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Abstract

Software systems embedded in complex products such as cars,telecom sys-
tems and industrial robots are typically very large, containing millions of lines
of code, and have been developed by hundreds of engineers over many years.
We refer to such software systems as complex embedded systems.

When maintaining such systems it is difficult to predict how changes may
impact the system behavior, due to the complexity. This is especially true for
the temporal properties of the system, e.g. response times,since the temporal
behavior is dependent on many factors that are not visible inthe implemen-
tation, such as execution time. The state-of-the-practiceis therefore often the
trial-and-error approach, i.e. implement and test. However, errors related to
the temporal behavior are often hard to find while testing thesystem and may
cause major economic losses if they occur post-release, since they typically
result in system failures.

This thesis presents a method for predicting these types of errors in an
early stage of development. The specific method proposed is called behavior
impact analysis, which aims to predict if a specific change tothe system may
result in errors related to the temporal behavior. The method especially targets
complex embedded systems and by using this analysis method in the software
development process, the number of errors introduced when maintaining the
system can be reduced. This results in an increased productivity in maintenance
as well as an improvement in system reliability.

This thesis focuses on the construction and validation of the temporal be-
havior model necessary for performing a behavior impact analysis. The con-
clusion of the thesis is that a combination of dynamic analysis and reverse en-
gineering is suitable for modeling the temporal behavior ofcomplex embedded
systems. Regarding validation of temporal behavior models, the thesis propose
a process containing five increasingly demanding tests of model validity. Tools
are presented that support the model construction and validation processes.
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parents Lennart and Susanne, and my sisters Josefin and Jessica, for your love,
support and interest in my work.

Thank you all!

Johan Andersson
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Chapter 1

Introduction

As computers have become more powerful and less expensive they have be-
come a common and natural part of our everyday life. However,most com-
puters manufactured today are not desktop computers, but embedded in prod-
ucts such as mobile phones, microwave ovens, refrigerators, toys, cars, trains,
airplanes and many different types of audio and video equipment. Product
developing companies have replaced electrical and mechanical solutions in
their products with embedded computers. Computer-based solutions are less
expensive, require less space and power and also allows for more advanced
functionality. Embedded computers come in all sizes, from very small and
simple 8-bit single-chip computers, with a few kilobytes ofmemory, to giga-
hertz 32-bit computers with vast resources. This thesis focuses on embedded
computer systems of the latter category, large software systems embedded in
complex products such as industrial robot control systems,automotive systems
and telecommunication systems. Systems of this type often contain millions
of lines of code and have been developed by hundreds of engineers over many
years. Such systems are too large and complex for any single person to un-
derstand in detail. In this thesis, we refer to such softwaresystems ascomplex
embedded systems.

Common characteristics of complex embedded systems are their safety
critical and/or business-critical nature. Typically, systems of this class are in
control of machinery and therefore have requirements on dependability, such
as safety, reliability and availability. Moreover, the majority of systems of this
class arereal-time systems, i.e. systems that must respond to input from its
environment in a timely manner. For non-real-time computers such as home
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2 Chapter 1. Introduction

PC’s, CAD-workstations or game consoles, the focus is on theaverage perfor-
mance, while for real-time systems another property is muchmore important,
the worst case response time, i.e. the maximum latency possible from an input
to the system’s corresponding reaction. Since a violation of a temporal require-
ment may cause a system failure, it is critical for the systemreliability that the
worst case response time for each system function is known.
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Figure 1.1: The life cycle of a complex embedded system

Another characteristic property of complex embedded systems is the long
system life-cycle, measured in years, sometimes decades. Since the imple-
mentation of a complex embedded system represents a major investment for
the company, many man years of development time, redesigning such a system
from scratch is not an option unless it is absolutely necessary. Consequently,
systems of this type are maintained for many years. The maintenance consists
of maintenance operations,i.e. the implementation of changes to the software
in order to correct errors, or to add new features in order to respond to new
customer demands.

The life cycle can be divided into four different phases as depicted in Fig-
ure 1.1: (I) inception, (II) initial development, (III) maintenance and evolution,
and (IV) end of life time. The curve in Figure 1.1 plots the functionality in the
system over time. Hence, for a successful system it is desirable to stay in phase
III as long as possible with a curve that has an inclination assteep as possible,
because this implies a high degree of productivity in the software maintenance,
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i.e. new features is implemeneted at a relativly low cost in terms of man hours.
However, due to the functionality increase during phase III, the system

evolves from its original design. The system becomes more and more com-
plex and thus harder to maintain, causing decreased productivity as depicted in
Figure 1.1. The increased complexity is partially due to theincreased size of
the system, caused by new functionality, and partially due to the fact that the
software architecture tends to degrade as changes are made over the years in a
less than optimal manner due to e.g. time pressure or inconsistent/inadequate
design documentation. Furthermore, due to the long life-cycle of the system,
the personnel turnover is a major issue. Many engineers working with mainte-
nance of complex embedded systems have limited experience of the system and
may therefore not understand the implementation as well as more experienced
developers do. Further, as they were not involved in the initial development of
the code they are maintaining they may not be aware of the design rationale
used in the initial development of the system.

In order to stay productive even though the system has a high and increas-
ing complexity, i.e. to stay in phase III as long as possible,we must improve the
way we develop and maintain software for complex embedded systems. Today,
most companies that develop complex embedded systems rely heavily on code
inspection and testing, which are necessary but, apparently, not sufficient. A
significant effort is put into the testing of each new releaseof the system in or-
der to capture as many errors as possible, but it is common that bugs are missed
which may result in products being shipped with faulty software. According
to a recent study [NIS02] by the National Institute of Standards and Technol-
ogy (NIST) at the U.S. Department of Commerce, software bugscost the U.S.
economy an estimated $59.5 billion annually. The study concluded that more
than a third of these costs could be eliminated by an improvedtesting infras-
tructure that enables earlier and more effective identification and removal of
software defects, i.e. finding an increased percentage of errors closer to the
development stages in which they are introduced. Accordingto [NIS02] over
half of all errors are not found until ”downstream” in the development process
or during post-sale software use.

When maintaining real-time systems it is important to verify that the system
still complies with its temporal requirements, i.e. the requirements on worst
case response time, after a change has been made to the system. The response
time for a particular event is dependent on the time it takes to execute the
software, which depends on the design of the software itself. Therefore, if the
software is changed, it might cause the response time to exceed the specified
limit, the deadline. In a worst case scenario, a maintenanceoperation will cause
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a violation of the temporal requirements, but only in very rare situations. Such
errors are easily missed during the testing of a system, but if they occur after the
system has been delivered to customers, it may result in a system failure with
severe consequences for the user of the system. For instance, a failing industrial
robot could halt an entire production line in a factory for hours, causing a large
monetary loss. Errors related to the timing of software systems can in most
cases not be detected in unit testing as they only occur in theintegrated system,
when concurrent activities are interacting or interfering. Also, if errors related
to timing and concurrency effects are discovered in full system testing, they
are typically hard to reproduce. The problems associated with reproducing
such errors have been discussed in e.g. [Sch91] and [MH89].

If the impact on the system’s temporal behavior caused by a maintenance
operation is predicted early, in the design-phase of the change, the risk of intro-
ducing errors related these aspects of the system behavior may be minimized.
This way the productivity in system maintenance is improvedand it is possible
to stay longer in phase III of the life cycle depicted in Figure 1.1. Unfortu-
nately, to predict the impact of a maintenance operation is often difficult due
to the complexity and the evolving nature of these types of systems. A system
expert can often make a qualified guess, but a more detailed analysis is often
problematic and time consuming due to the size and complexity of the sys-
tem. Furthermore, as all human beings make mistakes, it is dangerous to rely
on someones subjective judgement. If it discovered that a performed main-
tenance operation, e.g. the implementation of a new feature, has introduced
problems related to the temporal behavior, then large efforts have already been
made on implementing a feature that may be too resource demanding for the
current system and in need of modifications in order to function properly. The
reliance of subjective judgement is far from an ideal solution, but unfortunately
the prevalent method in industry today.

The alternative to a system expert’s subjective judgment ofa change is to
introduceanalyzabilitywith respect to the important properties of the system
behavior, i.e. suitable analysis methods that enable engineers to objectively an-
alyze the impact of a change. There are basically two ways of introducing ana-
lyzability for complex embedded systems, eitherintrusivelyor non-intrusively.
An intrusive approach changes the system in order to be more predicable and
analyzable. The major problem with an intrusive approach isthe large effort
and risks involved. An intrusive approach implies rewriting code or completely
redesigning the systems software architecture, an alternative which is costly
and will most likely introduce new bugs in the system.

A non-intrusive approach focuses on enabling analysis of the existing sys-
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tem. A common approach, such as the approach proposed in thisthesis, de-
scribes the relevant aspects of the system in a model, which can then be ana-
lyzed using a well-defined method, either by hand or using tool support. The
model is typically constructed through a process known asreverse engineering,
i.e. extraction of the software architecture through analysis of the implementa-
tion. Interesting results within the area of reverse engineering are presented in
Section 2.1.

A non-intrusive introduction of analyzability by modelingof the existing
system is an attractive alternative to a major redesign of the system. Given that
a sufficiently detailed model exists there exists a variety of formal methods and
tools for analyzing properties of the model, i.e. model checkers [Hol97, SPI,
Hol03, BLL+95, DY00, BDL04, UPP, BDM+98, DY95, KRO]. However, ac-
cording to our experience such formal analysis methods are not widely used in
industry, apart from in domains with extreme dependabilityrequirements, such
as aerospace systems, military systems or nuclear power plants, where system
failure may have truly disastrous consequences and development costs are of
less importance. Such systems have been designed to be analyzable and for-
mal analysis methods have been used in the whole life cycle ofthe system. For
companies that develop complex embedded systems in less extreme domains,
formal analysis is often hard to apply for a number of reasons:

• Suitable models that allow analysis seldom exists in industry today since
the need for analyzability has emerged after initial systemdesign, as a
result of the increased system complexity. To introduce analyzability in
a non- intrusive manner thus requires the construction of a model from
the system implementation, a significant reverse engineering effort.

• The systems may have a very complex behavior, too complex to analyze
using rigorous analysis methods such as model checking without mak-
ing many abstractions to reduce the complexity. To make the necessary
abstraction is a non-trivial task that requires a deep understanding of the
theory behind the analysis method.

• Not all available analysis methods may be applicable for a certain system
since many analysis methods make assumptions on the software archi-
tecture. Most complex embedded systems have not been designed with
analyzability in mind and their software architecture may therefore vio-
late assumptions of the available analysis methods.

• In order to support evolving systems, the model needs to be kept up-
to- date with the system implementation, in the same way as text based
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documentation. If the model becomes obsolete, a substantial effort may
be required to update the model to reflect the current implementation.
This effort may cause the system developers to stop using theanalysis
method, if model maintenance is neglected for some time.

Despite the problems associated with non-intrusive introduction of analyz-
ability, the potential benefits motivate the application ofthis approach. If er-
rors related to the temporal behavior of the system could be predicted at design
time, rather than discovered in system testing or by end users, it could cut costs
and development time for the company. However, the non-intrusive approach
requires a model of the system and specifications of the properties to be ana-
lyzed. Therefore, in order to enable analysis of complex embedded systems’s
temporal behavior, there are several questions that need tobe answered.

• What modeling languages and analysis methods are suitable?

• How do we specify the properties of interest for analysis?

• How can a model be constructed based on an implementation of an ex-
isting system?

• How can we assure that a model is valid with respect to the properties of
interest?

The first two questions, about modeling language, analysis method and
property specification, have been addressed in earlier work[Wal03, AWN04a,
WAN03b, WAN+03a, AN02]. This thesis is primarily targeting the two lat-
ter questions, how to construct and validate a model of a complex embedded
system.

1.1 Our Approach

In earlier work [Wal03, AWN04a, WAN03b, WAN+03a, AN02] an approach
has been proposed for introducing analyzability with respect to the temporal
behavior of complex embedded systems. Analyzability is introduced by con-
structing a model describing the timing and behavior of the system. The model
is constructed through reverse engineering of the existingimplementation and
measurements of the timing and behavior of the running system. This model
can be used forbehavior impact analysis, i.e. to predict the impact caused
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by a maintenance operation on the temporal behavior of the system. A proto-
type of the change is implemented on the model and the resulting behavior can
thereafter be analyzed and compared with an analysis of the original model.

We refer to the general method as theART Framework. The current im-
plementation of this framework is based on the ART-ML modeling language
[Wal03, AWN04a, WAN+03a] and the framework is also named after the mod-
eling language. An ART-ML model describes a system as a set oftasks, (semi-)
parallel processes that share a single CPU. Each task in a model has a set of
attributes, such as scheduling priority, and a behavior description. ART-ML is
intended for modeling the temporal behavior of tasks, i.e. how tasks execute
over time, how frequently and how long. However, as it is possible to specify
behavior for each task in the model, it is also possible to include functional be-
havior and dependencies between tasks. This allows for verydetailed models,
which accurately capture the behavior of complex systems.

