consumption is required to minimize
vehicle production-cost. Vehicles are often produced in large numbers, in the
case of cars, often of the order of millions per year. Finally, vehicular systems
are real-time systems, due to temporal requirements based on the vehicle func-
tions. Consider the software for an Anti-lock Brake System (ABS). When the
brake on one wheel locks, the system must release the brake pressure within
a certain time for the driver to remain in control of the steering. On the other
hand, certain systems cannot respond too soon. When a collision occurs, the
software controlling an air-bag must be activated within a certain time-interval;
it is useless if it is activated too late or too early.

The overall industrial problem is to define a component technology that
provides methods to accomplish the main application requirements as dis-
cussed above, and also supports typical engineering activities in the vehicular



2.2 Problem Definition 13

domain. Wolf [16] defines the primary objectives for engineers in the embed-
ded systems domain, in which vehicular systems are a specialisation, with the
subjects: architecture, analysis, modelling, verification, and application orien-
tation. Some of these subjects are involved in all software engineering, but
the approach to them and their purposes distinguishes the software in embed-
ded systems from other classes of software. Each subject might in turn have
a different importance and slightly different meaning in different domains of
embedded systems.

System Architecture. Architectures for embedded systems are defined to serve
the functions of a particular application using resources efficiently. This
calls for specialised component technologies which use resources effi-
ciently, to meet the demands of the vehicular domain, not for a broad
range of (embedded) applications [17]. This argument is also supported
by Larn and Vickers when they describe the risk of performance compro-
mises in the architecture, due to support for reusability of general com-
ponents [18]. Furthermore, Crnkovic identifies key priorities in research
to establish a CBSE engineering discipline for embedded systems. One
of these is the development of component run-time frameworks which
require a minimum of resources [19].

Analysis. A suitable component technology should provide support for rea-
soning about such quality attributes as the performance and size of sys-
tems at an early stage in the design process. This is a goal the designers
of embedded systems strive to achieve. The need for predictable compo-
nent technologies in the automotive domain is stressed in, e.g., [20, 19].

Modelling. To simplify analysis and understanding of the system, developers
need models of different aspects of applications at a higher abstraction
level than the source code provides. For instance, architectural models
for analysing and understanding basic functionality, timing models for
real-time analysis, and behaviour models of the system in its intended
environment for safety analysis. In a component-based approach, the de-
scription of the component assembly serves as an architectural model of
the application. The architectural model can be supplemented with other
modelling aspects, or with additional models. Möller et al., have ob-
tained further requirements of the component modelling language from
industry, observing that it should follow commercially supported stan-
dards [20].



14 Chapter 2. Research Summary

Verification. Applications must be verified in accordance with functional and
non-functional specifications. For a component technology, predictabil-
ity to enable the use of formal methods, complemented by practically
oriented simulation and test support are needed to meet these constraints.
Much research performed by the CBSE community addresses the predic-
tion of different quality attributes of component based applications, e.g.,
[21, 22, 23, 24, 25].

Application orientation. The control of the vehicle dynamics is not the only
functionality to be considered. The control-related part of the applica-
tion is its core but is in fact only a small part of the whole vehicle ap-
plication. The component technology must provide support for more
than the implementation of control systems. Typical functionality that
coexists in the same environment includes fault tracing and handling,
monitoring and logging for diagnostics during service, and human inter-
action through displays and controls. There is an increasing number of
infotainment applications in modern vehicles, but this functionality often
remains separate from the vehicle control system.

2.3 Research Questions

The research contributes towards a solution to the problem described in the
preceding section. We have limited the complexity of the real-world problem,
through a research setting defined by the research questions. The research is
based on two fundamental assumptions that motivated the thesis:

1. The use of CBSE in the domain is limited by the inability of existing
commercial technologies to support the requirements of embedded ve-
hicular applications.

2. Despite the different demands on embedded vehicular software as com-
pared with other software, CBSE is an attractive engineering approach.

As noted in the preceding section, commercially available technologies are
not suitable for the vehicular domain, which is a logical reason for the compa-
nies to approach CBSE with caution.

The validity of the second concept is demonstrated however by the efforts
the vehicular industry is actually making in CBSE related projects, e.g., EAST
[26], and AUTOSAR [27]. The amount of functionality implemented with



2.3 Research Questions 15

software in vehicles continues to increase leading to increased software com-
plexity. Combined with requirements for lower costs and shorter development
time (as in all industrial segments), there is a need for better systematic engi-
neering approaches. CBSE is one candidate approach but, however, for it to be
utilised efficiently, a mature component technology with good domain-specific
support is needed.

With these assumptions in mind, the main research question (Q) is formu-
lated as follows:

How can a component technology for vehicular software be implemented, to
provide the functionality desired for vehicular applications, with support for
the important quality attributes essential in the vehicular domain?

(Q)

The main question is broad, and admits the possibility of different answers.
We intend to explore one of the possibilities, but to do this thoroughly by an-
swering separately a number of sub-questions addressing component models,
frameworks, and quality attributes. The sub-questions are formulated:

Which quality attributes are the most important in the vehicular domain, and
how do they relate to a component technology?

(Q1)

Quality attributes define the quality of software. Quality attributes for the
evaluation of software have been standardised in [28]. The top-level attributes
in the standard are functionality, reliability, usability, efficiency, maintainabil-
ity, and portability. This sub-question seeks to establish domain-specific prior-
ities of different quality attributes, and it is reasonable to expect that attributes
can have different priorities in different software domains. The second part
of the question addresses the relations between a component technology and
the quality attributes that are important in the domain. We expect that some
quality attributes are more dependent on the choice of component technology
than others. Furthermore, it is known that quality attributes are interdependent,
and that some contradictoty attributes are difficult to support simultaneously
[29, 30]. Therefore, the establishment of domain-specific attribute priorities
can be used as guidance when resolving conflicts.

How can a component model support predictability of important quality at-



16 Chapter 2. Research Summary

tributes and be suitable for expressing common functionality in vehicular con-
trol systems?

(Q2)

This question calls for an approach by defining components and possibili-
ties for component interaction, with respect to ease of implementing vehicular
control systems, and support for prediction of quality attributes considered im-
portant in the domain (identified in (Q1)). The general approach to increasing
the predictability of software is to limit its flexibility. For example, pre-run-
time scheduling limits the arrangement of activities to a pre-defined schema.
The execution path for such systems is easier to predict than that of flexible
run-time scheduled systems. However, flexibility increases the possibilities for
engineers when implementing applications. This question seeks the trade-off
between the predictability desirable and the flexibility necessary when defining
applications in the context of vehicular control systems.

How can an efficient utilisation of resources be achieved in component based
applications?

(Q3)

By resources we mean shared limited run-time resources, e.g., processor
and memory capacity. Resource-efficiency, (the consumption of a minimum of
resources in achieving an objective) is a quality attribute that has received spe-
cial attention in this work. This focus is based on the belief that poor resource
efficiency is an important reason for vehicular companies not choosing to uti-
lize commercial component technologies. Commercial technologies are de-
veloped for use with personal computers and network servers, where resource
consumption is a minor concern, e.g., Enterprise JavaBeans in the J2EE 1.3.1
release requires 128 MB RAM [31], while typical hardware used in vehicular
systems can have 128 kB [32].

2.4 Contributions

To address the above questions, we have conducted literature surveys, devel-
oped new methods, implemented a prototype for evaluation, and also utilised
experience from earlier work by senior researchers. The work has also included
industrial involvement. Interviews with technical staff regarding current sys-
tem engineering methods were carried out early in the project as orientation



2.4 Contributions 17

for the initial research steps. Representatives of different vehicular companies
have been consulted regarding the priority given to software quality attributes.
Finally, validation of the early results has been performed in cooperation with
industry.

The contributions and validation of the research are presented with the
questions as starting points. The results provide answers to the research ques-
tions, but are subject to certain limitations, which are also discussed and are
suitable for further research. There are more detailed presentations of the con-
tributions in the five papers referred to in the presentation.

Contributions answering Q

How can a component technology for vehicular software be implemented, to provide the
functionality desired for vehicular applications, with support for the important quality
attributes essential in the vehicular domain?

Paper A addresses the main question by evaluating existing component
technologies intended for embedded systems. The evaluation is based on a lit-
erature survey of different component technologies [33]. The literature survey
is compared with a study based on interviews to determine the requirements
of the vehicle industry for component technologies [20]. One of our conclu-
sions is that none of the technologies studied completely satisfies the industry
requirements. Furthermore, no single technology stands out as being a signifi-
cantly better choice than the others; each technology has its own pros and cons.
However, worth notice is that two of the technologies investigated (i.e. Koala
[34], and Rubus CM [35]) are actually used successfully in practice by industry
without meeting all the requirements specified in the evaluation.

The prototype component technology described and evaluated in Paper E,
shows how far we have reached in finding an answer to the main question. The
prototype is based on the component model described in Paper C, and compile-
time techniques from Paper D. The component technology was developed for
control applications in vehicles, providing both support for predictability of
quality attributes and typical functionality in vehicular control applications.
The component technology has been evaluated with an application in coop-
eration with industry. The conclusion from the evaluation is that our initial
study provides positive evidence, but that the technology needs to be further
developed to be applicable in an industrial context.

There are several assumptions and limitations in the answer that need to be
addressed in future work. The suggested component technology is a promising



18 Chapter 2. Research Summary

prototype including only the core functionality. It needs to be extended with
supporting tools for modelling and configuration management. Furthermore,
a vehicular function is often distributed across several interconnected physical
nodes. Support for distribution of components would therefore be a valuable
extension of the prototype. The question also addresses support for important
quality attributes. This support has not been fully implemented and evaluated,
but an initial suggestion is described in Paper B.

Contributions answering Q1

Which quality attributes are the most important in the vehicular domain, and how do
they relate to a component technology?

This question is the main topic of Paper B. The paper is based on a sur-
vey in which representatives of different vehicle companies have allocated pri-
orities in a list of quality attributes considered to be of particular interest to
them. In order to reduce the number of attributes, those with obvious similari-
ties in their definitions have been grouped in more generic types of properties;
e.g., portability and scalability are considered to be covered by maintainabil-
ity. The result shows that the companies involved give approximately the same
priorities to quality attributes. Reasonably, the most important concerns are
related to dependability characteristics, e.g., safety, and reliability. Usability
is a property important to the customers but also crucial in competition on the
market. Slightly less important attributes are related to the product life cycle
(extendibility, maintainability).

The second part of the paper continues with a discussion relating quality
attributes to a component technology, and a suggestion of quality attribute sup-
port in a component technology suitable for the vehicle domain. In addition,
it discusses where in the technology the support should be implemented: in-
side or outside the components, in the component framework, on the system
architecture level, or if the quality attributes are usage-dependent.

There are several questions respecting the validity of the study. Is the list
of quality attributes that we have given to the companies appropriate? Have we
captured the companies view or the representatives view? Is it a coincidence
that we obtained similar priorities from the different companies in the study,
or is it a common opinion? Even if such questions are motivated, the research
results put focus on the main concerns. They can be used as initial guidance for
further development of component technologies suitable for vehicular systems.
To continue the investigation and resolve certain questions, a future workshop



2.4 Contributions 19

could be organized at which the representatives interviewed and possibly other
stakeholders from industry could discuss and expand upon the results.

Contributions answering Q2

How can a component model support predictability of important quality attributes in
the domain, and be suitable for expressing common functionality in vehicular control
systems?

Paper C presents the SaveCCM component model, intended for embed-
ded control applications in vehicular systems. SaveCCM is a simple model in
which flexibility is limited to facilitate the analysis of real-time and depend-
ability. The architectural elements are components, switches, and assemblies.
Components are the basic units in a design, and shall give the desired function-
ality. Switches are special components used to statically (during design-time),
or dynamically (during run-time), (re)configure component interconnections.
Assemblies represent sub-systems and are aggregated behaviour from a set of
components, switches, and possibly other assemblies. The interface of all ar-
chitectural elements is a set of ports, which are points of interaction between
the elements. We distinguish between input- and output-ports, and the com-
plementary aspects data transfer (data-flow) and execution triggering (control-
flow).

The component model has been designed to easily express common func-
tionality in vehicular systems. Some specific examples of key functionality are:
feedback control, system mode changes, and static configuration for product-
line architectures.

The component model is limited to simplify future analysis of different
properties, e.g., real-time, reliability, and safety properties. It may, however,
be too restrictive, and should be expanded. Paper E contains an evaluation of
our prototype implementation of a component technology using the SaveCCM
component model, which we found to be sufficiently expressive. We studied
only a single application, and are not able to generalise and claim that it is a
representative case. If future studies indicate that we must extend SaveCCM,
this will be done, maintaining predictability as far as possible.

Contributions answering Q3

How can resource efficiency of component-based applications be achieved?



20 Chapter 2. Research Summary

This question is mainly treated in Paper D. In commercial component tech-
nologies the component-based approach is made possible by powerful run-time
mechanisms, which for resource-limited systems have the disadvantage of in-
creased resource utilisation. In this paper, we show how a component-based
approach is permitted by the use of powerful compile-time techniques. The key
concept is the clear distinctions between design-time, compile-time, and run-
time. The method allows both expressive design-time models and resource-
effective run-time models by statically resolving resource usage and timing
during compile-time. This results in a component technology with resource-
effective mapping of a component model to a commercial real-time operating
system. The evaluation of the prototype technology in Paper E proves that
the compile-time methods are able to generate resource-efficient systems from
component-based designs.

The strategy is to resolve as much as possible during compile-time and
to utilise resource-efficient platforms during execution. To further improve
resource-efficiency, the compile-time mapping can be further optimised; more
efficient platforms (operating systems) will result in more efficient applica-
tions. A drawback with the method (as with all compilation) is that traceability
between the application behaviour during run-time and the design description
is decreased, since the compile-time method transforms the component-based
design to the execution model of the underlying operating-system. However,
this problem is solvable with the techniques used today by debuggers to link
execution behaviour to source code.



Chapter 3

Related work

Recently component technologies for different classes of embedded systems
have been developed both in academia and in industry. Some of them are
discussed in Section 3.1, together with related projects within the different
domains. Section 3.2 addresses CBSE research not targeting particular do-
mains, but that are important ingredients to enable CBSE for embedded sys-
tems. We review basic research regarding predictability of quality attributes of
component-based systems, and some efforts to enable use of existing commer-
cial component technologies in embedded systems.

3.1 Component Technologies in Different Domains

In this section some examples of component technologies from different do-
mains of embedded systems are discussed. We discuss vehicular systems, con-
sumer electronics, and automation systems, in separate subsections.

3.1.1 Vehicular Systems

A component technology for vehicular software must focus on safety and de-
pendability. Software engineers in the vehicular domain create software for,
e.g., cars, trains, trucks, and heavy vehicles. These software systems have
much in common, but also some differences. They have high demands on
safety and dependability, since moving vehicles can be dangerous. The em-
bedded computer systems often consist of several tens of interconnected Elec-
tronic Control Units (ECUs). The ECUs are either developed in-house or by

21



22 Chapter 3. Related work

sub-contractors, and often has to cooperate in order to solve a task, e.g., an
anti-spin system in a car often consists of collaborating ECUs at each wheel.
Therefore coping with interconnection networks is also a basic requirement for
the software. One of the biggest differences with the software for different
vehicles comes from the production volume of the intended vehicle. Cars are
typically produced in the order of millions per year, and thus it is beneficial
to spend large engineering efforts that lower the production cost, e.g., optimis-
ing the code for smaller memory consumption can enable the use of a smaller
and cheaper memory. While heavy vehicles as wheel-loaders are produced in
smaller quantities, consequently it is not cost-efficient to spend the same efforts
on optimisation.

The Rubus Component technology is a commercial technology that is used
for heavy vehicles. It is shipped, and tightly integrated, with the Rubus operat-
ing system [35, 36]. Rubus is not only tailored for automotive systems, it ad-
dresses resource limited systems with real-time requirements. The purpose and
main objective with the component technology is to support reuse, and prod-
uct line management. A component consists of one or more tasks, which are
the run-time entities executed, by the operating system. Aggregate components
can also be specified, called composite which is a logical design-time composi-
tion of one or more components. Interaction between components is achieved
by connecting data ports, forming a control-flow (pipes and filters) pattern.
Rubus components are statically scheduled, and sophisticated timing require-
ments can be specified, i.e, release-time, deadline, worst-case execution-time
and period-time. The main limitation is that only periodic activation is possible
with the static scheduling approach.

Within the vehicle domain there is one major project focusing on software
components. AUTOSAR [27] is a global project with some of the major ac-
tors; it can be seen as an extension of EAST-EAA [26]. It is a standardization
project with the goal to provide an open standard component technology for
automotive electronic equipment.

3.1.2 Consumer Electronics

Product line management is important in a component technology for con-
sumer electronics. Consumer electronics software is software embedded in,
e.g., television equipment, audio equipment, and kitchen appliances. These
products are usually produced in very high volumes, and the customers are
price- and design-sensitive. Therefore production cost, and time to develop
new products that meet new trends are important. To cope with this, prod-



3.1 Component Technologies in Different Domains 23

uct families with small differences in functionality are common. The software
is often organised in a base-line variant, which is configured or extended to
rapidly provide new products from the same product family. The requirements
on safety and reliability are not as high as for vehicular systems.

Koala [37] is a component technology developed and used by Philips. The
Koala components are encapsulated units, with all interaction between its in-
terfaces. There are separate interfaces for which services a component provide
and which services it requires from its surrounding. Furthermore, components
can have multiple interfaces, which is a way for handling evolution. Compo-
nents interact through their interfaces, using a client-server pattern. Aggre-
gation of components is also possible. Component binding flexibility can be
achieved with switches. A switch chooses between interfaces offered by dif-
ferent components at run time, with possible static reduction at compile-time.

Space4U [38] is a continuation of the ROBOCOP project [39], which in
turn was a continuation to enhance the Koala model. The major actors are
Philips Electronics, Technical University of Eindhoven, and Nokia. The goal
of the ROBOCOP project was to develop a middleware-architecture for high
volume consumer electronics, supporting robust, reliable and manageable use
of software components. A main extension to Koala was the introduction of
models associated with components. Each component has a set of models,
where each model provides different information about the component. The
models may be in different forms, e.g., textual, or binary form. They may
model functional and non-functional properties of a component, e.g., function-
ality of the component, timing, reliability, and memory usage. The following
active project Space4U has the goal to complete and extend the ROBOCOP
prototype with, e.g., fault prevention, power management and terminal man-
agement aspects.

3.1.3 Automation Systems

The diversity of systems within the automation industry will most likely re-
quire several different component technologies. The automation industry in-
cludes a broad range of software, from software in small field devices to op-
erator stations. The diversity of the requirements for the software in different
applications is wide. The automation industry deal with software that is very
safety critical and has high demands on temporal correctness and reliability,
e.g., software for controlling temperature and heat in sensitive chemical pro-
cesses. It also includes software with focus on usability rather than safety or
dependability, e.g., production planning applications. The production volume



24 Chapter 3. Related work

of automation equipment is also varying, from customized site specific soft-
ware, to more general purpose.

IEC 61131-3 [40], is a set of standard programming languages for Pro-
grammable Logic Controllers (PLCs). The standard defines three graphical
and two text-based languages. IEC 61131-3 concentrates on the syntax, but
leaves the semantics less definitive. The graphical Function Block Diagram
(FBD) language can be treated as a component composition language. Com-
ponents (control blocks) have a set of in and out data-ports as external interface,
and a hidden internal implementation. System implementation is done by con-
necting in and output ports, forming a control flow (pipes and filters) pattern.
Components can also be aggregated from sub-components. The component
framework is not standardized; it is assumed that components are allocated to
threads scheduled by an assumed operating system. There are some restrictions
of the underlying operating system like no pre-emption of tasks.

Port Based Objects (PBO) [41] is a component technology specialised on
reconfigurable robotics applications, from the Advanced Manipulators Labora-
tory at Carnegie Mellon University. A component is defined as an object, with
an arbitrary number of input, output, and resource ports. Input and output ports
are used for communication between objects, while resource ports are aimed
for communication with sensors, actuators or other external devices or sub-
systems. The component model uses the control flow (pipe and filter) pattern.
It is aimed for multiprocessor systems, to support distribution the connections
are implemented as global variables. The technology is focused on control ap-
plications, and has support for modelling output response from given inputs of
closed or open loop systems by applying transfer functions. Timing analysis
and analysis of the state variable communication are also supported. The PBO
model uses the Chimera multiprocessor operating system [42] during run-time.

PECOS [43] was a collaborative project between ABB and academia. The
goal was to develop a component technology for field devices. The project
tried to consider non-functional properties very thoroughly in order to enable
assessment of the properties during construction time. Components have data
ports for interactions, and connecting them forms a control-flow (pipes and
filters) pattern. Besides data ports, the components also have interfaces to ex-
press arbitrary non-functional properties and constraints. Components can be
of passive-, active-, or event-type. Passive components does not have an own
execution thread, they are only utilised by other types of components. Ac-
tive components have their own thread that is periodically scheduled. Event
components are components that are triggered by an external event and have a
thread of control. Components can also be aggregated, these components are



3.2 Domain Independent CBSE Research 25

called composite while non-aggregated are called leaf-components. There is
no special component framework in the PECOS project, too meet industrial
requirements on platform independency, or at least portability.

3.2 Domain Independent CBSE Research

There are a lot of basic and domain independent research within the CBSE
community. Here we focus on efforts especially interesting for embedded sys-
tems. Analysis and support for different quality attributes are discussed in
section 3.2.1, and some efforts to enable the use of existing commercial com-
ponent technologies in embedded systems are reviewed in Section 3.2.2.

3.2.1 Quality Attribute Prediction

In the CBSE community, a lot of research efforts address prediction of qual-
ity attributes of component-based applications. The efforts are motivated by
the assumption that component-based systems are a suitable base for quality
attribute prediction. The key idea is that quality attributes is easier to assign
to components than to whole systems, and that components can provide suffi-
cient information to reason about quality attributes of the system. In the ISO
9126 standard [28], six quality attributes (functionality, reliability, usability,
efficiency, maintainability, and portability) are defined for evaluation of soft-
ware quality, where each of these attributes can be divided into a number of
sub-attributes.

Predictable Assembly from Certifiable Components (PACC) [44], is a proj-
ect at the Software Engineering Institute (SEI). The project focuses on how a
component technology can be extended or restricted to achieve predictable as-
sembly from certifiable components, and one of the results is the Prediction-
Enabled Component Technology (PECT) [24]. It is a development infrastruc-
ture that incorporates a component technology, development tools and analysis
techniques. The idea is that any component technology can be used in the bot-
tom but composition rules enforced by the development tools guarantee critical
runtime properties, e.g., PECT enforces that predictable construction patterns
are used. What is allowed for a user and what is required by the underlying
component technology are determined by the available analysis methods and
prediction goals.

In the Ph.D. thesis by Larsson [45], prediction of quality attributes is the
main topic. In his work there is a division of quality attributes based on how



26 Chapter 3. Related work

they can be predicted on the system level. Directly composable attributes, are
possible to analyze given the same quality attributes from the components. Ar-
chitecture related attributes, are possible to analyze given this attribute for the
components and the assembly architecture. Derived attributes, are possible to
analyze from several attributes from the involved components. Usage depen-
dent attributes, need a usage profile to enable analysis. System environment
context dependent attributes, are only possible to analyze given environment
attributes.

Reussner et al [22] shows how reliability can be calculated using Markov
chains. One known problem in the use of Markov chains is the rapid growth
of the chain and complexity. The component-based approach gives a solution,
it permits a hierarchical approach. The system reliability can be analyzed by
using and reusing the reliability information of the components.

Furthermore, among other contributions in the field of quality attributes of
component-based applications, real-time attributes are considered in [46], and
memory consumption attributes in [47].

3.2.2 Adopting General Purpose Technologies

The most widely used component technologies are either intended for desk-
top applications (e.g., COM [5], and JavaBeans [48]), or for development of
distributed large scale applications (e.g., CCM [49], EJB [7], and .NET [6]).
However, certain efforts have been made to adopt and tune these types of tech-
nologies for embedded systems.

In Lüders licentiate thesis [50] COM has been adopted for parts of an in-
dustrial control system at ABB. However, it is mainly the component interface
specification parts of COM that has been adopted. Furthermore, it is not a com-
mercial implementation of COM that has been used, they have implemented an
own custom run-time framework. The main conclusion from the study is that
the efforts to implement new parts of the system have decreased from one third
up to one half of the former efforts, after the introduction of a component-
based approach. It has also resulted in a better documented and more modu-
larised system. Concerning COM as a technique for industrial control systems,
the study shows that it is possible. However, they have only used a sub-set of
COM, and still emphasise the importance of careful application design to avoid
overheads that cause variability. Furthermore, due to the run-time binding of
interfaces to components, the study observes that COM introduces a potential
source of run-time errors.

