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Abstract - In this paper, we add predictable and 
resource efficient event-triggered tasks in an RTOS. 
This is done by introducing an execution model 
suitable for example control software and 
component-based software. The execution model, 
denoted single-shot execution (SSX), can be realized 
with very simple and resource efficient run-time 
mechanisms and is highly predictable, hence 
suitable for use in resource constrained real-time 
systems. 
In an evaluation, we show that significant memory 
reductions can be obtained by using the SSX model. 
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1. Introduction 
 

When designing software for embedded 
systems, resource consumption is often a major 
concern. Software consumes resources 
primarily in two domains: the time domain 
(execution time), and the memory domain (e.g., 
RAM and flash memory). For systems without 
real-time requirements, the resource 
consumption in the time domain may be of less 
importance. However, most embedded systems 
are either used to control or monitor some 
physical process, or used interactively by a 
human operator. In both of these cases, it is 
often required that the system responds within 
fixed time limits. Hence, methods for 
development of embedded systems need to 
allow design of both memory and time efficient 
systems. 

Moreover, predictable use of the resources 
are required. Predictions of the amount of 
resources needed to execute the system are used 
to dimension the system resources (e.g., 
selecting CPU and amount of memory).  

The current trend in development of 
embedded systems is towards using high-level 
design tools with a model-based approach. 
Models are described in tools like Rational 

Rose, Rhapsody, Simulink, etc. From these 
models, whole applications or application 
templates are generated. However, this system 
generation seldom considers resource 
consumption. The resulting systems become 
overly resource consuming and even worse; 
they exhibit unpredictable resource 
consumption at run-time. 

In this paper, we describe and evaluate the 
integration of a resource efficient and 
predictable execution model, denoted single 
shot execution model (SSX), in a commercial 
real-time operating system. The execution 
model facilitates stack sharing to reduce 
memory consumption and priority scheduling to 
allow timing predictions. 

The paper is organized as follows. In section 
2, we describe the properties of the SSX model 
and the prerequisites needed to utilize the 
model. In section 3, we describe our target 
platform, the Rubus RTOS. In section 4, we 
describe the integration of SSX in Rubus and in 
section 5, we evaluate the stack usage under the 
SSX model in different execution scenarios. In 
section 6, we conclude the integration of SSX 
in Rubus. 

 
2. The Single Shot Execution 

 Model (SSX) 
 
Throughout the years, research in real-time 

scheduling and real-time operating systems has 
resulted in a vast number of different execution 
models, e.g.,[3][4][7][9][12], one of them being 
the single shot execution model in which tasks 
are considered to terminate at the end of each 
invocation, i.e., execute to completion (as 
opposed to indefinitely looping tasks).  

Baker [3] and Davis et al. [4] shows that the 
single shot execution model, with an immediate 
priority ceiling protocol, enables possibilities 



for efficient resource usage by stack sharing 
among several tasks. Stack sharing in the SSX 
model is feasible because higher priority tasks 
are allowed to pre-empt lower priority tasks and 
execute to completion (i.e., terminate) before 
lower priority tasks are allowed to resume their 
execution. However, the fact that a task must 
execute to completion (terminate) before any 
lower priority task is allowed to execute, puts 
some restrictions on suspensions of tasks in the 
SSX model:  
• To guarantee correct stack access, self-

scheduling of SSX tasks, i.e., calling timed 
sleep or delay functions may not be used in 
the application code of SSX tasks. 

• Task synchronization should be done using 
the Immediate Priority Ceiling Protocol 
(IPCP). This ensures that a task will never 
be allowed to start executing, before it is 
guaranteed to have access to all resources 
it needs. Hence, calls for accessing shared 
resources, such as semaphores, will never 
result in blocking due to locked resources. 
Any possible blocking will occur before 
the task is allowed to start execute.    

 
However, these design restriction also 

facilitate predictability since the administration 
of the tasks is left entirely to the operating 
system. Moreover, it is known that the 
immediate priority ceiling protocol is deadlock 
free and exhibits an upper bound on blocking 
times for tasks sharing resources. This implies 
that an analysis technique such as response-
time analysis [2] enables analysis of temporal 
properties of an SSX system.  

