
Efficient Event-Triggered Tasks in an RTOS

Kaj Hänninen1,2 , John Lundbäck2, Kurt-Lennart Lundbäck2, Jukka Mäki-Turja1, Mikael Nolin1

1Mälardalen Real-Time Research Centre, Västerås Sweden
2Arcticus-Systems, Järfälla Sweden

Abstract - In this paper, we add predictable and
resource efficient event-triggered tasks in an RTOS.
This is done by introducing an execution model
suitable for example control software and
component-based software. The execution model,
denoted single-shot execution (SSX), can be realized
with very simple and resource efficient run-time
mechanisms and is highly predictable, hence
suitable for use in resource constrained real-time
systems.
In an evaluation, we show that significant memory
reductions can be obtained by using the SSX model.

Keywords: RTOS, execution model, stack usage.

1. Introduction

When designing software for embedded
systems, resource consumption is often a major
concern. Software consumes resources
primarily in two domains: the time domain
(execution time), and the memory domain (e.g.,
RAM and flash memory). For systems without
real-time requirements, the resource
consumption in the time domain may be of less
importance. However, most embedded systems
are either used to control or monitor some
physical process, or used interactively by a
human operator. In both of these cases, it is
often required that the system responds within
fixed time limits. Hence, methods for
development of embedded systems need to
allow design of both memory and time efficient
systems.

Moreover, predictable use of the resources
are required. Predictions of the amount of
resources needed to execute the system are used
to dimension the system resources (e.g.,
selecting CPU and amount of memory).

The current trend in development of
embedded systems is towards using high-level
design tools with a model-based approach.
Models are described in tools like Rational

Rose, Rhapsody, Simulink, etc. From these
models, whole applications or application
templates are generated. However, this system
generation seldom considers resource
consumption. The resulting systems become
overly resource consuming and even worse;
they exhibit unpredictable resource
consumption at run-time.

In this paper, we describe and evaluate the
integration of a resource efficient and
predictable execution model, denoted single
shot execution model (SSX), in a commercial
real-time operating system. The execution
model facilitates stack sharing to reduce
memory consumption and priority scheduling to
allow timing predictions.

The paper is organized as follows. In section
2, we describe the properties of the SSX model
and the prerequisites needed to utilize the
model. In section 3, we describe our target
platform, the Rubus RTOS. In section 4, we
describe the integration of SSX in Rubus and in
section 5, we evaluate the stack usage under the
SSX model in different execution scenarios. In
section 6, we conclude the integration of SSX
in Rubus.

2. The Single Shot Execution

 Model (SSX)

Throughout the years, research in real-time

scheduling and real-time operating systems has
resulted in a vast number of different execution
models, e.g.,[3][4][7][9][12], one of them being
the single shot execution model in which tasks
are considered to terminate at the end of each
invocation, i.e., execute to completion (as
opposed to indefinitely looping tasks).

Baker [3] and Davis et al. [4] shows that the
single shot execution model, with an immediate
priority ceiling protocol, enables possibilities

for efficient resource usage by stack sharing
among several tasks. Stack sharing in the SSX
model is feasible because higher priority tasks
are allowed to pre-empt lower priority tasks and
execute to completion (i.e., terminate) before
lower priority tasks are allowed to resume their
execution. However, the fact that a task must
execute to completion (terminate) before any
lower priority task is allowed to execute, puts
some restrictions on suspensions of tasks in the
SSX model:
• To guarantee correct stack access, self-

scheduling of SSX tasks, i.e., calling timed
sleep or delay functions may not be used in
the application code of SSX tasks.

• Task synchronization should be done using
the Immediate Priority Ceiling Protocol
(IPCP). This ensures that a task will never
be allowed to start executing, before it is
guaranteed to have access to all resources
it needs. Hence, calls for accessing shared
resources, such as semaphores, will never
result in blocking due to locked resources.
Any possible blocking will occur before
the task is allowed to start execute.

However, these design restriction also

facilitate predictability since the administration
of the tasks is left entirely to the operating
system. Moreover, it is known that the
immediate priority ceiling protocol is deadlock
free and exhibits an upper bound on blocking
times for tasks sharing resources. This implies
that an analysis technique such as response-
time analysis [2] enables analysis of temporal
properties of an SSX system.

The SSX model is conceptually very simple,
at run-time a task can be in one of three states:
terminated, ready, or executing. The main
difference, from a developers view, is that a
conventional RTOS often uses so called self-
scheduled tasks. This means that a task is
activated once, typically at system start-up, and
eventually, after some possible initialization
code, ends up in an infinite loop where it self-
schedules itself, e.g., using delay calls.