Sun Microsystems provide three different versions of the Java 2 platform,



3.2 Domain Independent CBSE Research 27

enterprise edition [31] for distributed large scale applications, standard edition
[51] for desktop applications, and micro edition [52] for embedded devices.
Enterprise JavaBeans is their component technology for distributed web-based
applications provided for the J2EE platform. JavaBeans is their component
technology for desktop applications, provided under the J2SE release. The
most suitable Java version for embedded systems (J2ME) does on the other
hand not contain any component technology. However, it might be possible to
add support for their component technologies by installing extra packages and
extensions, resulting in a customised version reminding of the services pro-
vided by J2SE or J2EE. The suitability of such a configuration is an interesting
target for future evaluation.

Microsoft has two main platforms for embedded devices. Windows XP
embedded [53] that is a scalable version of Windows XP, that allows users
to omit certain parts of the operating system to obtain smaller applications.
However, Windows CE [54] is Microsoft’s operating system targeting real-
time requirements, and in combination with the .NET component technology,
it might be a good candidate for the types of applications considered in this
thesis. Studies of earlier versions of Windows CE has shown that Windows CE
cause unpredictable timing behaviour [55], even if real-time performance has
been promised. Worth to notice is that the real-time performance has improved
with new releases of the operating system, and it becomes more and more
suitable for real-time applications.

CORBA Component Model (CCM) is standard from OMG, for a compo-
nent model utilising the CORBA platform [49]. CCM as CORBA is intended
for transparent interaction over networks in an object-oriented style. The goal
is that objects (components in case of CCM) can be physically located at any
node in the network, and still be accessed like if they were local objects at
the caller’s node. CCM and CORBA are not originally designed for real-time
or embedded systems. However, OMG has two additional standards for these
purposes. Minimum CORBA [56] is a standard that omits computation in-
tensive dynamic features and focus on less resource consumption. Real-Time
CORBA [57] include additions to standard CORBA for real-time performance.
The problem is that they are separate standards, so network applications that
are both resource limited and have real-time constraints would require a com-
bination of both standards.





Chapter 4

Conclusions and Future
Work

The overall contribution of this thesis is a prototype containing the core parts
of a component technology for vehicular software. The technology incorpo-
rates a component model, which we propose to use together with compile-time
techniques to achieve run-time efficient, and platform independent component-
based applications.

The component model has been designed to easily express common func-
tionality in vehicular systems. The component model is based on the control-
flow (pipes and filters) interaction model, combined with additional support
for domain specific key functionality, e.g., feedback control, system mode
changes, and static configuration for product-line architectures. The compo-
nent model is restrictive compared to most commercial component models
intended for other types of software (e.g., desktop and distributed enterprise
applications). The limited flexibility is motivated by the high requirements of
analysability of safety, timing, and reliability properties for vehicular software
systems.

The compile-time techniques enable a component-based approach during
design-time, combined with resource effective run-time models of real-time
operating systems, by statically resolve resource usage and timing during com-
pilation. In contrast to commercial component technologies where the comp-
onent-based approach is facilitated by powerful run-time mechanisms, which
for resource limited systems has the disadvantage of increased resource utilisa-
tion. The key concept is clear distinctions between design-time, compile-time,

29



30 Chapter 4. Conclusions and Future Work

and run-time.
The conducted evaluation of our prototype component technology in co-

operation with industry indicates that the component technology is promising
and efficient for vehicular applications. The expressiveness of the component
model seemed to be sufficient for efficient practice of component-based prin-
ciples. The evaluation also proved that the compile-time methods are able to
generate resource efficient systems from component-based designs.

This work covers the core parts of our component technology. In future
work, we will include support for important quality attributes in the domain,
which also has been treated within this thesis. We have presented a survey,
where vehicular companies have placed priorities on a list of quality attributes.
The result shows that the most important concerns are related to dependability
characteristics, e.g., safety, and reliability. Usability is a property important
for the customers but also crucial in competition on the market. Slightly less
important attributes are related to the product life cycle (e.g., extendibility,
maintainability). Based on the results from the survey, we have discussed how
quality attribute support in a component technology for the vehicular domain
could be implemented in our future work.

In future work we will also integrate the technology with supporting tools
(new or existing) for, e.g., graphical modelling and configuration management.
New mechanisms like databases for structured handling of shared data, and
run-time monitoring and test support are also targets for future work. Further-
more, we will also address the communication network in the vehicles, since
much functionality in the vehicles are utilising the network. However, in all
such extensions we will still prioritise predictability in the trade-off between
more expressiveness, and keeping the predictability high.



Bibliography

[1] S. L. Pfleger. Software Enginnering Theory and Practice. Prentice Hall,
2001. ISBN 0-13-029049-1.

[2] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch or why
it’s hard to build systems out of existing parts. In Proceedings of the Sev-
enteenth International Conference on Software Engineering, April 1995.

[3] C. Szyperski. Component Software - Beyond Object-Oriented Program-
ming, Second Edition. Pearson Education Limited, 2002. ISBN: 0-201-
74572-0.

[4] I. Crnkovic and M. Larsson. Building Reliable Component-Based Soft-
ware Systems. Artech House publisher, 2002. ISBN 1-58053-327-2.

[5] D. Box. Essential COM. Addison-Wesley, 1998. ISBN: 0-201-63446-5.

[6] J. Conard, P. Dengler, B. Francis, J. Glynn, B. Harvey, B. Hollis, R. Ra-
machandran, J. Schenken, S. Short, and C. Ullman. Introducing .NET.
Wrox Press Ltd, 2000. ISBN: 1-861004-89-3.

[7] R. Monson-Haefel. Enterprise JavaBeans, Third Edition. O’Reilly &
Assiciates, Inc., 2001. ISBN: 0-596-00226-2.

[8] Save project. http://www.mrtc.mdh.se/SAVE/ (Last Accessed: 2005-01-
18).

[9] G. T. Heineman and W. T. Councill. Component-based Software Engi-
neering, Putting the Pieces Together. Prentice-Hall, 2001. ISBN: 0-201-
70485-4.

31



32 Bibliography

[10] F. Bachmann, L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert,
R. Seacord, and K. Wallnau. Technical concepts of component-based
software engineering, volume ii. Technical report, Software Engineering
Institute, Carnegie-Mellon University, May 2000. CMU/SEI-2000-TR-
008.

[11] I. Crnkovic, J. Stafford, H. Schmidt, and K. Wallnau, editors. Component-
based Software engineering - CBSE 2004 Sympoisum. Springer Verlag,
2004. LNCS 3054 2004-05-17 ISBN: 3-540-21998-6.

[12] A. Sangiovanni-Vincentelli. Automotive electronics: Trends and chal-
lenges. In Convergence 2000. SAE, October 2000.

[13] J. Fröberg. Engineering of Vehicle Electronic Systems: Requirements
Reflected in Architecture. Technical report, Technology Licentiate Thesis
No.26, ISSN 1651-9256, ISBN 91-88834-41-7, Mälardalen Real-Time
Reseach Centre, Mälardalen University, March 2004.

[14] Mercedes-Benz. Mercedes-benz recent developments, safety.
http://www.mercedes-benz.com/mbcom (Last Accessed: 2005-01-
17).

[15] M. Shaw. The coming age of software architecture resreach. In Pro-
ceedings of the 23rd International Conference on Software Engineering
(ICSE), 2001.

[16] W. Wolf. What is embedded computing? IEEE Computer, 35(1):136–
137, January 2002.

[17] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren. SaveCCM -
a Component Model for Safety-Critical Real-Time Systems. In Proceed-
ings of 30th Euromicro Conference, Special Session Component Models
for Dependable Systems, September 2004.

[18] W. Lam and A.J. Vickers. Managing the Risks of Component-Based Soft-
ware Engineering. In Proceedings of the 5th International Symposium on
Assessment of Software Tools, June 1997.

[19] I. Crnkovic. Componet-Based Approach for Embedded Systems. In
Proceedings of 9th International Workshop on Component-Oriented Pro-
gramming, June 2004.



Bibliography 33

[20] A. Möller, J. Fröberg, and M. Nolin. Industrial Requirements on Com-
ponent Technologies for Embedded Systems. In Proceedings of the 7th
International Symposium on Component-Based Software Engineering.
2004 Proceedings Series: Lecture Notes in Computer Science, Vol. 3054,
May 2004.

[21] I. Crnkovic and M. Larsson. Classification of quality attributes for pre-
dictability in component-based systems. In In DSN 2004 Workshop on
Architecting Dependable Systems, June 2004.

[22] R.H. Reussner, H.W. Schmidt, and I. Poernomo. Reliability prediction
for component-based software architectures. Journal of Systems and Soft-
ware, 66(3):241–252, 2003.

[23] F. Duclos, J. Estublier, and P. Morat. Describing and using non func-
tional aspects in component based applications. In Proceedings of the 1st
international conference on Aspect-oriented software development, 2002.

[24] K. C. Wallnau. Volume III: A Component Technology for Predictable
Assembly from Certifiable Components. Technical report, Software En-
gineering Institute, Carnegie Mellon University, April 2003.

[25] G.A. Moreno, S.A. Hissam, and K.C. Wallnau. Statistical models for
empirical component properties and assembly-level property predictions:
Towards standard labeling. In Proceedings of 5th Workshop on compo-
nent based software engineering, 2002.

[26] East, embedded electronic architecture project. http://www.east-eea.net/
(Last Accessed: 2005-01-18).

[27] Autosar project. http://www.autosar.org/ (Last Accessed: 2005-01-18).

[28] ISO/IEC. Software engineering – Product quality – Part 1: Quality
model, ISO/IEC 9126-1, 2001.

[29] M. Barbacci, M. H. Klein, T. A. Longstaff, and C. B. Weinstock. Qual-
ity attributes. Technical report, Software Engineering Institute, Carnegie
Mellon University, 1995.

[30] D. Haggander, L. Lundberg, and J. Matton. Quality attribute conflicts -
experiences from a large telecommunication application. In Proceedings
of the 7th IEEE International Conference on Engineering of Complex
Computer Systems, 2001.



34 Bibliography

[31] Sun Microsystems. Java 2 platform, enterprise edition (j2ee). URL:
http://java.sun.com/j2ee/index.jsp (Last Accessed: 2005-01-17).

[32] Dag Nyström, Aleksandra Tesanovic, Christer Norström, Jörgen Hans-
son, and Nils-Erik Bånkestad. Data management issues in vehicle control
systems: a case study. In Euromicro Real-Time Conference 2002, June
2002.

[33] M. Åkerholm and J. Fredriksson. A sample of component technologies
for embedded systems. Technical report, MRTC, Mälardalen University,
2004.

[34] R. van Ommering, F. van der Linden, and J. Kramer. The koala compo-
nent model for consumer electronics software. In IEEE Computer, pages
78–85. IEEE, March 2000.

[35] K.L. Lundbäck and J. Lundbäck and M. Lindberg. Component-Based
Development of Dependable Real-Time Applications. Arcticus Systems:
http://www.arcticus.se (Last Accessed: 2005-01-18).

[36] K.L. Lundbäck. Rubus OS Reference Manual – General Concepts. Arcti-
cus Systems: http://www.arcticus.se (Last Accessed: 2005-01-18).

[37] R. van Ommering et al. The Koala Component Model for Consumer
Electronics Software. IEEE Computer, 33(3):78–85, March 2000.

[38] Space4u, software platform and component environment 4 you.
http://www.extra.research.philips.com/euprojects/space4u/index.htm
(Last Accessed: 2005-01-18).

[39] Robocop, robust open component based soft-
ware architecture for configurable devices project.
http://www.extra.research.philips.com/euprojects/robocop/index.htm
(Last Accessed: 2005-01-18).

[40] IEC. International Standard IEC 1131, Programmable controllers, 1992.

[41] D.B. Stewart, R.A. Volpe, and P.K. Khosla. Design of Dynamically
Reconfigurable Real-Time Software Using Port-Based Objects. IEEE
Transactions on Software Engineering, pages pages 759 – 776, December
1997.



Bibliography 35

[42] P.K. Khosla et al. The Chimera II Real-Time Operating System for Ad-
vanced Sensor-Based Control Applications. IEEE Transactions on Sys-
tems, 1992. Man and Cybernetics.

[43] O. Nierstrass, G. Arevalo, S. Ducasse, , R. Wuyts, A. Black, P. Müller,
C. Zeidler, T. Genssler, and R. van den Born. A Component Model for
Field Devices. In Proceedings of the First International IFIP/ACM Work-
ing Conference on Component Deployment, June 2002.

[44] Pacc project, predictable assembly from certified components.
http://www.sei.cmu.edu/pacc (Last Accessed: 2005-01-18).

[45] M. Larsson. Predicting Quality Attributes in Component-based Software
Systems. PhD thesis, Mälardalen University, March 2004.

[46] E. Bondarev, J. Muskens, P. de With, M. Chaudron, and J. Lukkien.
Predicting real-time properties of component assemblies: a scenario-
simulation approach. In Proceedings of the 30th Euromicro Conference,
Sep. 2004.

[47] A.V. Fioukov, E.M. Eskenazi, D.K. Hammer, and M. Chaudron. Evalua-
tion of Static Properties for Component-Based Architetures. In Proceed-
ings of 28th Euromicro Conference, September 2002.

[48] P. Coffee, M. Morrison, R. Weems, and J. Leong. How to Program Jav-
abeans. Ziff Davis, 1997. ISBN: 1562765213.

[49] J. Siegel. CORBA 3 Fundamentals and Progamming, Second Edition.
John Wiley & Sons, Inc., 2000. ISBN: 0-471-29518-3.

[50] F. Lüders. Use of component-based software architectures in industrial
control systems. Technical report, Licentiate Thesis, Mälardalen Univer-
sity Press, December 2003.

[51] Sun Microsystems. Java 2 platform, standard edition (j2se). URL:
http://java.sun.com/j2se/index.jsp (Last Accessed: 2005-01-17).

[52] Sun Microystems. Java 2 platform, micro edition (j2me). URL:
http://java.sun.com/j2me/index.jsp (Last Accessed: 2005-01-17).

[53] Microsoft Corporation. Windows xp embedded home page. URL: http://-
msdn.microsoft.com/embedded/windowsxpembedded/default.aspx (Last
Accessed: 2005-01-17).



[54] Microsoft Corporation. Windows ce homepage. URL: http:// ṁsdn.-
microsoft.com/embedded/windowsce/ḋefault.aspx (Last Accessed:
2005-01-17).

[55] C. M. Netter and L. F. Baceller. Assessing the real-time properties of win-
dows ce 3.0. In Proceedings of Fourth IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC 2001), May
2001.

[56] Object Management Group. MinimumCORBA 1.0. http://-
www.omg.org/technology/documents/formal/minimum_CORBA.htm
(Last Accessed: 2005-01-17).

[57] Object Management Group. Real-Time Corba. URL:
http://www.omg.org/technology/documents/formal/real-
time_CORBA.htm (Last Accessed: 2005-01-17).



II

Included Papers

37





Chapter 5

Paper A:
Evaluation of Component
Technologies with Respect to
Industrial Requirements

Anders Möller, Mikael Åkerholm, Johan Fredriksson, and Mikael Nolin
In Euromicro Conference, Component-Based Software Engineering Track Rennes,
France, August 2004

39



Abstract

We compare existing component technologies for embedded systems with re-
spect to industrial requirements. The requirements are collected from the ve-
hicular industry, but our findings are applicable to similar industries developing
resource constrained safety critical embedded distributed real-time computer
systems.

One of our conclusions is that none of the studied technologies is a per-
fect match for the industrial requirements. Furthermore, no single technology
stands out as being a significantly better choice than the others; each technol-
ogy has its own pros and cons.

The results of our evaluation can be used to guide modifications or ex-
tensions to existing technologies, making them better suited for industrial de-
ployment. Companies that want to make use of component-based software
engineering as available today can use this evaluation to select a suitable tech-
nology.



5.1 Introduction 41

5.1 Introduction

Component-Based Software Engineering (CBSE) has received much attention
during the last couple of years. However, in the embedded-system domain, use
of component technologies has had a hard time gaining acceptance; software-
developers are still, to a large extent, using monolithic and platform-dependent
software technologies.

We try to find out why embedded-software developers have not embraced
CBSE as an attractive tool for software development. We do this by evaluat-
ing a set of component technologies with respect to industrial requirements.
The requirements have been collected from industrial actors within the busi-
ness segment of heavy vehicles, and have been presented in our previous work
[1]. Examples of heavy vehicles include wheel loaders, excavators, forest har-
vesters, and combat vehicles. The software systems developed within this
market segment can be characterised as resource constrained, safety critical,
embedded, distributed, real-time, control systems. Our findings in this study
should be applicable to other domains with similar characteristics.

Our evaluation, between requirements and existing technologies, does not
only help to answer why component-based development has not yet been em-
braced by the embedded-systems community. It also helps us to identify what
parts of existing technologies could be enhanced, to make them more appropri-
ate for embedded-system developers. Specifically, it will allow us to select a
component technology that is a close match to the requirements, and if needed,
guide modifications to that technology.

The reason for studying component-based development in the first place,
is that software developers can achieve considerable business benefits in terms
of reduced costs, shortened time-to-market and increased software quality by
applying a suitable component technology. The component technology should
rely on powerful design and compile-time mechanisms and simple and pre-
dictable run-time behaviour.

There is however significant risks and costs associated with the adoption of
a new development technique (such as component-based development). These
must be carefully evaluated before introduced in the development process. One
of the apparent risks is that the selected component technology turns out to be
inappropriate for its purpose; hence, the need to evaluate component technolo-
gies with respect to requirements expressed by software developers.



42 Paper A

5.2 Requirements

The requirements discussed and described in this section are based on a previ-
ously conducted investigation [1]. The requirements found in that investigation
are divided into two main groups, the technical requirements (Section 5.2.1)
and the development process related requirements (Section 5.2.2). In addition,
Section 5.2.3 contains derived requirements, i.e. requirements that we have
synthesised from the requirements in Sections 5.2.1 and 5.2.2 but that are not
explicitly stated requirements from the vehicular industry [1].

5.2.1 Technical Requirements

The technical requirements describe industrial needs and desires regarding
technical aspects and properties of a component technology.

Analysable

System analysis, with respect to non-functional properties, such as timing be-
haviour and memory consumption is considered highly attractive. In fact, it is
one of the single most distinguished requirements found in our investigation.

When analysing a system built from well-tested, functionally correct, com-
ponents, the main issue is associated with composability. The composition
process must ensure that non-functional properties, such as the communica-
tion, synchronisation, memory, and timing characteristics of the system, are
predictabe [2].

Testable and debugable

It is required that tools exist that support debugging, both at component level
(e.g., a graphical debugging tool), as well as on source code level.

Testing and debugging is one of the most commonly used techniques to
verify software systems functionality. Testing is a very important comple-
ment to analysis, and testability should not be compromised when introducing
a component technology. Ideally, the ability to test embedded-system software
should be improved when using CBSE, since it adds the ability to test compo-
nents in isolation.



5.2 Requirements 43

Portable

The components, and the infrastructure surrounding them, should be platform
independent to the highest degree possible. Here, platform independency means
(1) hardware independent, (2) real-time operating system (RTOS) indepen-
dent and (3) communications protocol independent. The components are kept
portable by minimising the number of dependencies to the software platform.
Eventually such dependencies are off course necessary to construct an exe-
cutable system, however the dependencies should be kept to a minimum, and
whenever possible dependencies should be generated automatically by config-
uration tools.

Resource Constrained

The components should be small and light-weighted and the components in-
frastructure and framework should be minimised. Ideally there should be no
run-time overhead compared to not using a CBSE approach. Hardware used in
embedded real-time systems is usually resource constrained, to lower produc-
tion cost and thereby increase profit.

One possibility, that significantly can reduce resource consumption of com-
ponents and the component framework, is to limit run-time dynamics. This
means that it is desirable only to allow static, off-line, configured systems.
Many existing component technologies have been design to support high run-
time dynamics, where components are added, removed and reconfigured dur-
ing run-time.

Component Modelling

The component modelling should be based on a standard modelling language
like UML [3] or UML 2.0 [4]. The main reason to choose a standard like UML
is that it is well known and thoroughly tested, with tools and formats supported
by many third-party developers. The reason for the vehicular industry to have
specific demands in this detail, is that this business segment does not have the
knowledge, resources or desire to develop their own standards and practices.

Computational Model

Components should preferably be passive, i.e., they should not contain their
own threads of execution. A view where components are allocated to threads



44 Paper A

during component assembly is preferred, since this is conceptually simple, and
also believed to enhance reusability.

The computational model should be focused on a pipes-and-filters model
[5]. This is partly due to the well known ability to schedule and analyse this
model off-line. Also, the pipes-and-filters model is a good conceptual model
for control applications.

5.2.2 Development Requirements

When discussing component-based development with industry, development
process requirements are at least as important as the technical requirements. To
obtain industrial reliance, the development requirements need to be addressed
by the component technology and its associated tools.

Introducible

Appropriate support to gradually migrate to a new technology should be pro-
vided by the component technology. It is important to make the change in
development process and techniques as safe and inexpensive as possible. Rev-
olutionary changes in development techniques are associated with high risks
and costs. Therefore a new technology should be possible to divide into smaller
parts, which can be introduced incrementally. Another aspect, to make a tech-
nology introducible, is to allow legacy code within systems designed with the
new technology.

Reusable

Components should be reusable, e.g., for use in new applications or environ-
ments than those for which they where originally designed [6]. Reusability can
more easily be achieved if a loosely coupled component technology is used,
i.e., the components are focusing on functionality and do not contain any direct
operating system or hardware dependencies. Reusability is further enhanced by
the possibility to use configuration parameters to components.

A clear, explicit, and well-defined component interface is crucial to en-
hance the software reusability. Also, specification of non-functional proper-
ties and requirements (such as execution time, memory usage, deadlines, etc.)
simplify reuse of components since it makes (otherwise) implicit assumptions
explicit. Behavioural descriptions (such as state diagrams or interaction dia-
grams) of components can be used to further enhance reusability.



5.2 Requirements 45

Maintainable

The components should be easy to change and maintain, developers that are
about to change a component need to understand the full impact of the pro-
posed change. Thus, not only knowledge about component interfaces and their
expected behaviour is needed. Also, information about current deployment
contexts may be needed in order not to break existing systems. The compo-
nents can be stored in a repository where different versions and variants need
to be managed in a sufficient way. The maintainability requirement also in-
cludes sufficient tools supporting the service of deployed and delivered prod-
ucts. These tools need to be component aware and handle error diagnostics
from components and support for updating software components.

Understandable

The component technology and the systems constructed using it should be easy
to understand. This should also include making the technology easy and intu-
itive to use in a development project.

The reason for this requirement is to simplify evaluation and verification
both on the system level and on the component level. Focusing on an under-
standable model makes the development process faster and it is likely that there
will be fewer bugs. This requirement is also related to the introducible require-
ment (Section 5.2.2) since an understandable technique is more introducible.

It is desirable to hide as much complexity as possible from system devel-
opers. Ideally, complex tasks (such as mapping signals to memory areas or bus
messages, or producing schedules or timing analysis) should be performed by
tools.

5.2.3 Derived Requirements

Here, we present requirements that we have synthesised from the requirements
in sections 5.2.1 and 5.2.2, but that are not explicit requirements from industry.

Source Code Components

A component should be source code, i.e., no binaries. Companies are used to
have access to the source code, to find functional errors, and enable support for
white box testing (Section 5.2.1). Since source code debugging is demanded,
even if a component technology is used, black box components is undesirable.



46 Paper A

However, the desire to look into the components does not necessary imply a
desire to be allowed to modify them.1

Using black-box components would lead to a fear of loosing control over
the system behaviour (Section 5.2.2). Provided that all components in the sys-
tems are well tested, and that the source code are checked, verified, and qual-
ified for use in the specific surrounding, the companies might alleviate their
source code availability.

Also with respect to the resource constrained requirement (Section 5.2.1),
source code components allow for unused parts of the component to be re-
moved at compile time.

Static Configurations

Better support for the technical requirements of analysability (Section 5.2.1),
testability (Section 5.2.1), and resource consumption (Section 5.2.1), are achie-
ved by using pre-runtime configuration. Here, configuration means both con-
figuration of component behaviour and interconnections between components.
Component technologies for use in the Office/Internet domain usually focus on
dynamic configurations [7, 8]. This is of course appropriate in these specific
domains, where one usually has access to ample resources. Embedded sys-
tems, however, face another reality; with resource constrained nodes running
complex, dependable, control applications.

However, most vehicles can operate in different modes, hence the technol-
ogy must support switches between a set of statically configured modes. Static
configuration also improves the development process related requirement of
understandability (Section 5.2.2), since each possible configuration is known
before run-time.

5.3 Component Technologies

In this section, existing component technologies for embedded systems are
described and evaluated. The technologies originate both from academia and
industry. The selection criterion for a component technology has firstly been
that there is enough information available, secondly that the authors claim that

1This can be viewed as a "glass box" component model, where it possible to acquire a "use-
only" license from a third party. This license model is today quite common in the embedded
systems market.



5.3 Component Technologies 47

the technology is suitable for embedded systems, and finally we have tried to
achieve a combination of both academic and industrial technologies.