The SSX model is conceptually very simple, 
at run-time a task can be in one of three states: 
terminated, ready, or executing. The main 
difference, from a developers view, is that a 
conventional RTOS often uses so called self-
scheduled tasks. This means that a task is 
activated once, typically at system start-up, and 
eventually, after some possible initialization 
code, ends up in an infinite loop where it self-
schedules itself, e.g., using delay calls. 

An SSX task, on the other hand, when 
activated by the OS, executes with no delay 
calls, and terminates upon completion. This 
means that such tasks have to be re-scheduled 
by the OS in order to provide a continuous 

service. Figure 1 illustrates the structural 
difference between a conventional task and an 
SSX task. 

 
Figure 1. Looping task (left). Typical SSX task 
(right) 

In this paper, we present an integration of the 
SSX model in the Rubus RTOS. We also 
present a quantitative evaluation of stack usage 
under different execution scenarios. 

 
3. The Rubus Operating System 

 
Rubus is a real-time operating system 

developed by Arcticus Systems [1]. Rubus is 
targeted towards systems that typically require 
handling of both safety critical functions as well 
as less critical functions. The emphasis of 
Rubus is placed on satisfying reliability, safety 
and temporal verification of applications. It can 
be seen as a hybrid operating system in the 
sense that it supports both statically and 
dynamically scheduled tasks. The key features 
of Rubus RTOS are: 
• Guaranteed real-time service for safety 

critical applications 
• Best-effort service for non-safety critical 

applications 
• Support for time- and even-triggered 

execution of tasks 
• Support for component based applications 

 
Rubus consist of three separate kernels 

(Figure 2). Each kernel supports a specific type 
of execution model. 

 
Figure 2. Rubus RTOS architecture 
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  //Task code 
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The Red kernel supports time driven 
execution of static scheduled ‘Red tasks’, 
mainly to be utilized for applications with fixed 
hard real-time requirements. The static schedule 
is created off-line by the Rubus Configuration 
Compiler. Synchronizations of shared resources 
are handled by time separation in the static 
schedule. All tasks executed under the Red 
kernel share a common stack. A Red task is 
implemented by a C function, and the task is 
completed when the function returns. 

The Blue kernel administrates event driven 
execution of dynamic scheduled ‘Blue tasks’, 
mainly intended for applications having soft 
real-time requirements. Task handled by the 
Blue kernel are scheduled on-line by a fixed 
priority pre-emptive scheduler. 
Synchronizations among Blue tasks are 
managed by a Priority Ceiling Protocol 
(PCP)[11]. As opposed to the Red execution 
model, the Blue execution model does not 
support stack sharing among Blue tasks. Blue 
tasks are commonly used as indefinitely 
looping tasks (see Figure 1) periodically 
reactivated by system calls, e.g., blueSleep, that 
suspends the execution of Blue tasks for a 
specified time interval. 

The Green kernel handles external interrupts. 
The ‘Green tasks’ are scheduled on-line with a 
priority based scheduling algorithm dependent 
of the application hardware, i.e., 
microprocessor. The Rubus off-line scheduler is 
guaranteed to generate a static schedule (see 
Red kernel above) with sufficient slack 
available to handle interrupts [10]. When a 
Green task is executed, it may utilize the stack 
of the currently active Red or Blue task, 
implying that the active task may need to 
supply stack space for interrupt handling. 

Dispatch priorities of the tasks executing 
under the different kernels are illustrated in 
Figure 3. Tasks managed by the Green kernel 
have highest priority, and tasks managed by the 
Blue kernel have lowest priority.  

 
Figure 3. Task priorities in Rubus 

Rubus supports the possibility to utilize 
software components for application 
development. The computational part of the 
supported software components is realized 
either by a Green, Red or by a Blue task. 