An ART-ML model is analyzed by executing the model in a simulator,
which results in anexecution trace, a log describing which tasks have been
executed, when and for how long. The execution trace is analyzed with respect
to a set of properties, that are specified in Probabilistic Property Language
[Wal03, AWN04a, WAN03b], using a PPL analysis tool. The properties of
interrest for analysis are typically response times and theutilization of logical
resources, i.e. properties dependent on the temporal behavior.
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1.2 Research Questions

This thesis has a single main research question, Q, which is broken down in
two subquestions, Q1 and Q2. By answering the two subquestions, we have
answered the main question Q. The context for these questions is the proposed
approach for behavior impact analysis with respect to the temporal behavior of
complex embedded systems.

Q: How can models be developed that accurately describe the temporal be-
havior of complex embedded systems?

Q1: What methods are suitable for extracting the information necessary for
a temporal behavior model from a complex embedded system implementation
containing millions of lines of code?

Q2: What methods are suitable for validating models describingthe tempo-
ral behavior of complex embedded systems?

No hypotheses are formulated here due to the nature of the questions; in-
stead chapters 3, 4 and 5 propose solutions answering Q1 and Q2. Each of
the three chapters is concluded with a discussion that relates the contribution
of the chapter to the research questions. Finally, Chapter 6concludes the the-
sis by revisiting the research questions and briefly summarizing the proposed
solutions.

1.3 Research Approach

The research behind this thesis has been conducted in collaboration with ABB
Robotics, a large manufacturer of industrial robots and robot control systems.
The author has worked at ABB Robotics with software development for an in-
dustrial robot control system, which is a typical example ofa complex embed-
ded system. Therefore, the author has a good understanding of the problems
associated with complex embedded system development.

The problem described in the introduction was initially identified by ABB
Robotics. An on-site study was conducted on the subject in the form of a
master’s thesis [AN02]. This initial work outlined the approach presented in
[Wal03] and further discussed in this thesis.
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In order to get feedback on the problem formulation and the approach pro-
posed in this thesis, seminars have been arranged on a regular basis, with sys-
tem experts from ABB Robotics as well as researchers from other universities.
Further, several publications on this subject have been presented on relevant
international scientific conferenses. The strong industrial connection enables
the research to be focused on problems relevant for industry. In order to verify
the scientific relevance and uniqueness, the literature in several related research
areas has been studied. The results can be found in Chapter 2.

The work presented in this thesis is primarily focused on therobot control
system developed by ABB Robotics. This system is, however, representative
for many complex embedded systems, which can be concluded from a study
that has been made on several companies in Sweden developingcomplex em-
bedded systems [MWN+04]. Therefore, an approach suitable for the ABB
Robotics will most likely be suitable for many other complexembedded sys-
tems. In future work, the solutions proposed in this thesis is to be evaluated in
an industrial case study, at first at ABB Robotics and, depending on the result,
on other companies developing complex embedded systems as well. This case
study is described in Section 6.1.

1.4 Contribution

The approach for behavior impact analysis described in thisthesis originates
from Anders Wall’s Ph.D. thesis [Wal03]. The contribution of this thesis com-
pared to [Wal03] is as follows:

Modeling for behavior impact analysis The thesis presents an approach
for how to construct a model for behavior impact analysis, based on an existing
system, by extracting information from both source code andfrom execution
traces recorded from the system at runtime.

Model validation In order for a model to be useful, it must be assured that
the model is valid, i.e. an accurate description of the intended system at the
appropriate level of abstraction. The thesis presents an approach for validating
a model intended for behavior impact analysis, based on a setof existing model
validation techniques.

Regression analysis An alternative application of the approach presented in
this thesis allows a company to study their system’s temporal behavior and
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compare with previous versions of the system in order to identify unintended
effects caused by recent maintenance operations. This approach has been de-
veloped in collaboration with ABB Robotics, which recentlyhas begun intro-
duing the proposed analysis method in their software development process.

Tools A set of tools and languages have been developed to enable thethree
above stated contributions of this thesis:

• The modeling language ART-ML and a discrete-event simulator for ART-
ML models.

• The Tracealyzer, a tool for visualization of execution traces. The tool
is highly useful in the modeling of complex embedded systems, as it
visualizes system’s behavior.

• The Property Evaluation Tool, a tool for PPL analysis and comparison
of execution traces. The tool is applicable in behavior impact analysis,
regression analysis, as well as in model validation.

• A behavior recorder for the RTOS VxWorks has been developed and in-
tegrated in a commercial complex embedded system. The thesis presents
the design and the performance of the implemented recorder.

1.5 Thesis Outline

This thesis is organized in six chapters. Chapter 2 presentsa state-of-the-art
report on related research in the areas of reverse engineering, model validation,
real-time systems and finally model checking. Chapter 3 presents the use of
dynamic analysis for modeling and analysis of complex embedded systems:
what information is of interest and the costs of recording this information. The
chapter also presents a set of tools that has been developed for analysis and
visualization of recordings and an additional use of the developed tools, re-
gression analysis. Chapter 4 presents an approach for modeling the temporal
behavior of complex embedded systems. The approach consists of a model
framework dividing a model into four components and a process for construc-
tion of the model components using dynamic analysis and reverse engineering
of the system’s implementation.

Chapter 5 discusses the concepts of model validity, model robustness and
the threats against model validity. Further, the chapter presents a five-step pro-
cess for validation of temporal behavior models. The steps in the validation
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process may utilize the tools presented in Chapter 3. Finally, Chapter 6 con-
cludes the thesis and outlines future work.





Chapter 2

Temporal Behavior Modeling
and Analysis

This chapter is a literature study investigating existing works related to the
research questions of this thesis, i.e. how to model the temporal behavior of
existing complex embedded systems. This study is broad, as there are several
areas of interest. Four research areas have been identified as the most closely
related and are described in this chapter:

• Reverse Engineering

• Model Validation

• Real-Time Systems

• Model Checking

The first two sections describe areas related to the construction of mod-
els for behavior impact analysis. The two latter areas are related to analysis
methods suitable for behavior impact analysis of real-timesystems. Reverse
engineering is the process of extracting logic, designs andother information
from an implementation. This area is highly relevant, as theconstruction of a
model from an existing system is a reverse engineering activity. Section 2.1
presents the area by explaining basic terminology and interesting results. The
section also includes results from the software verification community, where
model extraction tools are used to extract verification models from source code.
This is in essence a reverse engineering process.

13
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Model validation is the process of assuring that a model describes the in-
tended system correctly and with enough accuracy for the analysis in mind.
This area has primarily been addressed by the simulation community. Section
2.2 describes results related to model validation, both subjective methods and
methods based on statistics.

Real-time systems are systems with requirements on timeliness. This is a
huge research area; different aspects of real-time systemshave been studied
extensivly since the early 1970’s. The type of systems considered in this study,
complex embedded systems, are typically real-time systemsso including real-
time systems research in this study comes naturally. Section 2.3 describes the
basic concepts and terminology, scheduling algorithms andanalytical methods
for response-time analysis, simulators for analysis of real time systems and
finally worst case execution time (WCET) analysis.

Model checking is a method for verification of models describing e.g. soft-
ware systems. The method may be used to verify different properties of a soft-
ware system, e.g. absence of deadlocks and safety properties, but some model
checking tools also allow checking of timeliness properties. Model check-
ing may thus be an alternative to the simulation-based approach of this thesis.
Section 2.4 therefore presents the general principles, including modeling lan-
guages and temporal logics, and three common tools for modelchecking.

Finally, the chapter is concluded with Section 2.5, discussing on how the
approach proposed in this thesis relates to the existing works presented in this
chapter.
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2.1 Reverse Engineering

The process of extracting information from an implementation (i.e. source
code) is commonly referred to asreverse engineering. A related term isreengi-
neering, which according to the “horseshoe model of reengineering”[CI90] is
the process of first reverse engineering an implementation into a higher level
of abstraction,restructuringthe result of the reverse engineering, and finally
forward engineeringin order to introduce new functionallity. An extensive
annotated bibliography is presented by van den Brant [vdBKV97] describing
around 100 works in the area of Reengineering and Reverse Engineering.

Available tool support for reverse engineering is closely related to this the-
sis, as the usage of such tools is likely to facilitate the understanding and mod-
eling of complex systems. There are many tools available that can analyze
and present different views of a system’s static structure,such as UML class
diagrams.

2.1.1 Tools for Structural Analysis

Bellay and Gall [BG97] performed a study in 1997, where they presented
and compared four Reverse Engineering tools:Refine/C, Imagix 4D, Rigi and
Sniff+. The comparison was made by applying each of the tools to a commer-
cial embedded system implemented in C. They compared 45 properties of these
tools in the four categories:analysis, representation, editing/browsingandgen-
eral capabilities. Examples of properties in the analysis-category are what
source languages that are supported and the fault-tolerance of the parser. In the
representation-category,properties such as support for filtering and grouping of
information can be found. The editing/browsing category contains information
about how the tool presents the program text, e.g. syntax highlighting, search
support and hypertext capabilities. Finally, in general capabilities we find in-
formation about e.g. supported platforms, multiuser support and extensibility.

According to [BG97], Refine/C is an extensible, interactiveworkbench for
reverse engineering of C programs. However, no further information about Re-
fine/C could be found, apart from references in rather old research papers. Re-
fine/C is a product of the company Reasoning Systems, Inc., which no longer
supports this tool.

Imagix 4D is a tool for understanding C and C++ programs. It istoday
available as a commercial product. It can present UML class diagrams, file
diagrams and can also perform control flow analysis. It can identify unused
variables, present metrics of the individual routines in the code, such as line
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count, McCabe complexity, fan in etc.
The third tool studied in [BG97] is Rigi, a public domain tooldeveloped

over the last decade by the Rigi Research Project at the University of Victo-
ria, Canada. The Rigi tool can present the dependencies between functions,
variables and data types and has a lot of features for filtering and grouping of
functions into subsystems. Rigi is also highly customizable. In order to use
Rigi, the code that is to be analyzed first has to be parsed intoa graph. This is
done using a separate program.

The last tool presented in this study is Sniff+. It is not a “pure” Reverse
Engineering tool in the traditional sense. Sniff+ is a commercial advanced de-
velopment environment from WindRiver, for development of large embedded
solutions. Sniff+ also supports reverse engineering activities.

A more recent study is the one by Kollmann et al, from 2002. Their study
[KSS+02], compares four tools for UML based static reverse engineering:To-
gether, Rational Rose, FujabaandIdea. The first two are commercial products
and the latter ones are research prototypes. The tools are compared by using
them for analyzing a Java implementation consisting of about 450 classes. Nine
properties of the generated information are compared: the number of classes
reported, the number of associations reported, types of associations used, han-
dling of interfaces, handling of Java collection classes, recognition of multi-
plicities, use of role names, handling of inner classes and “class compartment
details”, i.e. the level of details used in resolving methodsignatures.

Other Reverse Engineering tools of a more lightweight nature areRevealer
[PFGJ02] andSemantic Grep[BTMG02]. Revealer is a tool for architectural
recovery, based on syntactical analysis. It allows searching for complex pat-
terns in source code, corresponding to “hotspots” of a specific architectural
view. For instance, the tool can be instructed to extract thehotspots, i.e. the rel-
evant program statements, of socket communication. Revealer does not parse
the source code like most of the heavyweight tools do, e.g. Rigi, instead it
searches for patterns. It is therefore very error tolerant,allowing analysis of
code containing errors or references to missing files. This error tolerance is
very useful for e.g. a researcher analyzing a part of a commercial system off
site, when the full source code is not available.

Semantic Grep, described in [BTMG02], allows queries on thesource code,
for instance “show all functions in parser.c” or a more advanced “show all
function calls from parser.c to scanner.c” The tool is based on the established
tools grok and grep. It transforms its queries into commandsfor these tools.
This tool is however an academic prototype and does not seem to be available
for downloading or purchase.



2.1 Reverse Engineering 17

2.1.2 Tools for Behavior Analysis

Structural analysis tools are of great help for the understanding of complex
systems, but do not constitue an adequate solution for understanding a system’s
behavior. However, there are many works focusing on analyzing the behavior
of software, using model extraction tools. These works are highly relevant to
this thesis. It is possible that an existing model extraction tool may be used
directly or adapted to fullfill the reverse engineering needs of the approach
proposed in this thesis.

There are basically two main types of tools that analyze the behavior of
software systems; those who analyze the source code (staticanalysis), and
those who analyze traces from the running system (dynamic analysis).

Static Analysis There are many works related to reverse engineering in the
area of model checking. Many model checkers for software cananalyze imple-
mentations in general purpose languages such as C or Java. Some of these tools
translate the program into a modeling language, such as Promela, and perform
abstractions by removing details irrelevant for the properties that are to be an-
alyzed. This is the approach of the tools SLAM [BR01], BLAST [HJMS03],
FeaVer/Modex [HS99] and Bandera [CDH+00].