The technologies described and evaluated are PECT, Koala, Rubus Compo-
nent Model, PBO, PECOS and CORBA-CCM. We have chosen CORBA-CCM
to represent the set of technologies existing in the PC/Internet domain (other
examples are COM, .NET [7] and Java Enterprise Beans [8]) since it is the
only technology that explicitly address embedded and real-time issues. Also,
the Windows CE version of .NET [7] is omitted, since it is targeted towards
embedded display-devices, which only constitute a small subset of the devices
in vehicular systems. The evaluation is based on publicly available, documen-
tation.

5.3.1 PECT

A Prediction-Enabled Component Technology (PECT) [9] is a development in-
frastructure that incorporates development tools and analysis techniques. PECT
is an ongoing research project at the Software Engineering Institute (SEI) at the
Carnegie Mellon University.2 The project focuses on analysis; however, the
framework does not include any concrete theories - rather definitions of how
analysis should be applied. To be able to analyse systems using PECT, proper
analysis theories must be found and implemented and a suitable underlying
component technology must be chosen.

A PECT include an abstract model of a component technology, consist-
ing of a construction framework and a reasoning framework. To concretise a
PECT, it is necessary to choose an underlying component technology, define
restrictions on that technology (to allow predictions), and find and implement
proper analysis theories. The PECT concept is highly portable, since it does
not include any parts that are bound to a specific platform, but in practise the
underlying technology may hinder portability. For modelling or describing a
component-based system, the Construction and Composition Language (CCL)
[9] is used. The CCL is not compliant to any standards. PECT is highly in-
troducible, in principle it should be possible to analyse a part of an existing
system using PECT. It should be possible to gradually model larger parts of a
system using PECT. A system constructed using PECT can be difficult to un-
derstand; mainly because of the mapping from the abstract component model
to the concrete component technology. It is likely that systems looking identi-
cal at the PECT-level behave differently when realised on different component
technologies.

2Software Engineering Institute, CMU; http://www.sei.cmu.edu



48 Paper A

PECT is an abstract technology that requires an underlying component
technology. For instance, how testable and debugable a system is depends
on the technical solutions in the underlying run-time system. Resource con-
sumption, computational model, reusability, maintainability, black- or white-
box components, static- or dynamic-configuration are also not possible to de-
termine without knowledge of the underlying component technology.

5.3.2 Koala

The Koala component technology [10] is designed and used by Philips 3 for
development of software in consumer electronics. Typically, consumer elec-
tronics are resource constrained since they use cheap hardware to keep devel-
opment costs low. Koala is a light weight component technology, tailored for
Product Line Architectures [11]. The Koala components can interact with the
environment, or other components, through explicit interfaces. The compo-
nents source code is fully visible for the developers, i.e., there are no binaries
or other intermediate formats. There are two types of interfaces in the Koala
model, the provides- and the requires- interfaces, with the same meaning as in
UML 2.0 [4]. The provides interface specify methods to access the compo-
nent from the outside, while the required interface defines what is required by
the component from its environment. The interfaces are statically connected at
design time.

One of the primary advantages with Koala is that it is resource constrained.
In fact, low resource consumption was one of the requirements considered
when Koala was created. Koala use passive components allocated to active
threads during compile-time; they interact through a pipes-and-filters model.
Koala uses a construction called thread pumps to decrease the number of pro-
cesses in the system. Components are stored in libraries, with support for ver-
sion numbers and compatibility descriptions. Furthermore components can be
parameterised to fit different environments.

Koala does not support analysis of run-time properties. Research has pre-
sented how properties like memory usage and timing can be predicted in gen-
eral component-based systems, but the thread pumps used in Koala might cause
some problems to apply existing timing analysis theories. Koala has no explicit
support for testing and debugging, but they use source code components, and a
simple interaction model. Furthermore, Koala is implemented for a specific op-
erating system. A specific compiler is used, which routes all inter-component

3Phillips International, Inc; Home Page http://www.phillips.com



5.3 Component Technologies 49

and component to operating system interaction through Koala connectors. The
modelling language is defined and developed in-house, and it is difficult to see
an easy way to gradually introduce the Koala concept.

5.3.3 Rubus Component Model

The Rubus Component Model (Rubus CM) [12] is developed by Arcticus sys-
tems.4 The component technology incorporates tools, e.g., a scheduler and a
graphical tool for application design, and it is tailored for resource constrained
systems with real-time requirements. The Rubus Operating System (Rubus
OS) [13] has one time-triggered part (used for time-critical hard real-time ac-
tivities) and one event-triggered part (used for less time-critical soft real-time
activities). However, the Rubus CM is only supported by the time-triggered
part.

The Rubus CM runs on top of the Rubus OS, and the component model
requires the Rubus configuration compiler. There is support for different hard-
ware platforms, but regarding to the requirement of portability (Section 5.2.1),
this is not enough since the Rubus CM is too tightly coupled to the Rubus
OS. The Rubus OS is very small, and all component and port configuration is
resolved off-line by the Rubus configuration compiler.

Non-functional properties can be analysed during desing-time since the
component technology is statically configured, but timing analysis on com-
ponent and node level (i.e., schedulability analysis) is the only analysable
property implemented in the Rubus tools. Testability is facilitated by static
scheduling (which gives predictable execution patterns). Testing the functional
behaviour is simplified by the Rubus Windows simulator, enabling execution
on a regular PC.

Applications are described in the Rubus Design Language, which is a non-
standard modelling language. The fundamental building blocks are passive.
The interaction model is the desired pipes-and-filters (Section 5.2.1). The
graphical representation of a system is quite intuitive, and the Rubus CM it-
self is also easy to understand. Complexities such as schedule generation and
synchronisation are hidden in tools.

The components are source code and open for inspection. However, there is
no support for debugging the application on the component level. The compo-
nents are very simple, and they can be parameterised to improve the possibility
to change the component behaviour without changing the component source
code. This enhances the possibilities to reuse the components.

4Arcticus Systems; Home Page http://www.arcticus.se



50 Paper A

Smaller pieces of legacy code can, after minor modifications, be encapsu-
lated in Rubus components. Larger systems of legacy code can be executed as
background service (without using the component concept or timing guaran-
tees).

5.3.4 PBO

Port Based Objects (PBO) [14] combines object oriented design, with port au-
tomaton theory. PBO was developed as a part of the Chimera Operating Sys-
tem (Chimera OS) project [15], at the Advanced Manipulators Laboratory at
Carnegie Mellon University.5 Together with Chimera, PBO forms a framework
aimed for development of sensor-based control systems, with specialisation in
reconfigurable robotics applications. One important goal of the work was to
hide real-time programming and analysis details. Another explicit design goal
for a system based on PBO was to minimise communication and synchronisa-
tion, thus facilitating reuse.

PBO implements analysis for timeliness and facilitates behavioural models
to ensure predictable communication and behaviour. However, there are few
additional analysis properties in the model. The communication and compu-
tation model is based on the pipes-and-filters model, to support distribution in
multiprocessor systems the connections are implemented as global variables.
Easy testing and debugging is not explicitly addressed. However, the technol-
ogy relies on source code components and therefore testing on a source code
level is achievable. The PBOs are modular and loosely coupled to each other,
which admits easy unit testing. A single PBO-component is tightly coupled to
the Chimera OS, and is an independent concurrent process.

Since the components are coupled to the Chimera OS, it can not be easily
introduced in any legacy system. The Chimera OS is a large and dynamically
configurable operating system supporting dynamic binding, it is not resource
constrained.

PBO is a simple and intuitive model that is highly understandable, both
at system level and within the components themselves. The low coupling be-
tween the components makes it easy to modify or replace a single object. PBO
is built with active and independent objects that are connected with the pipes-
and-filters model. Due to the low coupling between components through sim-
ple communication and synchronisation the objects can be considered to be
highly reusable. The maintainability is also affected in a good way due to the

5Carnegie Mellon University; Home Page http://www.cmu.edu



5.3 Component Technologies 51

loose coupling between the components; it is easy to modify or replace a single
component.

5.3.5 PECOS

PECOS6 (PErvasive COmponent Systems) [16] is a collaborative project be-
tween ABB Corporate Research Centre7 and academia. The goal for the PECOS
project was to enable component-based technology with appropriate tools to
specify, compose, validate and compile software for embedded systems. The
component technology is designed especially for field devices, i.e., reactive
embedded systems that gathers and analyse data via sensors and react by con-
trolling actuators, valves, motors etc. Furthermore, PECOS is analysable, since
much focus has been put on non-functional properties such as memory con-
sumption and timeliness.

Non-functional properties like memory consumption and worst-case exec-
ution-times are associated with the components. These are used by different
PECOS tools, such as the composition rule checker and the schedule gener-
ating and verification tool. The schedule is generated using the information
from the components and information from the composition. The schedule can
be constructed off-line, i.e., a static pre-calculated schedule, or dynamically
during run-time.

PECOS has an execution model that describes the behaviour of a field de-
vice. The execution model deals with synchronisation and timing related is-
sues, and it uses Petri-Nets [17] to model concurrent activities like component
compositions, scheduling of components, and synchronisation of shared ports
[18]. Debugging can be performed using COTS debugging and monitoring
tools. However, the component technology does not support debugging on
component level as described in Section 5.2.1.

The PECOS component technology uses a layered software architecture,
which enhance portability (Section 5.2.1). There is a Run-Time Environment
(RTE) that takes care of the communication between the application specific
parts and the real-time operating system. The PECOS component technology
uses a modelling language that is easy to understand, however no standard
language is used. The components communicate using a data-flow-oriented
interaction, it is a pipes-and-filters concept, but the component technology uses
a shared memory, contained in a blackboard-like structure.

6PECOS Project, Home Page: http://www.pecos-project.org/
7ABB Corporate Research Centre in Ladenburg, Home Page: http://www.abb.com/



52 Paper A

Since the software infrastructure does not depend on any specific hardware
or operating system, the requirement of introducability (Section 5.2.2) is to
some extent fulfilled. There are two types of components, leaf components
(black-box components) and composite components. These components can
be passive, active, and event triggered. The requirement of openness is not
considered fulfilled, due to the fact that PECOS uses black-box components. In
later releases, the PECOS project is considering to use a more open component
model [19]. The devices are statically configured.

5.3.6 CORBA Based Technologies

The Common Object Request Broker Architecture (CORBA) is a middleware
architecture that defines communication between nodes. CORBA provides a
communication standard that can be used to write platform independent appli-
cations. The standard is developed by the Object Management Group 8 (OMG).
There are different versions of CORBA available, e.g., MinimumCORBA [20]
for resource constrains systems, and RT-CORBA [21] for time-critical systems.

RT-CORBA is a set of extensions tailored to equip Object Request Brokers
(ORBs) to be used for real-time systems. RT-CORBA supports explicit thread
pools and queuing control, and controls the use of processor, memory and net-
work resources. Since RT-CORBA adds complexity to the standard CORBA,
it is not considered very useful for resource-constrained systems. Minimum-
CORBA defines a subset of the CORBA functionality that is more suitable for
resource-constrained systems, where some of the dynamics is reduced.

OMG has defined a CORBA Component Model (CCM) [22], which ex-
tends the CORBA object model by defining features and services that enables
application developers to implement, mange, configure and deploy compo-
nents. In addition the CCM allows better software reuse for server-applications
and provides a greater flexibility for dynamic configuration of CORBA appli-
cations.

CORBA is a middleware architecture that defines communication between
nodes, independent of computer architecture, operating system or program-
ming language. Because of the platform and language independence CORBA
becomes highly portable. To support the platform and language independence,
CORBA implements an Object Request Broker (ORB) that during run-time
acts as a virtual bus over which objects transparently interact with other ob-
jects located locally or remote. The ORB is responsible for finding a requested

8Object Management Group. CORBA Home Page. http://www.omg.org/corba/



5.4 Summary of Evaluation 53

objects implementation, make the method calls and carry the response back to
the requester, all in a transparent way. Since CORBA run on virtually any plat-
form, legacy code can exist together with the CORBA technology. This makes
CORBA highly introducible.

While CORBA is portable, and powerful, it is very run-time demanding,
since bindings are performed during run-time. Because of the run-time de-
cisions, CORBA is not very deterministic and not analysable with respect to
timing and memory consumption. There is no explicit modelling language for
CORBA. CORBA uses a client server model for communication, where each
object is active. There are no non-functional properties or any specification of
interface behaviour. All these things together make reuse harder. The main-
tainability is also suffering from the lack of clearly specified interfaces.

5.4 Summary of Evaluation

In this section we assign numerical grades to each of the component technolo-
gies described in Section 5.3, grading how well they fulfil each of the require-
ments of Section 5.2. The grades are based on the discussion summarised in
Section 5.3. We use a simple 3 level grade, where 0 means that the requirement
is not addressed by the technology and is hence not fulfilled, 1 means that the
requirement is addressed by the technology and/or that is partially fulfilled,
and 2 means that the requirement is addressed and is satisfactory fulfilled. For
PECT, which is not a complete technology, several requirements depended on
the underlying technology. For these requirements we do not assign a grade
(indicated with NA, Not Applicable, in Figure 5.1). For the CORBA-based
technologies we have listed the best grade applicable to any of the CORBA
flavours mentioned in Section 5.3.6.

For each requirement we have also calculated an average grade. This grade
should be taken with a grain of salt, and is only interesting if it is extremely
high or extremely low. In the case that the average grade for a requirement is
extremely low, it could either indicate that the requirement is very difficult to
satisfy, or that component-technology designers have paid it very little atten-
tion.

In the table we see that only two requirements have average grades below
1.0. The requirement "Component Modelling" has the grade 0 (!), and "Testing
and debugging" has 1.0. We also note that no requirements have a very high
grade (above 1.5). This indicate that none of the requirement we have listed
are general (or important) enough to have been considered by all component-



54 Paper A

technology designers. However, if ignoring CORBA (which is not designed
for embedded systems) and PECT (which is not a complete component tech-
nology) we see that there are a handful of our requirements that are addressed
and at least partially fulfilled by all technologies.

We have also calculated an average grade for each component technology.
Again, the average cannot be directly used to rank technologies amongst each
other. However, the two technologies PBO and CORBA stand out as having
significantly lower average values than the other technologies. They are also
distinguished by having many 0’s and few 2’s in their grades, indicating that
they are not very attractive choices. Among the complete technologies with
an average grade above 1.0 we notice Rubus and PECOS as being the most
complete technologies (with respect to this set of requirements) since they have
the fewest 0’s. Also, Koala and PECOS can be recognised as the technologies
with the broadest range of good support for our requirements, since they have
the most number of 2’s.

However, we also notice that there is no technology that fulfils (not even
partially) all requirements, and that no single technology stands out as being
the preferred choice.

  A
na

ly
sa

bl
e 

 T
es

ta
bl

e 
an

d 
de

bu
ga

bl
e 

 P
or

ta
bl

e 

 R
es

ou
rc

e 
C

on
st

ra
in

ed
 

 C
om

po
ne

nt
 M

od
el

lin
g 

 C
om

pu
ta

ti
on

al
 M

od
el

 

 I
nt

ro
du

ci
bl

e 

 R
eu

sa
bl

e 

 M
ai

nt
ai

na
bl

e 

 U
nd

er
st

an
da

bl
e 

 S
ou

rc
e 

C
od

e 
C

om
po

ne
nt

s 

 S
ta

ti
c 

C
on

fi
gu

ra
ti

on
 

A
ve

ra
ge

 

N
um

be
r 

of
 2

’s
 

N
um

be
r 

of
 0

’s
 

PECT 2 NA 2 NA 0 NA 2 NA NA 0 NA NA 1.2 3 2 

Koala 0 1 1 2 0 2 0 2 2 2 2 2 1.3 7 3 

Rubus Component Model 1 1 0 2 0 2 1 1 1 2 2 2 1.3 5 2 

PBO 2 1 0 0 0 1 1 1 1 2 2 0 0.9 3 4 

PECOS  2 1 2 2 0 2 1 2 1 2 0 2 1.4 7 2 

CORBA Based Technologies 0 1 2 0 0 0 2 0 0 1 0 0 0.5 2 8 

Average 1.2 1.0 1.2 1.2 0.0 1.4 1.4 1.2 1.0 1.5 1.2 1.2 1.1 4.3 3.5 

 

Figure 5.1: Grading of component technologies with respect to the require-
ments



5.5 Conclusion 55

5.5 Conclusion

In this paper we have compared some existing component technologies for em-
bedded systems with respect to industrial requirements. The requirements have
been collected from industrial actors within the business segment of heavy ve-
hicles. The software systems developed in this segment can be characterised
as resource constrained, safety critical, embedded, distributed, real-time, con-
trol systems. Our findings should be applicable to software developers whose
systems have similar characteristics.

We have noticed that, for a component technology to be fully accepted by
industry, the whole systems development context needs to be considered. It
is not only the technical properties, such as modelling, computation model,
and openness, that needs to be addressed, but also development requirements
like maintainability, reusability, and to which extent it is possible to gradually
introduce the technology. It is important to keep in mind that a component
technology alone cannot be expected to solve all these issues; however a tech-
nology can have more or less support for handing the issues.

The result of the investigation is that there is no component technology
available that fulfil all the requirements. Further, no single component tech-
nology stands out as being the obvious best match for the requirements. Each
technology has its own pros and cons. It is interesting to see that most re-
quirements are fulfilled by one or more techniques, which implies that good
solutions to these requirements exist.

The question, however, is whether it is possible to combine solutions from
different technologies in order to achieve a technology that fulfils all listed
requirements? Our next step is to assess to what extent existing technolo-
gies can be adapted in order to fulfil the requirements, or whether selected
parts of existing technologies can be reused if a new component technology
needs to be developed. Examples of parts that could be reused are file and
message formats, interface description languages, or middleware specifica-
tions/implementations. Further, for a new/modified technology to be accepted
it is likely that it have to be compliant to one (or even more than one) existing
technology. Hence, we will select one of the technologies and try to make as
small changes as possible to that technology.



Bibliography

Bibliography

[1] A. Möller, J. Fröberg, and M. Nolin. Industrial Requirements on Com-
ponent Technologies for Embedded Systems. In Proceedings of the 7th
International Symposium on Component-Based Software Engineering.
2004 Proceedings Series: Lecture Notes in Computer Science, Vol. 3054,
May 2004.

[2] I. Crnkovic and M. Larsson. Building Reliable Component-Based Soft-
ware Systems. Artech House publisher, 2002. ISBN 1-58053-327-2.

[3] B. Selic and J. Rumbaugh. Using UML for modelling complex real-time
systems, 1998. Rational Software Corporation.

[4] Object Management Group. UML 2.0 Superstructure Specification, The
OMG Final Adopted Specification, 2003. http://www.omg.com/uml/.

[5] M. Shaw and D. Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall; 1 edition, 1996. ISBN 0-131-82957-
2.

[6] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch or why
it’s hard to build systems out of existing parts. In Proceedings of the Sev-
enteenth International Conference on Software Engineering, April 1995.

[7] Microsoft Component Technologies. COM/DCOM/.NET. http://www.-
microsoft.com.

[8] R. Monson-Haefel. Enterprise JavaBeans, Third Edition. O’Reilly &
Assiciates, Inc., 2001. ISBN: 0-596-00226-2.

[9] K. C. Wallnau. Volume III: A Component Technology for Predictable
Assembly from Certifiable Components. Technical report, Software En-
gineering Institute, Carnegie Mellon University, April 2003.

56



Bibliography 57

[10] R. van Ommering et al. The Koala Component Model for Consumer
Electronics Software. IEEE Computer, 33(3):78–85, March 2000.

[11] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001. ISBN 0-201-70332-7.

[12] K.L. Lundbäck and J. Lundbäck and M. Lindberg. Component-Based
Development of Dependable Real-Time Applications. Arcticus Systems:
http://www.arcticus.se (Last Accessed: 2005-01-18).

[13] K.L. Lundbäck. Rubus OS Reference Manual – General Concepts. Arcti-
cus Systems: http://www.arcticus.se (Last Accessed: 2005-01-18).

[14] D.B. Stewart, R.A. Volpe, and P.K. Khosla. Design of Dynamically
Reconfigurable Real-Time Software Using Port-Based Objects. IEEE
Transactions on Software Engineering, pages pages 759 – 776, December
1997.

[15] P.K. Khosla et al. The Chimera II Real-Time Operating System for Ad-
vanced Sensor-Based Control Applications. IEEE Transactions on Sys-
tems, 1992. Man and Cybernetics.

[16] M. Winter, T. Genssler, et al. Components for Embedded Software – The
PECOS Apporach. In The Second International Workshop on Composi-
tion Languages, in conjunction with the 16th ECOOP, June 2002.

[17] M. Sgroi. Quasi-Static Scheduling of Embedded Software Using Free-
Choice Petri Nets. Technical report, University of California at Berkely,
May 1998.

[18] O. Nierstrass, G. Arevalo, S. Ducasse, , R. Wuyts, A. Black, P. Müller,
C. Zeidler, T. Genssler, and R. van den Born. A Component Model for
Field Devices. In Proceedings of the First International IFIP/ACM Work-
ing Conference on Component Deployment, June 2002.

[19] R. Wuyts and S. Ducasse. Non-functional requirements in a component
model for embedded systems. In International Workshop on Specification
and Verification of Component-Based Systems, 2001. OPPSLA.

[20] Object Management Group. MinimumCORBA 1.0. http://-
www.omg.org/technology/documents/formal/minimum_CORBA.htm
(Last Accessed: 2005-01-17).



[21] D.C. Schmidt, D.L. Levine, and S. Mungee. The Design of the tao real-
time object request broker. Computer Communications Journal, Summer
1997.

[22] Object Management Group. CORBA Component Model. http://-
www.omg.org/technology/documents/formal/components.htm (Last Ac-
cessed: 2005-01-17).



Chapter 6

Paper B:
Quality Attribute Support in
a Component Technology for
Vehicular Software

Mikael Åkerholm, Johan Fredriksson, Kristian Sandström, and Ivica Crnkovic
In Fourth Conference on Software Engineering Research and Practice in Swe-
den, Linköping, Sweden, October 2004

59



Abstract

The electronics in vehicles represents a class of systems where quality at-
tributes, such as safety, reliability, and resource usage, leaven all through de-
velopment. Vehicular manufacturers are interested in developing their software
using a component based approach, supported by a component technology, but
commercial component technologies are too resource demanding, complex and
unpredictable. In this paper we provide a vehicular domain specific classifica-
tion of the importance of different quality attributes for software, and a discus-
sion of how they could be facilitated by a component technology. The results
can be used as guidance and evaluation for research aiming at developing com-
ponent technologies suitable for vehicular systems.



6.1 Introduction 61

6.1 Introduction

Component-based development (CBD) is of great interest to the software en-
gineering community and has achieved considerable success in many engi-
neering domains. CBD has been extensively used for several years in desktop
environments, office applications, e-business and in general Internet- and web-
based distributed applications. In many other domains, for example dependable
systems, CBD is utilized to a lesser degree for a number of different reasons.
An important reason is the inability of component-based technologies to deal
with quality attributes as required in these domains. To identify the feasibility
of the CBD approach, the main concerns of the particular domain must be iden-
tified along with how the CBD approach addresses these concerns and what is
its ability to provide support for solutions related to these concerns are.

There is currently a lot of research on predicting and maintaining different
quality attributes within the Component Based Software Engineering (CBSE)
community, (also called non-functional properties, extra-functional properties,
and illities), [1, 2, 3, 4, 5]. Many of the quality attributes are conflicting and
cannot be fully supported at the same time [6, 7]. Thus, it is important for ap-
plication and system developers to be able to prioritize among different quality
attributes when resolving conflicts.

We provide a domain specific classification of the importance of quality
attributes for software in vehicles, and discuss how the attributes could be fa-
cilitated by a component technology. The discussion contribute with a general
description of the desired quality attribute support in a component technology
suitable for the vehicle domain and it indicates which quality attributes require
explicit support. In addition, it discusses were in the technology the support
should be implemented: inside or outside the components, in the component
framework, on the system architecture level, or if the quality attributes are us-
age dependent. Quality attributes might be conflicting; e.g., it is commonly
understood that flexibility and predictability are conflicting. The ranking pro-
vided by industrial partners gives domain specific guidance for how conflicts
between quality attributes should be resolved. The results also enable valida-
tion and guidance for future work regarding quality attribute support in com-
ponent technologies for software in vehicular systems. This guideline can be
used to verify that the right qualities are addressed in the development process
and that conflicting interdependent quality attributes are resolved according to
the domain specific priorities.

The starting point of this work is a list of quality attributes ranked accord-
ing to their importance for vehicular systems. The list is provided through a



62 Paper B

set of interviews and discussions with experts from different companies in the
vehicular domain. The results of the ranking from the vehicular companies are
combined with the classification of how to support different quality attributes
provided in [8]. The result is an abstract description of where, which, and how
different quality attributes should be supported by a component technology tai-
lored for the vehicular industry.

A component technology as defined in [9] is a technology that can be used
for building component based software applications. It implements a compo-
nent model defining the set of component types, their interfaces, and, addition-
ally, a specification of the allowable patterns of interaction among component
types. A component framework is also part of the component technology, its
role can be compared to the role of an operating system, and it provides a va-
riety of deployment and run-time services to support the component model.
Specialized component technologies used in different domains of embedded
systems have recently been developed, e.g., [10, 11]. There are also a number
of such component technologies under development in the research commu-
nity, e.g., [12, 13, 14]. The existence of different component technologies can
be motivated by their support for different quality attributes, although they fol-
low the same CBSE basic principles. It has been shown that companies devel-
oping embedded systems in general consider different non functional quality
attributes far more important than efficiency in software development, which
explains the specialization of component technologies [12].