 
4. Integration of SSX in Rubus 

 
Introducing a new execution model in an 

operating system for resource constrained 
embedded real-time systems, require careful 
design to minimize the overhead of the new 
model and effects (temporal and spatial) on 
existing models. On one hand, we could 
minimize the memory overhead imposed by the 
new execution model, by sharing administrative 
code in the kernel between the existing 
execution models and the new execution model. 
In doing so, we would impose additional timing 
overhead on the existing models wherever a 
kernel needs to be able to separate the different 
models, e.g., at sorting, queuing and error 
handling etc. On the other hand, we could avoid 
imposing timing effects on the existing models 
by separating the models, i.e., modularize, and 
allow the kernel to administrate the new SSX 
model in isolation from the existing execution 
models. This approach would increase the 
number of administrative functions, thus 
requiring more memory. 

In this implementation, we choose to share 
administrative OS code between the SSX model 
and the Blue model since the timing overhead 
imposed by the SSX model, on the Blue model, 
is very low. 

A new execution model may be introduced to 
a system by changing the current scheduling 
policy or existing task model. In our case, we 
retain the same scheduling policy for the SSX 
model as for the Blue model (fixed priority 
scheduling). However, a new task model is 
introduced to support the SSX model. Each task 
in Rubus is defined by its: basic attributes, Task 
Control Block (TCB), stack/heap memory area 
and application code. By adding periodicity and 
deadline attributes to the existing task model, 
we are able to share all fundamental task 
structures between SSX tasks and the existing 
Blue tasks. Administration of SSX tasks is 
handled entirely by the Blue kernel (Figure 4). 

High 

Red Tasks 

Interrupts 

Blue Tasks Low 



 

 
Figure 4. Rubus RTOS architecture with SSX model 

 The resulting relation of task priorities in 
Rubus, including SSX, is illustrated in Figure 5. 
The priority assignments and the fact that the 
administration of SSX tasks are handled 
entirely by the Blue kernel, makes the temporal 
attributes of tasks using the SSX model fully 
analyzable. In systems consisting solely of SSX 
tasks, the analysis can be performed with [2]. 
The SSX tasks can also be analyzed in hybrid 
systems consisting of Interrupts, Red tasks and 
SSX tasks with [8]. 

 

 
Figure 5. Task priorities in Rubus, including SSX 

All tasks executing under the SSX model 
share a common stack (in fact, there is nothing 
that prevents stack sharing also between Red 
and SSX tasks). The common stack pointer, for 
SSX tasks, is globally accessible, hence it does 
not have to be stored in the TCBs. 

To support resource sharing in the SSX 
model, the immediate priority ceiling protocol 
was implemented.   
The following is a summary of all major 
changes made in Rubus to support the SSX 
execution model: 
• Separation of tasks administrated by the 

Blue kernel and executed under different 
models 

• Modification of administrative functions to 
support SSX tasks 

• Error detection for SSX tasks 
• Activation functionality for the SSX tasks  

• Introduction of the immediate priority 
ceiling protocol 

 
The integration of SSX in Rubus allows the 

execution model to be directly applicable for 
the Rubus component model. Hence, the 
possibility to utilize software component for 
applications has been extended to include four 
execution models, the Green, the Red, the Blue 
and the SSX model.  

The shared stack in the SSX model can be 
safely dimensioned, as shown below, by 
summing the maximum stack usage of all tasks 
in each priority level, and adding stack-space 
for interrupts. SSX tasks with equal priorities 
cannot pre-empt each other in Rubus, hence it 
suffice to take the maximum stack usage in 
each priority level. 

j
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∈∀ ∈∀
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τ

 

sussx, denotes maximum stack usage of all 
SSX tasks. suint, denotes interrupt stack usage. 
Pi denotes the set of tasks with priority i. P 
denotes the set of all priority levels. τi denotes 
task i. su(τi) denotes stack usage, including 
context switch overhead, of task i.  

A more accurate dimensioning approach 
would be to examine possible pre-emptions, 
and identify the pre-emption(s) resulting in 
maximum stack usage. Identification of 
possible pre-emptions in a fixed priority based 
system is considered in [5]. 

 
5. Evaluation of SSX in Rubus 

 
Stack sharing allows for an efficient memory 

usage, which may avoid or at least postpone the 
need for additional RAM in evolving systems. 
To illustrate how a shared stack affects memory 
usage, we simulate different execution 
scenarios where the total stack usage varies a 
lot depending on the execution model in use.  