SLAM is a toolkit developed by Microsoft Research, for checking safety
properties of system software. In [BR01] a case study is presented where the
toolkit has been used to verify Windows NT device drivers. The SLAM toolkit
contains three tools. First, the toolC2BP is used to generate an abstraction
of the C program, called aboolean program.Such programs are basically
C programs, but contain only Boolean variables and may also contain non-
deterministic selection. The abstraction is made with respect to the properties
of interest for analysis, specified as state machines in the specification language
SLIC. The Boolean program is analyzed using theBEBOPmodel checker in
order to find a path through the program that violates any of the specified safety
properties. If such a path is found, the toolNEWTONis used to verify that the
path is possible in the real program.

BLAST, the Berkeley Lazy Abstraction Software verificationTool [HJMS03],
is another solution for checking safety properties of C programs. To specify a
safety property to check, a specialerror locationis added to the program. If the
code corresponding to the error location is executed, it represents a violation
of the property. The tool transforms a C program into an abstract model, based
on the property to check. The model of the program is internally represented
usingcontrol flow automata, CFA.
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Model checking is then used in order to search all possible locations of the
model to determine if the error location is reachable or not.If the error location
is not reachable in the model, BLAST reports that the programis safe and also
provides a proof of this. If there is a path to the error location in the model,
it is verified that the path is possible in the real program by using symbolic
execution. If the path is possible, it is reported to the user; otherwise the model
is refined by changing the abstraction process.

BLAST has been used in case studies, refered in [HJMS03], to verify safety
properties of e.g. Windows and Linux device drivers. In somecases, bugs
have been found and in other cases BLAST proved that the drivers correctly
implemented a specification.

An interesting result is the tool FeaVer/Modex/AX [HS99, Hol00], from
Bell Labs. There is a name confusion regarding this tool. FeaVer is the user
interface for this toolkit while Modex is an acronym of ModelExtractor, a tool
for extracting verification models from ANSI C. Modex was previously known
as AX (Automata Extractor). The output format of Modex is Promela, the
input language of the software model checker SPIN. Modex first parses the C
code and generate a parse tree. Thereafter it processes all basic actions and
conditions of the program with respect to a set of rules, resulting in a Promela
model.

This approach effectively moves the manual effort from constructing the
model to defining the table of rules. The rules specify what statements that
should be translated into Promela (and how) and what to ignore. There is a
large set of default rules that can be used, but the user may add their own
rules to improve the quality of the resulting model. Modex isavailable for
download, and it seems very possible to customize Modex for other purposes
than the generation of Promela models, due to the customizable rule table and
open source code.

Bandera [CDH+00] is an integrated collection of program analysis and
transformation tools for automatic extraction of finite-state models from Java
code. The models can be used for verifying correctness properties using ex-
isting model checking tools. No model checker is included; instead Bandera
is designed to interoperate with existing, widely used model checkers such as
SPIN and SMV. The authors of [CDH+00] argue that the single most impor-
tant method for extracting analyzable models of software isabstraction. Their
goal is to provide automated support for the abstractions used by experienced
model designers. Bandera uses techniques from the areas of program slicing
[Tip95, Wei81] and abstract interpretation in order to eliminate irrelevant pro-
gram components and to support data abstraction. They arguethat specialized
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models should be used for checking specific properties rather than developing a
general model describing many aspects of a program. That way, the model can
be optimized for analysis of that single property and thereby smaller and less
complex. This is relevant as a major problem with model checking techniques
is the state space explosion problem. Developing property specific models is
rarely done when modeling systems by hand, due to the effort required, but if
models are automatically generated, it is an option.

A different approach is the one used in VeriSoft [CGP02], also from Bell
Labs. It is a model checker for software systems from. It is not a traditional
model checking tool, in the sense that no model is required. VeriSoft uses
the source code itself as the “model” to check. Verifying thebehavior of a
concurrent system using VeriSoft is similar to traditionaltesting, the difference
is that it executes under the control of VeriSoft, which systematically explores
the behaviors of the system. This requires that the system that is to be verified
can be compiled and executed on a platform supported by VeriSoft, which
today are limited to SunOS and Linux. Most embedded systems use other
platforms such as VxWorks [WRW] or OSE [OSE]. The system to beverified
could probably be ported to one of the supported platforms, e.g. Linux, but that
is often associated with a major effort.

Dynamic Analysis The use of dynamic analysis techniques for the modeling
of complex embedded systems is very interesting, as the resulting models may
contain realistic timing information. This is for instancethe case in research by
Jensen [Jen98, Jen01], described later in this section. This kind of information
is not possible to obtain using static analysis only. Unfortunatly, there is not
much existing work dealing with reverse engineering of real-time systems.

One interesting study is the one presented by Marburger and Westfech-
tel in [MW03]. They report on a set of reverse engineering tools, developed
in cooperation with Ericsson Eurolab Deutschland, including support for both
structural analysis and behavioral analysis. The behavioral analysis includes
state machine extraction from PLEX source code (a proprietary asynchronous
real-time language). Traces recorded from a system emulator can be used to
animate the state machines in order to illustrate the systembehavior. This is
basically low-speed simulation, using pre-recorded data to stimulate the model.
The extraction of state machines from source code is highly related to construc-
tion of models for behavior impact analysis, unfortunatelythis study focuses
on telecom system and the Ericsson-specific PLEX language.

An interesting study related to [MW03] is that by Systä and Koskimies
[SK98] where state diagrams are synthesized from traces. The source code



20 Chapter 2. Temporal Behavior Modeling and Analysis

of the system in focus is instrumented in order to generate a trace. The trace
is then fed into the SCED tool, which generates a (minimal) state diagram
corresponding to the observed behavior. The work does however not address
real-time systems, no timing information is recorded.

A system called DiscoTech is presented in [YGS+04]. Based on runtime
observations, an architectural view of the system is constructed. If the general
design pattern used in the system is known, mappings can be made that trans-
forms low level system events into high level architecturaloperations. With
this information an architectural description of the system can be constructed.
The system presented is designed for Java based systems. Thetypes of oper-
ations that are monitored are typically object creation, method invocation and
instance variable assignments. Note that the resulting model describes only
the architectural structure of the system and does not include any behavioral
descriptions.

Relevant research addressing real-time systems is the approach of Jensen
[Jen98, Jen01], for automatic generation (synthesis) of behavioral models from
recordings of a real-time systems behavior. The resulting model is expressed as
timed automata for the UppAal model checking tool [BLL+95, DY00, BDL04,
UPP].

The aim of the tool is testing properties such as response time of an im-
plemented system, against implementation requirements using model check-
ing. For the verification, it is assumed that the requirements are available in
the form of timed automata which are then parallel composed with the syn-
thesized model by the UppAal-tool to allow model checking. Jensen’s thesis
includes a schedulability test that (instead of WCET) uses ameasure called
Reliable Worst Case execution time (RWC). RWC is a statistical measure that
is introduced in the thesis. As a proof of concept, Jensen includes a one shot
experiment of the model synthesis.

The work by Jensen assumes that the system conforms to a generic archi-
tecture as follows: a system has a set of abstracttasksthat each are imple-
mented as a sequence ofsubtasksdistributed over several servers. The allo-
cation of subtasks to servers is derived from requirements such as periodicity,
deadline, etc. Thus, eachjobof a task is a sequence of interactions withsubjobs
on several servers.

Jensen imposes restrictions on how selections are used in the model – no
selections are allowed within the subtasks, they can only occur at the start of
the job or after a message from another subtask has been received. Another
restriction is an assumption of normal distributed subtaskexecution times –
in real implementations, services (subtasks) often have complex distributions
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consisting of several “peaks”, corresponding to selections between different
behaviors.

2.2 Model Validation

When constructing a model of the behavior of a software system, model val-
idation is necessary in order to assure that the model accurately describes the
system at an appropriate level of abstraction. By validating the model, the an-
alyst and system experts gain enough confidence in the model in order to trust
its predictions.

However, the validation of a model is far from trivial, sincea model is an
abstraction of the real system. The validity of models have been studied in the
simulation community. In [LM01], model validation is defined as ”the process
of determining whether a simulation model is an accurate representation of the
system, for the particular objectives of the study”. Their paper targets valida-
tion of models in general, e.g. describing a physical process. One of the authors
of [LM01] has authored a book on simulation studies, “Simulation, Modeling
and Analysis” [LK93], where one chapter covers model validation. The book
presents two statistical methods for comparing a model withthe corresponding
real system:

• Inspection approach: to compute one or more statistics fromthe real
world observation and the corresponding statistics from the model output
data, and then compare the two sets of statistics without theuse of a
formal statistical procedure.

• Confidence-interval approach: a more reliable but also moredemanding
method. Several independent observations are made of the real system as
well as of the corresponding model. From each observation the average
value is calculated for the property that is to be compared. This result in
two sets of average values where each value represents an observation,
one set of values from the model and one set of values from the real
system. These two sets of average values are compared and a confidence
interval can be constructed using statistical methods. This confidence
interval reveals if the difference is statistically significant, and also gives
an indication of how close the model is to the system, in this particular
aspect.

In [Bal90] guidelines are provided for conducting successful simulation
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studies. The paper presents a life cycle for a simulation study, containing 10
processes (phases):

• problem formulation,

• investigation of solution techniques,

• system investigation,

• model formulation,

• model representation,

• programming,

• design of experiments,

• experimentation,

• redefinition, and finally,

• presentation of simulation results.

Associated with these processes are 13 credibility assessment stages, in-
cluding model validation. According to [Bal90] there are basically two main
techniques for model validation:subjective validation techniquesandstatisti-
cal validation techniques. The paper presents a summary of common subjec-
tive validation techniques, of which the most interesting are:

• Face Validation: This is a useful preliminary approach. System experts
are allowed to study the model and subjectively compare the model with
their knowledge of the system.

• Graphical Comparison: A subjective, but according to [Bal90] and the
authors experiences also a practical method, especially useful as a pre-
liminary approach. By presenting data based on the model anddata from
the real system, graphically, patterns can easily be identified and com-
pared.

• Predictive Validation: The model is driven with past (real)system input
data and its predictions are compared with the corresponding past system
output data. Obviously, this requires that there are measurements made
of the real systems input and corresponding output.
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• Sensitivity Analysis: To systematically change values of model input
variables and observing the effect on model behavior. Unexpected ef-
fects may reveal flaws in the model. This is discussed in Chapter 5.

• Turing tests: System experts are shown two anonymous outputs, one
from the model and one from the real system, generated from identical
inputs. The experts are asked to identify which is which. If they succeed,
they are asked how they did it, and their feedback is used to improve the
model.

The paper [Bal90] also lists 22 statistical techniques which have been pro-
posed for use in model validation, but the techniques are notdescribed further.
Model validity from a general simulation point of view is also discussed in
[Sar99]. Different processes for validation of models are described in the pa-
per; one process isIndependent Verification and Validation, IV&V. It states that
a third party reviewer should be used to increase the confidence in the model.
A scoring model is also described, where various aspects areweighted and a
total score can be calculated as a measure of validity for themodel. This is,
as pointed out in the paper, dangerous since it appears more objective than it
really is and may result in over-confidence in the model validity. The author
describes a simplified version of the modeling process described in [Bal90],
consisting of theProblem Entity(the system), aConceptual Model(the under-
standing of the system), and aComputerized Model(the implementation of the
Conceptual Model). Furthermore, Conceptual Model validity is defined as the
relationship between the Problem Entity and the ConceptualModel, i.e. if the
person constructing the model had a correct understanding of the system. Op-
erational Validity is the relationship between the Computerized Model and the
Problem Entity, i.e. if the Computerized model was correctly implemented.

In [LM01] many aspects of the validity of models in general are discussed
and a seven-step approach for conducting a successful simulation study is de-
scribed. This approach requires a high level of abstractionand can be applied
on any domain. The steps are:

• problem formulation,

• collecting data and construction of the conceptual model,

• validation of the conceptual model,

• programming the model,

• validation of programmed model,
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• experiments and analysis, and

• presentation of results.

The paper stresses the importance of a definite problem formulation, com-
parisons between the model and the system, and the use of sensitivity analysis.

2.3 Real-Time Systems

A real-time systemis a system where correct behavior is not only dependent on
what results that are delivered, but also when they are delivered, i.e. a computer
system that has demands on timeliness. Real-time systems are often connected
to machinery, i.e. sensors and actuators, controlling a physical process. The
demands on the timeliness, the temporal constraints, on such systems are de-
fined by the process that is controlled. The main problem in real-time system
research is to guarantee the timeliness.

Real-time systems are often composed oftasks, processes, usually commu-
nicating with each other. Theresponse timeof a task in a real-time system is
the latency from stimuli (input) to reaction (output). A task’s response time
is effected by both theexecution timeof the task, i.e. the CPU time required
to process the code of the task, as well as interference from other tasks in the
system with higher priority and blocking semaphores. If a task is allowed to
execute without disturbances, the response time of the taskwill be equal to its
execution time.

A real-time system has deadlines, specifying the maximum response time
allowed. If a real-time system is unable to finish a task before its deadline,
it is a deadline miss. The deadline miss might be caused by a globaloverload
situation, i.e. that the currently active tasks in the system togetherrequire more
CPU-time than available in order to finish before their corresponding deadlines,
i.e. the CPU utilization is above 100 %. The handling of overload situations
is a major area within real-time research. A deadline miss may however occur
in other situations, e.g. if a deadlock situation occurs in atask with a deadline,
the task can not be completed, even though the CPU may be idle.