An SSX task, on the other hand, when
activated by the OS, executes with no delay
calls, and terminates upon completion. This
means that such tasks have to be re-scheduled
by the OS in order to provide a continuous

service. Figure 1 illustrates the structural
difference between a conventional task and an
SSX task.

Figure 1. Looping task (left). Typical SSX task
(right)

In this paper, we present an integration of the
SSX model in the Rubus RTOS. We also
present a quantitative evaluation of stack usage
under different execution scenarios.

3. The Rubus Operating System

Rubus is a real-time operating system

developed by Arcticus Systems [1]. Rubus is
targeted towards systems that typically require
handling of both safety critical functions as well
as less critical functions. The emphasis of
Rubus is placed on satisfying reliability, safety
and temporal verification of applications. It can
be seen as a hybrid operating system in the
sense that it supports both statically and
dynamically scheduled tasks. The key features
of Rubus RTOS are:
• Guaranteed real-time service for safety

critical applications
• Best-effort service for non-safety critical

applications
• Support for time- and even-triggered

execution of tasks
• Support for component based applications

Rubus consist of three separate kernels

(Figure 2). Each kernel supports a specific type
of execution model.

Figure 2. Rubus RTOS architecture

taskEntryFunc(){
 while(1){
 //Task code
 sleep(time)
 }
}

taskEntryFunc(){

 //Task code
}

Rubus OS
Red Kernel
Red Threads

Basic Services

Green Kernel
Interrupts Blue Kernel

Blue Threads

The Red kernel supports time driven
execution of static scheduled ‘Red tasks’,
mainly to be utilized for applications with fixed
hard real-time requirements. The static schedule
is created off-line by the Rubus Configuration
Compiler. Synchronizations of shared resources
are handled by time separation in the static
schedule. All tasks executed under the Red
kernel share a common stack. A Red task is
implemented by a C function, and the task is
completed when the function returns.

The Blue kernel administrates event driven
execution of dynamic scheduled ‘Blue tasks’,
mainly intended for applications having soft
real-time requirements. Task handled by the
Blue kernel are scheduled on-line by a fixed
priority pre-emptive scheduler.
Synchronizations among Blue tasks are
managed by a Priority Ceiling Protocol
(PCP)[11]. As opposed to the Red execution
model, the Blue execution model does not
support stack sharing among Blue tasks. Blue
tasks are commonly used as indefinitely
looping tasks (see Figure 1) periodically
reactivated by system calls, e.g., blueSleep, that
suspends the execution of Blue tasks for a
specified time interval.

The Green kernel handles external interrupts.
The ‘Green tasks’ are scheduled on-line with a
priority based scheduling algorithm dependent
of the application hardware, i.e.,
microprocessor. The Rubus off-line scheduler is
guaranteed to generate a static schedule (see
Red kernel above) with sufficient slack
available to handle interrupts [10]. When a
Green task is executed, it may utilize the stack
of the currently active Red or Blue task,
implying that the active task may need to
supply stack space for interrupt handling.

Dispatch priorities of the tasks executing
under the different kernels are illustrated in
Figure 3. Tasks managed by the Green kernel
have highest priority, and tasks managed by the
Blue kernel have lowest priority.

Figure 3. Task priorities in Rubus

Rubus supports the possibility to utilize
software components for application
development. The computational part of the
supported software components is realized
either by a Green, Red or by a Blue task.

4. Integration of SSX in Rubus

Introducing a new execution model in an

operating system for resource constrained
embedded real-time systems, require careful
design to minimize the overhead of the new
model and effects (temporal and spatial) on
existing models. On one hand, we could
minimize the memory overhead imposed by the
new execution model, by sharing administrative
code in the kernel between the existing
execution models and the new execution model.
In doing so, we would impose additional timing
overhead on the existing models wherever a
kernel needs to be able to separate the different
models, e.g., at sorting, queuing and error
handling etc. On the other hand, we could avoid
imposing timing effects on the existing models
by separating the models, i.e., modularize, and
allow the kernel to administrate the new SSX
model in isolation from the existing execution
models. This approach would increase the
number of administrative functions, thus
requiring more memory.

In this implementation, we choose to share
administrative OS code between the SSX model
and the Blue model since the timing overhead
imposed by the SSX model, on the Blue model,
is very low.