The outline of the remaining part of the paper is as follows. Section 2 de-
scribes the conducted research method, and section 3 the results. Section 4 is
a discussion of the implications of the results, regarding the support for qual-
ity attributes in a domain specific component technology. Section 5 discusses
future work, and finally the section 6 concludes the paper.

6.2 Method

The research method is divided into three ordered steps:

1. During the first step a list of relevant quality attributes were gathered;

2. In the next step technical representatives from a number of vehicular
companies placed priorities on each of the attributes in the list reflecting
their companies view respectively;

3. Finally a synthesis step was performed, resulting in a description of the



6.2 Method 63

desired quality attribute support in a component technology for vehicular
systems.

The list of quality attributes have been collected from different literature
trying to cover qualities of software that interest vehicular manufactures. In
order to reduce a rather long list, attributes with clear similarities in their def-
initions have been grouped in more generic types of properties, e.g., portabil-
ity and scalability are considered covered by maintainability. Although such
grouping could fade the specific characteristics of a particular attribute, it put
focus on the main concerns. In the ISO 9126 standard [15], 6 quality attributes
(functionality, reliability, usability, efficiency, maintainability, and portability)
are defined for evaluation of software quality. However, the standard has not
been adopted fully in this work; it is considered too brief and does not cover at-
tributes important for embedded systems (e.g., safety, and predictability). Fur-
thermore, concepts that sometimes are mixed with quality attributes (for ex-
ample fault tolerance) are not classified as quality attributes, rather as methods
to achieve qualities (as for example safety). Finally, functionality is of course
one of the most important quality attributes of a product, indicating how well
it satisfies stated or implied needs. However, we focus on quality attributes be-
yond functionality often called extra-functional or non-functional properties.
The resulting list of quality attributes is presented below.

Extendibility the ease with which a system or component can be modified to
increase its storage or functional capacity.

Maintainability the ease with which a software system or component can be
modified to correct faults, improve performance, or other attributes, or
adapt to a changed environment.

Usability the ease with which a user can learn to operate, prepare inputs for,
and interpret outputs from a system or component.

Predictability to which extent different run-time attributes can be predicted
during design time.

Security the ability of a system to manage, protect, and distribute sensitive
information.

Safety a measure of the absence of unsafe software conditions. The absence
of catastrophic consequences to the environment.

Reliability the ability of a system or component to perform its required func-
tions under stated conditions for a specified period of time.



64 Paper B

Testability the degree to which a system or component facilitates the estab-
lishment of test criteria and the performance of tests to determine whether
those criteria have been met. Note: testability is not only a measurement
for software, but it can also apply to the testing scheme.

Flexibility the ease with which a system or component can be modified for
use in applications or environments other than those for which it was
specifically designed.

Efficiency the degree to which a system or component performs its designated
functions with minimum consumption of resources (CPU, Memory, I/O,
Peripherals, Networks).

Representatives from the technical staff of several companies have been re-
quested to prioritize a list of quality attributes, reflecting each of the respective
companiesŠ view. The attributes have been grouped by the company represen-
tatives in four priority classes as shown in Table 1. The nature of the quality
attributes imply that no quality attribute can be neglected. It is essential to no-
tice that placing an attribute in the lowest priority class (4) does not mean that
the company could avoid that quality in their software, rather that the company
does not spend extra efforts in reaching it. The following companies have been
involved in the classification process:

• Volvo Construction Equipment [16] develops and manufactures a wide
variety of construction equipment vehicles, such as articulated haulers,
excavators, graders, backhoe loaders, and wheel loaders.

• Volvo Cars [17] develops passenger cars in the premium segment. Cars
are typically manufactured in volumes in the order of several hundred
thousands per year.

• Bombardier Transportation [18] is a train manufacturer, with a wide
range of related products. Some samples from their product line are
passenger rail vehicles, total transit systems, locomotives, freight cars,
propulsion and controls, and signaling equipment.

• Scania [19] is a manufacturer of heavy trucks and buses as well as indus-
trial and marine engines.

• ABB Robotics [20] is included in the work as a reference company, not
acting in the vehicular domain. They are building industrial robots, and
it is the department developing the control systems that is represented.



6.3 Results 65

Priority Description
1 very important, must be considered
2 important, something that one should try to consider
3 less important, considered if it can be achieved with a small effort
4 Unimportant, do not spend extra effort on this

Table 6.1: Priority classes used to classify the importance of the different qual-
ity attributes

As the last step we provide a discussion where we have combined the col-
lected data from the companies with the classification of how to support dif-
ferent quality attributes in [8]. The combination gives an abstract description
of where, which, and how different quality attributes should be supported by a
component technology tailored for usage in the vehicular industry.

6.3 Results

Figure 6.1 is a diagram that summarizes the results. The attributes are pri-
oritized by the different companies, in a scale from priority 1 (highest), to 4
(lowest) indicated on the Y-axis. On the X-axis the attributes are presented
with the highest prioritized attribute as the leftmost, and lowest as rightmost.
Each of the companies has one bar for each attribute, textured as indicated be-
low the X-axis. In some cases the representatives placed an interval for the
priority of certain attributes, e.g., 1-3 dependent on application; in those cases
the highest priority has been chosen in the diagram.

The result shows that the involved companies have approximately similar
prioritization, except on the security quality attribute where we have both high-
est and lowest priority. Reasonably, the most important concerns are related to
dependability characteristics (i.e. to the expectation of the performance of the
systems): safety, reliability and predictability. Usability is a property important
for the customers but also crucial in competition on the market. Slightly less
important attributes are related to the life cycle (extendibility, maintainability).
This indicates that the companies are ready to pay more attention to the prod-
uct performance than to the development and production costs (in that sense
a component-based approach which primary concerns are of business nature,
might not necessary be the most desirable approach).

The results also shows that ABB Robotics, included as a reference com-



66 Paper B

 
1

2

3

4

5

Safety

Reli
ab

ilit
y

Pre
dict

abilit
y

Use
abilty

Exte
nda

bilit
y

Maintai
na

bil
ity

Effic
ie

nc
y

Testa
bilit

y

Secu
rit

y

Flexib
ilit

y

VolvoCE Bombardier Transportation

Volvo Cars Scania

ABB Robotics 

P
rio

rit
y

Figure 6.1: the results. Y-axis: priority of quality attributes in a scale 1 (high-
est), to 4 (lowest). X-axis: the attributes, with the highest prioritized attribute
as the leftmost, and lowest as rightmost. Each of the companies has one bar for
each attribute, textured as indicated below the X-axis.

pany outside the vehicular domain has also approximately the same opinion. It
is not possible to distinguish ABB Robotics from any of the vehicular compa-
nies from a quality attribute perspective. These companies might use the same
component technology with respect to quality attribute support; thus the results
in the investigation indicate that the priority among quality attributes scale to a
broader scope of embedded computer control systems.



6.4 Discussion of the results 67

6.4 Discussion of the results

A component technology may have built in support for maintaining quality
attributes. However, tradeoffs between quality attributes must be made since
they are interdependent [7, 6]. We will discuss how the different quality at-
tributes can be supported by a component technology, and suggest how nec-
essary tradeoffs can be made according to priority placed by industry. The
discussion starts by treating the attribute that has received the highest priority
(safety), and continues in priority order, in this way the conflicts (and tradeoffs)
will be discussed in priority order. As basis for where support for a specific
quality attribute should be implemented we use a classification from [8], listed
below:

• Directly composable, possible to analyze given the same quality attributes
from the components.

• Architecture related, possible to analyze given this attribute for the com-
ponents and the assembly architecture.

• Derived attributes, possible to analyze from several attributes from the
involved components.

• Usage dependent, need a usage profile to analyze this.

• System environment context, possible to analyze given environment at-
tributes.

6.4.1 Safety

Safety is classified as dependent on the usage profile, and the system envi-
ronment context. Similarly to the fact that we cannot reason about system
safety without taking into consideration the surrounding context, we cannot
reason about safety of a component: simply safety is not a property that can
be identified on the component level. But a component technology can include
numerous mechanisms that enhance safety, or simplify safety analysis. How-
ever, to perform safety analysis, usage and environment information is needed.
A component technology can have support for safety kernels [21], surround-
ing components and supervise that unsafe conditions do not occur. Pre- and
post conditions can be checked in conjunction with execution of components
to detect hazardous states and check the range of input and output, used in
specification of components in e.g., [22, 23]. Tools supporting safety analysis



68 Paper B

as fault tree analysis (FTA) or failure modes and effect analysis (FMEA) can
also be provided with the component technology.

6.4.2 Reliability

Reliability is architecture related and usage dependent. The dominant type of
impact on reliability is the usage profile but reliability is also dependent on
the software architecture and how components are assembled; a fault-tolerant
redundant architecture improves the reliability of the assembly of components.
One possible approach to calculation of the reliability of an assembly is to use
the following elements:

• Reliability of the components - Information that has been obtained by
testing and analysis of the component given a context and usage profile.

• Path information (usage paths) - Information that includes usage profile
and the assembly structure.

Combined, it can give a probability of execution of each component, for
example by using Markov chains.

Also common for many simple systems, the reliability for a function of
two components is calculated using the reliability of the components, and their
relationship when performing the function. An AND relationship is when the
output is dependent on correct operation of both components, and an OR occurs
when the output is created when one of the two components operates correctly.

A component technology could have support for reliability, through relia-
bility attributes associated with components, and tools that automatically de-
termines reliability of given usage profiles, path information, and structural
relationships.

It is noteworthy that even if the reliability of the components are known
it is very hard to know if side effects take place that will affect an assembly
of the components. E.g. a failure caused by a component writing in a mem-
ory space used by another component. A model based on these assumptions
needs the means for calculating or measuring component reliability and an
architecture that permits analysis of the execution path. Component models
that specify provided and required interface, or implement a port-based inter-
face make it possible to develop a model for specifying the usage paths. This
is an example in which the definition of the component model facilitates the
procedure of dealing with the quality attribute. One known problem in the
use of Markov chains in modeling usage is the rapid growth of the chain and



6.4 Discussion of the results 69

complexity [24]. The problem can be solved because the reliability permits
a hierarchical approach. The system reliability can be analyzed by (re)using
the reliability information of the assemblies and components (which can be
derived or measured).

Reliability and Safety are not conflicting attributes. Reliability enhances
safety, high reliability increases confidence that the system does what it is in-
tended to and nothing else that might lead to unsafe conditions.

6.4.3 Predictability

We focus on predictability of the particular run-time attributes temporal be-
haviour, memory consumption, and functional behaviour. Predictability is
directly composable and architecture dependent. Prediction of temporal be-
haviour is well explored in research within the real-time community. Depend-
ing on the run-time systems scheduling strategy, the shared resource access and
execution demands of the scheduled entities, suitable prediction theories can be
chosen, e.g., for fixed priority systems that are most common within industry
[25, 26]. The choice of scheduling strategy is also a problem that has been
addressed [27]. Static scheduled systems are more straightforward to predict
than event driven systems that on the other hand are more flexible. Memory
consumption can be predicted, given the memory consumption for the different
components in the system [28]. However, two different types of memory con-
sumption can be identified: static and dynamic. Static memory consumption is
the most straightforward to predict, since it is a simple summation of the mem-
ory requirements of the included components. Dynamic memory consumption
can be more complex, since it might be dependent on usage input, and thereby
be usage dependent.

Predictability is not in conflict with the higher prioritized attributes relia-
bility and safety. Predictable behaviour enhances safety and reliability, e.g.,
unpredictable behaviour cannot be safe because it is impossible to be sure that
certain actions will not take place.

6.4.4 Usability

Usability is a rather complex quality attribute, which is derived from several
other attributes; it is architecture related and usage dependent. Usability is not
directly related to selection of component technology. Software in embedded
systems (the most common and important type of software in vehicular sys-
tems) is usually not visible and does not directly interact with the user. How-



70 Paper B

ever, more and more human-machine interaction is implemented in underlying
software. In many cases we can see how the flexibility of software is abused
- there are many devices (for example in infotainment) with numerous buttons
and flashing screens that significantly decrease the level of usability. Use of
a component technology may however indirectly contribute to usability - by
building standard (user-interface) components, and by their use in different ap-
plications and products, the same style, type of interaction, functionality and
similar are repeated. In this way they become recognisable and consequently
easier to use.

Usability as discussed above is not in obvious conflict with any of the
higher prioritized quality attributes.

6.4.5 Extendibility

Extendibility is directly composable and architecture related. It can be sup-
ported by the component technology through absence of restrictions in size re-
lated parameters, e.g., memory size, code size, and interface size. Extendibility
is one of the main concerns of a component technology and it is explicitly sup-
ported Ű either by ability of adding or extending interfaces or by providing a
framework that supports extendibility by easy updating of the system with new
or modified components.

Extendibility is not in direct conflict with any of the higher prioritized at-
tributes. However, conflicts may arise due to current methods used for analysis
and design of safety critical systems real-time systems, the methods often re-
sults in systems that are hard to extend [29]. Predictability in turn enhances
extendibility, since it makes predications of the impact of an extension possi-
ble.

6.4.6 Maintainability

Maintainability is directly composable and architecture related. A component
technology supports maintainability through configuration management tools,
clear architectures, and possibilities to predict impacts of applied changes.

Maintainability is not in obvious conflict with any of the higher priori-
tized attributes. But as for extendibility, current state of practice for achieving
safety, dependability and predictability results in systems that often are hard
to maintain [29]. Maintainability increases usability, while good predictability
in turn increases maintainability since impacts of maintenance efforts can be
predicted.



6.4 Discussion of the results 71

6.4.7 Efficiency

Efficiency is directly composable and architecture related. Efficiency is af-
fected by the component technology, mainly through resource usage by the
run-time system but also by interaction mechanisms. Good efficiency is equal
to low memory, processor, and communication medium usage.

In the requirements for a software application it might often be the case
that a certain amount of efficiency is a basic requirement, because of limited
hardware resources, control performance, or user experienced responsiveness.
In such cases the certain metrics must be achieved, but efficiency is poten-
tially in conflict with many higher prioritized quality attributes. Safety related
run-time mechanisms as safety kernels, and checking pre- and post conditions
consume extra resources and are thus in conflict with efficiency. Reliability is
often increased by redundancy, by definition conflicting with efficiency. Meth-
ods used for guaranteeing real-time behaviour are pessimistic and result in low
utilization bounds [30], although it is a widely addressed research problem and
improvements exist, e.g., [31, 32].

6.4.8 Testability

Testability is directly composable and architecture related. A general rule for
testability is that simple systems are easier to test than complex systems; how-
ever, what engineers build is not directly related to the technology itself. Di-
rect methods to increase testability provided by a component technology can
be built in self tests in components, monitoring support in the run-time system,
simulation environments, high and low level debugging information [33].

Testability is not in conflict with any of the higher prioritized quality at-
tributes. On the contrary, it supports several other attributes, e.g., safety is
increased by testing that certain conditions cannot occur, predictions are con-
firmed by testing, maintainability is increased if it is possible to test the impact
of a change. However, efficiency tradeoffs might have to be done to enable
testing. A problem with many common testing methods is the probe effect in-
troduced by software probes used for observing the system [34]. If the probes
used during testing are removed in the final product, it is not the same system
that is delivered as the one tested. To avoid this problem, designers can choose
to leave the probes in the final product and sacrifice efficiency, or possibly use
some form of non-intrusive hardware probing methods, e.g., [35]. Reliability
implemented by fault tolerance decrease testability, since faults may become
hidden and complicate detection by testing.



72 Paper B

6.4.9 Security

Security is usage dependent and dependent on the environment context, mean-
ing that it is not directly affected by the component technology. However,
mechanisms increasing security can be built in a component technology, e.g.,
encryption of all messages, authorization of devices that communicate on the
bus.

Methods to increase security that can be built in a component technology
are often in conflict with higher prioritized quality attributes, e.g., encryption is
in conflict with efficiency since it require more computing, and with testability
since it is harder to observe the system. Furthermore security has a low priority,
and the methods to achieve it are not dependent on support from the component
technology. Hence, security can be implemented without support from the
component technology.

6.4.10 Flexibility

Flexibility is directly composable and architecture related. A component tech-
nology can support flexibility through the components, their interactions, and
architectural styles to compose systems. Methods increasing flexibility in a
component technology can be, e.g., dynamic run-time scheduling of activities
based on events, run-time binding of resources, and component reconfiguration
during run-time.

Flexibility has received the lowest priority of all quality attributes, and is
in conflict with many higher prioritized attributes, e.g., with safety since the
number of different hazardous conditions increases, with testability since the
number of test cases increases and it may not be possible at all to create a
realistic run-time situation thus not to test the actual system either. On the other
hand flexibility increases maintainability, since a flexible system is easier to
change during maintenance. It is not possible to use completely static systems
with no flexibility at all when user interaction is involved, but regarding to the
numerous conflicts with higher prioritized quality attributes it should be kept
to a minimum in component technologies for this domain.

6.4.11 Quality Attribute Support in a Component Technol-
ogy for the Automotive Domain

Having presenting the basic characteristics of quality attributes related to com-
ponent technologies, and identification of present conflicts, and suggestions on



6.4 Discussion of the results 73

how to resolve the conflict we give a brief description of the resulting sugges-
tion of support for quality attributes in a component technology tailored for
vehicular systems below:

Safety Safety cannot be fully supported by a component technology. How-
ever, safety kernels surrounding components and support for defining
pre- and post conditions are suggested.

Reliability Reliability is supported to a large extent by a component technol-
ogy. We suggest reliability attributes associated with components, path
information including usage profile and assembly structure, and tools for
analysis. There should also be support for redundant components when
necessary.

Predictability Predictability is supported to a large extent. Associated to the
components, attributes such as execution time, and memory consump-
tion can be specified. Tools for automated analysis can be provided with
the technology.

Usability Usability is not directly supported by a component technology.

Extendibility Extendibility is well supported. The interfaces should be easy
to extend and it should be easy to add new components to an existing sys-
tem. There should be no size related restrictions with respect to memory,
code, and interface.

Maintainability Maintainability is well supported by a component technol-
ogy. The support is provided through configuration management tools,
and the fact that using well defined components gives a clear and main-
tainable architecture.

Efficiency Efficiency is suggested to be supported to a fairly high level. We
suggest support through small and efficient run-time systems, however
not to the cost of suggested safety and reliability related run-time mech-
anisms.

Testability Testability is supported to a large extent. The support is suggested
to be monitoring possibilities in the run-time system, simulation and de-
bug possibilities.

Security Security is not directly supported.

Flexibility Flexibility is not directly supported.



74 Paper B

6.5 Future Work

We will continue with research towards enabling CBSE for automotive sys-
tems. One part is to continue investigating the requirements on quality at-
tributes from the domain, with our present and other industrial partners. An-
other part is an analysis of particular component models to investigate their
abilities of supporting these quality attributes. A third part is to enable support
for quality attributes in the component technologies we are developing as pro-
totypes suitable for the domain AutoComp [36] and SaveComp [12], but we
will also asses to which extent other existing component technologies can be
used in order to meet the industrial requirements.

6.6 Conclusions

We have presented a classification of the importance of quality attributes for
software made by some companies in the vehicular domain; the results showed
that the companies agreed upon the priority for most of the attributes. The
most important concerns showed to be related to dependability characteristics
(safety, reliability and predictability). Usability received a fairly high prior-
ity. Slightly less important attributes where those related to the life cycle (ex-
tendibility, maintainability), while security and flexibility received the lowest
priority. We also included a company outside the domain in the investigation,
it turned out that they also agreed upon the classification; it might be that the
classification scale to a broader scope of embedded systems.

Furthermore, we have discussed how the attributes could be facilitated by
a component technology, and were in the technology the support should be
implemented: inside or outside the components, in the framework, or if the
quality attributes are usage dependent. The discussion is concluded by a brief
suggestion of quality attribute support for a component technology.

Acknowledgements We would like to thank our industrial partners for their
time, and the interest they have shown in discussing quality attributes. Thanks
to Joakim Fröberg from Volvo CE, Jakob Axelsson from Volvo Cars, Mattias
Ekman from Bombardier Transportation, Ola Larses and Bo Neidenström from
Scania, and Bertil Emertz from ABB Robotics.



Bibliography

[1] I. Crnkovic and M. Larsson. Classification of quality attributes for pre-
dictability in component-based systems. In In DSN 2004 Workshop on
Architecting Dependable Systems, June 2004.

[2] G.A. Moreno, S.A. Hissam, and K.C. Wallnau. Statistical models for
empirical component properties and assembly-level property predictions:
Towards standard labeling. In Proceedings of 5th Workshop on compo-
nent based software engineering, 2002.

[3] R.H. Reussner, H.W. Schmidt, and I. Poernomo. Reliability prediction
for component-based software architectures. Journal of Systems and Soft-
ware, 66(3):241–252, 2003.

[4] H.W. Schmidt. Trustworthy components: Compositionality and predic-
tion. Journal of Systems and Software, 65(3):212–225, 2003.

[5] J. Stafford and J. McGregor. Issues in the reliability of composed com-
ponents. In 5th workshop on component based software engineering
(CBSE5), 2002.

[6] D. Haggander, L. Lundberg, and J. Matton. Quality attribute conflicts -
experiences from a large telecommunication application. In Proceedings
of the 7th IEEE International Conference on Engineering of Complex
Computer Systems, 2001.

[7] M. Barbacci, M. H. Klein, T. A. Longstaff, and C. B. Weinstock. Qual-
ity attributes. Technical report, Software Engineering Institute, Carnegie
Mellon University, 1995.

[8] M. Larsson. Predicting Quality Attributes in Component-based Software
Systems. PhD thesis, Mälardalen University, March 2004.

75



76 Bibliography

[9] F. Bachmann, L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert,
R. Seacord, and K. Wallnau. Technical concepts of component-based
software engineering, volume ii. Technical report, Software Engineering
Institute, Carnegie-Mellon University, May 2000. CMU/SEI-2000-TR-
008.

[10] O. Nierstrass, G. Arevalo, S. Ducasse, , R. Wuyts, A. Black, P. Müller,
C. Zeidler, T. Genssler, and R. van den Born. A Component Model for
Field Devices. In Proceedings of the First International IFIP/ACM Work-
ing Conference on Component Deployment, June 2002.

[11] R. van Ommering, F. van der Linden, and J. Kramer. The koala compo-
nent model for consumer electronics software. In IEEE Computer, pages
78–85. IEEE, March 2000.

[12] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren. SaveCCM -
a Component Model for Safety-Critical Real-Time Systems. In Proceed-
ings of 30th Euromicro Conference, Special Session Component Models
for Dependable Systems, September 2004.

[13] M. de Jonge, J. Muskens, and M. Chaudron. Scenario-based prediction
of run-time resource consumption in component-based software systems.
In Proceedings of the 6th ICSE Workshop on Component-Based Software
Engineering (CBSE6), May 2003.

[14] K. C. Wallnau. Volume III: A Component Technology for Predictable
Assembly from Certifiable Components. Technical report, Software En-
gineering Institute, Carnegie Mellon University, April 2003.

[15] ISO/IEC. Software engineering – Product quality – Part 1: Quality
model, ISO/IEC 9126-1, 2001.

[16] Volvo construction equipment homepage. http://www.volvo.com/-
constructionequipment.

[17] Volvo cars homepage. http://www.volvocars.com/.

[18] Bombardier transportation homepage. http://www.transportation.-
bombardier.com/.

[19] Scania homepage. http://www.scania.com/.

[20] Abb robotics homepage. http://www.abb.com/robotics.



Bibliography 77

[21] J. Rushby. Kernel for safety, in safe and secure computing systems. Tech-
nical report, Blackwell Scientific Publications, Londres, 1989.

[22] J. Chessman and J. Daniels. UML Componets - A simple process for
specifying Component-Based Software. Reading, MA: Addison-Wesley,
2000.

[23] D. D’Souza and A.C. Wills. Objects, Components and Frameworks: The
Catalysis Approach. Reading, MA: Addison-Wesley, 1998.

[24] H.W. Schmidt and R.H. Reussner. Parameterized Contracts and Adapter
Synthesis. In Proceedings of the 5th ICSE Workshop on Component-
Based Software Engineering, May 2001.

[25] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, , and A. J. Wellings.
Fixed priority pre-emptive scheduling: An historical perspective. Real-
Time Systems Journal, 8(2/3):173–198, 1995.

[26] O. Redell and M. Törngren. Calculating exact worst case response times
for static priority scheduled tasks with offsets and jitter. In Proc. Eighth
IEEE Real-Time and Embedded Tech-nology and Applications Sympo-
sium. IEEE, September 2002.

[27] J. Xu and D. L. Parnas. On Satisfying Timing Constraints in Hard-Real-
Time Systems. IEEE Transactions on Software Engineerin, 19(1):70–84,
1993.