Real-time systems are often divided into two categories based on the sever-
ity of the consequences of a deadline-miss. Asoft real-time systemallows
some occasional deadline-misses. An example is a telecom system. The sys-
tems temporal requirements do not need to be guaranteed at all times. It is
not a disaster if a phone call is disconnected in rare circumstances, as long as
it does not happen recurrently. Another example of a soft real-time system is
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DVD player software on a PC, which must decompress a certain number of
frames every second. The temporal requirements are in this case more focused
on quality of service rather than 100% reliability. A software DVD-player can
tolerate small transient delays in the video processing; this does not result in a
failure, only a minor disturbance in a reduced quality of theresult, which the
user (viewer) might not even notice.

In a hard real-time systema single missed deadline is considered a failure.
If the system issafety-criticalit might result in injuries or catastrophic damage.
An example is modern all computer controlled “fly-by-wire” airplanes, such as
the Swedish fighter-jet JAS 39 “Gripen” or the Boeing 777. Another example
in a different domain is railway signaling system. For such safety-critical real-
time systems, there is a need to guarantee that the system will never violate its
temporal requirements.

A large area within real-time research isscheduling theory, i.e. algorithms
for selecting the next task to execute in a multitasking system. The schedul-
ing algorithms can be divided into offline and online scheduling. When us-
ing online scheduling, the scheduling decisions are taken during runtime. An
offline-scheduled system makes no decisions regarding the execution order of
the tasks during runtime, as a pre-calculated schedule is used. However, in
such systems it is not possible to create new tasks in runtimesince adding of
new tasks to the system requires reconstructing the schedule. A more flexible
scheduling policy is online scheduling. In this case, no schedule exists, but the
operating system makes all the scheduling decisions duringruntime.

A very common algorithm for online scheduling is FPS (Fixed Priority
Scheduling). Each task has a priority, which is used by the operating system
to select the next task to execute if there is more than one task ready. Many
commercial real-time operating systems, such as VxWorks from WindRiver
[WRW], usespreemptivefixed priority scheduling, i.e. the executing task may
be preempted by other tasks with higher priority, at any time.

The EDF algorithm, Earliest Deadline First, is another common online
scheduling algorithm. EDF always selects the task with least time left until
deadline, i.e. the task with earliest deadline. EDF guarantees that all deadlines
are met if the CPU-utilization (U) is less than 100 %. In an overload situa-
tion (U > 100%) it is not possible to finish all tasks before their corresponding
deadlines. EDF is not a good algorithm in overload-situations. Since it does not
do anything to lower the CPU-utilization, i.e. reject tasks, it tends to let every
task miss their deadline. EDF can however be combined with other scheduling
algorithms, such as overload handling or aperiodic server algorithms such as
Total Bandwidth Server [SB94] or Constant Bandwidth Server[Abe98].
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2.3.1 Analytical Response-Time Analysis

There are a variety of analytical methods for schedulability analysis, i.e. to
determine if a real-time system is schedulable with respectto the deadlines
of its tasks. In this section, we present the seminal resultswithin scheduling
theory and the analytical response-time analysis methods commonly known as
RTA. One of the most well known results in the real-time community is the one
by Liu and Layland from 1973 [LL73], where they introduced fixed priority
scheduling which is widely used today in many real-time operating systems.
They showed that a system with strictly periodic and independent tasks that
is scheduled using fixed priority scheduling is alwaysschedulable, i.e. will
meet its deadlines, if the total CPU utilization (U) is belowa certain value, the
Liu-Layland bound,and the tasks have been assigned priorities according to
the rate monotonicpolicy. Rate monotonic is a policy for assigning priorities
to the tasks based on their rate, i.e. period time, where the task with highest
rate receives the highest priority; the task with second highest rate received the
second highest priority, and so on.

The value of the Liu-Layland bound is dependent on the numberof tasks
in the system, but for a large number of tasks, the value is approximately 69 %.
For systems containing only tasks with harmonic periods, the bound is 100 %.

Another important result is theExact Analysis[MJ86] presented by Joseph
and Pandya in 1986. It is a method for calculating the worst case response-
times of periodic independent tasks with deadlines less or equal to the periods,
scheduled using fixed priority scheduling. It is an iterative method that from
a set of tasks calculates the worst case response time for each task, i.e. the
response time of the tasks in the situation when all tasks areready to execute
at the same time, the crititical instant, and executes with their worst-case ex-
ecution time. The method has later been extended to handle e.g. semaphores
[But97], deadlines longer than the periods [Leh90], variations in the task peri-
odicity (release jitter) [Tin92, ABRT93] and distributed systems [TC94]. This
family of methods for response time analysis is commonly known as RTA.

2.3.2 Simulation based Analysis

Another method for analysis of response times of software systems, but also
of other properties, is the use of a simulation framework. Using simulation,
rich modeling languages can be used to construct very realistic models. Often
ordinary programming languages, such as C, are used in combination with a
special simulation library. This is the case for both the DRTSS [SL96] and Vir-
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tualTime [RSW] simulation frameworks, described below. The rich modeling
languages allow modeling of the semantic dependencies between tasks in the
system, e.g. communication, synchronization and shared state variables. This
makes the model more accurate and also easier to analyze, since the dependen-
cies reduces the number of possible execution scenarios. Simulation models
may also be non-deterministic, for instance using probability distributions. A
simulation model of a real-time system may use probability distributions to
describe e.g. execution times of tasks with high realism.

A large problem with simulation is the lower confidence in theresult, in
comparison to other analysis methods. An analysis of a modelbased on (ran-
dom) simulation is not exhaustive; instead a simulator randomly executes the
model and only explores a minor and random subset of the possible execution
scenarios. Even though it is possible to perform a large amount of simulations
of a certain scenario in a short time, the number of possible execution scenar-
ios, i.e. the state space, is often too large for an exhaustive analysis, especially
if the model uses probability distributions or other sources of non-determinism.
On the other hand, simulation allows for an analysis, even though not exhaus-
tive, in situations where other analysis methods fail.

STRESS A tool-suite called STRESS is presented in [ABRW94]. The STRESS
environment is a collection of tools for “analyzing and simulating behavior
of hard real-time safety-critical applications”. STRESS contains a special-
purpose modeling language where the behavior of the tasks inthe modeled
system can be described. It is also possible to define algorithms for resource
sharing and task scheduling. STRESS is intended as a tool fortesting various
scheduling and resource management algorithms. It can alsobe used to study
the general behavior of applications, since it is a language-based simulator.

DRTSS The DRTSS simulation framework, presented in [SL96], allows its
users to easily construct discrete-event simulators of complex, multi-paradigm,
distributed real-time systems. Preliminary, high-level system designs can be
entered into DRTSS to gain initial insight into the timing feasibility of the
system. Later, detailed hierarchical designs can be evaluated and more de-
tailed analysis can be undertaken. DRTSS is a member of the PERTS fam-
ily of timing-oriented prototyping and verification tools.It complements the
PERTS schedulability analyzer tool by dealing with complexreal-time systems
for which analytical schedulability analysis is difficult or impossible.
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VirtualTime A very recent commercial simulation framework is Virtual-
Time [RSW]. It is suitable for analysis of the temporal behavior of complex
systems, typically soft real-time systems. The simulationframework allows
detailed models including process interactions, scheduling, message passing,
queue behavior and dynamic priority changes. According to the company be-
hind VirtualTime, Rapita Systems ltd, there are few limitations to the models
that can be produced using VirtualTime. However, this solution is primarily
targeting telecom systems and as far as we know only available for the systems
based on the OSE operating system [OSE], from ENEA [ENE]. Rapita Sys-
tems is a spin-off company from the Real-Time Systems Research Group at the
University of York, UK.

2.3.3 Execution Time Analysis

When modeling a real-time system for analysis of timing related properties,
the model needs to contain timing information, e.g. execution times. A com-
mon method in industry, and the approach of this thesis, is toobtain timing
information by performing measurements of the real system as it is executed
under realistic conditions. The major problem with this approach is that we
are unable to determine if the worst case execution time (WCET) has been ob-
served. If the model is populated with execution time data from measurements,
we risk a too optimistic model, as the real system sometimes might have longer
execution times than our model specifies.

Measuring is however not the only approach to obtain execution times.
WCET analysis is a well studied area in program analysis and real-time sys-
tems research. Static WCET analysis tools compute a safe, but tight, upper
bound for the execution time of a program on a specific hardware. On hard-
ware platforms with rather simple CPUs, such as 8 bit microcontrollers, the
WCET can be accurately calculated, but on more complex hardware architec-
tures, with cache memory, pipelines, branch prediction tables and out-of-order
execution, estimating a tight but safe WCET is very difficult, due to the com-
plex behavior of the hardware. The WCET analysis tool can notpredict ev-
ery possible behavior of the hardware and is therefore forced to make some
worst case assumptions in order to report a safe WCET estimate. Due to these
assumptions the estimated WCET becomes pessimistic. Also,static WCET
analysis is dependent on a timing model of the hardware, which is a threat to
model validity as the real hardware might, in some situations, have a different
temporal behavior than the timing model specifies.

An interesting approach is that of Bernat et al [BCP03, BCP02]. Their



2.4 Model checking 29

solution, probabilistic WCET, combines the strengths of static WCET analysis
and measuring of the real system. The pWCET approach basically measures
the execution times of the individual basic blocks in the program and use the
worst cases observed locally in a static analysis, based upon the object code.

This approach is not dependent on a model of the hardware, as in the case
with static WCET analysis; instead the approach relies on the execution time
measurements. The dependence on a hardware timing model is amajor crit-
icism against the static approach, as it is an abstraction ofthe real hardware
behavior and might not describe all effects of the real hardware. On the other
hand, this is a probabilistic approach, based on measurements, and may there-
fore be optimistic in some cases by reporting too low worst case execution
time.

2.4 Model checking

Model checking is a method for verifying that a (model of a) system meets its
requirements, and has been proposed as a method for softwareverification, in-
cluding verification of timeliness properties for real-time systems. The method
is commonly used to verify hardware designs, communicationprotocols etc. In
recent years model checkers for software have been developed and proposed
as complementary method to testing, code inspections etc. This section will
describe the basic concepts of model checking and temporal logics, a com-
monly used model checker as well as two model checkers especially targeting
real-time systems.

2.4.1 Basic Concepts

By describing the behavior of a system in a model, where all constructs have
formally defined semantics, it is possible to automaticallyverify properties of
the system using a model checking tool. The model is described in a modeling
language, the input language of the tool, often a variant of finite-state automata.
A system is often modeled using a network of automata, where the automatons
are connected by synchronization channels. When the model checking tool is
to analyze the model, it performs aparallel-composition, resulting in a single,
much larger automaton, describing the behavior of the complete system.

The properties that are to be checked are usually specified ina temporal
logic, such as CTL [CE82] or LTL [Pnu77]. Temporal logics allows specifica-
tion of safety properties, i.e. ”something (bad) will neverhappen”, and liveness
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properties, i.e. ”something (good) must eventually happen”. An example of a
safety property in CTL is as follows:

AG not (A and B)

The formula states that A and B may never be true at the same time, using
the temporal operator AG (“always”). CTL contains several temporal opera-
tors, apart from AG, and is presented further in Section 2.4.3.

The benefits and problems of model checking have been discussed exten-
sively in several works, e.g. [Kat98]. Model checking is a general approach,
as it can be applied to many domains such as hardware verification, software
engineering, communication protocols and embedded systems. Model check-
ing has been shown to be usable in industrial settings for finding subtle errors
that are hard to find using other methods and according to [Kat98], case studies
have shown that the use of model checking does not delay the design process
more than using simulation and testing. Also, model checking is based on a
sound mathematical foundation, including e.g. modeling, semantics, concur-
rency theory, logic and automata theory.

There are also problems associated with model checking. Oneof the most
well-known problems is commonly known as the state-space explosion prob-
lem. When modeling a non-trivial system, the number of states in the complete
behavior of the system, the state space, easily becomes verylarge. This as the
state space grows exponentially with the number of parallelprocesses. This is
a serious problem, as model checking tools needs to search the state space ex-
haustively in order to verify or falsify the property to check. If the state space
becomes too large, it is not possible to perform this search,due to memory
or run time constraints. Model checking is appropriate for control-intensive
applications, such as communication protocols, but it is less suited for data-
intensive applications, as the treatment of data usually leads to infinite state
spaces. Another problem when using model checking, or any model based
method, is model validity. As the tool do not verify the system, but a model of
the system, it is very important that this model is an accurate description of the
system, otherwise the analysis results are not trustworthy.

2.4.2 The model checker SPIN

SPIN is a well established tool for model checking and simulation of software
[Hol97]. SPIN supports simulation (random, guided and interactive) and model
checking of formulas in the temporal logic LTL [Pnu77]. According to [SPI]
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SPIN is designed to scale well and can perform exhaustive verification of very
large state-space models. The modeling language of SPIN is called Promela,
“PROcess MEta Language”. Promela is a guarded command language with a
syntax similar to the programming language C. SPIN is open-source and avail-
able for most platforms, including Linux, Windows and Mac. For further infor-
mation about SPIN, there is a book [Hol03] by Holzmann containing tutorials
on using SPIN and Promela, as well as reference material.