A new execution model may be introduced to
a system by changing the current scheduling
policy or existing task model. In our case, we
retain the same scheduling policy for the SSX
model as for the Blue model (fixed priority
scheduling). However, a new task model is
introduced to support the SSX model. Each task
in Rubus is defined by its: basic attributes, Task
Control Block (TCB), stack/heap memory area
and application code. By adding periodicity and
deadline attributes to the existing task model,
we are able to share all fundamental task
structures between SSX tasks and the existing
Blue tasks. Administration of SSX tasks is
handled entirely by the Blue kernel (Figure 4).

High

Red Tasks

Interrupts

Blue Tasks Low

Figure 4. Rubus RTOS architecture with SSX model

 The resulting relation of task priorities in
Rubus, including SSX, is illustrated in Figure 5.
The priority assignments and the fact that the
administration of SSX tasks are handled
entirely by the Blue kernel, makes the temporal
attributes of tasks using the SSX model fully
analyzable. In systems consisting solely of SSX
tasks, the analysis can be performed with [2].
The SSX tasks can also be analyzed in hybrid
systems consisting of Interrupts, Red tasks and
SSX tasks with [8].

Figure 5. Task priorities in Rubus, including SSX

All tasks executing under the SSX model
share a common stack (in fact, there is nothing
that prevents stack sharing also between Red
and SSX tasks). The common stack pointer, for
SSX tasks, is globally accessible, hence it does
not have to be stored in the TCBs.

To support resource sharing in the SSX
model, the immediate priority ceiling protocol
was implemented.
The following is a summary of all major
changes made in Rubus to support the SSX
execution model:
• Separation of tasks administrated by the

Blue kernel and executed under different
models

• Modification of administrative functions to
support SSX tasks

• Error detection for SSX tasks
• Activation functionality for the SSX tasks

• Introduction of the immediate priority
ceiling protocol

The integration of SSX in Rubus allows the

execution model to be directly applicable for
the Rubus component model. Hence, the
possibility to utilize software component for
applications has been extended to include four
execution models, the Green, the Red, the Blue
and the SSX model.

The shared stack in the SSX model can be
safely dimensioned, as shown below, by
summing the maximum stack usage of all tasks
in each priority level, and adding stack-space
for interrupts. SSX tasks with equal priorities
cannot pre-empt each other in Rubus, hence it
suffice to take the maximum stack usage in
each priority level.

j
Pi Pssx sususu

ij

 maxint ∑
∈∀ ∈∀

+=
τ

sussx, denotes maximum stack usage of all
SSX tasks. suint, denotes interrupt stack usage.
Pi denotes the set of tasks with priority i. P
denotes the set of all priority levels. τi denotes
task i. su(τi) denotes stack usage, including
context switch overhead, of task i.

A more accurate dimensioning approach
would be to examine possible pre-emptions,
and identify the pre-emption(s) resulting in
maximum stack usage. Identification of
possible pre-emptions in a fixed priority based
system is considered in [5].

5. Evaluation of SSX in Rubus

Stack sharing allows for an efficient memory

usage, which may avoid or at least postpone the
need for additional RAM in evolving systems.
To illustrate how a shared stack affects memory
usage, we simulate different execution
scenarios where the total stack usage varies a
lot depending on the execution model in use.

We simulate three different execution
scenarios using two different execution models,
the Blue and the SSX model, for each scenario.
The first scenario is obtained from a flyer
promoting the SSX5 RTOS [9]. The second
scenario models a traditional control
application, where a sequence of tasks is used
to sense, calculate control parameters, and

Rubus OS
Red Kernel
Red Threads

Basic Services

Green Kernel
Interrupts Blue Kernel

Blue + SSX
Threads

High

Low

Red Tasks

Interrupts

SSX Tasks

Blue Tasks

actuate. These tasks are executed in sequence,
hence they do not pre-empt each other. The
third scenario illustrates a system with full pre-
emption depth, i.e., all tasks are pre-empted.
The scenario can be seen as an example where
the benefit of SSX is less, e.g., SSX as interrupt
handling tasks in systems with multiple
interrupt levels.

5.1 Evaluation Method

The evaluations are performed under a Rubus

OS simulator running on a PC. We calculate the
stack usage as the maximum number of data
pushed onto the stack, from the dispatching of a
task until it has finished execution. In doing so,
we are able to include the concealed pushes of
stack frames, i.e., stack usage occurring before
execution of the actual task code, in the
calculations.

All stacks are initially filled with a pre
determined data pattern. We then calculate the
number of overwritten data patterns, i.e., stack
usage, by examining the content of the stacks at
termination of the system. It is assumed that
tasks do not push frames identical to the pre
determined data pattern at run time.