We simulate three different execution 
scenarios using two different execution models, 
the Blue and the SSX model, for each scenario. 
The first scenario is obtained from a flyer 
promoting the SSX5 RTOS [9]. The second 
scenario models a traditional control 
application, where a sequence of tasks is used 
to sense, calculate control parameters, and 
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actuate. These tasks are executed in sequence, 
hence they do not pre-empt each other. The 
third scenario illustrates a system with full pre-
emption depth, i.e., all tasks are pre-empted. 
The scenario can be seen as an example where 
the benefit of SSX is less, e.g., SSX as interrupt 
handling tasks in systems with multiple 
interrupt levels. 
 
5.1 Evaluation Method 

 
The evaluations are performed under a Rubus 

OS simulator running on a PC. We calculate the 
stack usage as the maximum number of data 
pushed onto the stack, from the dispatching of a 
task until it has finished execution. In doing so, 
we are able to include the concealed pushes of 
stack frames, i.e., stack usage occurring before 
execution of the actual task code, in the 
calculations.  

All stacks are initially filled with a pre 
determined data pattern. We then calculate the 
number of overwritten data patterns, i.e., stack 
usage, by examining the content of the stacks at 
termination of the system. It is assumed that 
tasks do not push frames identical to the pre 
determined data pattern at run time. 

 
5.2 Application description 

 
In each of the following execution scenarios, 

timer interrupts are generated at a frequency of 
100Hz. Each timer interrupt activates the Blue 
kernel task, responsible for time supervision 
and dispatching of the tasks in the system. The 
service routine for timer interrupts, having 
highest priority in the system, execute on the 
stack of an active task. However, in the 
following scenarios, the worst-case execution 
times of the tasks are very short, resulting in all 
tasks finishing their executions before any 
consecutive timer interrupt hits the system. 

The run time model in each of the following 
scenarios is fixed priority, pre-emptive 
scheduling. We denote the priority of a task 
with π, and its period, or in the case of sporadic 
tasks, its minimum interarrival time with T. 

 
Scenario 1 
The task set in the following scenario, 

obtained from a flyer evaluating the overheads 

of SSX5 [9], consists of; seven periodic tasks 
with periodicities ranging from 10ms to 80ms, 
and three interrupt handling tasks with a 
minimum interarrival time of 20ms (see Table 
1).  

Table 1. Task set, Scenario 1 
Task π T (ms) Stack usage (bytes) 

SSX / Blue 
τKERNEL 15 10 144 / 132 
τ1 5 10 72 / 152 
τ2 5 10 72 / 152 
τ3 4 20 72 / 152 
τ4 4 20 72 / 152 
τ5 3 40 72 / 152 
τ6 2 80 72 / 152 
τ7 2 80 72 / 152 
τ8 5 ≥20 72 / 72 
τ9 5 ≥20 72 / 72 
τ10 5 ≥20 72 / 72 

 
Running the system under the SSX model 

(with one shared stack for tasks τ1 – τ10), results 
in a total stack usage of 316 bytes. With the 
Blue kernel stack included, the total stack usage 
is 460 bytes. 

Yet again, we evaluate scenario 1 but with 
the difference that tasks τ1 – τ7 are executed as 
Blue tasks (Blue execution model), achieving a 
pseudo periodic behavior by a call to a sleep 
function. According to the Rubus OS reference 
[1], the suspension (sleep) of the tasks requires 
two additional local variables, and besides the 
sleep call, an additional call to a function that 
converts the suspension time into timer ticks, 
resulting in increased stack usage (from 72 
bytes to approximately 152 bytes) for a Blue 
task. This results in a total stack usage of 1480 
bytes for tasks τ1 – τ10. With the Blue kernel 
stack included, the total stack usage is 1612 
bytes. We noticed that the kernel uses 12 bytes 
less stack under the Blue model, than under the 
SSX model. This is due to Blue tasks 
scheduling themselves, instead of being 
assigned an activation time by the kernel. 

Table 2 shows the resulting stack usage for 
scenario 1. 

Table 2. Stack usage, Scenario 1 
Exec.Model Total stack usage (bytes) 

SSX 460 
Blue 1612 

Savings ≈ 71% 
 
 



 
Scenario 2 
The following scenario consists of pure 

periodic tasks with harmonic period times (see 
Table 3). The scenario can be seen as a 
simplification of a typical vehicular control 
system, e.g., as described in [6]. 