Promela A Promela model consists roughly of a set of sequential processes,
local and global variables and communication channels. Each process is a
sequence of statements, where each statement may be enabledor disabled.
A disabled statement blocks the execution of the process until the statement
becomes enabled.

Promela support non-deterministic selection. The if-statement allows sev-
eral alternative behaviors to be specified. Each behavior may be associated
with a guard, a condition, just like in e.g. C, but if several guards are enabled,
i.e. true, only one is selected, in a non-deterministic way.As an example,
consider the following:

if :: (a $>$ 10) -$>$ smtA;
:: (true) -$>$ smtB;
:: (true) -$>$ smtC;

fi;

The two last statements are always enabled (true) and may therefore be
executed, but the first has a guard allowing execution only when “a” is more
then 10. Promela also supports loops, using the do-statement; the syntax is
similar to if.

i = 1;
do :: i <= 10 -> looping;

:: i > 10 -> break;
od;

Promela processes may communicate using communication channels. A
channel is a fixed size FIFO buffer. The size of the buffer may be 0; in such a
case it is a synchronization operation, requiring that the send and receive oper-
ation occurs simultaneously. If the buffer size is 1 or more,the communication
becomes asynchronous, as a send operation may occur even though the receiver
is not ready to receive. To declare and use channels is very straight-forward.
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A send-operation is expressed using a “!” together with the channel name and
data. A receive-operation is similar, using “?”: The following example demon-
strates how to declare a channel and use it for communication.

chan chn = [4] of byte; /* four slots */
...
chn ! 42 /* send data ‘‘42’’ to chn */
...
chn ? foo /* receive from chn */

A process may be instantiated and invoked dynamically and processes may
be executed in parallel. For instance, consider the following example, a simple
but complete Promela model:

proctype prc(byte ident)
{

printf("%d\n",ident);
}

init{
atomic{

run prc(1);
run prc(2);

}
}

The init-section specifies the entry point, similar to “main” in most pro-
gramming languages. The atomic-statement allows the two processes start at
the same time. The observant reader might notice that the printf-statements
have the same syntax as in C.

LTL To specify the properties of the model to check, linear temporal logic
(LTL) is used. LTL is classic propositional logic, extendedwith temporal oper-
ators. Using LTL for program verification was first proposed in [Pnu77]. The
LTL operators that are supported by SPIN are:

[] - always
<> - eventually
! - logical negation
U - strong until
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&& - logical and
|| - logical or
-> - implication
<-> - equivalence

As an example, the following LTL formula specifies that the logical propo-
sition p should remain true at least until q becomes true:

[](p U q)

2.4.3 Model checking Real-time Systems

Model checkers such as SPIN do not have a notion of time, and can therefore
not analyze requirements on timeliness, e.g. “if X, then Y must occur within
10 ms”. There are however tools for model checking of real-time systems.
The most well-known are UppAal, first proposed in [BLL+95] and further de-
scribed in e.g. [DY00, BDL04, UPP] and KRONOS [BDM+98, DY95, KRO],
both described later in this section. These tools analyze models described in
timed automatausing variants of the temporal logic CTL.

Timed Automata Timed automata were first proposed by Alur and Dill in
[AD94]. They basically extended regular finite automata with real-valued clocks.
A timed automaton may contain an arbitrary number of clocks,which run at
the same rate. There are extensions of timed automata where clocks can have
different rates [DY95]. The clocks may be reset to zero, independently of each
other, and used in conditions on state transitions and stateinvariants. A sim-
ple yet illustrative example is presented in Figure 2.1, which was generated in
UppAal.

Figure 2.1: A small example of (UppAal) timed automata
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The modeled system in Figure 2.1 changes state from A to B if event “a”
occurs twice within 2 time units. There is a clock, “t”, which is reset after an
initial occurrence of event “a”. If the clock reaches 2 time units before any
additional event “a” arrives, the invariant on the middle state forces a state
transition back to the initial state A.

CTL Both the UppAal and KRONOS model checkers uses variants of CTL,
Computation Tree Logic [CE82]. CTL is a branching-time temporal logic,
meaning that in each moment there may be several possible futures, in contrast
to LTL. Therefore, CTL allows for expressing possibility properties such as “in
the future, X may be true”, which is not possible in LTL. On the other hand,
CTL can not express fairness properties, such as “if A is scheduled to run, it
will eventually run”. Neither of these logics fully includes the other, but there
are extensions of CTL, such as CTL* [EH84], which subsume both LTL and
CTL.

A CTL formula consists of a state formula and a path formula. The state
formulae describe properties of individual states, whereas path formulae quan-
tify over paths, i.e. potential executions of the model. Thepath formulae may
be nested, allowing more complex expressions. Apart from ordinary proposi-
tional logic, CTL contains four temporal operators:

EX - for some time next
E - for some path
A - for all paths
U - until

Based on the four temporal operators and the propositional logic, it is pos-
sible to derive an additional five very usable, temporal operators:

EF - possible
AF - inevitable
EG - potentially always
AG - always
AX - next

UppAal The tool UppAal [BLL+95, DY00, BDL04, UPP] is based on Timed
Automata and a subset of CTL. UppAal is an integrated tool environment for
the modeling, simulation and verification of real-time systems. This tool has
been developed jointly by Basic Research in Computer Science at Aalborg
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University, Denmark, and the Department of Computer Systems at Uppsala
University in Sweden.

UppAal is described as “appropriate for systems that can be modeled as a
collection of non-deterministic processes with finite control structure and real-
valued clocks, communicating through channels or shared variables.” In prac-
tice, typical application areas include real-time controllers and communication
protocols where timing aspects are critical. The tool was first proposed in the
mid 90’s and after almost ten years of development it has now reached version
3.4. The tool is available for many platforms including Windows and Linux,
and can be downloaded without charge from the UppAal website[UPP].

UppAal extends Timed Automata with support for e.g. automaton tem-
plates, bounded integer variables, arrays, and different variants of restricted
synchronization channels and locations. The query language used is a simpli-
fied version of CTL, where nested path formulae are not allowed. The subset
of CTL allows reachability properties, safety properties and liveness proper-
ties. Timeliness properties are expressed as conditions onclocks and state in
the state formula part of the CTL formulae.

KRONOS Another well-known model checker for real-time system is Kro-
nos [BDM+98, DY95, KRO] which has been developed at Verimag in France.
Like UppAal it is based on Timed Automata but uses a more powerful query
language, Timed Computation Tree Logic (TCTL). Timed Computation Tree
Logic was proposed in [ACD93], where they extended CTL with quantitative
time for the purpose of specifying timeliness properties, i.e. liveness proper-
ties with a deadline. Kronos also allows for checking safetyproperties as well
as both forward and backward reachability. Further, Kronoscan also check
models and properties expressed in other, less common formalisms. The tool
is available for several platforms, including Windows and Linux, and can be
downloaded without charge at the Kronos website [KRO].
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2.5 Discussion

This section discusses the works presented in this chapter with respect to the
approach of this thesis, outlined in Section 1.1. This discussion is divided into
Section 2.5.1, that discuss the works related to modeling and model validation,
and Section 2.5.2 that discuss the different methods available for analysis of
temporal behavior models.

2.5.1 Modeling

Existing work related to modeling the behavior of software systems can be di-
vided into two categories, approaches using dynamic analysis [MW03, SK98,
YGS+04, Jen98] and static analysis approaches [BR01, HJMS03, CDH+00,
HS99]. The works based on static analysis are in general moremature than the
dynamic approaches that have been found, but they do not represent a sufficient
solution for real-time systems as they do not model the temporal behavior, e.g.
execution times. Information about execution times is necessary in order to
model and analyze the timing of a system. Static analysis techniques can con-
tribute when constructing models for behavior impact analysis, but they can
probably not replace dynamic analysis.

Much research has been done in the estimation of a programs worst case
execution time (WCET), but the author has not found any workscombining
static analysis model extraction with WCET analysis. Further, the approach
of this thesis, simulation-based analysis, also requires realistic execution-time
distributions representing typical execution of the system. However, WCET
estimations may be used in a temporal behavior model to complement the ex-
ecution time distributions that are obtained from measurements.

Dynamic analysis can provide the realistic execution time distributions re-
quired, but unfortunately not without problems. Dynamic analysis implies to
observe and record the behavior of a software system, which requires adding
monitoring functionality to the system, which may reduce the system perfor-
mance. Also, a dynamic analysis only models the behavior that has been ob-
served. Therefore, the confidence of the resulting model is highly dependent
on the test-cases executed when monitoring the system. The problems with
dynamic analysis are discussed in depth in Chapter 3.

To assure that a model correctly describes the intended system, the model
needs to be validated. Works exist regarding validation of models, but mainly
in the simulation community, while the model checking community seems to
take model validity for granted. In many cases, model checkers are used to
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verify a specification of a system that has not yet been implemented. In such
a case, this assumption might be valid; the question is in that case if the im-
plementation conforms to the specifications. However, if the model describes
an existing system and is the result of a major reverse-engineering effort, the
model validity can not be assumed.

The results found in the simulation community include two main classes of
model validation techniques, subjective techniques (i.e.inspection) and those
based on statistics. Both can be used to validate models in this approach. Chap-
ter 5 describes a process for model validation including statistical techniques
adapted for the temporal behavior models of our apporach.

2.5.2 Analysis

There exist many analytical methods in research literaturefor response times
analysis, i.e. RTA [ABD+95, LL73, MJ86]. However, these analytical models
used by RTA are not expressive enough in order to capture the behavior of
large and complex systems. RTA does not consider the behavior of the tasks,
only their individual worst-case execution time. The result of such an analysis
may therefore be very pessimistic, as tasks may have large variations in the
execution time and the theoretical worst case situation, i.e. that all tasks wish
to execute at the same time, and all with the individual worst-case execution
time, may not even be possible in the real system due to dependencies between
the temporal behaviors of the tasks. The worst case execution times of two
tasks may be mutually exclusive, e.g. if they are associatedto different states
of the same shared state variable.

Moreover, RTA targets timeliness properties only, i.e. whether or not any
deadlines are violated. In many real systems the temporal requirements are not
specified in terms of deadlines, but may be specified as invariants on the func-
tional behavior. In some situations, it may be possibe to derive task deadlines
from such requirements, but in other cases that is hard. A typical example is
a FIFO data buffer, shared between two tasks, one “consumer”and one “pro-
ducer”. The invariant is that the buffer must never be empty when the consumer
attempts to read. This requirement is formulated in terms ofthe functional be-
havior but highly dependent on the temporal behavior of the two tasks involved.
Such requirements can not easily be verified by using the existing methods for
response-time analysis. Even though fixed priority scheduling is a common
scheduling algorithm in complex embedded systems, RTA may be problem-
atic to apply since many systems are not designed to allow analyzability. They
might contain aperiodic tasks scheduled with a fixed priority, or tasks that alter
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their priority.
On the other extreme are model-checking methods with rich modeling lan-

guages such as timed automata [AD94, BDL04]. Timed automataallows for
the modeling of temporal behavior as well as functional behavior. By using
synchronization channels we can model dependencies between tasks in a sys-
tem. However, model-checking does not scale properly to larger systems due
to the state-space explosion which makes such an approach hard to apply on
complex embedded systems. Simulation is better from that point of view. Us-
ing simulation, rich modeling languages can be used to construct very realistic
models, using e.g. realistic distributions of execution times. A disadvantage
of the simulation approach is that we can not be confident in finding the worst
possible temporal behavior through simulation, since the state-space is only
partially explored.

In the work preceeding this thesis we have chosen to focus on simulation,
as we basically have one major trade-off to consider: being able to predict
something at the cost of precision. Even though a simulationis not an exhaus-
tive analysis and thus might fail to analyze the worst case situation, it may still
point out potential problems and assist the developers in making the right deci-
sions, while analytical methods are often not applicable inpractice, either due
to a too simple model or to the state space explosion problem.

Even if an exhaustive, “safe”, analysis would be applicable, the analysis re-
sults are not necessarily ”safe”, as the trustworthiness ofthe analysis results de-
pends on the model used for the analysis. Thus, regardless ofanalysis method,
there are always uncertainties due to the problems associated with modeling
and validation of models, especially when considering modeling of large com-
plex software systems. This thesis is therefore focused on modeling and model
validation rather than analysis methods.
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Dynamic Analysis

This chapter presents how dynamic analysis can be used to improve analyz-
ability of complex embedded systems. The term dynamic analysis captures a
broad spectrum of program analyses that deal with data produced by programs
during runtime. This chapter presents how dynamic analysiscan be used in
order to analyze and visualize the temporal behavior of complex embedded
systems.

Our approach to modeling the temporal behavior of a system isdependent
on the use of dynamic analysis, as the construction of the model requires quan-
titative information on the temporal behavior of the system, such as task inter-
arrival times, task execution times and task response times. This information
may be obtained through dynamic analysis, i.e. by recordingthe relevant in-
formation from the system at runtime, and analyzing the recorded data offline.
The result of the recording is anexecution tracewhich is a list of time-stamped
events that describe the system behavior during a period of time. Typical events
that are registered are task-switches, inter-process communication (IPC), and
changes of important state variables.