5.2 Application description

In each of the following execution scenarios,

timer interrupts are generated at a frequency of
100Hz. Each timer interrupt activates the Blue
kernel task, responsible for time supervision
and dispatching of the tasks in the system. The
service routine for timer interrupts, having
highest priority in the system, execute on the
stack of an active task. However, in the
following scenarios, the worst-case execution
times of the tasks are very short, resulting in all
tasks finishing their executions before any
consecutive timer interrupt hits the system.

The run time model in each of the following
scenarios is fixed priority, pre-emptive
scheduling. We denote the priority of a task
with π, and its period, or in the case of sporadic
tasks, its minimum interarrival time with T.

Scenario 1
The task set in the following scenario,

obtained from a flyer evaluating the overheads

of SSX5 [9], consists of; seven periodic tasks
with periodicities ranging from 10ms to 80ms,
and three interrupt handling tasks with a
minimum interarrival time of 20ms (see Table
1).

Table 1. Task set, Scenario 1
Task π T (ms) Stack usage (bytes)

SSX / Blue
τKERNEL 15 10 144 / 132
τ1 5 10 72 / 152
τ2 5 10 72 / 152
τ3 4 20 72 / 152
τ4 4 20 72 / 152
τ5 3 40 72 / 152
τ6 2 80 72 / 152
τ7 2 80 72 / 152
τ8 5 ≥20 72 / 72
τ9 5 ≥20 72 / 72
τ10 5 ≥20 72 / 72

Running the system under the SSX model

(with one shared stack for tasks τ1 – τ10), results
in a total stack usage of 316 bytes. With the
Blue kernel stack included, the total stack usage
is 460 bytes.

Yet again, we evaluate scenario 1 but with
the difference that tasks τ1 – τ7 are executed as
Blue tasks (Blue execution model), achieving a
pseudo periodic behavior by a call to a sleep
function. According to the Rubus OS reference
[1], the suspension (sleep) of the tasks requires
two additional local variables, and besides the
sleep call, an additional call to a function that
converts the suspension time into timer ticks,
resulting in increased stack usage (from 72
bytes to approximately 152 bytes) for a Blue
task. This results in a total stack usage of 1480
bytes for tasks τ1 – τ10. With the Blue kernel
stack included, the total stack usage is 1612
bytes. We noticed that the kernel uses 12 bytes
less stack under the Blue model, than under the
SSX model. This is due to Blue tasks
scheduling themselves, instead of being
assigned an activation time by the kernel.

Table 2 shows the resulting stack usage for
scenario 1.

Table 2. Stack usage, Scenario 1
Exec.Model Total stack usage (bytes)

SSX 460
Blue 1612

Savings ≈ 71%

Scenario 2
The following scenario consists of pure

periodic tasks with harmonic period times (see
Table 3). The scenario can be seen as a
simplification of a typical vehicular control
system, e.g., as described in [6].

Table 3. Task set, Scenario 2
Task π T (ms) Stack usage (bytes)

SSX / Blue
τKERNEL 15 10 144 / 132
τ1 5 10 72 / 152
τ2 5 10 72 / 152
τ3 4 20 72 / 152
τ4 4 20 72 / 152
τ5 3 40 72 / 152
τ6 2 80 72 / 152
τ7 2 80 72 / 152

Table 4 shows the resulting stack usage for

scenario 2 under the SSX and Blue execution
models.

Table 4. Stack usage, Scenario 2
Exec.Model Total stack usage (bytes)

SSX 216
Blue 1196

Savings ≈ 82%

Scenario 3
The previous scenario shows an ideal

situation for introducing SSX tasks. However,
in applications where most tasks are
asynchronous and pre-emptions appear
randomly, the gains of SSX tasks is less, Thus,
this scenario is prepared to show that the total
stack usage, in certain situations, is nearly
identical between the SSX and Blue execution
model.

The task set in this scenario consists of one
periodic task τ4 and three event-triggered tasks
τ1 – τ3 (see Table 5). The execution of the task
set is prepared to exhibit full pre-emption depth
meaning that if a task can be pre-empted it will
be so. Each task is assigned a unique priority,
thus enabling pre-emption between each pair of
tasks.

Table 5. Task set, Scenario 3
Task π T (ms) Stack usage (bytes)

SSX / Blue
τKERNEL 15 10 144 / 132
τ1 5 - 72 / 72
τ2 4 - 72 / 72
τ3 3 - 72 / 72
τ4 2 80 72 / 152

Table 6 shows the resulting stack usage for

scenario 3 under the SSX and Blue execution
models.