[28] A.V. Fioukov, E.M. Eskenazi, D.K. Hammer, and M. Chaudron. Evalua-
tion of Static Properties for Component-Based Architetures. In Proceed-
ings of 28th Euromicro Conference, September 2002.

[29] A. Burns and J. A. McDermid. Real-time safety-critical systems: analysis
and synthesis. Software Engineering Journal, 9(6):267–281, Nov 1994.

[30] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogram-
ming in hard-real-time environment. Journal of the Association for Com-
puting Machinery (ACM), 20(1):46–61, 1973.

[31] T. F. Abdelzaher, V. Sharma, and C. Lu. A utilization bound for aperiodic
tasks and priority driven scheduling. IEEE Transactions on Computers,
53(3):334–350, Mar 2004.



[32] C. Deji, A. K. Mok, and K. Tei-Wei. Utilization bound revisited. IEEE
Transactions on Computers, 52(3):351–361, March 2003.

[33] H. Thane. Testing and Debugging of Distributed Real-Time Systems. PhD
thesis, Royal Institute of Technology, May 2000.

[34] J. Gait. A probe effect in concurrent programs. Software Practise and
Experience, 16(3), March 1986.

[35] M. El Shobaki and L. Lindh. A hardware and software monitor for high-
level system-on-chip verification. In Proceedings of the IEEE Interna-
tional Symposium on Quality Electronic Design, March 2001.

[36] K. Sandström, J. Fredriksson, and M. Åkerholm. Introducing a Com-
ponent Technology for Safety Critical Embedded Real-Time Systems.
In Proceedings of th 7th International Symposium on Component-Based
Software Engineering (CBSE7), May 2004.



Chapter 7

Paper C:
SaveCCM a Component
Model for Safety-Critical
Real-Time Systems

Hans Hansson, Mikael Åkerholm, Ivica Crnkovic, and Martin Törngren
In Euromicro Conference, Special Session Component Models for Dependable
Systems, Rennes, France, September 2004

79



Abstract

Component-based development has proven effective in many engineering do-
mains, and several general component technologies are available. Most of
these are focused on providing an efficient software-engineering process. How-
ever, for the majority of embedded systems, run-time efficiency and prediction
of system behaviour are as important as process efficiency. This calls for spe-
cialized technologies. There is even a need for further specialized technologies
adapted to different types of embedded systems, due to the heterogeneity of the
domain and the close relation between the software and the often very applica-
tion specific system.

This paper presents the SaveCCM component model, intended for embed-
ded control applications in vehicular systems. SaveCCM is a simple model in
which flexibility is limited to facilitate analysis of real-time and dependability.
We present and motivate the model, and provide examples of its use.



7.1 Introduction 81

7.1 Introduction

Component-based development (CBD) is of great interest to the software engi-
neering community and has achieved considerable success in many engineer-
ing domains. Some of the main advantages of CBD are reusability, higher ab-
straction level and separation of the system development process from the com-
ponent development process. CBD has been extensively used for several years
in desktop environments, office applications, e-business and in Internet- and
web-based distributed applications. The component technologies used in these
domains originates from object-oriented (OO) techniques. The basic princi-
ples of the OO approach, such as encapsulation and class specification, have
been further extended; the importance of component interfaces has increased:
a component interface is treated as a component specification and the compo-
nent implementation is treated as a black box. A component interface is also
the means of integrating the components in an assembly. Component tech-
nologies include the support of component deployment into a system through
the component interface. On the other hand, the management of components’
quality attributes has not been supported by these technologies. In the domains
in which these technologies are widely used, the quality attributes have not
been of primary interest and have not been explicitly addressed; they have in-
stead been treated separately from the applied component-based technologies.
In many other domains, for example embedded systems, CBD is utilized to
a lesser degree for a number of different reasons, although the approach is as
attractive here as in other domains. One reason for the limited use of CBD in
the embedded systems domain is the difficulty to transfer existing technologies
to this domain, due to the difference in system constraints. Another important
reason is the inability of component-based technologies to deal with quality
attributes as required in these domains. For embedded systems, a number of
quality attributes are at least as important as the provided functionality, and
the development efforts related to them are most often greater than the efforts
related to the implementation of particular functions. For development of ve-
hicular systems, CBD is an attractive approach, but due to specific require-
ments of system properties such as real-time, reliability and safety, restricted
resource consumption (e.g., memory and CPU), general-purpose component
models cannot be used. Instead new component models that keep the main
principles of the CBD approach, but fulfil specific requirements of the domain,
must be developed.

This paper discusses the component model SaveCCM, a part of SAVE-
Comp, a component-based development framework being developed in the



82 Paper C

project SAVE (Component Based Design of Safety Critical Vehicular Sys-
tems). The basic idea of SAVEComp is to by focusing on simplicity and
analysability of real-time and dependability quality attributes provide efficient
support for designing and implementing embedded control applications for ve-
hicular systems

The paper is organised as follows. Section 2 gives a short overview of dif-
ferent component models used in embedded systems. Section 3 briefly presents
the SAVE project, and Section 4 outlines the characteristics of the considered
application domain. In Section 5, our component model SaveCCM is pre-
sented, including textual and graphical syntax, as well as a few illustrative
examples. A larger and more complete example from the vehicular domain is
provided in Section 6, and in Section 7 we summarize and give an outline of
future work.

7.2 Related work

In addition to widely used component technologies, new component models
appear in different application domains, both in industry and academia. We
will refer to some of them: Koala and Rubus used in industry and the research
models PECT, PECOS and ROBOCOP.

The Koala component technology [1] is designed and used by Philips for
development of software in consumer electronics. Koala has passive compo-
nents that interact through a pipes-and-filters model, which is allocated to ac-
tive threads. However, Koala does not support analysis of run-time properties.

The Robocop component model [2] is a variant of the Koala component
model. A Robocop component is a set of models, each of which provides a
particular type of information about the component. An example of such a
model is the non-functional model that includes modeling timeliness, reliabil-
ity, memory use, etc. Robocop aims to cover all aspects of a component-based
development process for embedded systems.

The Rubus Component Model [3] is developed by Arcticus systems aimed
for small embedded systems. It is used by Volvo Construction Equipment. The
component technology incorporates tools, e.g. a scheduler and a graphical tool
for application design, and it is tailored for resource constrained systems with
real-time requirements. In many aspects Rubus Component Model is similar to
SaveCCM; actually some of the basic approaches from Rubus are included in
SAVEComp. One difference is that SAVEComp is focused on multiple quality
attributes and independences of underlying operating system.



7.3 The SAVE project 83

PECT (Prediction-enabled Component Technology) from Software Engi-
neering Institute at CMU [4, 5] focuses on quality attributes specification and
methods for prediction of quality attributes on system level from attributes of
components. The component model enables description of some real-time at-
tributes. Compared with SAVECom, PECT is a more general-purpose compo-
nent technology and more complex.

PECOS (PErvasive COmponent Systems) [6], developed by ABB Corpo-
rate Research Centre and academia, is designed for field devices, i.e. reactive
embedded systems that gathers and analyze data via sensors and react by con-
trolling actuators, valves, motors etc. The focus is on non-functional properties
such as memory consumption and timeliness, which makes PECOS goals sim-
ilar to SaveCCM.

These examples show that there are many similar component technologies
for development of embedded systems. One could ask if it would not be more
efficient to use a single model. Experiences have shown that for many embed-
ded system domains efficiency in run-time resources consumption and predic-
tion of system behaviour are far more important than efficiency in the software
development. This calls for specialization, not generalization. Another argu-
ment for specialization is the typically very close relation between software
and the system in which the software is embedded. Different platforms and
different system architectures require different solutions on the infrastructure
and inter-operability level, which leads to different requirements for compo-
nent models. Also the nature of embedded software limits the possibilities of
interoperability between different systems. Despite the importance of perva-
siveness, dynamic configurations of interoperation between systems, etc. this
is still not the main focus of vast majorities of embedded systems.

These are the reasons why different application domains call for different
component models, which may follow the same basic principles of component-
based software engineering, but may be different in implementations. With that
in mind we can strongly motivate a need for a component technology adjusted
for vehicular systems.

7.3 The SAVE project

The long term aim of the SAVE [7] project is to establish an engineering disci-
pline for systematic development of component-based software for safety criti-
cal embedded systems. SAVE is addressing the above challenge by developing
a general technology for component-based development of safety-critical ve-



84 Paper C

hicular systems, including:

• Methodology and process for development of systems with components

• Component specification and composition, providing a component model
which includes the basic characteristics of safety-critical components
and infrastructure supporting component collaboration.

• Techniques for analysis and verification of functional correctness, real-
time behaviour, safety, and reliability.

• Run-time and configuration support, including support for assembling
components into systems, run-time monitoring, and evaluation of alter-
native configurations.

The main objective of SAVE is to develop SAVEComp - a component-
based development (CBD) technology for safety-critical embedded real-time
systems (RTS). The primary focus is on designing systems with components,
based on component and system models. The ambition is to develop a method
and infrastructure for CBD for safety-critical embedded RTS, corresponding to
existing general component technologies, such as COM and JavaBeans.

7.4 Application Characteristics

As mentioned above, the considered application domain is vehicular systems.
Within that domain we are mainly considering the safety-critical sub-systems
responsible for controlling the vehicle dynamics, including power-train, steer-
ing, braking, etc.

The vehicular industry has a long tradition of building systems from com-
ponents provided by different suppliers. In the past these components have
been purely mechanical, but today many of the components include computers
and software. The trend today is, on one hand, towards intelligent mechatron-
ics light weight nodes, such as actuators including a microprocessor. On the
other hand, there are trends towards more integrated and flexible architectures,
where software components can be freely allocated to heavy weight computer
units (Electronic Control Units; ECUs). One reason for this is that the number
of ECUs is growing beyond control in a modern car (in the range of 100 in
top of the line models). Letting SW from several suppliers, related to different
sub-systems, execute on the same ECU has several benefits, including reduced
number of ECUs, reduced cabling, reduced number of connection points (es-
sential for system reliability), reduced weight, and reduced per-unit production



7.4 Application Characteristics 85

cost. The downside is an increased risk of interference between the different
sub-systems. Minimizing this risk and increasing efficiency and flexibility in
the design process is the main motivation for SAVEComp and other efforts
currently in progress (e.g. the EAST/EEA initiative [8]).

The safety-critical sub-systems we consider will in the foreseeable future
have the following characteristics:

• Statically configured, i.e., the components used and their interconnec-
tions will essentially be decided at design or configuration time. Hence,
the binding will be static, as opposed to the dynamic binding used in
current component technologies.

• It will be essential to satisfy and provide proof of satisfaction of not only
the functional behaviour, but also of timing and dependability quality
attributes.

• The timing and dependability quality attributes will be strict, in the sense
that they will be specified in terms of absolute bounds that must be sat-
isfied.

• There will be additional, less critical, less static components executing
on the same ECUs as the critical ones. The focus of SAVE is however
not on these.

• The systems will be resource constrained, in the sense that the per-unit
cost is a main optimization criterion, i.e., the use of computer and com-
puting resources should be kept at a minimum.

• Due to the product-line nature of the industry, reuse of architectures,
components and quality assessments should be supported.

• The contractual aspect of system and component models will in many
cases be important as a tool for communication and ensuring quality in
the integrator Ű supplier relation.

Looking more in detail at the timing quality attributes, SaveCCM should pro-
vide sufficient machinery to express and reason about the following types of
timing attributes/requirements:

• End-to-end timing, i.e., it should be possible to determine (or guaran-
tee) that the time from some event (e.g., sampling of a sensor value) to
the time of some other event (e.g., providing a new control signal to an
actuator) stays within specified bounds.



86 Paper C

• Freshness of data, i.e., it should be possible to determine (or guarantee)
that a datum has been generated no earlier than a specified bound before
it is used by a specific component (e.g., that a sensor value has been
sampled no earlier than 35ms before it is used by a specific component).

• Simultaneity, i.e., it should be possible to determine (or guarantee) that
a set of data occur sufficiently close together in time (e.g., that the sam-
pling of two sensors occur within 2ms).

• Jitter tolerances, i.e., it should be possible to determine (or guarantee)
that the variation in latency between two events stay within specified
bounds (e.g., that the variation in the time between subsequent (periodic)
samplings of a sensor value stays within 2ms).

7.5 The SAVEComp Component Model

SaveCCM has its roots in previous models and design methods for embedded
real-time systems, in particular Basement [9] and its extensions into the Rubus-
methodology [10, 3]. SaveCCM, and its predecessors are designed specifically
for the vehicular domain, which (in contrast with many of the current compo-
nent technologies) implies that predictability and analysability are more im-
portant than flexibility. Hence, the model should be as restrictive as possible,
while still allowing the intended applications to be conveniently designed. It is
with this in mind we have designed SaveCCM.

7.5.1 Architectural Elements

SaveCCM consists of the following main elements:

Components which are basic units of encapsulated behaviour, that executes
according to the execution model presented below.

Switches which provide facilities to dynamically change the component inter-
connection structure (at configuration or run-time).

Assemblies which provide means to form aggregate components from sets of
interconnected components and switches.

Run-time framework which provides a set of services, such as communica-
tion between components. Component execution and control of sensors
and actuators.



7.5 The SAVEComp Component Model 87

Both switches and assemblies can be considered to be special types of com-
ponents. Due to the difference in semantics we will, however, treat them as sep-
arate elements. Below, we will elaborate on these elements, their properties,
and their attributes.

Functional interface
The functional interface of all architectural elements is defined in terms of a

set of associated ports, which are points of interaction between the element and
its external environment. We distinguish between input- and output ports, and
there are two complementary aspects of ports: the data that can be transferred
via the port and the triggering of component executions. SaveCCM distinguish
between these two aspects, and allow three types of ports: (1) data-only ports,
(2) triggering-only ports, and (3) data and triggering ports.

An architectural element emits trigger signals and data at its output ports,
and receives trigger signals and data at its input ports. Systems are built from
components by connecting input ports to output ports. Ports can only be con-
nected if their types match, i.e. identical data types are transferred and the
triggering coincides.

Data-only ports are one element buffers that can be read and written. Each
write will overwrite the previous value stored. Output and input ports are dis-
tinct, in the sense that writing a datum to an output port does not mean that the
datum is immediately available at the input port connected to the output port.
This is to allow transfer of data between ports over a network or any other
mechanism that does not guarantee atomicity of the transfer.

Triggering-only ports are used for controlling the activation of components.
A component may have several triggering ports. The component is triggered
when all input triggering ports are activated. Several output triggering ports
may be connected to a single input triggering port, providing an OR-semantics,
in the sense that the input port is triggered if at least one of its connected output
ports is activated. Note that the input triggering port is active from the time of
activation (triggering) to the start of execution of the component. Activations
cannot be cancelled, and activating an active port has no effect.

Data and triggering ports combine data-only and triggering-only ports in
the obvious way.

Execution Model
Since predictability and analyzability are of primary concern for the consid-

ered application domain, the SaveCCM execution model is rather restrictive.



88 Paper C

The basis is a control-flow (pipes and filter) paradigm in which executions
are triggered by clocks or external events, and where components have finite,
possibly variable, execution time.

On a high level, a component is either waiting to be activated (triggered) or
executing. A component change state from waiting to executing when all input
triggering ports are active.

In a first phase of its execution a component reads all its inputs. In its
second execution phase the component performs all its computations based
only on the inputs read and its internal state. In its third execution phase, the
component generates outputs, after which it returns to its idle state waiting for
a new triggering.

External I/O
Sensors and actuators (I/O) are accessed via enclosing components, in which

the sensor/actuator values are part of the component’s internal state.

Timing
Time is a first class citizen in SAVEComp. A global time base is assumed

(a perfect clock). This perfect clock is accessed via special components, called
triggers, which can trigger the activation of other components. To cater for
the imperfection of real clocks, a triggering initiated at time t will arrive at the
receiving component sometime in the interval t + / − O.

Switches
As mentioned above, a switch provides means for conditional transfer of

data and/or triggering between components. Switches allow configuration of
assemblies. A switch contains a connection specification, which specifies a set
of connection patterns, each defining a specific way of connecting the input and
output ports of the switch. Logical expressions (guards; one for each pattern)
based on the data available at some of the input ports of the switch are used to
determine which connection pattern that is in effect.

It should be noted that a pattern does not have to provide connections for
all ports, it is sufficient to only connect some input and some output ports.

Switches can be used for pre-run-time static configuration by statically
binding fixed values to the data in some of the input ports, and then use partial
evaluation to reduce the alternatives defined by the switch.

Switches can also be used for specifying modes and mode-switches, each
mode corresponding to a specific static configuration. By changing the port



7.5 The SAVEComp Component Model 89

values at run-time, a new configuration can be activated, thereby effectuating a
mode-shift.

Assemblies
As mentioned above, component assemblies allow composite behaviours to

be defined, and make it possible to form aggregate components from compo-
nents and switches. In SaveCCM, assemblies are encapsulations of compo-
nents and switches having an external functional interface, just as SaveCCM-
components. Some of the ports of components and switches are associated/
delegated to the external ports of the assembly.

Due to the strict (and restricted) execution semantics of SaveCCM compo-
nents, an assembly does not satisfy the requirements of a component. Hence,
assemblies should be viewed as a mechanism for naming a collection of com-
ponents and hiding internal structure, rather than a mechanism for component
composition.

Quality attributes
Handling of quality attributes, in particular those related to real-time and

safety, is one of the main aspects of SaveCCM. A list of quality attributes
and (possibly) their values is included in the specification of components and
assemblies. In this paper we will only consider timing attributes. We will show
how such attributes can be specified and used in analysis.

7.5.2 Specification and Composition Language

We will now outline the textual syntax used to define SaveCCM components
and assemblies.

A SaveCCM system is an aggregate of component instances. A component
instance is a named instance of a component type. A component type is either
a basic component type or a component assembly type. A basic component
type is defined as follows:

Components are specified by their interfaces, behaviour and (quality) at-
tributes. Interfaces are port-based and they specify input and output ports.
Behaviour identifies variables that express internal states, and actions that de-
scribe the component execution. Variables can be initiated by values from the
input ports. Attributes describe different properties of the components. An
attribute has a type, value and credibility (a measure of confidence of the ex-
pressed value). Credibility value, expressed in percentage is discussed in [11].
Ports include data or triggers or both. A simplified BNF specification of a



90 Paper C

component type is shown below. Actions are abstract specifications of the ex-
ternally visible behaviour of the component.

<component> ::= Component <typeName> {<componentSpec>}
<componentSpec> :: =<Interface> [<Behaviour>] [<Attributes> ]
<Interface> ::= Inports: <port>[,<port>]+ ;

Outports: <port>[,<port>]+ ;
<port> ::= <portName> : <portTypeName>;
<Behaviour> ::= Variables: <variables>+ Actions: <actions>+
<Variables> ::= <type> <name> [ = <value> | = <port_name> ] ;
<actions> ::= { <action-program> }
<Attributes> ::= Attributes <attributeSpec>+ ;
<attributeSpec> ::= <type> <name> = <value> [:<credibility>]
<portType> ::= Port <Name> {<portSpec>};
<portSpec> ::= Data: <dataType|empty>;

Trigger: <bolean> ;

Switches are specified as special types of components, however without
actions and attributes. Depending on the switch state (condition) particular
input and output ports are connected or disconnected.

<switch> ::= Switch <type> <name>{<swSpec>}
<swSpec> ::= <Interface> <behaviour>
<Interface> ::= Inports: <port>[,<port>]+ ;

Outports: <port>[,<port>]+ ;
<port> ::= <portType> <portName> ;
<behaviour> ::= Switching: <cond>:<in-out-connect> [,<in-out-connect>];
<in-out-connect> ::= <portName> -> <portName> [,<portName> -> < portName>];

An assembly includes a set of components and switches that are wired to-
gether. Similar to components assemblies can be instantiated, which enables
reusability on a higher level than the component level. However, the speci-
fication does not include a behaviour (variables and activities) part. Quality
attributes are part of assemblies. The reason is that there are assembly proper-
ties which cannot be derived from the component properties but are applicable
and can be measured on the assembly level.

<assembly> ::= Assembly <assemblyType> {<assemblySpec>}
<assemblySpec> ::= <Interface> <Behaviour>

[<Attributes> ]
<Interface> ::= Inports: <port>[,<port>]+ ;

Outports: <port>[,<port>]+ ;
<port> ::= <portType> <portName> ;
<Behaviour> ::= Components: <componentName> [,<compomemtName >+]
<connections> ::= Connections <singleConnection> [,<singleConnection>]+
<singleConnection> ::= <portName> -> <componentName.portName>

| <componentName.portName> -> <portName>
|<componentName.portName> -> <componentName.portName>

<Attributes> ::= Attributes <attributeSpec>+ ;
<attributeSpec> ::= <type> <name> = <value> [:<credibility>];



7.5 The SAVEComp Component Model 91

In modelling and building systems we must create instances of these types
and associate instances to tasks that execute on target systems. We will, how-
ever, in this paper not discuss these issues further, though our examples will
contain some instantiations that we hope will be intuitive enough to be under-
stood without further explanations.

 Symbol Interpretation 
 
 

Input ports - The upper is an input port 
with a trigger, and no data. The middle 
symbol is an input port with data and no 
triggering, and the lower symbol is an 
input port with data and triggering. 

 
 

Output port - Similar to the input ports, 
the upper is symbol is an output port with 
triggering functionality but with no data. 
The middle symbol is an output port with 
data but with no triggering, and the lower 
symbols indicates an output port with both 
data and triggering. 

Component - A component with the 
stereotype changed to SaveComp 
corresponds to a SaveCCM component. 

Switch - components with the stereotype 
switch, corresponds to switches in 
SaveCCM.  

 

Assembly - components with the 
stereotype Assembly, corresponds to 
assemblies in SaveCCM. 
Delegation - A delegation is a direct 
connection from an input to -input or 
output to -output port, used within 
assemblies.  

 

<<Assembly>> 
<name> 

<<Switch>> 
<name> 

<<SaveComp>> 

<name> 

Figure 7.1: Graphical Syntax of SaveCCM

7.5.3 Graphical Language

A subset of the UML2 component diagrams is adopted as graphical represen-
tation language. The interpretation of the symbols for provided and required
interfaces, and ports are somewhat modified to fit the needs of SaveComp. The
symbols in Figure 7.1 are used.



92 Paper C

 

<<Switch>>

S1

<<SaveComp>>

PC

<<SaveComp>>

IC

<<SaveComp>>
DC

<<Switch>>

S2

<<SaveComp>>

Compose

Set Actual

P I D

Control

<<Assembly>>

PID

Figure 7.2: Generic PID Controller

7.5.4 Simple examples

We will give a few examples to illustrate SaveCCM. In the examples we will
use our graphical language, and for selected architectural elements also the
textual format.

Static configuration By static configuration we assume instantiation of as-
semblies and the included components. For example we specify a general con-
troller, which can be configured to be a P, I, D, PI, PD, ID, or PID controller.
Switches are used to express this. Graphically we can illustrate PID as in Fig-
ure 7.2.

The following is the same example as in Figure 7.2 expressed in the speci-
fication and composition language:

Assembly PID {
Inports: P:Pport, I:Iport, D:Dport,
Set:Setport, Actual:Actualport;
Outports: Control:Controlport;
Components: PC:PCtype, IC:ICtype,
DC:DCtype, Compose :Ctype, S1:S, S2:Z;
PortConnect:

P->{S1.P,S2.P}, I->{S1.I,S2.}, D->
{S1.D,S2.D},Set->S1.setin, Actual->
S1.actualin,S1.actualoutp->P.actual,
S1.actualouti-> I.actual, S1.actualoutd->
D.actual,S1.setoutp-> P.set, S1.setouti->



7.5 The SAVEComp Component Model 93

I.set, S1.setoutd->D.set, P.control->S2.p,
I.control->S2i, D.control-> S2.d, S2.pp->
Compose.p, S2.ii->Compose.i, S2.dd->
Compose.d, Compose.control->control

}
Switch S {

Inports: P:Pport, I:Iport, D:Dport,
setin:Setport, actualin:Actualport;
Outports: actualp:Actualport,
actuali:Actualport, actuald:Actualport,
setoutp:Setport, setouti:Setport,
setoutd:Setport
Switching:

P: setin->setoutp, actualin->actualp;
I: setin->setouti, actualin->actuali;
D: setin->setoutd, actualin->actuald;

}
Switch Z {

Inports: P:Pport, I:Iport, D:Dport,
p:Setport, i:Setport, d:Setport;
Outports: pp:Setport, ii:Setort,
dd:Setport;
Switching:

P: p->pp; I: i->ii; D: d->d;
}

 

<<SaveComp>>

PC
<<SaveComp>>

Compose

<<Assembly>>

P

Set Actual
Control

Figure 7.3: Generic PID, statically configured as a P controller

Like components, assemblies can be reused. When creating a component
instance or an assembly we can statically bind port values to constants. For
instance if the component type PID is instantiated with P set to true, and I and
D set to false, we will (by partial evaluation) obtain the following component.
This configuration is supposed to be done automatically by a configuration
tools.