Execution traces are also useful for purposes other than modeling. By visu-
alizing the content of an execution trace, the system behavior becomes directly
observable and tangible, which facilitates debugging and overall system under-
standing. Recorded execution traces may also be used to compare the temporal
behavior of the latest release of the system with previous releases, which al-
lows system developers to study how recent maintenance may have effected
the system with respect to its temporal behavior, e.g. response times and the
use of limited logical resources. This use of dynamic analysis is referred to as

39
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regression analysis, analogous to regression testing. Regression analysis can
identify recent negative effects on specific properties of the temporal behavior,
which may be due to e.g. sub-optimal implementation of new features. More-
over, regression analysis can also be used to identify trends as well as potential
problems, such as when the response time of a task is approaching a deadline,
or when the utilization of a logical resource is approachingthe maximum al-
lowed utilization. By identifying such problems at an earlystage, developers
may take preventive actions in order to minimize the risk of serious problems
in future versions of the system.

The remainder of this chapter is divided into four sections as follows: Sec-
tion 3.1 presents three ways in which dynamic analysis can beused in this
context, system understanding, modeling and regression analysis. Section 3.2
discusses the recording complex embedded system’s of temporal behavior, the
problems associated with recording, what properties that is of interest as well
as the effects on system performance associated with recording of these prop-
erties. Moreover, the section presents the design and performance of an im-
plemented behavior recorder that has been integrated in a complex embedded
system. Section 3.3 discusses analysis and comparison of recorded execution
traces and presents the implementation of the probabilistic property language
proposed in earlier work [WAN03b]. Moreover, a set of tools developed for
analysis and visualization of recorded execution traces ispresented. Finally,
Section 3.4 concludes this chapter with a discussion on how these contribu-
tions relate to the thesis research questions stated in Section 1.2.

3.1 Uses of Dynamic Analysis

Dynamic analysis is an established general technique whichmay be used to
study many different aspects of a system by performing recordings during run-
time, e.g. dynamic memory allocation, function calls, interrupts, cache behav-
ior, etc. In this thesis, dynamic analysis is used to study the temporal behavior
of tasks, e.g. task execution times, task response times andtask inter-arrival
times, and properties dependent on the temporal behavior, such as the usage of
limited logical resources. The rest of this section presents three different uses
of dynamic analysis in the context of complex embedded system’s temporal
behavior.
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3.1.1 System Understanding

One factor contributing to the complexity of software development and main-
tenance for complex embedded system, is that the temporal behavior of the
system is not tangible. The temporal behavior, i.e. the global ordering and
timing of events in the system, can not be understood by only studying the
implementation, as the temporal behavior is dependent on the execution time
of the code in the system’s tasks and of the stimuli from the system’s environ-
ment. The execution times depends on the hardware used, and may vary from
time to time due to the many factors involved, e.g. data dependencies (param-
eter, state) and complex, seemingly non-deterministic, hardware such as cache
memories. By presenting a recording of the system graphically, the temporal
behavior is visualized over a time-line, which allows for better understanding
for software developers of the complex behavior of their system. This view of
the system behavior is highly useful while debugging, designing new features
or changing the software architecture in other ways. It is also highly useful for
educational purposes when new developers are introduced tothe system.

3.1.2 Modeling System Behavior

The approach for behavior impact analysis discussed in Section 1.1 depends
on a model containing quantitative information regarding the system’s tempo-
ral behavior, i.e. execution times and inter-arrival timesof tasks, and prob-
abilities of events that are modeled in a probabilistic manner. To obtain this
information from sources other than dynamic analysis is difficult. Even though
execution time analysis of the tasks is possible, the required tools are in general
not mature. Furthermore, such tools typically focus on identifying the worst
case execution time, while the model necessary for behavioral impact analysis
requires the description of the typical distributions of e.g. execution times for
a task. The behavior impact analysis is described in depth inSection 4.1.

3.1.3 Regression Analysis

Dynamic analysis can be integrated in the software development process in
order to monitor the effects of the software evolution on important properties
of the system’s temporal behavior, such as response times. On a regular basis,
an analysis is performed on the latest version of the system and the results are
compared with previous results, i.e. analysis results fromprevious versions of
the system. This allows system developers to study how recent changes have
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effected the system with respect to a set of important properties of the system’s
temporal behavior, such as response times and resource usage. We refer to this
use of dynamic analysis as regression analysis.

Regression analysis can point out sub-optimal implementations that are re-
flected in the system properties under observation. If such impacts can be
captured automatically, future problems related to the temporal behavior can
be avoided. Moreover, regression analysis can identify potentially dangerous
trends in system properties, e.g. if the utilization of a newly introduced logi-
cal resource gradually increases as more and more components of the system
begin using it. Such trends may cause problems in future releases, but if dis-
covered, the appropriate actions may be taken early, beforeerrors occur, e.g.
by increasing the amount of resources available (if possible) or by decreasing
the use of the resource.

In order to introduce regression analysis for a complex embedded system,
there is an initial effort of specifying the properties of interest and implement-
ing the necessary code instrumentation. Moreover, the system setup and test
cases executed when measuring the system should be specifiedin a document,
in order to allow system measurements to be reliably reproduced. After this
initial work, performing a regression analysis is straightforward and can be
performed as one out of many test-cases by a system tester without requiring
deeper system understanding or programming knowledge. Measurements are
made according to the documented test cases. This results inexecution traces,
which are analyzed and compared with earlier releases usinga highly auto-
mated analysis tool. Based on the comparison rules, the tooldecides if there
are alarming differences and informs the user of the outcome.

We are working in cooperation with system architects and developers at
ABB Robotics with the introduction of regression analysis in their development
process. The recorder has been integrated into their robot control system and
is activated by default which allows engineers at the company to perform the
recordings necessary for regression analysis with a minimal effort. Currently,
a small group of experienced engineers are gradually introducing regression
analysis in one of the subsystems.

3.2 Recording – What, How and Costs

When using dynamic analysis for recording the temporal behavior of tasks in a
complex embedded system, it is important to note that each task in a complex
embedded system typically consists of a collection ofservices. These services
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may exhibit very different temporal behaviors. Below is an example of a C
implementation of a task with several services. The main routine of the task
contains an infinite loop that receives messages from other tasks and depending
on the content of the message, different services are then executed. Tasks may
also have a behavior which is executed when the task has been waiting for
messages for a certain amount of time. The timeout behavior can be considered
a time-triggered service.

void taskX()
{

int status;
int timeout;
MSG msg;

init();

while( forever )
{

status = ipc_receive(&msg, timeout);

if (status == TIMEOUT)
{

timeout_behavior();
}
else
{

switch( msg.command )
{

case COMMAND1: service1(...);
break;

case COMMAND2: service2(...);
break;

case COMMAND3: service3(...);
break;

...
}

if (msg.answer_requested == TRUE)
{

ipc_send(msg.sender, answer);
}

}
}

}

When recording the temporal behavior of a system where the tasks con-
sist of multiple services, it is not sufficient to only recordwhich tasks that
are executed. In order to allow analysis of the temporal behavior of individ-
ual services, it is necessary to record the service that is executed in each task
execution.

It is also important to note that temporal requirements of complex embed-
ded systems are not always expressed as limits on task response time, they
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may also be expressed as limits onend-to-end response times. An end-to-
end response time is a more general term which represents thetime between
two defined events in the system, astart-eventand astop-event. Typically, an
end-to-end response time represents the sequential execution of a set of related
tasks.

Another interesting property is the utilization of limitedlogical resources,
e.g. a fixed size FIFO queue. The utilization of such logical resources varies
over time as a result of the execution of certain tasks and is therefore dependent
on the tasks temporal behavior, e.g. inter-arrival times. Acommon property
of interest is if the utilization of a specific logical resource is above or below a
certain limit, i.e. starvation. Based on these properties of complex embedded
systems, the properties of interest can be grouped into three categories:

• Execution and Response times: This category includes properties related
to the execution time and response time of tasks and specific services,
as well as properties related to end-to-end response time. This category
also includes properties describing how execution and response times are
effected by important state variables.

• Resource usage: Properties in this category describe the system’s usage
of specific limited resources, logical or physical (e.g. CPUtime), and
how the utilization varies over time. Typical properties are maximum,
minimum, and average utilization, but the category also includes proper-
ties describing the relationship between resource usage and the execution
of tasks or specific services, e.g. the resource allocation of specific ser-
vices. Resource usage also includes the CPU utilization of individual
tasks as well as the complete system. This information is often used as a
rough measure of the temporal behavior of a system.

• Inter-arrival times and Patterns: This category includes inter- arrival
time distributions of specific events, such as activation ofspecific tasks
or services, or other important events such as state changes. This cate-
gory also includes properties related to patterns in the activation of tasks,
services, or occurrences of other events.

When recording for the purpose of modeling a system’s temporal behavior,
properties from all three categories are relevant, but for different purposes. Ex-
ecution times and inter-arrival times are necessary as parameters of the model,
while response times, resource usage and patterns are predicted by an analysis
of the model.
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However, data regarding the properties predicted by the model need to be
recorded from the real system as well, in order to allow validation of the con-
structed model. By comparing the predictions from the modelwith the ob-
servations of the real system, it is possible to determine ifthe model is valid.
Model validation is discussed in depth in Chapter 5.

This may cause confusion, why bother to construct a model andperform
an analysis when the properties can be measured directly from the existing
system? The answer is in the purpose of the model, i.e. allowing for proto-
typing of new features, as discussed in Chapter 1. When usingthe model for
prototyping, there is no implementation that allows measurements to be made.
However, by updating the model with an abstract prototype ofthe planned new
feature, it is possible to make predictions on the effects onthe system’s tem-
poral behavior caused by an implementation of this feature.This is further
discussed in Chapter 4.

3.2.1 The Probe Effect

A problem with dynamic analysis of multi-tasking systems isthat the code
instrumentation necessary for recording, theprobes, may alter the temporal
behavior of the system, if the order of important events is changed. This is
commonly known as theprobe effect[Sch91, MH89]. The probing proposed
in this chapter would increase both the task-switch overhead as well as the
execution time of the tasks. Another impact is that by increasing the time it
takes to perform a task-switch, the interrupt latency is increased as well, as
interrupts are disabled during this time.

If an analysis is performed based on the runtime behavior of asystem that
has been instrumented with software probes, the analysis will only be valid as
long as the probes remain in the system. If the probes are removed before re-
leasing the system, the released system will be different from the system that
was analyzed. The differences are in most cases small and often negligible,
but there is always a risk of a probe effect. Even the smallestchange in tim-
ing, caused by e.g. by software probes, can potentially change the order of
important events, which may lead to erroneous system behaviors.

A common way of avoiding the probe effect is to let the probes remain in
the released version of the system. This way, the released system will be iden-
tical to the system that has been studied in the analysis. Thetypes of systems
considered in this thesis usually have sufficient resources(CPU-time, mem-
ory) to allow for a reasonable amount of probing, which makesthis solution
attractive.
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3.2.2 Relevant code instrumentation

In order to record information regarding the properties described in Section 3.2,
software probes of different types are necessary. In this section these probes
will be described, including their purpose and their impacton CPU and mem-
ory.

Monitoring task execution By adding a single probe to the system that is
executed by the task-switch, a major part of the required information can be
derived, e.g. what tasks have been executed and when, all preemptions points,
the execution times and response times of the tasks. Thus, the value of adding
this single probe is significant, but the cost of adding the probe, i.e. CPU-time
and memory usage, might also be significant depending on the average rate of
the task-switch event. This probe is referred to as thetask-switch probe.

In the system that has been studied in this work, the robot control system
from ABB Robotics, task-switches occur rather frequently,with an average
rate of about 3 KHz. This is a rather high rate in comparison toother events of
interest in the system. The task-switch probe is therefore expensive, but also
very valuable.

Monitoring activation of services For tasks that are of interest for more
detailed analysis, it is desired to know not only record the task execution, i.e.
what tasks that are executed and when, but also what service,i.e. specific
behavior, that is executed at each task instance. To record this information it
is necessary to add a probe to the dispatcher of the task, i.e.where the task
receives incoming messages and selects what service to execute. This probe is
referred to as thedispatcher probe. Each time the task is activated, typically
by an incoming message, the dispatcher probe stores a code that identifies the
service. Since not all tasks need to have this detailed instrumentation, adding
dispatcher probes to tasks is rather inexpensive compared to the task-switch
probe. Even if all tasks in the system are equipped with a dispatcher probe, the
cost of this instrumentation is less than the task-switch probe. Task activations
occur less frequently than task-switches, as task switchesoccur not only on task
activations, but also when a task terminates and a pre-empted task is resumed.

Monitoring end-to-end response times In order to study an end-to-end re-
sponse time, i.e. the time between two arbitrary events (typically a request
and a corresponding response/reaction), it is necessary toinsert two probes, a
start-probeand astop-probe. The difference in time between the execution of
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a start-probe and the next stop-probe (with the same ID) corresponds to the
end-to-end response time.