Table 6. Stack usage, Scenario 3
Exec.Model Total stack usage (bytes)

SSX 612
Blue 708

Savings ≈ 14%

5.3 Results

Simulations have shown that stack memory

usage in Rubus OS varies when comparing
systems executed under the SSX model and
systems executed under the Blue model. The
differences in stack usage are mainly dependent
on the type of application being realized. The
fact that each Blue task is allocated its own
stack makes them less memory efficient in all
scenarios.

In an example system of 7 non-pre-emptable
tasks, the difference in stack memory usage is
as much as 82% less for SSX tasks than for
Blue tasks. Another system derived from a flyer
on SSX5, results in a difference of 71% less
stack usage for the SSX tasks than for the Blue
tasks.

However, less difference in stack usage is
observed in situations of deeply nested pre-
emptions. As the pre-emption depth increases,
the difference in stack usage typically
decreases. This is shown by our simulations of
a system with full pre-emption depth where the
difference in stack usage between the SSX
model and the Blue model, is relatively low.

Hence, the SSX model is specifically suitable
for applications where jobs (or transactions) of
dependent tasks are modeled without pre-
emptions within the jobs e.g., control systems.
On the contrary, the SSX model is less
beneficial for applications experiencing large
pre-emption depths. However, in any type of
application, the SSX model is at least as
resource efficient, with respect to stack usage,
as the Blue model. This makes the SSX model
an attractive choice when developing systems.

6. Conclusion and Future Work

In this paper, we presented the integration of
a resource efficient and predictable single shot
execution model in the Rubus RTOS. The
model allows for efficient stack usage and
predictability of temporal attributes. These facts
make the model attractive for development of
resource constrained real-time systems. The
integration has shown that the model can be
integrated with very simple run-time
mechanisms.

As future work, we are planning to include
support for development and analysis (temporal
and spatial) of SSX in Rubus Visual Studio
(VS), which is an integrated environment for
design, simulation and analyzing of embedded
real-time applications.

7. References

[1] Arcticus Systems AB,

http://www.arcticus.se

[2] N. Audsley, A. Burns, R. Davis, K. Tindell,
A. Wellings, “Fixed Priority Pre-Emptive
Scheduling: An Historical Perspective”,
Real-Time Systems, 8(2/3), 1995

[3] T.P. Baker, “A Stack Based Resource
Allocation Policy for Real-Time
Processes”, In Proceedings of the 11th
IEEE Real-Time Systems Symposium,
1990

[4] R. Davis, N. Merriam, and N. Tracey,
“How Embedded Applications using an
RTOS can stay within On-chip Memory
Limits”, In Proceedings of the WiP and
Industrial Experience Session, Euromicro
Conference on Real-Time Systems, June
2000

[5] R.Dobrin, G.Fohler, “Reducing the number
of preemptions in fixed priority

scheduling”, In Proceedings of the 16th
Euromicro Conference on Real-Time
Systems, July 2004

[6] K. Hänninen, T. Riutta, “Optimal Design”,
Masters thesis, Mälardalens Högskola, Dept
of Computer Science and Engineering,
2003.

[7] C.D. Locke, “Software Architecture for
Hard Real-Time Applications: Cyclic
Executives vs. Fixed Priority Executives”,
Journal of Real-Time Systems, 4, 1992

[8] J. Mäki-Turja, K. Hänninen, M. Sjödin,
“Efficient Development of Real-Time
Systems using Hybrid Scheduling”, In
Proceedings of the International Conference
on Embedded Systems and Applications
(ESA), June 2005

[9] Northern Real-Time Applications, SSX5
true RTOS, 1999,
http://www.ssx5.com/NRTAHome.htm

[10] K. Sandström, C. Eriksson, G. Fohler,
“Handling Interrupts with Static Scheduling
in an Automotive Vehicle Control System”,
In Proceedings of the 5th International
Conference on Real-Time Computing
Systems and Applications, 1998

[11] L. Sha, R. Rajkumar, JP. Lehoczky,
“Priority Inheritance Protocols: An
Approach to Real-Time Synchronization”,
IEEE Transactions on Computers, Volume:
39, Issue 9, September 1990

[12] J. Xu, D.L Parnas, “Priority Scheduling
Versus Pre-Run-Time Scheduling”,
International Journal of Time-Critical
Computing Systems, 18, 2000