Assembly P:PID (P.val=true, I.val=false, D.val=false) {



94 Paper C

Inports: Set:Setport, Actual:Actualport;
Outports: Control:Controlport:
Components: PC:PCtype, Compose:Ctype;
PortConnect:

Set->P.set, Actual->P.actual,
P.control->Compose.p,
Compose.control->control;

}

The graphical interpretation is shown in Figure 7.3.

 

<<Switch>>

S1

<<SaveComp>>

A

<<SaveComp>>

B

<<Switch>>

S2

100Hz 10Hz mode

<<Assembly>>

ModeC

Set Actual
Control

Figure 7.4: Switch effectuating mode-switches, with different execution rates

Mode shift We specify a component (ModeC) with two externally deter-
mined modes: idle and busy. In mode idle control algorithm A should run at
10Hz and in mode busy control algorithm B should run at 100Hz. Graphically
we illustrate ModeC as in Figure 7.4.

7.6 The Cruise Control Example

To further illustrate the use of SaveCCM we demonstrate a simple design of an
Adaptive Cruise Control system (ACC), as an example of an advanced function
in a vehicle. An ACC system helps the driver to keep the distance to a vehicle
in-front, i.e., it autonomously adapt the velocity of the vehicle to the velocity



7.6 The Cruise Control Example 95

 

<<SaveComp>>

HMI inputs

<<SaveComp>>

Internal
Sensors

<<SaveComp>>

Radar

<<Assembly>>

CC / ACC System

<<SaveComp>>

Object 
recognition

<<SaveComp>>

ACC
Mode Logic

<<Assembly>>

ACC
Controllers

<<SaveComp>>

Actuators

<<SaveComp>>

HMI Outputs

10 Hz 100 Hz

Figure 7.5: ACC system

and distance of the vehicle in front. Figure 7.5 visualises a suggested ACC
system using SaveCMM.

The ACC system can be divided into three major parts: input, control,
and actuate. Our focus will be on the control part that is encapsulated in the
CC/ACC System assembly. The CC/ACC system consists of three components
and a switch:

Object recognition is a component that has responsibility to determine if there
is a vehicle in front and in that case estimate the distance and relative ve-
locity. It is triggered by the CC/ACC 10 Hz triggering port, and has a
Worst Case Execution Time (WCET) of 30 ms.

ACC controllers is an assembly implementing two cascaded controllers. The
inner controller is for speed control and can be used for normal Cruise
Control (CC), while the outer handles distance control. The assembly
has two triggering ports, one for the inner loop, and one for the outer.



96 Paper C

 

<<Assembly>>
ACC Controllers

<<SaveComp>>
Distance

Controller

<<Switch>>
Mode <<SaveComp>>

Speed
Controller

Object
Recognition

HMI
Inputs

Internal
Sensors

Mode
Logic

Distance
Controller
Triggering

Control

Speed
Controller
Triggering

Figure 7.6: ACC controllers assembly

HMI outputs is a component that gives information to the driver through the
vehicle computer display, e.g., information about the vehicle state and
latest request. The component is triggered by the CC/ACC systems trig-
gering port bound to 10 Hz. The WCET is 2 ms.

ACC mode logic is a component implementing the logic for shifting modes
depending on the state of the vehicle, inputs by the driver and from the
environment (vehicles in front). The different modes are CC, ACC, and
standby. It is triggered by the 10 Hz port. The WCET is less than 1 ms.

A diagram showing the internal design of the assembly ACC Controllers is
provided in Figure 7.6.

In Figure 7.6 the name of the component attached to in-ports is written
above each port. A brief presentation of the different components in the as-
sembly is given below.

Distance Controller is a pure controller component implementing a control
algorithm; it handles distance control and is the component in the outer
loop. The WCET is 20 ms, and it is triggered at 10 Hz.

Mode is a switch, which depending on the actual mode of the controller acti-
vates and deactivates the both controller components. The switch also



7.6 The Cruise Control Example 97

switches the input of the speed controller, between HMI Inputs (CC
functionality) and from the control signal of the outer loop controller
(ACC functionality).

The speed controller executes with a rate five times faster than the rate of the
distance controller due to faster dynamics, it control the speed of the
vehicle. The WCET is 5 ms.

As illustrated by the example, SaveCCM is designed to seamless and eas-
ily support typical requirements that arise when designing advanced vehicu-
lar functionality, e.g., connections with data, triggering and both, assemblies,
feedback, and mode changes.

As an illustration how the above SaveCCM specification can be used in
analysis of timing properties, let us (somewhat simplified) assume that the
CC/ACC System will be exclusively allocated to an ECU and that each compo-
nent is allocated to a single task. We further assume that the tasks are executing
under a fixed priority (FPS) real-time kernel, with a zero execution time over-
head, and that the deadline attributes of the components are defined to be equal
to the periods. Given this, and using deadline monotonic priority assignment,
together with the execution time attributes of the components, we can derive
the task set in Table 7.1 for the ACC mode.

Task Period (ms) WCET (ms) Prio
Object Recognition 100 30 5

Mode Logic 100 1 4
HMI Outputs 100 2 3

Distance Controller 100 20 2
Speed Controller 20 5 1

Table 7.1: The resulting task set

The task set can be used as input to standard fixed-priority schedulability
analysis tools (e.g. [12]). We can use such a tool to verify if the deadline
attributes are satisfied. By applying this analysis we find that the all dead-
line attributes are satisfied, hence we can from now on treat these attributes as
properties of the current configuration of the CC/ACC System.



98 Paper C

7.7 Conclusions and further work

We have presented SaveCCM, a component mode intended for embedded con-
trol applications in vehicular systems. In contrast with most current compo-
nent technologies, SaveCCM is sacrificing flexibility to facilitate analysis; in
particular analysis of dependability and real-time. We illustrate SaveCCM by
a simple example, where we also, as an example of timing analysis, show that
SaveCCM models are amenable to schedulabilty analysis.

This paper covers only parts of the component specifications. In our future
work we will provide a complete and formal definition of SaveCCM, as well
as linking it to further methods and tools for both dependability and timing
analysis. Parts of the specifications not discussed here include actions and
attributes describing dynamic behaviour of the components and attribute values
that are used for reasoning about system properties.



Bibliography

[1] R. van Ommering, F. van der Linden, and J. Kramer. The koala compo-
nent model for consumer electronics software. In IEEE Computer, pages
78–85. IEEE, March 2000.

[2] M. de Jonge, J. Muskens, and M. Chaudron. Scenario-based prediction
of run-time resource consumption in component-based software systems.
In Proceedings of the 6th ICSE Workshop on Component-Based Software
Engineering (CBSE6), May 2003.

[3] C. Norström, M. Gustafsson, K. Sandström, J. Mäki-Turja, and
N. Bånkestad. Experiences from introducing state-of-the-art real-time
techniques in the automotive industry. In In Eigth IEEE International
Conference and Workshop on the Engineering of Compute-Based Systems
Washington, US. IEEE, April 2001.

[4] K. C. Wallnau and J. Ivers. Snapshot of ccl: A language for predictable
assembly. Technical report, Software Engineering Institute, Carnegie
Mellon University, 2003. CMU/SEI-2003-TN-025.

[5] K. C. Wallnau. Volume III: A Component Technology for Predictable
Assembly from Certifiable Components. Technical report, Software En-
gineering Institute, Carnegie Mellon University, April 2003.

[6] P. Müller, C. Stich, and C. Zeidler. Components @ work: Component
technology for embedded systems. In Proceedings of the 27th Interna-
tional Euromicro Conference, 2001.

[7] Save project. http://www.mrtc.mdh.se/SAVE/ (Last Accessed: 2005-01-
18).

99



[8] East, embedded electronic architecture project. http://www.east-eea.net/
(Last Accessed: 2005-01-18).

[9] O. Bridal C. Norström S. Larsson H. Lönn M. Strömberg H. Hans-
son, H. Lawson. Basement: An architecture and methodology for dis-
tributed automotive real-time systems. IEEE Transactions on Computers,
46(9):1016–1027, Sep 1997.

[10] C. Norström D. Isovic. Building Reliable Component-Based Software
Systems, chapter Components in Real-time systems. Artech House Pub-
lishers, July 2002. ISBN 1-58053-327-2.

[11] M. Shaw and D. Garlan. Software Architecture: Perspectives on an
Emerging Dicipline. ISBN 0-13-182957-2. Prentice-Hall, 1996.

[12] Mast - modeling and analysis suite for real-time applications.
http://mast.unican.es/.



Chapter 8

Paper D:
Introducing a Component
Technology for Safety
Critical Embedded
Real-Time Systems

Kristian Sandström, Johan Fredriksson, and Mikael Åkerholm
In International Symposium on Component-based Software Engineering (CBSE7),
Edinburgh, Scotland, May 2004

101



Abstract

Safety critical embedded real-time systems represent a class of systems that
has attracted relatively little attention in research addressing component based
software engineering. Hence, the most widely spread component technologies
are not used for resource constrained safety critical real-time systems. They are
simply to resource demanding, to complex and to unpredictable. In this paper
we show how to use component based software engineering for low footprint
systems with very high demands on safe and reliable behaviour. The key con-
cept is to provide expressive design time models and yet resource effective
run-time models by statically resolve resource usage and timing by powerful
compile time techniques. This results in a component technology for resource
effective and temporally verified mapping of a component model to a commer-
cial real-time operating system.



8.1 Introduction 103

8.1 Introduction

The vehicle domain represents a class of embedded real-time systems where
the requirements on safety, reliability, resource usage, and cost leaven all through
development. Historically, the development of such systems has been done
using only low level programming languages, to guarantee full control over
the system behaviour. As the complexity and the amount of functionality im-
plemented by software increase, so does the cost for software development.
Therefore it is important to introduce software development paradigms that in-
crease software development productivity. Furthermore, since product lines
are common within the domain, issues of commonality and reuse is central for
reducing cost as well as increasing reliability.

Component based software engineering is a promising approach for ef-
ficient software development, enabling well defined software architectures as
well as reuse. Although component technologies have been developed address-
ing different demands and domains, there are few component technologies
targeting the specific demands of safety critical embedded real-time systems.
Critical for the safe and reliable operation of these systems is the real-time be-
haviour, where the timeliness of computer activities is essential. To be able
to guarantee these properties it is necessary to apply real-time systems theory.
Thus, a component technology to be used within this domain has to address
specification, analysis, and implementation of real-time behaviour.

A typical real-time constraint is a deadline on a transaction of co-operating
activities. A transaction in these systems would typically sample information
about the environment, perform calculations based on that information and ac-
cordingly apply a response to the environment, all within a limited time frame.
Also important is the ability to constrain the variation in periodicity of an activ-
ity (jitter). The reason for this is that variations in periodicity of observations
of the environment and responses to the same, will affect the control perfor-
mance. Hence, a component technology for this domain should have the ability
to clearly express and efficiently realize these constraints [1],[2],[3],[4].

The work described in this paper present a component technology for safety
critical embedded real-time systems that is based on experience from our previ-
ous work with introducing state-of-the-art real-time technology in the vehicle
industry. The benefits in development have been discussed in [5] and have
also been proven by long industrial use. That real-time technology has been
incorporated in the Rubus development suite and has been further developed
[6]. Experience from the industrial application of the research reveals that a
proper component model is not enough; success requires an unbroken chain of



104 Paper D

models, methods, and tools from early design to implementation and run-time
environment.

The contribution of the work presented in this paper includes a compo-
nent technology for resource effective and temporally verified mapping of a
component model to a resource structure such as a commercial Real-Time Op-
erating System (RTOS). This is made possible by introduction of a component
model that support specification of high level real-time constraints, by present-
ing a mapping to a real-time model permitting use of standard real-time theory.
Moreover, it supports synthesis of run-time mechanisms for predictable execu-
tion according to the temporal specification in the component model. Further-
more, in this work some limitations in previous work with respect to specifi-
cation and synthesis of real-time behaviour are removed. These limitations are
partially discussed in [5] and is mainly related to jitter and execution behaviour.

Many common component technologies are not used for resource con-
strained systems, nor safety critical, neither real-time systems. They are simply
to resource demanding, to complex and unpredictable. The research commu-
nity has paid attention to the problem, and recent research has resulted in devel-
opment of more suitable technologies for these classes of systems. Philips use
Koala [7], designed for resource constrained systems, but without support for
real-time verification. Pecos [8] is a collaboration project between ABB and
University partners with focus on a component technology for field devices.
The project considers different aspects related to real-time and resource con-
strained systems, during composition they are using components without code
introspection possibilities that might be a problem for safety critical applica-
tions. Rubus OS [6] is shipped with a component technology with support for
prediction of real-time behaviour, though not directly on transactions and jitter
constraints and not on sporadic activities. Stewart, Volpe, and Khosla suggest
a combination of object oriented design and port automaton theory called Port
Based Objects [9]. The port automaton theory gives prediction possibilities
for control applications, although not for transactions and jitter constraints dis-
cussed in this paper. Schmidt and Reussner propose to use transition functions
to model and predict reliability in [10]; they are not addressing real-time be-
haviour. Wallnau et al. suggest to restrict the usage of component technologies,
to enable prediction of desired run-time attributes in [11], the work is general
and not focused on particular theories and methods like the work presented in
this paper.

The outline of the rest of this paper is as follows; section 2 gives an overview
of the component technology. In section 3 the component model is described
and its transformation to a real-time model is explained in section 4. Section



8.2 Component Technology 105

5 presents the steps for synthesis of real-time attributes and discusses run-time
support. Finally, in section 6, future work is discussed and the paper is con-
cluded.

8.2 Component Technology

In this section we will give an overview of the component technology facil-
itating component based software development for safety-critical embedded
real-time systems. We will hereafter refer to this component technology as the
AutoComp technology. A key concept in AutoComp is that it allows engineers
to practise Component Based Software Engineering (CBSE) without involv-
ing heavy run-time mechanisms; it relies on powerful design and compile-time
mechanisms and simple and predictable run-time mechanisms. AutoComp is
separated into three different parts; component model, real-time model and
run-time system model. The component model is used during design time
for describing an application. The model is then transformed into a real-time
model providing theories for synthesis of the high level temporal constraints
into attributes of the run-time system model. An overview of the technology
can be seen in Fig. 8.1. The different steps in the figure is divided into de-
sign time, compile time, and run-time to display at which point in time during
development they are addressed or used.

During design time, developers are only concerned with the component
model and can practise CBSE fully utilizing its advantages. Moreover, high
level temporal constraints in form of end-to-end deadlines and jitter are sup-
ported. Meaning that developers are not burdened with the task of setting artifi-
cial requirements on task level, which is essential [12], [5]. It is often natural to
express timing constraints in the application requirements as end-to-end con-
straints.

The compile time steps, illustrated in Fig. 8.1, incorporate a transition from
the component based design, to a real-time model enabling existing real-time
analysis and mapping to a RTOS. During this step the components are replaced
by real-time tasks. Main concerns in this phase are allocation of components to
tasks, assignment of task attributes, and real-time analysis. During attribute as-
signment, run-time attributes that are used by the underlying operating system
are assigned to the tasks. The attributes are determined so that the high level
constraints specified by the developer during the design step are met. Finally,
when meeting the constraints of the system, a synthesis step is executed. It
is within this step the binary representation of the system is created, often the



106 Paper D

operating system and run-time system are also included with the application
code in a single bundle

  
 

 

Real-Time
Analysis 

 

Real-time model 

  

Synthesis

Design-
Time 

Compile-
Time 

Run- 
Time 

Target application  

Component model 

Model transformation 

RTOS 

t 

Figure 8.1: The AutoComp component technology

The run-time system is assumed to be a traditional RTOS with Fixed Prior-
ity Scheduling (FPS) of tasks. Most commercial RTOS can be classified into
this category; furthermore they are simple, resource efficient and many real-
time analysis techniques exist. In some cases a layer providing run-time sup-
port for the tasks has to be implemented in order to fully support FPS models
used in real-time theory.

8.3 Component Model

Vehicles present a heterogeneous environment where the interaction between
the computer system and the vehicle take different forms. Some vehicle func-
tionality requires periodic execution of software, e.g., feedback control, whereas
other functionality has a sporadic nature, e.g., alarms. Although vehicle con-
trol plays a central role, there is also an abundance of other functionality in
vehicles that is less critical and has other characteristics, e.g., requires more
flexibility. Although less critical, many of these functions will still interact



8.3 Component Model 107

with other more critical parts of the control system, consider for example di-
agnostics. We present a model that in a seamless way allows the integration of
different functionality, by supporting early specification of the high level tem-
poral constraints that a given functionality has to meet. Moreover, the compu-
tational model is based on a data flow style that results in simple application
descriptions and system implementations that are relatively straightforward to
analyse and verify. The data flow style is commonly used within the embedded
systems domain, e.g., in IEC 61131 used for automation [13] and in Simulink
used for control modelling [14].

The definition of the AutoComp component model is divided into compo-
nents, component interfaces, composition, the components invocation cycle,
transactions and system representation. In Fig. 8.2 the component model is
illustrated using UML2, which could be a possible graphical representation
during design.

The components are defined as glass box, meaning that a developer can see
the code of a component for introspection purposes. It does not mean that a de-
veloper has to look into a component during normal composition, and not that
it is allowed to modify a component. The introspection possibility is a require-
ment during verification of safety critical applications in order to gain com-
plete knowledge about components behaviour. Furthermore, the components
can only exchange data with each others through data ports. A component can
be a composite containing a complete subsystem, or a basic component with
an entry function. Composite components can be treated as any other compo-
nent during composition, but it is also possible to enter a composite and change
timing requirements and other properties. The entry function provided by non-
composite components can be compared to the entry function for a computer
program, meaning that the contained number of functions of the component
can be arbitrary.

The interfaces offered by a component can be grouped into the two classes
data and control interfaces. The data interfaces are used to specify the data flow
between components, and consist of data ports. Data ports have a specified type
and can be either provided or required. Provided ports are the ports provided
by components for input, i.e., the ports a component reads data from. Required
ports are the ports a component writes data to. A component also has a control
interface with a mandatory control sink, and an optional control source. The
control interface is used for specifying the control flow in the application, i.e.,
when or as a response to what component should be triggered. The control sink
is used for triggering the functionality inside the component, while the control
source is used for triggering other components.



108 Paper D

 

 

<< AutoComp>> 

Power Supervison 

<<provided ports>> 
Desired Output Level 

<<required ports>> 
Air Valve 
Diesel Valve 

<<realisations>> 

airDieselRegulation 

<<AutoComp>> 

Power Supervison 

Desired Output level 

Source 

Diesel Valve 

Sink 

Diesel Valve 

<<AutoComp>> 

Valve Regulator 

Regulate Output  

User Power Supervision Valve Regulator 

Desired Output Level 

Air Valve 

Diesel Valve 

t = now 

{t..t+20} 

Component 

Composition 

Transaction 

Sink 
Source 

WCET 

Sink 
T = 40 ms 

Air Valve 

Air Valve 

<<control ports>> 

Figure 8.2: In the upper left part of the figure there is a UML 2 component
diagram for modelling of a component. The lower part of the figure is a com-
position diagram showing a composition of two components. Finally the upper
right part of the figure is a sequence diagram with a timing constraint that is
used to express the end-to-end deadline for a transaction

During composition the developer has three main techniques to work with.
The data flow is specified through connection of provided and required data
ports. The rules are as follows; required ports must be wired to provided ports
with a compatible type. It is possible to make abstractions through definition of
composite components. Composite components can be powerful abstractions
for visualizing and understanding a complex system, as well as they provide
larger units of reuse. The control flow is specified through binding the con-
trol sinks to period times for periodic invocation, to external events for event
invocation, or to control sources of other components for invocation upon com-
pletion of the other components.

A components invocation cycle can be explained as in the following sen-
tences. Upon stimuli on the control sink, in form of an event from a timer, an
external source or another component; the component is invoked. The execu-



8.3 Component Model 109

tion begins with reading the provided ports. Then the component executes the
contained code. During the execution, the component can use data from the
provided ports and write to the required ports as desired, but the writes will
only have local effect. In the last phase written data become visible on the
required ports, and if the control source in the control interface is present and
wired to the control sink of another component stimulus is generated.

Transactions allow developers to define and set end-to-end timing con-
straints on activities involving several components. A transaction in AutoComp
can be defined as:

A transaction Tri is defined by a tuple < C, D, Js, Jc > where:

C - represent an ordered sequence of components;

D - represent the end-to-end deadline of the transaction;

Js - represent the constraint on start jitter of the transaction;

Jc - represent the constraint on completion jitter of the transaction.

The end-to-end deadline is the latest point in time when the transaction
must be completed, relative to its activation. Jitter requirements are optional
and can be specified for transactions involving time triggered components.
Start jitter is a constraint of the periodicity of the transactions starting point,
while completion jitter is a constraint on the periodicity of a transactions com-
pletion point. Both types of jitter are expressed as a maximum allowed de-
viation from the nominal period time. A restriction, necessary for real-time
analysis, is that components directly triggered by an external event can only be
part of a transaction as the first component.

A system can be described with the UML class diagram in Fig. 8.3. A
system is composed of one or several components, each with a data interface,
a control interface and a realization as a subsystem or an entry function. A
system also has zero or more data couplings, describing a connected pair of
required and provided data ports. Furthermore, systems have zero or more
control couplings which describe a connected pair of control sink and source.
Finally, the last part of a system is zero or more transactions with the included
components, an end-to-end deadline and the possibility to specify jitter require-
ments.



110 Paper D

 

System

ID

Entry Function

ID

Data Interface

Provided Ports
Required Ports

Control Interface

Sink Port
Source Port

Realisation

Transaction

Included Components
End2End Deadline
Jitter  Requirements

Data Coupling

Connected Data Ports

Component

ID

Control Coupling

Connected Control Ports

System

ID

0..*0..*

0..*0..*

1..*

1

1..*

1

0..*0..*

Figure 8.3: UML class diagram showing the static view of the component
model

8.4 Model Transformation

Model transformation involves the steps necessary in order to transit from the
component model allowing an efficient and powerful design phase, to a run-
time model enabling verification of temporal constraints and usage of efficient
and deterministic execution environments. As previous stated in section 2 we
assume a FPS run-time model. The FPS model defines a system as a set of
tasks with the attributes period time, priority, offset, and WCET. Hence, it is
necessary to translate the component model with its temporal constraints in
to tasks holding these attributes. The translation is performed in two separate
steps; the first step is to make a transformation between components and task
(task allocation), the second step is to assign attributes to the tasks (attribute
assignment). To assign the FPS model attributes in such a way that the high
level temporal constraints on transactions are met is non-trivial and has been
addressed in research by e.g., [1], [3].



8.4 Model Transformation 111

8.4.1 Task Allocation

The easiest approach for task allocation is a one to one relationship between
components and tasks, but that is not necessarily optimal. In fact the task
allocation step has a lot of different tradeoffs. Such tradeoffs can be found
between reliability and run time overhead; few tasks reduce run time overhead
at the cost of memory protection (usually at task level) between components.
Testability and schedulability are examples of other properties that are affected
by the allocation scheme.

In this paper we introduce a task allocation strategy that strives to reduce
the number of tasks considering schedulability and reliability. Components are
not allocated to the same task if schedulability is obviously negatively affected
and structurally unrelated components are not allocated to the same task in
order to cater for memory protection and flexibility.

The first step in the allocation process is to convert all composite com-
ponents to a flat structure of the contained basic components. Secondly the
following rules are applied:

1. All instances of components are allocated to separate tasks, Worst Case
Execution Time (WCET) is directly inherited from a component to the
corresponding task

2. The start jitter Js corresponding to a transaction with jitter requirements
is set as a requirement on the task allocated for the first component in
the ordered sequence C, while the completion jitter Jc is set to the task
allocated for the last component in the sequence

3. Tasks allocated for components with connected pairs of control sink and
sources, where the task with the source do not have any jitter require-
ments, and both tasks are participating in the same and only that transac-
tion are merged. The resulting WCET is an addition from all integrated
tasks WCET

4. Tasks allocated for time triggered components that have the same period
time, not have any jitter constraints and are in a sequence in the same
and only that transaction are merged. The resulting WCET is an addition
from all integrated tasks WCET

The situation after application of the allocation rules is a set of real-time
tasks. The high level timing requirements are still expressed in transactions,



112 Paper D

but instead of containing an ordered set of components a transaction now con-
tain an ordered set of tasks. The rest of the attributes, those that cannot be
mapped directly from the component model to the real-time model are taken
care of in the following attribute assignment step. In Fig. 8.4, given the two
transactions Tr1 =< C, D, Js, Jc >=< A, B, C, 60,−, 25 > and Tr2 =<
C, D, Js, Jc >=< D, E, F , 40, 5,− > the task allocation step for the compo-
nents in Table 8.1 is shown. The resulting task set is in Table 8.2.

  <<AutoComp>> 

A 

<<AutoComp>> 

B 

<<AutoComp>> 

C 

Sink Sink 

Source 

Sink 

<<AutoComp>> 

F 

Sink 

Level 

Level 

Adjust 

Adjust 

<<AutoComp>> 

E 

Sink 

Lock 

Lock 

Task 1 Task 2 

Task 4 

<<AutoComp>> 

D 

Sink 

Task 3 

Sample 

Sample 

Figure 8.4: Task allocation example

Sink Bound To WCET
A T = 100 5
B A.Source 10
C T = 60 5
D T = 40 5
E T = 40 6
F T = 40 9

Table 8.1: A component set

8.4.2 Attribute Assignment

After the components have been assigned to tasks, the tasks must be assigned
attributes so that the high level temporal requirements on transactions are met.
Attributes that are assigned during task allocation are WCET for all tasks, a
period time for periodic tasks and a Minimum Interarrival Time (MINT) for
event triggered tasks.