Table 3. Task set, Scenario 2 
Task π T (ms) Stack usage (bytes) 

SSX / Blue 
τKERNEL 15 10 144 / 132 
τ1 5 10 72 / 152 
τ2 5 10 72 / 152 
τ3 4 20 72 / 152 
τ4 4 20 72 / 152 
τ5 3 40 72 / 152 
τ6 2 80 72 / 152 
τ7 2 80 72 / 152 

 
Table 4 shows the resulting stack usage for 

scenario 2 under the SSX and Blue execution 
models. 

Table 4. Stack usage, Scenario 2 
Exec.Model Total stack usage (bytes) 

SSX 216 
Blue 1196 

Savings ≈ 82% 
 
Scenario 3 
The previous scenario shows an ideal 

situation for introducing SSX tasks. However, 
in applications where most tasks are 
asynchronous and pre-emptions appear 
randomly, the gains of SSX tasks is less, Thus, 
this scenario is prepared to show that the total 
stack usage, in certain situations, is nearly 
identical between the SSX and Blue execution 
model. 

The task set in this scenario consists of one 
periodic task τ4 and three event-triggered tasks 
τ1 – τ3 (see Table 5). The execution of the task 
set is prepared to exhibit full pre-emption depth 
meaning that if a task can be pre-empted it will 
be so. Each task is assigned a unique priority, 
thus enabling pre-emption between each pair of 
tasks. 

Table 5. Task set, Scenario 3 
Task π T (ms) Stack usage (bytes) 

SSX / Blue 
τKERNEL 15 10 144 / 132 
τ1 5 - 72 / 72 
τ2 4 - 72 / 72 
τ3 3 - 72 / 72 
τ4 2 80 72 / 152 

 
Table 6 shows the resulting stack usage for 

scenario 3 under the SSX and Blue execution 
models. 

Table 6. Stack usage, Scenario 3 
Exec.Model Total stack usage (bytes) 

SSX 612 
Blue 708 

Savings ≈ 14% 

 
 
5.3 Results 

 
Simulations have shown that stack memory 

usage in Rubus OS varies when comparing 
systems executed under the SSX model and 
systems executed under the Blue model. The 
differences in stack usage are mainly dependent 
on the type of application being realized. The 
fact that each Blue task is allocated its own 
stack makes them less memory efficient in all 
scenarios.  

In an example system of 7 non-pre-emptable 
tasks, the difference in stack memory usage is 
as much as 82% less for SSX tasks than for 
Blue tasks. Another system derived from a flyer 
on SSX5, results in a difference of 71% less 
stack usage for the SSX tasks than for the Blue 
tasks. 

However, less difference in stack usage is 
observed in situations of deeply nested pre-
emptions. As the pre-emption depth increases, 
the difference in stack usage typically 
decreases. This is shown by our simulations of 
a system with full pre-emption depth where the 
difference in stack usage between the SSX 
model and the Blue model, is relatively low.  

Hence, the SSX model is specifically suitable 
for applications where jobs (or transactions) of 
dependent tasks are modeled without pre-
emptions within the jobs e.g., control systems. 
On the contrary, the SSX model is less 
beneficial for applications experiencing large 
pre-emption depths. However, in any type of 
application, the SSX model is at least as 
resource efficient, with respect to stack usage, 
as the Blue model. This makes the SSX model 
an attractive choice when developing systems. 

 
 



6. Conclusion and Future Work 
 

In this paper, we presented the integration of 
a resource efficient and predictable single shot 
execution model in the Rubus RTOS. The 
model allows for efficient stack usage and 
predictability of temporal attributes. These facts 
make the model attractive for development of 
resource constrained real-time systems. The 
integration has shown that the model can be 
integrated with very simple run-time 
mechanisms.  

As future work, we are planning to include 
support for development and analysis (temporal 
and spatial) of SSX in Rubus Visual Studio 
(VS), which is an integrated environment for 
design, simulation and analyzing of embedded 
real-time applications. 
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