Monitoring inter-process communication End-to-end response time mon-
itoring can be used to study latencies in the inter-process communication, i.e.
the time from “send” to “receive” of a particular message. This information
is interesting for the identification of performance bottlenecks and for model
validation purposes. If there are interface routines whichencapsulate the send-
ing of messages to a specific task, this instrumentation can easily be performed
by inserting interface probes, acting as start-probes for an end-to-end response
time measurement. If a dispatcher probe exists in the receiving task, it can be
used as the corresponding stop-probe.

When a task receives an IPC message, the sender of the messagecan be
identified as the task that executes at the execution of the send-probe. It is
however possible to register the sender of each message without using send-
probes, if the dispatcher-probe is extended to also register which task that sent
the received IPC message. Naturally, this requires that theIPC messages con-
tain this information. The purpose of recording the sendersof IPC messages is
to document the dependencies between different tasks in thesystem, i.e. which
tasks use the different services of each task. The dependencies between tasks
is valuable information for system understanding, maintenance and modeling.

An IPC message sent to a task under observation results in oneor two
probes being executed, depending on if the IPC latency is measured (two probes)
or not (one probe). The impact of these probes is dependent onthe intensity of
the IPC, which varies drastically between different tasks.Some tasks may have
a low average rate of incoming messages, but if the messages arrive in short
intensive bursts instead of evenly distributed over time, the dispatcher probe is
executed frequently during the duration of the burst. Even though the probing
may have little impact on total CPU utilization, the quick bursts may cause the
probing to have a significant impact locally. Thus, in order to estimate if the
impact of the dispatcher probe, not only average message frequency is inter-
esting but it is also interesting to study the minimum inter-arrival time between
messages and how often several “short” inter-arrival timesoccur in sequence.

Monitoring all IPC traffic in the system is rather expensive if the IPC la-
tency is to be measured, as an additional probe is necessary apart from the
dispatcher probe, for each IPC message sent. It is however not necessary to
record all IPC traffic in the system. It is often the case that only a single, or a
few, tasks are in focus and the IPC monitoring can be limited to those, which
significantly reduces the cost of this probe.
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Monitoring usage of logical resources In order to record the usage of a
specific logical resource, such as a data buffer, it is required to add probes
to the interface routines of the resource. Interface routines are e.g. theput
andgetroutines of a data buffer. Probes in interface routines are referred to as
interface probes.By encapsulating probes in the interface routines, the probing
is invisible in the application code.

Monitoring semaphores Semaphores are logical resources and may be in-
strumented using interface probes. However, if the semaphores do not have in-
terface routines specific for each semaphore, this would require instrumenting
the Operating System (OS) routines, which are typically used for semaphore
operations by all tasks in the system. This would result in all semaphore oper-
ations being recorded, thus consuming a lot of resources (CPU time and mem-
ory) as semaphore operations are common in multitasking systems. In most
cases only a single or a few semaphores are of interest. The semaphore inter-
face routines may, however, be probed if a filter is implemented, that only exe-
cutes the probe if the semaphore operation is of interest, i.e. involves a specific
task or semaphore. Such a filter is implemented in the OS code corresponding
to the semaphore interface routines or preferably in an OS isolation layer, when
existing. The filter would in principle check the current semaphore operation
(task ID and semaphore ID) against a list of semaphore operations of interest.
It is important to implement such a filter in an efficient and deterministic way,
in order to minimize the execution time overhead and jitter.

Monitoring state variables It may also be interesting to monitor specific
state variables, as these may effect the temporal behavior of the system and
thus be of interest for modeling. If the state variables are accessed through
interface routines such probing can be performed easily using interface probes.
Probes monitoring state variables will not be executed as frequently as e.g. the
task-switch probe and would therefore be relatively inexpensive.

If the state variable is an ordinary global variable, accessed directly from
many locations in the code, it is not convenient to add probesto each location
that change the variable. Instead, the state variable can besampled usingstate
sampling probes. The state variables of interest are sampled in the immediate
beginning of the execution of a task/service that is dependent on the state vari-
able. If there are a large number of state variables that needto be sampled, this
may require a lot of resources, as the sampling may be rather frequent.
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3.2.3 Resource Consumption

When planning the introduction of code instrumentation in acomplex embed-
ded system, it is important to estimate the resource consumption (CPU time
and memory) required by the different types of probes. This is dependent on
the properties of the system, for instance the average task-switch rate. Some
types of probes may be too expensive for a particular system,while others may
be inexpensive but they still contribute a significant valuefor an analysis. The
CPU utilization caused by a specific probe, p, is given by

UP = fP ∗ CPROBE

where fP is the expected rate (in Hz) of the probe p and CPROBE the probe
execution time, in seconds. The amount of recording bandwidth required, i.e.
the amount of data produced by the probe every second, is given by

BP = fP ∗ NPROBE

where NPROBE is the probe size, the amount of memory required to store
the data from a single probe execution. Thus, there are threeparameters that
need to be determined in order to estimate the impact on CPU utilization and
memory usage:fP , CPROBE andNPROBE . To provide reference values for
comparison of the different probe types, CPROBE is assumed to be 5µs. This
is realistic for modern systems and supported by the probe execution time mea-
surements presented later, in Section 3.2.4. A reference value for NPROBE is
found in our implementation of the software behavior recorder, also presented
later, in Section 3.2.4. Each probe execution requires 4 bytes of memory. The
expected rate is dependent on the type of probe and the general characteristics
of the system. To provide values for comparison, typical rates of the different
types of probes have been estimated based on our experience and studies of a
representative system in earlier work [WAN+03a, AN02]. Table 3.1 presents
typical rates of the different probe types and the resultingCPU utilization and
memory usage.
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Probe type fP (in Hz) UP BP (in B/s)
Task-switch 3000 0,015 12000
Service activation 1500 0,0075 6000
Usage of logical resources 50 0,00025 200
End-to-end response times 100 0,0005 400
State variables 50 0,00025 200
Semaphore usage 400 0,002 1600
IPC Send 360 0,0018 1440
Total 5460 0,0273 21840

Table 3.1: Typical rates of different types of probes and resulting resource
usage

The rates used as reference in Table 3.1 are motivated as follows:

• Task-switch rate - One event per task-switch, average task-switch rate
was observed on reference system

• Service activation - One event per task activation, averagetask activation
rate was observed on reference system (for all tasks)

• Usage of logical resources - 10 logical resources instrumented, each with
an average change rate of 5 Hz

• End-to-end response times - 10 response time monitored, each with an
average rate of 5 Hz, two probes are executed each time (10*5*2 Hz)

• State variables - 10 state variables monitored, each with anaverage change
rate of 5 Hz

• Semaphore usage - 10 semaphores monitored, each semaphore is used
by two different tasks. Each task uses the semaphore (lock and release)
with an average rate of 10 Hz. (10*2*2*10 Hz)

• IPC Send - 10 tasks monitored, one event per task activation,observed
an average task activation rate of 36 Hz on reference system

Some of the probing described in this section should be permanent, present
in the system at all times, e.g. the task-switch probe and thedispatcher probe,
as they generate a large amount of important information with a low impact
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on the source code as well as an impact on CPU and memory that inabsolute
terms is rather small. Probes on logical resources and statevariables could
also be of a permanent nature, since they are executed sparsely but maintain
significant value.

Probes that generate information that in the typical case isof less interest
could be disabled by default and activated when the system isto be studied
in detail, e.g. for modeling or fault localization purposes. Examples of such
probes are semaphore probes, state sampling probes and “IPCsend” probes.
As discussed earlier, to activate probes on demand implies arisk of causing a
probe effect, but this risk can be minimized if the “inactive” probes are allowed
to execute and thus consume CPU time as usual, but not allowedto store the
data. This is accomplished by writing the data from all inactive probes to a
single memory location. This way, the probes that are of little interest are
inactive in the sense that they do not use any memory, which allows for longer
execution traces to be recorded.

3.2.4 Implementation and Evaluation of a Behavior Recorder

In order to be able to record the behavior of a running system,the system must
have the appropriate recording functionality. We have developed a software
behavior recorder suitable for complex embedded systems with a single CPU
and the real-time operating system VxWorks, from WindRiver[WRW]. The
recorder is manually integrated in the system to be analyzedby adding the
recorder module to the system’s base platform. The recorderuses a feature in
VxWorks to associate a specific routine with the task-switch(context-switch),
which executes the associated routine each time the operating system performs
a task-switch. In our case, the task-switch routine contains a probe that reg-
isters each task-switch event in the system. Each executionof the task-switch
probe stores a timestamp together with an ID of the next task execute and the
scheduling status code of the previously executing task. The scheduling status
code contains the reason behind the task-switch, e.g. preemption by a task with
higher priority ( “READY”), blocking by a semaphore or a message receive
(“PEND”) or a waiting for a specified time (“DELAY”). From thecollected
task-switch information, it is possible to generate an execution trace, which
accurately describes how the tasks have executed over time.It is also possi-
ble to extract execution times, response times, preemptions and inter-arrival
times. Moreover, the recorder also supportsgeneric probes, i.e. explicit probes
inserted in the application code. Such probes may be used forany type of
probing proposed in Section 3.2.2, e.g. as dispatcher probe, start/stop probes,
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interface probe, state sampling probes etc.
The data from the task-switch probe and generic probes are stored in a

ring-buffer, i.e. the oldest data is overwritten when the buffer is full. Since
the amount of memory available for recording is limited, thealternative to a
ring-buffer is to stop recording when the buffer is full, which is not desirable.
Writing directly to a permanent storage device, such as a hard-drive, is not an
option due to the associated increase in probe execution time.

A ring-buffer always contains the most recent data. This is necessary as it
might be required to have the recorder active for long periods before interesting
behavior occurs. When the behavior of interest has been observed, the recorder
can be stopped and the content of the buffer is written to a file. The file can
then be transferred to a PC for analysis.

In the implementation of the software behavior recorder, the size of the
ring-buffer is by default set to 100.000 events. As each event requires 4 bytes
of memory for storage, this corresponds to a memory allocation of 400 KB.
The motivation for this large buffer size is the nature of thesystem that has
been studied, a robot control system [Wal03, WAN+03a, MWN+04]. Indus-
trial robots are typically used to perform repetitive tasks, where the robot arm
follows a cyclic path. As the temporal behavior of the control system depends
on the position of the robot arm, it is desired to record at least one cycle. As-
suming a probe execution rate of 3000 Hz, i.e. only task switches are recorded,
the chosen buffer size allows recordings exceeding 30 seconds, which is suffi-
cient for recording whole cycles in most test cases. Assuming a probe execu-
tion rate of 5500 Hz as presented in Section 3.2.3, this buffer size allows only
for 18 seconds. However, it is not a problem to use buffer sizes larger than
100.000 events; we have successfully performed recordingsusing buffer sizes
up to 300.000 events (using 1200 KB of memory). This buffer size allows for
recordings exceeding 90 seconds at a probe execution rate of3000 Hz (task
switches only). At the probe execution rate of 5500 Hz proposed in Section
3.2.3, this buffer size allows for recording 54 seconds of execution. The only
limitation on the buffer size is the amount of memory available.

The file that is the result of the recording uses a publicly available file-
format, called TRC, (named using the consonants from the word “trace”). The
TRC format was developed together with the recorder and is very simple. A
TRC file contains an execution trace, i.e. a list of time-stamped events gen-
erated by the code instrumentation. The time-stamps are read from a clock
with microsecond resolution. A detailed description of TRCfile format can be
found in the tool documentation.

The effect on the system’s temporal behavior caused by a specific software
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probe is dependent on two factors, the rate of which the probes are executed
in the system and the time it takes to execute a probe. The execution rate of a
probe depends on the context in which it is used, as discussedin Section 3.2.2
and Section 3.2.3. We have made measurements on a representative system in
order to estimate the execution time of a probe. The system consisted of a 200
MHz Intel Pentium system running the real-time operating system VxWorks,
from WindRiver [WRW]. The measurement of the probe execution time was
accomplished by configurating the system to execute only a single task contain-
ing two immediately adjacent probes, in a loop. The difference in time-stamps
between two adjacent probes provides an estimate on the probe execution time,
as depicted by Figure 3.1.
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Figure 3.1: The measurement of probe execution time (CPROBE)

The results from the performed probe execution time measurements are
presented in Figure 3.1. The measured probe execution timesare unfortunately
truncated since the resolution of the clock used, 1µs, is a considerable fraction
of the measured times. The measurements indicate that a probe takes on aver-
age 14µs. All but one of the observed probes took between 13µs to 15µs to
execute, but there is a single peak on 23µs. We were unable to find any obvious
cause of this peak, but a plausible explanation is effects from hardware, such as
cache memory misses. We also measured the execution time of the task-switch,
in order to estimate the relative increase in task-switch overhead caused by a
task-switch probe. To measure this execution time the system was configured
to execute two tasks, one with high priority and one with low priority. The high
priority task executed an infinite loop consisting of two operations; a generic
probe followed by a delay-operation caused a task-switch tothe lower priority
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task. The lower priority task contained a second generic probe that executed
immediately when the task was activated, i.e. after the task-switch, as depicted
by Figure 3.2.
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Figure 3.2: The measurement of task-switch execution time

The observed difference in time between the two generic probes was ap-
proximately 17µs, but this also includes execution time from parts of the two
probes used for the measurement, corresponding to the execution time of a
single probe. Thus, if compensating for the 14µs probe execution time, the
separation in time of the two probes, i.e. the task-switch execution time, is
only around 3µs in this system.