8.4 Model Transformation 113

Trigger Jitter WCET
Task 1 T = 100 15
Task 2 T = 60 25 5
Task 3 T = 40 5 5
Task 4 T = 40 15

Table 8.2: The resulting task set

The scheduling model that is used throughout this paper is FPS, where
tasks have their priorities and offsets assigned using an arbitrary task attribute
assignment methodology. Examples of existing methods that can be used for
priority assignment are Bate and Burns [1], Sandström and Norström [3] or
by combination of Yerraballi [15] or Cheng and Agrawala [16] with Dobrin,
Fohler and Puschner [17]. In this paper it is assumed that task attributes are
assigned using the algorithm proposed by Bate and Burns [1], and it is showed
that the component model described in this paper is applicable to their analysis
model. Weather the tasks are time triggered or event triggered is not consid-
ered in the Bate and Burns analysis but is required during the mapping to the
FPS model, where periodic and event triggered (sporadic) tasks are separated.
The attributes that are relevant, considering this work, in the Bate and Burns
approach are listed below.

For tasks:

T (Period) - All periodic tasks have a period time that is assigned during the
task allocation. Sporadic tasks have a MINT that analytically can be seen
as a period time;

J (Jitter) - The jitter constraints for a task is the allowed variation of task com-
pletion from precise periodicity. This type of jitter constraint is known
as completion jitter. Jitter constraints can be set on the first and last task
in a transaction;

R (Worst Case Response time) - The initial Worst Case Response time for a
task is the WCET for the task, i.e., the longest time for a task to finish
execution from its starting point in time.

For transactions:

T (Period) - The period of a transaction is the least common multiple of the
period times of the participating tasks of the transaction;



114 Paper D

End-to-End deadline - Transactions have a requirement that all tasks have
finished their execution within a certain time from the transactions point
of start in time.

In Bate and Burns approach additional attributes, such as deadline and sep-
aration for tasks and jitter requirements for transactions are considered. In
this paper those attributes are disregarded since there are no such requirements
in the previously described component model. It is trivial to see that from
the component model, the period and jitter constraints match the model pro-
posed by Bate and Burns. The initial worst case response time R is assigned
the WCET value in the component model. For the transaction the end-to-end
deadline requirements match the transaction deadline of the Bate and Burns
model. The period time of the transaction is derived from the least common
multiple of the period of the tasks participating in the transaction.

The next step is naturally to assign the FPS model with run-time and anal-
ysis attributes. The new attributes priority and offsets will be derived through
existing analysis methods [1]. The new parameters for the FPS model are de-
scribed below.

P (Priority) - The priority is an attribute that indicates the importance of the
task relative to other tasks in the system. In a FPS system tasks are
scheduled according to their priority, the task with the highest priority is
always executed first. All tasks in the system are assigned a priority;

O (Offset) - The offset is an attribute that periodic tasks with jitter constraints
are assigned. The earliest start time is derived by adding the offset to the
period time.

In Table 8.3 it is summarized what attributes belonging to time triggered
and event triggered tasks in the FPS model.

Attribute Time triggered Event triggered
Period X
MINT X

Priority X X
Offset X (Upon Jitter Constraints)

WCET X X

Table 8.3: Attributes associated with time and event triggered tasks



8.4 Model Transformation 115

Applying the Bate and Burns algorithm determines task attributes from the
tasks and transactions described in Table 8.2. The resulting run-time attributes
priority, offset period and WCET are shown in Table 8.4. The attributes offset
and priority are determined with the Bate and Burns analysis, whilst the period
and WCET are determined in the task allocation.

Priority Offset Period WCET
Task 1 2 0 100 15
Task 2 1 (Lowest) 35 60 5
Task 3 4 (Highest) 0 40 5
Task 4 3 0 40 15

Table 8.4: Assigned task attributes

In Fig. 8.5 a run-time trace for an FPS system is shown and the transactions
Tr1 and Tr2 are indicated.

 

Task 1 
 
Task 2 
 
Task 3 
 
Task 4 

50 100 150 200 Transaction Tr2 

Transaction Tr1 

Figure 8.5: Trace of an FPS schedule

When the FPS model has been assigned its attributes it has to be verified.
The verification of the model is performed by applying real-time scheduling
analysis to confirm that the model is schedulable with the assigned parame-
ters. This is necessary since attribute assignment does not necessarily guaran-
tee schedulability, but only assigns attributes considering the relation between
the tasks.

8.4.3 Real-Time Analysis

To show that the FPS tasks will meet their stipulated timing constraints, schedu-
lability analysis must be performed. Much research has been done with respect



116 Paper D

 

RTOS

void actuate(
if(level >
out += -1;
}
postCreate(

set = initi

Task Assignment

Assignment of
Run-time attributes

SynthesisSynthesis

<<component>>

D

<<component>>

A

<<component>>

B

<<component>>

C

Data port connections

Code

RTOS characteristics and 
Run-Time system

Run-Time System

Executable Reliable Bundle
For Embedded Systems

RTOS

void actuate(
if(level >
out += -1;
}
postCreate(

set = initi

Task Assignment

Assignment of
Run-time attributes

SynthesisSynthesis

<<component>>

D

<<component>>

A

<<component>>

B

<<component>>

C

Data port connections

Code

RTOS characteristics and 
Run-Time system

Run-Time System

Executable Reliable Bundle
For Embedded Systems

Figure 8.6: The steps of synthesizing code for the run-time system

to analysis of different properties of FPS systems, and all those results are
available for use, once a FPS model has been established. The temporal analy-
sis of an FPS system with offsets, sporadic tasks and synchronization has been
covered in research by e.g., Palencia et al. [18], [19] and Redell [20].

The output from the analysis is whether the system is feasible or not in the
worst case. If the analysis shows that the system is infeasible, the parts that can
not keep its requirements are either changed and reanalysed or emphasised for
the developer to make changes.

8.5 Synthesis

The next step after the model transformation and real-time analysis is to syn-
thesise code for the run-time system. This includes mapping the tasks to oper-
ating system specific task entities, mapping data connections to an OS specific
communication, modifying the middleware, generating glue code, compiling,
linking and bundling the program code (see Fig. 8.6).

The synthesis is divided into two major parts. Given a task set and nec-
essary information about the run-time system, the synthesis generates code
considering communication, synchronization.

• The first part in synthesis is to resolve the communication within and
between tasks. Two communicating components that are assigned to
different tasks will form an Inter Task Communication (ITC) while com-



8.5 Synthesis 117

 <<component >>

A 
<<component>>

B 
<<component>>

C 

<<component >>

A 
<<component>>

B 
<<component>>

C 

Middleware Middleware 

Figure 8.7: A component model with adjustments for different operating sys-
tems to promote platform independence

munication between components assigned to the same task are realized
with shared data spaces within the task. The ITC is later mapped to
operating system specific communication directives.

• The other part in the synthesis is to resolve the control couplings, i.e.,
the sink and source. If a tasks starting point is dependent on the former
tasks finishing point the tasks have to be synchronized. The synchro-
nization is solved through scheduling. The synthesis will generate code
for scheduling periodic tasks, handle the control flow between tasks and
consider offsets. The code generated for the periodic scheduling and
offsets is dependent on the middleware and can be realized as a configu-
ration file or actual code in each task. Invocations of sporadic tasks are
mapped to event handlers in the middleware or the operating system.

It is assumed that a middleware is present as shown in Fig. 9.3, for each
platform and that it provides functionality that the component model needs but
the operating system does not provide. The more functionality the operating
system provides, the smaller the middleware has to be. The middleware en-
capsulates core communication and concurrency services to eliminate many
non-portable aspects of developing and is hence platform specific in favour
of a platform independent component model. Typical functionality that is not
provided by most commercial RTOS is periodicity and support for offsets. The
middleware also need to support sink and source couplings since task coupled
with its source need to be able to invoke the corresponding task. The run-time
system conforms to FPS and hence the run-time task model is similar to the



118 Paper D

previously described FPS model with some exceptions. The worst case exe-
cution time is merely an analysis attribute and is not needed in the run-time
model. The MINT is usually a requirement on the environment rather than a
task attribute, and is thus also analytical and unnecessary. Hence the run-time
task model is for periodic tasks Period time, Priority, Offset and for sporadic
tasks Priority.

8.6 Conclusions and Future Work

In this paper we show how to use component based software engineering for
low footprint systems with very high demands on safe and reliable behaviour.
The key concept is to provide expressive design time models and yet resource
effective run-time models by statically resolve resource usage and timing by
powerful compile time techniques.

The work presented in this paper introduces a component technology for
resource effective and temporally verified mapping of a component model to
a resource structure such as a commercial RTOS. This is made possible by
introduction of a component model that support specification of high level real-
time constraints, by presenting a mapping to a real-time model, permitting
use of standard real-time theory, and by synthesis of run-time mechanisms for
predictable execution according to the temporal specification in the component
model.

Although the basic concept has been validated by successful industrial ap-
plication of previous work [5], it is necessary to further validate the component
technology presented here. In order to facilitate this, a prototype implemen-
tation of the component technology is under development where the core part
has been completed. The prototype will enable evaluation of different tech-
nology realisations with respect to performance. Moreover, parts of the model
transformation need additional attention, foremost the strategies for allocation
of components to tasks. Furthermore, we will make efforts in extending the
component model making it more expressive and flexible while still keeping
the ability for real-time analysis. Interesting is also to investigate trade-offs
between run-time foot print and flexibility with respect to e.g., adding func-
tionality post production. Finally, the component technology will be evaluated
in a larger, preferably industrial, case.



Bibliography

[1] A. Bate and I. Burns. An approach to task attribute assignment for unipro-
cessor systems. In Proceedings of the 26th Annual International Com-
puter Software and Applications Conference. IEEE, 2002.

[2] K. Mok, D. Tsou, and R. C. M. De Rooij. The msp.rtl real-time scheduler
synthesis tool. In In Proc. 17th IEEE Real-Time Systems Symposium,
pages 118–128. IEEE, 1996.

[3] K. Sandström and C. Norström. Managing complex temporal require-
ments in real-time control systems. In In 9th IEEE Conference on Engi-
neering of Computer-Based Systems Sweden. IEEE, April 2002.

[4] J. Würtz and K. Schild. Scheduling of time-triggered real-time systems.
In In Constraints, Kluwer Academic Publishers, pages 335–357, October
2000.

[5] C. Norström, M. Gustafsson, K. Sandström, J. Mäki-Turja, and
N. Bånkestad. Experiences from introducing state-of-the-art real-time
techniques in the automotive industry. In In Eigth IEEE International
Conference and Workshop on the Engineering of Compute-Based Systems
Washington, US. IEEE, April 2001.

[6] Arcticus. Arcticus homepage: http://www.arcticus.se.

[7] R. van Ommering, F. van der Linden, and J. Kramer. The koala compo-
nent model for consumer electronics software. In IEEE Computer, pages
78–85. IEEE, March 2000.

[8] G. Nierstrasz, S. Arevalo, R. Ducasse, A. Wuyts, P. Black, C. Müller,
T. Zeidler, R. Genssler, and A. van den Born. Component model for field

119



120 Bibliography

devices. In Proceedings of the First International IFIP/ACM Working
Conference on Component Deployment, Germany, June 2002.

[9] D. B. Stewart, R. A. Volpe, and P. K. Khosla. Design of dynamically re-
configurable real-time software using port-based objects. In IEEE Trans-
actions on Software Engineering, pages 759–776. IEEE, December 1997.

[10] W. H. Schmidt and R. H. Reussner. Parameterised contracts and adap-
tor synthesis. In Proc. 5th International Workshop of Component-Based
Software Engineering (CBSE5), May 2002.

[11] S. A. Hissam, G. A. Moreno, J. Stafford, and K. C. Wallnau. Packag-
ing predictable assem-bly with prediction-enabled component technol-
ogy. Technical report, November 2001.

[12] D .K . Hammer and M. R. V. Chaudron. Component-based software
engineering for resource constraint systems: What are the needs? In
6th Workshop on Object-Oriented Real-Time Dependable Systems, Rome,
Italy, January 2001.

[13] IEC. International standard IEC 1131: Programmable controllers, 1992.

[14] Mathworks. Mathworks homepage : http://www.mathworks.com.

[15] R. Yerraballi. Scalability in Real-Time Systems. PhD thesis, Computer
Science Department, old Dominion University, August 1996.

[16] S. T. Cheng. and Agrawala A. K. Allocation and scheduling of real-time
periodic tasks with relative timing constraints. In Second International
Workshop on Real-Time Computing Systems and Applications (RTCSA).
IEEE, 1995.

[17] R. Dobrin, G. Fohler, and P. Puschner. Translating off-line schedules
into task attributes for fixed priority scheduling. In In Real-Time Systems
Symposium London, UK, December, 2001.

[18] J. C. Palencia and M. Gonzalez Harbour. Schedulability analysis for tasks
with static and dynamic offsets. In Proc. of the 19th Real-Time Systems
Symposium, December 1998.

[19] J. C. Palencia and M. Gonzalez Harbour. Exploiting precedence relations
in the schedulabil-ity analysis of distributed real-time systems. In Proc.
of the 20th Real-Time Systems Symposium, December 1999.



[20] O. Redell and M. Törngren. Calculating exact worst case response times
for static priority scheduled tasks with offsets and jitter. In Proc. Eighth
IEEE Real-Time and Embedded Tech-nology and Applications Sympo-
sium. IEEE, September 2002.





Chapter 9

Paper E:
Towards a Dependable
Component Technology for
Embedded System
Applications

Mikael Åkerholm, Anders Möller, Hans Hansson, and Mikael Nolin
In Tenth IEEE International Workshop on Object-oriented Real-time Depend-
able Systems (WORDS2005), Sedona, Arizona, february, 2005

123



Abstract

Component-Based Software Engineering is a technique that has proven effec-
tive to increase reusability and efficiency in development of office and web
applications. Though being promising also for development of embedded and
dependable systems, the true potential in this domain has not yet been realized.

In this paper we present a prototype component technology, developed with
safety-critical automotive applications in mind. The technology is illustrated
by a case-study, which is also used as the basis for an evaluation and a discus-
sion of the appropriateness and applicability in the considered domain. Our
study provides initial positive evidence of the suitability of our technology, but
does also show that it needs to be extended to be fully applicable in an indus-
trial context.



9.1 Introduction 125

9.1 Introduction

Software is central to enable functionality in modern electronic products, but
it is also the source of a number of quality problems and constitutes a major
part of the development cost. This is further accentuated by the increasing
complexity and integration of products. Improving quality and predictabil-
ity of Embedded Computer Systems (ECS) are prerequisites to increase, or
even maintain, profitability. Similarly, there is a call for predictability in the
ECS engineering processes; keeping quality under control, while at the same
time meeting stringent cost and time-to-market constraints. This calls for new
systematic engineering approaches to design, develop, and maintain ECS soft-
ware. Component-Based Software Engineering (CBSE) is such a technique,
currently used in office applications, but with a still unproven potential for em-
bedded dependable software systems. In CBSE, software is structured into
components and systems are constructed by composing and connecting these
components. CBSE can be seen as an extension of the object-oriented ap-
proach, where components may have additional interfaces compared to tradi-
tional method invocation of objects. Similarly to objects, simpler components
can be aggregated to produce more complex components.

In this paper, we present the ongoing work of devising a component tech-
nology for distributed, embedded, safety critical, dependable, resource con-
strained real-time systems. Systems with these characteristics are common in
most modern vehicles and in the robotics and automation industries. Hence, we
cooperate with leading product companies (e.g. ABB, Bombardier and Volvo)
and some of their suppliers (e.g. CC Systems) in order to establish this novel
component technology.

Support for dependability can be added at many different abstraction levels
(e.g. the source code and the operating system levels). At each level, differ-
ent methods and techniques can be used to increase the dependability of the
system. Our hypothesis is that dependability, together with other key charac-
teristics, such as resource efficiency and predictability, should be introduced
early in the software process and supported through all stages of the process.
Our view is that dependability, and similar cross-cutting characteristics, cannot
be achieved by addressing only one abstraction level or one phase in the soft-
ware life-cycle. Further, we argue that dependability of systems is enhanced by
systematic application of code synthesis. For code synthesis, models of com-
ponent behaviour and their resource requirements together with application re-
quirements and models of the underlying hardware and operating system are
used. The models and requirements are used by resource and timing analysis



126 Paper E

algorithms to ensure that a feasible system is generated.
In this paper, we present the current implementation of our component

technology (Section 9.3), together with an example application that illustrates
its use (Section 9.4). Based on experiences with the example application, we
provide an evaluation of the technology (Section 9.5).

9.2 CBSE for Embedded Systems

Research in the CBSE community is targeting theories, processes, technolo-
gies, and tools, supporting and enhancing a component-based design strategy
for software. A component-based approach for software development distin-
guishes component development from system development. Component devel-
opment is the process of creating components that can be used and reused in
many applications. System development with components is concerned with
assembling components into applications that meet the system requirements.
The central technical concepts of CBSE in an embedded setting are:

Software components that have well specified interfaces, and are easy to un-
derstand, adapt and deliver. Especially for embedded systems, the com-
ponents must have well specified resource requirements, as well as spec-
ification of other, for the application relevant properties, e.g., timing,
memory consumptions, reliability, safety, and dependability.

Component models that define different component types, their possible in-
teraction schemes, and clarify how different resources are bound to com-
ponents. For embedded systems the component models should impose
design restrictions so that systems built from components are predictable
with respect to important properties in the intended domain.

Component frameworks i.e., run-time systems that supports the components
execution by handling component interactions and invocation of the dif-
ferent services provided by the components. For embedded systems, the
component framework typically must be light weighted, and use pre-
dictable mechanisms. To enhance predictability, it is desirable to move
as much as possible of the traditional framework functionality from the
run-time system to the pre-run-time compile stages.

Component technologies i.e., concrete implementations of component mod-
els and frameworks that can be used for building component-based appli-
cations. Two of the most well known component technologies are Mi-



9.3 Our Component Technology 127

crosoft’s Components Object Model (COM)1 for desktop applications,
and Sun’s Enterprise Java Beans (EJB)2 for distributed enterprise appli-
cations.

Efficient development of applications is supported by the component-based
strategy, which addresses the whole software life-cycle. CBSE can shorten the
development-time by supporting component reuse, and by simplifying parallel
development of components. Maintenance is also supported since the compo-
nent assembly is a model of the application, which is by definition consistent
with the actual system. During maintenance, adding new, and upgrading ex-
isting components are the most common activities. When using a component-
based approach, this is supported by extendable interfaces of the components.
Also testing and debugging is enhanced by CBSE, since components are easily
subjected to unit testing and their interfaces can be monitored to ensure correct
behaviour.

CBSE has been successfully applied in development of desktop and enter-
prise business applications, but for the domain of embedded systems CBSE has
not been widely adopted. One reason is the inability of the existing commer-
cial technologies to support the requirements of the embedded applications.
Component technologies supporting different types of embedded systems have
recently been developed, e.g., from industry [1, 2], and from academia [3], [4].
However, as Crnkovic points out in [5], there are much more issues to solve
before a CBSE discipline for embedded systems can be established, e.g., ba-
sic issues such as light-weighted component frameworks and identification of
which system properties that can be predicted by component properties.

Based on risks and requirements for applying CBSE for our class of appli-
cations, we have collected a check-list with evaluation points that we have used
to evaluate our component technology in an industrial environment. In Section
5 we provide a summary of the evaluation, for more details we refer to [6].

9.3 Our Component Technology

Our component technology implements the SaveComp Component Model [7]
and provides compile-time mappings to a set of operating systems, follow-
ing the technique described in [8]. The component technology is intended to
provide three main benefits for developers of embedded systems: efficient de-
velopment, predictable behaviour, and run-time efficiency.

1Microsoft Corporation, The Component Object Model, http://www.microsoft.com
2Sun Microsystems, Enterprise JavaBeans Specification, http://www.sun.com



128 Paper E

 

Task 
Allocation

Win 32

APPLICATION

SaveCCM

XML - representation

Design-
Time

Compile-
Time

Run-
Time

<<SaveComp>>

PC

<<SaveComp>>

Compose

<<Assembly>>

P

Set Actual
Control

Attribute
Assignment

Code Generation 
& Analysis

C-compiler

RTXC

APPLICATION

Simulation Target

Figure 9.1: An overview of our current component technology

Efficient development is provided by the SaveComp Component ModelŠs
efficient mechanisms for developing embedded control systems. This compo-
nent model is restricted in expressiveness (to support predictability and depend-
ability) but the expressive power has been focused to the needs of embedded
control designers.

Predictable behaviour is essential for dependable systems. In our tech-
nology, predictability is achieved by systematic use of simple, predictable,
and analysable run-time mechanisms; combined with a restrictive component
model with limited flexibility.

Run-time efficiency is important in embedded systems, since these systems
usually are produced in high volumes using inexpensive hardware. We employ
compile-time mappings of the component-based application to the used oper-
ating systems, which eliminates the need for a run-time component framework.
As shown in Figure 9.1, three different phases can be identified, where different



9.3 Our Component Technology 129

pieces of the component technology are used:

Design-time SaveCCM is used during design-time for describing the applica-
tion.

Compile-time during compile-time the high-level model of the application is
transformed into entities of the run-time model, e.g., tasks, system calls,
task attributes, and real-time constrains.

Run-time during run-time the application uses the execution model from an
underlying operating system. Currently our component technology sup-
ports the RTXC operating system3 and the Microsoft Win32 environ-
ment4. The Win32 environment is intended for functional test and debug
activities (using CCSimTech [15]), but it does not support real-time tests.

9.3.1 Design-Time - The Component Model

SaveCCM is a component model intended for development of software for ve-
hicular systems. The model is restrictive compared to commercial component
models, e.g., COM and EJB. SaveCCM provides three main mechanisms for
designing applications:

Components which are encapsulated units of behaviour.

Component interconnections which may contain data, triggering for invoca-
tion of components, or a combination of both data and triggering.

Switches which allow static and dynamic reconfiguration of component inter-
connections.

These mechanisms have been designed to allow common functionality in em-
bedded control systems to be implemented. Specific examples of key function-
ality supported are:

• Support for implementation of feedback control, with a possibility to
separate calculation of a control signal, from the update of the controller
state. Something which is common in control applications to minimise
latency between sampling and control.

3Quadros Systems Inc, RTXC Kernel User’s Guide, http://www.quadros.com
4MSDN, Win32 Application Programmer’s Interface, http://msdn.microsoft.com/



130 Paper E

• Support for system mode changes, something which is common in, e.g.,
vehicular systems.

• Support for static configuration of components to suit a specific product
in a product line.

Architectural Elements

The main architectural elements in SaveCCM are components, switches, and
assemblies. The interface of an architectural element is defined by a set of
associated ports, which are points of interaction between the element and its
external environment. We distinguish between input- and output ports, and
there are two complementary aspects of ports: the data that can be transferred
via the port, and the triggering of component executions. SaveCCM distinguish
between these two aspects, and allow three types of ports:

• Data ports are one element buffers that can be read and written. Each
write operation to the port will overwrite the previous value stored.

• Triggering ports are used for controlling the activation of elements. An
element may have several triggering ports. The component is triggered
when all input triggering ports are activated. Several output triggering
ports may be connected to a single input triggering port, providing OR-
semantics.

• Combined ports (data and triggering), combine data and triggering ports,
semantically the data is written before the trigger is activated.

An architectural element emits trigger signals and data at its output ports,
and receives trigger signals and data at its input ports. Systems are built from
the architectural elements by connecting input ports to output ports. Ports can
only be connected if their types match, i.e. identical data types are transferred
and the triggering coincides.

The basis of the execution model is a control-flow (pipes-and-filters) para-
digm [9]. On a high level, an element is either waiting to be activated (trig-
gered) or executing. In the first phase of its execution an element read all its
inputs, secondly it performs all computations, and finally it generates outputs.

Components

Components are the basic units of encapsulated behaviour. Components are
defined by an entry function, input and output ports, and, optionally, quality



9.3 Our Component Technology 131

attributes. The entry function defines the behaviour of the component during
execution. Quality attributes are used to describe particular characteristics of
components (e.g. worst-case execution-time and reliability). A component is
not allowed to have any dependencies to other components, or other external
software (e.g. the operating system), except the visible dependencies through
its input- and output-ports.

Switches

A switch provides means for conditional transfer of data and/or triggering be-
tween components. A switch specifies a set of connection patterns, each defin-
ing a specific way of connecting the input and output ports of the switch. Log-
ical expressions (guards; one for each pattern), based on the data available at
some of the input ports, are used to determine which connection pattern that is
to be used.

Switches can be used for specifying system modes, each mode correspond-
ing to a specific static configuration. By changing the port values at run-time,
a new mode can be activated. By setting a port value to a fixed value at design
time, the compiler can remove unused functionality.

Assemblies

Component assemblies allow composite behaviours to be defined, and make it
possible to form aggregate components from groups of components, switches,
and assemblies. In SaveCCM, assemblies are encapsulation of components and
switches, having an external functional interface (just as SaveCCM-components).

SaveCCM Syntax

The graphical syntax of SaveCCM is shown in 9.2, the syntax is derived from
symbols in UML 2.05, with additions to distinguish between the different types
of ports. The textual syntax is XML6 based, and the syntax definition is avail-
able in [6].

5Object Management Group, UML 2.0 Superstructure Specification, http://www.omg.com/-
uml/

6World Wide Web Consortium (W3C), XML, http://www.w3.org/XML/



132 Paper E

 Symbol Interpretation
Input port - with triggering only

Input port - with data only

Input port – combined with data and triggering

Output port - with triggering

Output port - with data

Output port - combined with data and triggering

Component - A component with the stereotype 
changed to SaveComp corresponds to a SaveCCM
component

Switch - components with the stereotype switch, 
corresponds to switches in SaveCCM

Assembly - components with the stereotype 
Assembly, corresponds to assemblies in SaveCCM

Delegation - A delegation is a direct connection from 
an input to –input or output to –output port, used
within assemblies 

<<Assembly>>

<name>

<<Switch>>

<name>

<<SaveComp>>

<name>

Symbol Interpretation
Input port - with triggering only

Input port - with data only

Input port – combined with data and triggering

Output port - with triggering

Output port - with data

Output port - combined with data and triggering

Component - A component with the stereotype 
changed to SaveComp corresponds to a SaveCCM
component

Switch - components with the stereotype switch, 
corresponds to switches in SaveCCM

Assembly - components with the stereotype 
Assembly, corresponds to assemblies in SaveCCM

Delegation - A delegation is a direct connection from 
an input to –input or output to –output port, used
within assemblies 

Symbol Interpretation
Input port - with triggering only

Input port - with data only

Input port – combined with data and triggering

Output port - with triggering

Output port - with data

Output port - combined with data and triggering

Component - A component with the stereotype 
changed to SaveComp corresponds to a SaveCCM
component

Switch - components with the stereotype switch, 
corresponds to switches in SaveCCM

Assembly - components with the stereotype 
Assembly, corresponds to assemblies in SaveCCM

Delegation - A delegation is a direct connection from 
an input to –input or output to –output port, used
within assemblies 

<<Assembly>>

<name>

<<Switch>>

<name>

<<SaveComp>>

<name>

Figure 9.2: Graphical syntax of SaveCCM

9.3.2 Compile-Time Activities

During compile-time, the XML-description of the application is used as in-
put. The XML description contains no dependencies to the underlying system
software or hardware, all code that is dependent on the execution platform is
automatically generated during the compile-step. In the compiler, the modules
(see Figure 9.1) that are independent of the underlying execution platform are
separated from modules that are platform dependent. When changing platform,
it is possible to replace only the platform dependent modules of the compiler.

The four modules of the compiler (task allocation, attribute assignment,
analysis, and code generation) represent different activities during compile-
time, as explained below.



9.3 Our Component Technology 133

Task Allocation

During the task-allocation step, components are assigned to operating-system
tasks. This part of the compile-time activities is independent of the execution
platform, and the algorithm used for allocation of components to tasks strives to
reduce the number of tasks. This is done by allocating components to the same
task whenever possible, i.e. (i) when the components execute with the same
period-time, or are triggered by the same event, and, (ii) when all precedence
relations between interacting components are preserved. A description of the
algorithm is available in [6].

Attribute Assignment

Attribute assignment is dependent on the task-attributes of the underlying plat-
form, and possibly additional attributes depending on the analysis goals. In the
current implementation for the RTXC RTOS and Win32, the task attributes are:

Period time (T) during code generation for specifying the period time for
tasks.

Priority (P) used by the underlying operating system for selecting the task to
execute among pending tasks.

Worst-case execution-time (WCET) used during analysis.

Deadline (D) used during analysis.

The period time, deadline, and WCET are directly derived from the compo-
nents included in each task. Priority is assigned in deadline monotonic order,
i.e., shorter deadline gives higher priority.

Analysis

The analysis step is optional, and is in many cases dependent on the underlying
platform, e.g., for schedulability analysis it is fundamental to have knowledge
of the scheduling algorithm of the used OS. But analysis is also dependent on
the assigned attributes (e.g., for schedulability analysis, WCET of the different
tasks are needed).

Examples of analysis include schedulability analysis [10], memory con-
sumption analysis [11], and reliability analysis [12].

Attributes that are usage and environment dependent cannot be analysed
in this automated step, since it only relies on information from the component



134 Paper E

model. There are no usage profiles or physical environment descriptions in-
cluded in the component model. Additional information is needed to allow
such analysis, e.g., safety analysis [13]. Safety is an important attribute of
vehicular systems, and we plan to integrate safety aspects in future extensions.

In the current prototype implementation, schedulability analysis according
to FPS theory is performed [14].

Code Generation

The code generation module of the compile-time activities generates all source
code that is dependent on the underlying operating system. The code genera-
tion module is dependent on the Application Programming Interface (API) of
the component run-time framework. In the prototype implementation for the
RTXC operating system (see Figure 9.3 right) and the Win32 operating system
(see Figure 9.3 left), the code generation does not target any of the APIs di-
rectly. Instead, the automatic code generation generates source code for target
independent APIs: the SaveOS and SaveIO APIs. The APIs are later translated
using C-style defines to the desired target operating system.

9.3.3 The Run-Time System

The run-time system consists of the application software and a component run-
time framework. The application software is automatically generated from the
XML-description using the SaveCCM Compiler. On the top-level, the run-time
framework has a transparent API, which always has the same interface towards
the application, but does only contain the run-time components needed (e.g.
the SaveCCM API does not include a CAN interface, a CAN protocol stack or
a device driver, if the application does not use CAN).

Pre-compilation settings are used to change the SaveCCM API behaviour
depending on the target environment. If the application is to be simulated in
a PC environment using CCSimTech [15], the SaveCCM API directs all calls
to the SaveOS to the RTOS simulator in the Windows environment. If the
system is to be executed on the target hardware using a RTOS (e.g. RTXC) the
SaveCCM API directs all system calls to the RTOS.

The framework also contains a variable set of run-time framework com-
ponents (e.g. CAN, IO, and Memory) used to support the application during
execution. These components are hardware platform independent, but might,
to some degree, be RTOS dependent. To obtain hardware independency, a



9.4 Application Example 135

hardware abstraction layer (HAL) is used. All communication between the
component run-time framework and the hardware passes through the HAL.

 

SaveCCM Application Programmer’s Interface

SaveCCM Application

MS Windows

SaveIO

PC

SaveMemory SaveCAN

CCSimTech

SaveCCM simulated run-time
component framework

SaveCCM Application Programmer’s Interface

SaveCCM Application

SaveCAN

SaveCCM Hardware Abstraction Layer

SaveIO

SaveRTOS

HW Platform

SaveMemory

Device Drivers

SaveC
comp

S
im

ulation F
ram

ew
ork

T
arget  F

ram
ew

ork

SaveCCM Application Programmer’s Interface

SaveCCM Application

MS Windows

SaveIO

PC

SaveMemory SaveCAN

CCSimTech

SaveCCM simulated run-time
component framework

SaveCCM Application Programmer’s Interface

SaveCCM Application

SaveCAN

SaveCCM Hardware Abstraction Layer

SaveIO

SaveRTOS

HW Platform

SaveMemory

Device Drivers

SaveC
comp

S
im

ulation F
ram

ew
ork

T
arget  F

ram
ew

ork

Figure 9.3: System architecture for simulation and target

The layered component run-time framework is designed to enhance porta-
bility, which is a strong industrial requirement [16].This approach also en-
hances the ability to upgrade or update the hardware and change or upgrade
the operating system. The requirements on product service and the short life-
cycles of todayŠs CPUs also make portability very important.

9.4 Application Example

To evaluate SaveCCM and the compile-time and run-time parts of the compo-
nent technology, a typical vehicular application was implemented. The appli-
cation used for evaluation is an Adaptive Cruise Controller (ACC) for a vehi-
cle. When designing the application, much focus was put on using all different
possibilities in the component model (components, switches, assemblies, etc.)
with the purpose to verify the usefulness of these constructs, the compile-time
activities, and the automatically generated source code. In the remaining part
of this section, the basics of an ACC system is introduced, and the resulting
design using SaveCCM is presented.

9.4.1 Introduction to ACC functionality

An ACC is an extension to a regular Cruise Controller (CC). The purpose of
an ACC system is to help the driver keep a desired speed (traditional CC),
and to help the driver to keep a safe distance to a preceding vehicle (ACC
extension). The ACC autonomously adapt the distance depending on the speed



136 Paper E

of the vehicle in front. The gap between two vehicles has to be large enough to
avoid rear-end collisions.

To increase the complexity of a basic ACC system, and thereby exercise
the component model more, our ACC system has two non-standard functional
extensions. One extension is the possibility for autonomous changes of the
maximum speed of the vehicle depending on the speed-limit regulations. This
feature would require actual speed-limit regulations to be known to the ACC
system by, e.g., by using transmitters on the road signs or road map infor-
mation in cooperation with a Global Positioning System (GPS). The second
extension is a brake-assist function, helping the driver with the braking proce-
dure in extreme situations, e.g., when the vehicle in front suddenly brakes or if
an obstacle suddenly appears on the road.

9.4.2 Implementation using SaveCCM

On the top-level, we distinguish between three different sources of input to
the ACC application: (i) the Human Machine Interface (HMI) (e.g. desired
speed and on/off status of the ACC system), (ii) the vehicular internal sensors
(e.g. actual speed and throttle level), and, (iii) the vehicular external sensors
(e.g. distance to the vehicle in front). The different outputs can be divided in
two categories, the HMI outputs (returning driver information about the system
state), and the vehicular actuators for controlling the speed of the vehicle.

The application has two different trigger frequencies, 10 Hz and 50 Hz.
Logging and HMI outputs activities execute with the lower rate, and control
related functionality at the higher rate.

Furthermore, there is a number of operational system modes identified, in
which different components are active. The different modes are: Off, ACC En-
abled and Brake Assist. Off is the initial system mode. In the Off mode, none
of the control related functionality is activated, but system-logging, function-
ality related to determining distance to vehicles in front, and speed measuring
are active. During the ACC enabled mode the control related functionality is
active. The controllers control the speed of the vehicle based on the parame-
ters: desired speed, distance to vehicles in front, and speed-regulations. In the
Brake Assist mode braking support for extreme situations is enabled.

The ACC system is implemented as an assembly (ACC Application in left
part of Figure 9.4) built-up from four basic components, one switch, and one
sub-assembly. The sub-assembly (ACC Controller) is in turn implemented as
shown in Figure 9.4, right.



9.4 Application Example 137

 

<<Assembly>>
ACC Controllers

<<Assembly>>
Distance

Controller

<<Assembly>>
Speed

Controller

Distance

Control

Relative
Speed

Max
Speed

<<Assembly>>
Distance

Controller

<<SaveComp>>

Calc Output

<<SaveComp>>

Update State

<<Assembly>>
Speed 

Controller

<<SaveComp>>

Calc Output

<<SaveComp>>

Update State

Distance
Relative
Speed

Max
Speed

Current
Speed

Current
Speed

Control

Road Signs Enabled

Current Speed

Road Sign Speed
ACC Max Speed

Distance

ACC Enabled

Brake Pedal Used

<<Assembly>>
50 Hz

10 Hz

Brake Signal

Throttle

Brake Assist

<<SaveComp>>

Logger 
HMI Outputs

<<SaveComp>>

Object 
Recognition

<<SaveComp>>

Mode Switch

<<Switch>>

ACC
Controller

<<Assembly>>

Brake Assist

ACC

Max Speed

ACC Application
Speed Limit

<<SaveComp>>

Figure 9.4: ACC Application implementation

The ACC Application Assembly

The Speed Limit component calculates the maximum speed, based on input
from the vehicle sensors (i.e. current vehicle speed) and the maximum speed
of the vehicle depending on the speed-limit regulations. The component runs
with 50 Hz and is used to trig the Object Recognition component.

The Object Recognition component is used to decide whether or not there
is a car or another obstacle in front of the vehicle, and, in case there is, it
calculates the relative speed to this car or obstacle. The component is also used
to trigger Mode Switch and to provide Mode Switch with information indicating
if there is a need to use the brake assist functionality or not.

Mode Switch is used to trigger the execution of the ACC Controller assem-
bly and the Brake Assist component, based on the current system mode (ACC
Enabled, Brake Pedal Used) and information from Object Recognition.

The Brake Assist component is used to assist the driver, by slamming on
the brakes, if there is an obstacle in front of the vehicle that might cause a
collision.

The Logger HMI Outputs component is used to communicate the ACC
status to the driver via the HMI, and to log the internal settings of the ACC. The
log-memory can be used for aftermarket purposes (black-box functionality),
e.g., checking the vehicle-speed before a collision.

The ACC Controller assembly is built up of two cascaded controllers (see



138 Paper E

Figure 9.4, right), managing the throttle lever of the vehicle. This assembly
has two sub-level assemblies, the Distance Controller assembly and the Speed
Controller assembly.

The reason for using a control feedback solution between the two con-
trollers is that since the calculation is very time critical, it is important to de-
liver the response (throttle lever level) as fast as possible. Hence, the controllers
firstly calculate their output values and after these values have been sent to the
actuators, the internal state is updated (detailed presentation can be found in
[6].

9.4.3 Application Test-Bed Environment

For the evaluation the RTXC operating system was used together with a Cross
FIRE ECU7. RTXC is a pre-emptive multitasking operating system which per-
mits a system to make efficient use of both time and system resources. RTXC
is packaged as a set of C language source code files that needs to be compiled
and linked with the object files of the application program.

The Cross FIRE is a C167-based8 IO-distributing ECU (Electronic Control
Unit) designed for CAN-based real-time systems. The ECU is developed and
produced by CC Systems, and intended for use on mobile applications in rough
environments.

During functional testing and debugging, CC Systems use a simulation en-
vironment called CCSimTech [15], which also was incorporated in this work.
Developing and testing of distributed embedded systems is very challenging
in their target environments, due to poor observability of application state and
internal behaviour. With CCSimTech, a complete system with several nodes
and different types of interconnection media, can be developed and tested on
a single PC without access to target hardware. This makes it possible to use
standard PC tools, e.g., for debugging, automated testing, fault injection, etc.

9.5 Evaluation and Discussion

CBSE addresses the whole life-cycle of software products. Thus, to fully eval-
uate the suitability of a component technology requires experiences from using
the technology in real projects (or at least in a pilot/evaluation project), by rep-

7CC Systems, Cross FIRE Electronic Control Unit, http://www.cc-systems.com
8Infineon, C-167 processor, http://www.infineon.com



9.5 Evaluation and Discussion 139

resentatives from the intended organisation, using existing tools, processes and
techniques.

Our experiment was conducted using CC Systems’ tools and techniques,
however we have not used the company’s development processes. Hence, we
can only give partial answers (indications) concerning the suitability our com-
ponent technology.

We divide our evaluation in the following three categories:

Structural properties concerning the suitability of the imposed application
structure and architecture, and the ease to define and create the desired
behaviour using the supported design patterns.

Behavioural properties concerning the application performance, in terms of
functional and non-functional behaviour.

Process properties concerning the ease and possibility to integrate the tech-
nology with existing processes in the organisation.

The adaptive cruise controller application represents an advanced domain
specific function, which could have been ordered as a pilot study at the com-
pany. The hardware, operating system, compilers, and the simulation tech-
nique, have been selected among the companies repertoire, and are thus highly
realistic.

The implementation of the application has not been done according to the
process at the company, rather as an experiment by the authors. Thus, it is
mainly the structural-, and behavioural related evaluation that can be addressed
by our experience. However, to evaluate the process related issues, senior pro-
cess managers at the company have helped to relate the component technology
to the processes.

The evaluation is conducted using a check-list assembled from require-
ments for automotive component technologies by Möller et al. [16], risks with
using CBSE for embedded systems by Larn and Vickers [17], and from identi-
fied needs, by Crnkovic [5].

9.5.1 Structural Properties

Based on the experiment performed we conclude that the component model is
sufficiently expressive for the studied application, and that it allows the soft-
ware developer to focus on the core functionality when designing applications.
The similarities with UML 2.0 provided important benefits by allowing us to
use a slightly modified UML 2.0 editor for modelling applications. Also, issues



140 Paper E

related to task mapping, scheduling, and memory allocation are taken care of
by the compilations provided by the component technology. Further allowing
the developer to concentrate on application functionality.

Since the components have visible source code, and since all bindings be-
tween components are automatically generated, making modifications of com-
ponents is facilitated, though there is not yet any specific support to handle
maintenance implemented in the component technology.

It is straight forward to compile the ACC system for both Win32 on a reg-
ular PC and RTXC on a Cross FIRE ECU. This is an indication of the portabil-
ity of our technology across hardware platforms and operating systems. As a
consequence, components can be reused in different applications regardless of
which RTOS or hardware is used.

Configurability is essential for component reuse, e.g., within a Product Line
Architecture (PLA) [18]. In SaveCCM, components can be configured by static
binding of values to ports. However, there is currently no explicit architec-
tural element to specify this. In our experiment, we could however achieve the
same effect by directly editing the textual representation. For instance, a switch
condition can be set statically during design-time, and partially evaluated dur-
ing compile-time, to represent a configuration in a PLA. A future extension
of SaveCCM is to add a new architectural element that makes it possible to
visualise and directly express static configurations of input ports. This will
additionally facilitate version and variant management.

9.5.2 Behavioural Properties

With respect to behavioural properties, our component technology is quite ef-
ficient. The run-time framework provides a mapping to the used OS without
adding functionality, and the compile-time mechanisms strive to achieve an ef-
ficient application, by allocating several components to the same task. Some
data about our case-study:

• The compilation resulted in four tasks: one task including components
speed-limit, object recognition, and mode-switch; one task including log-
ger HMI outputs; one task including brake assist; and one task including
the four components in the ACC controller.

• The CPU utilisation in the different application modes are 7, 12, 15,
perecents respectively for the off, brake assist, and ACC modes respec-
tively.



9.6 Conclusions and Future Work 141

• The total application size is 114 kb, of which 104 kb belongs to the oper-
ating system, and 10 kb to the application. The application part consists
of 2 kb of components code, together with 8 kb run-time framework and
compiler generated operating system dependent data and code.

To allow analysis it is essential to derive task level quality attributes from
the corresponding component level attributes. In our case-study this was straight-
forward, since the only quality attribute considered is worst-case execution
time, which can be straightforwardly composed by addition of the values asso-
ciated to the components included in the task.

Furthermore, the CCSimTech simulation technique provided very useful
for verification and debugging of the application functionality.

9.5.3 Process Related

The process related evaluation concerns the suitability to use the existing pro-
cesses and organisation, when developing component-based applications. So
process related issues are not directly addressable by our experiment, based on
a set of interviews company engineers have expressed the following:

• The RTOS and platform independence is a major advantage of the ap-
proach.

• The integration with the simulation technique, CCSimTech, used in prac-
tically all development projects at CC Systems, will substantially facili-
tate the integration of SaveCCM in the development process.

• The tools included in the component technology, as well as the user-
documentation, have not reached an acceptable level of quality for use
in real industry projects.

• The maintainability aspects of CBD are attractive, since changes are sim-
plified by the tight relation between the applications description and the
source code.

9.6 Conclusions and Future Work

We have described the initial implementation of our component technology for
vehicular systems, and evaluated it in an industrial environment, using require-
ments and needs identified in related research.



142 Paper E

The evaluation shows that the existing parts of the component technology
meet the requirements and needs related to them. However, to meet overall
requirements and needs, extensions to the technology are needed.

Plans for future work include extending the component technology with
support for multiple nodes, integration of legacy-code with the components
[19], run-time monitoring support [20], and a real-time database for structured
handling of shared data [21]. Implementation of more types of automated anal-
ysis to prove the concept of determining system attributes from component
attributes is also a target for future work. However, there is also a need for
methods to determine component attributes. Furthermore, to make the pro-
totype useful in practice, there are needs for integrating our technology with
supporting tools, e.g., automatic generation of XML descriptions from UML
2.0 drawings, and connectivity with configuration management tools.

An indication of the potential of our component technology, and CBSE for
embedded systems development in general, is that the company involved in
the case-study finds our technology promising and has expressed interest to
continue the cooperation.

Acknowledgements
We would like to thank CC Systems for inviting and helping us to realise this

pilot project. Special thanks to Jörgen Hansson and Ken Lindfors for invitation
and to Johan Strandberg and Fredrik Löwenhielm for their support with all
kinds of technical issues. We would also like to thank Sasikumar Punnekkat
for valuable feedback on early versions of this article.



Bibliography

[1] K.L. Lundbäck and J. Lundbäck and M. Lindberg. Component-Based
Development of Dependable Real-Time Applications. Arcticus Systems:
http://www.arcticus.se (Last Accessed: 2005-01-18).

[2] R. van Ommering et al. The Koala Component Model for Consumer
Electronics Software. IEEE Computer, 33(3):78–85, March 2000.

[3] M. de Jonge, J. Muskens, and M. Chaudron. Scenario-Based Prediction of
Run-Time Resource Consupmption in Component-Based Software Sys-
tems. In Proceedings of the 6th International Workshop on Component-
Based Software Engineering, May 2003.

[4] K. C. Wallnau. Volume III: A Component Technology for Predictable
Assembly from Certifiable Components. Technical report, Software En-
gineering Institute, Carnegie Mellon University, April 2003.

[5] I. Crnkovic. Componet-Based Approach for Embedded Systems. In
Proceedings of 9th International Workshop on Component-Oriented Pro-
gramming, June 2004.

[6] M. Åkerholm, A. Möller, H. Hansson, and M. Nolin. SaveComp - a
Dependable Component Technology for Embedded Systems Software.
Technical report, MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-
165/2004-1-SE, MRTC, Mälardalen University, December 2004.

[7] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren. SaveCCM -
a Component Model for Safety-Critical Real-Time Systems. In Proceed-
ings of 30th Euromicro Conference, Special Session Component Models
for Dependable Systems, September 2004.

143



144 Bibliography

[8] K. Sandström, J. Fredriksson, and M. Åkerholm. Introducing a Com-
ponent Technology for Safety Critical Embedded Real-Time Systems.
In Proceedings of th 7th International Symposium on Component-Based
Software Engineering (CBSE7), May 2004.

[9] M. Shaw and D. Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall; 1 edition, 1996. ISBN 0-131-82957-
2.

[10] G.C. Butazzo. Hard Real-Time. Kluwer Academic Publishers, 1997.
ISBN: 0-7923-9994-3.

[11] A.V. Fioukov, E.M. Eskenazi, D.K. Hammer, and M. Chaudron. Evalua-
tion of Static Properties for Component-Based Architetures. In Proceed-
ings of 28th Euromicro Conference, September 2002.

[12] H.W. Schmidt and R.H. Reussner. Parameterized Contracts and Adapter
Synthesis. In Proceedings of the 5th ICSE Workshop on Component-
Based Software Engineering, May 2001.

[13] D.H. Stamatis. Failure Mode and Effect Analysis: FMEA from Theory to
Execution. ASQ Quality Press, 2nd Edition, 2003. ISBN 0-87389598-3.

[14] M.G. Harbour, M.H. Klein, and J.P. Lehoczky. Timing analysis for Fixed-
Priority Scheduling of Hard Real-Time Systsems. IEEE Transactions,
20(1), January 1994.

[15] A. Möller and P. Åberg. A Simulation Technology for CAN-based Sys-
tems. CAN Newsletter, 4, December 2004.

[16] A. Möller, J. Fröberg, and M. Nolin. Industrial Requirements on Com-
ponent Technologies for Embedded Systems. In Proceedings of the 7th
International Symposium on Component-Based Software Engineering.
2004 Proceedings Series: Lecture Notes in Computer Science, Vol. 3054,
May 2004.

[17] W. Lam and A.J. Vickers. Managing the Risks of Component-Based Soft-
ware Engineering. In Proceedings of the 5th International Symposium on
Assessment of Software Tools, June 1997.

[18] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001. ISBN 0-201-70332-7.



[19] M. Åkerholm, K. Sandström, and J. Fredriksson. Interference Con-
trol for Integration of Vehicular Software Components. Technical re-
port, MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-162/2004-1-
SE, MRTC, Mälardalen University, May 2004.

[20] D. Sundmark, A. Möller, and M. Nolin. Monitored Software Compo-
nents – A Novel Software Engineering Approach –. In Proceedings of the
11th Asia-Pasific Software Engineering Conference, Workshop on Soft-
ware Architectures and Component Technologies, November 2004.

[21] D. Nyström. COMET: A Component-Based Real-Time Database for Ve-
hicle Control Systems. Technical report, Technology Licentiate Thesis
No.26, ISSN 1651-9256, ISBN 91-88834-41-7, Mälardalen Real-Time
Reseach Centre, Mälardalen University, May 2003.