The impact of a task-switch probe is thus significant with respect to the task
switch overhead, an increase with over 500 %. As discussed previously, the
interrupt latency is effected by this impact as well. The execution of interrupt
service routines may be delayed by approximately 17µs if the interrupt occurs
at the immediate start of a task-switch, in comparison to 3µs without the task-
switch probe.

It is however important to note that the hardware used for these measure-
ments was quite old, a 200 MHz Intel Pentium system. This CPU was released
in the mid 1990’s, i.e. over 10 years ago, and has performanceequivalent to
a modern mid-range PDA. If measurements were to be made usinga modern
system, the probe execution times would be significantly lower as complex em-
bedded systems today often contain CPUs that are many times faster than the
one used in these measurements. It is also important to note that in the system
that has been studied many tasks have execution times measured in millisec-
onds and large execution time variations. For systems of this kind, adding a
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Figure 3.3: Results from measurement of probe and task-switch execution
time.

few microseconds to the execution time of the tasks will, in most cases, have
a negligible impact. Changes of similar magnitude are made frequently during
the system maintenance (bug fixes etc.), in most cases without introducing any
problems related to the temporal behavior.

3.3 Analysis and Comparison of Execution Traces

In this section we will discuss the analysis and comparison of data from recorded
execution traces and present tools supporting analysis, comparison and visual-
ization. Further, we will present an implementation of theProbabilistic Prop-
erty Language, PPL, initially proposed in [WAN03b].

Together with the information available, the analysis method decides which
properties that can be analyzed and also effects the confidence assessment of
the result. Dynamic analysis techniques are based on a recording of the system
behavior during a limited period of time. This gives a realistic picture of the
system behavior, but the analysis result is not necessarilysafe, i.e. it is not cer-
tain that the “worst case” has been captured in the recording, as the recording
is merely a sample from a large set of possible scenarios and corresponding
system behaviors.

A problem with dynamic analysis is how to determine the confidence of the
results. For instance, we want to compare the average response time of a partic-
ular task in two different versions of the system. If there are large variations in
response times between executions of the task, how do we knowif an observed
difference is actually an effect of the difference between the systems and not
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due to random fluctuation? This has been addressed in literature, e.g. in the
book by Law & Kelton [LK93]. They present two approaches for comparing
real-world observations with simulation results, theinspection approachand
theconfidence interval approach. These methods can also be used to compare
two real-world observations of potentially different systems or two different
simulations of models. These methods are necessary for behavior impact anal-
ysis (discussed further in Chapter 4), regression analysis(presented in Section
3.1.3) and model validation (discussed in Chapter 5).

The inspection approach is probably the most common method used among
simulation practitioners. Basically, this method computes statistical measures,
e.g. average values, from the two observations and comparesthese values. This
is depicted in Figure 3.4.
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Figure 3.4: Inspection approach

According to [LK93] a problem with this method is that the statistics that
are compared only represent a single sample of an underlyingpopulation. As
the statistical values are computed based on stochastic variables, e.g. response
times, also the statistical measures will be stochastic variables. Thus, the calcu-
lated statistics may have varying values from time to time. Applied to our ap-
proach this would mean that, e.g. the average execution timecalculated from a
single execution trace could vary from time to time. This is probably true, even
though the variation may be very small if sufficiently long execution traces are
recorded and the system has the same configuration in both observations.

The confidence interval approach, depicted in Figure 3.5, requires large
amounts of data to be collected for analysis. Instead of comparing two values
calculated from two sets of data, many sets of data are collected for each of
the two systems to be compared. From each set of data from the two systems,
the statistic measure to compare is computed, e.g. the average value, resulting
in two sets of data points where each data point represents the behavior of the
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system during a particular observation. A confidence interval is constructed
that describe the deviation between the two sets of data, e.g. “a 99 % confi-
dence interval of the deviation is 2.42± 1.15”. The 99 % confidence expresses
the ratio of independently constructed confidence intervals that will cover the
expected value, i.e. the mean difference between the two data sets.

If the confidence interval does not cover zero (0), the difference between
the systems compared is statistically significant, as the expected deviation is
more significant than the variation. This indicates “real” differences between
the two systems. In the other case, when the confidence interval covers zero
(0), the observed differences may be due to random fluctuations.
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Figure 3.5: Confidence interval approach

The confidence interval approach is preferable, as it allowsfor several ob-
servations of the systems used which results in a higher confidence in the com-
parison. However, to make a large set of observations of a real system is typi-
cally a substantial effort.

3.3.1 The Probabilistic Property Language

The purpose of the Probabilistic Property Language, PPL, isto allow formula-
tion of queries on properties related to the temporal behavior a system, such as
response times and usage of logical resources. PPL can describe all properties
discussed in Section 3.2.2 and more. PPL allows formulationof probabilis-
tic properties, e.g. soft deadlines such as “at least 99 % of task X should be
completed within 1000 time units”.
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The temporal logics discussed in Section 2.4 can not expressprobabilities
or quantitative time, but there are other temporal logics which can, e.g. TPCTL
[HJ94]. Compared to such temporal logics, PPL is used for similar purposes,
i.e. specifying properties to check, but PPL is more of a database query lan-
guage than a mathematical logic, where the “database” that is queried by PPL
is an execution trace. It might be possible to use a temporal logic rather than
PPL. However, PPL is specially designed for expressing probabilistic proper-
ties of the temporal behavior of tasks, which makes PPL queries more intuitive
for software developers without previous experience of formal methods.

In this section an implemented version of PPL is presented using a set of
examples. This version differs a bit from the original definition of PPL found in
[WAN03b] and [Wal03]. A detailed specification of the implemented version
of PPL and the differences compared to the original version can be found in
Appendix B.

The PPL query A typical use of PPL is to check a deadline property of a
task. Example 1 presents a PPL query that checks if all instancesi of taskA
meets a deadline of 1000 time units with a probability of 1. A task instance is
a particular execution of the task. A task instance is represented in PPL using
it’s task identity, start time, finishing time and executiontime.

Example 1:

P(A(i), A(i).response < 1000) = 1

The first parameter to the P operator is a quantifier specifying that the condition
in the second argument should be checked for all instancesi of the taskA. This
is different from the original version of PPL [Wal03, WAN03b], where the P-
function did not accept any quantifier argument. It was discovered during the
implementation of the PPL analysis tool that the original definition of PPL had
ambiguous semantics when multiple tasks are referred in a query. The quanti-
fier parameter is necessary in those cases to solve the ambiguity. The second
parameter is the condition to check. In the example the condition specifies that
the response time of the task A should be below 1000. The P operator returns
the ratio of the instances in the execution trace for which the condition holds.
If the P operator has a return value of 1, it means that the condition holds for
all observed instances of the task, i.e. a probability of 1.

PPL allows checking probabilistic properties such as a softdeadline. For in-
stance, a soft deadline requirement could be that at least 90% of the task in-
stances should meet the deadline. An example of a soft deadline is presented
in Example 2.
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Example 2:

P(A(i), A(i).response < 1000) > 0.9

PPL has a data model allowing a query to refer to task instances in the execution
trace using a combination of task name, instance index and property name, on
the form “task(i).property”. The data model provides five properties for each
task instances in the execution trace, which can be used in PPL queries. These
are specified in Table 3.2.

Property Description
start The time when the instance started
end The time when the instance finished
exec The execution time of the instance
response The response time of the instance
probeN The value of probe N when the instance started

Table 3.2: The data model of PPL

The “probeN” property of a task instance corresponds to the value of the generic
probe “probeN” at the time the task instance is started. A generic probe may
monitor any quantifiable property, but typically generic probes are used to
monitor logical resources of different kinds, such as the current utilization of
a buffer. Further, PPL contains a set of operators and function that allow con-
ditions to be formulated on the data model. These operators are described in
Table 3.3.

Relational operators =, <, <=, >=, > value op value -> bool
Logical connectives and, or, not bool op bool -> bool
Arithmetic operators +, -, *, /, abs value op value -> value
Statistical functions max, min, avg, median op(list) -> value
Index operator X(i) op(list, index) -> instance
Following operator X(following(Y(i))) op(list, list, index)-> instance

Table 3.3: The operators of PPL

PPL queries using the instance operator The index operator is used to dif-
ferentiate instances of the same task. One property that canbe checked using
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the index operator is temporal separation, i.e. a property that specifies the min-
imum distance in time between two consecutive instances of atask. This is
demonstrated by Example 3.

Example 3:

P(A(i), A(i+1).start - A(i).end >= 1000) = 1}

Another use of the instance operator is demonstrated in Example 4, which spec-
ifies that two consecutive instances must not violate the deadline of 1000 time
units.

Example 4:

P(A(i), A(i).response > 1000 and
A(i+1).response > 1000) = 0

Expressing a requirement that e.g. 5 consecutive instancesmust not miss their
deadline would result in a very large expression if the presented from the previ-
ous example is used. To simplify such queries it is possible to specify intervals
rather then single integers in the index operator. Example 5specifies that there
must never be 5 consecutive task instances that violate the deadline of 1000
time units.

Example 5:

P(A(i), A(i +[1..4]).response > 1000) = 0

Queries using functions and unbounded variables In order to relate adja-
cent instances of different tasks, thefollowing function can be used. Example
6 shows a query checking if there are any situations where an instance of A
and the following instance of B have execution times above 1100 time units
and 1700 time units respectively.

Example 6:

P(A(i), A(i).exec > 1100 and
B(following(A(i))).exec > 1700) > 0

Moreover, PPL queries may contain an unbounded variable. For instance, by
specifying the probability as an unbounded variable, the result of the query is
the minimum/maximum value for which the condition holds. A query using an
unbounded variable to evaluate the probability of meeting adeadline of 2000
time units is presented in Example 7.
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Example 7:

P(A(i), A(i).response < 2000) = X

It is also possible to use unbounded variables inside the second parameter of
the P-operator. A query evaluating the shortest deadline D that is met with a
probability of at least 0.9 is presented in Example 8.

Example 8:

P(A(i), A(i).response < D) >= 0.9

Statistical functions As presented in Table 3.3, there is also a set of statis-
tical functions that may be used to extract simple statistical measures of the
different tasks. The statistical functions can be used as stand-alone queries as
in Example 9.

Example 9:

avg(A.response)

median(A.exec)

max(A.exec)

The statistical functions can also be used instead of constant values inside the
second parameter of the P-operator, as in Example 10.

Example 10:

P(A(i), A(i).resp > avg(A.resp)*2 ) = X

The above described PPL query returns the probability (X) oftaskA having
a response time above a certain limit, which is specified as “two times the
average response time”.

Queries on logical resources PPL also allows queries on data from generic
probes. A generic probe may monitor any quantifiable property of the system,
but are typically used to monitor logical resources, such asthe usage of a data
buffer. In the current implementation, the generic probes are identified using
a number. If the number of messages in a certain message queueis monitored
using generic probe number 21, it is possible to formulate a PPL query check-
ing that the message queue is never empty when taskX is activated as presented
in Example 11.
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Example 11:

P(taskX(i), taskX(i).probe21 > 0) = 1

It is also possible to specify conditions on a probe that are independent of what
tasks that are to be executed, by replacing the name of the task with a wildcard
character. This is demonstrated by Example 12. For such queries the proba-
bilities are calculated differently, by summing the lengths of the time intervals
where the condition holds and divide that with the length of the recording. The
resulting value is thus the fraction of the total time in the recording where the
condition holds. This is an approximation of the probability that the condition
holds at an arbitrary point in time.

Example 12:

P(*, *.probe21 > 0) = 1

Tool Support The PPL language is supported by two tools available as a part
of the ART Framework: theProperty Evaluation Tooland theTracealyzer. The
Property Evaluation Tool is a dedicated front-end application for PPL which
analyzes batches of PPL queries on two different execution traces and presents
the results side-by-side. The tool is presented in Section 3.3.2. The Tracealyzer
tool contains among other features a PPL terminal, where it is possible to for-
mulate and run single PPL queries with respect to an execution trace. This is
the preferred tool for experimenting with PPL. The Tracealyzer is presented in
Section 3.3.3.

3.3.2 The Property Evaluation Tool

The Property Evaluation Tool (PET) is a tool for analyzing and comparing
execution traces with respect to different system properties formulated in PPL.
The application has uses in all three processes described inthis thesis:

• Regression analysis, presented in Section 3.1.3.

• Behavior impact analysis, presented in Chapter 4.

• Model validation, discussed in Chapter 5.

The user interface of the tool is depicted by Figure 3.6. Performing an
analysis is generally swift but depends on the size of the execution traces and
the amount and calculation complexity of the PPL queries. The queries in
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Figure 3.6 take less than 3 seconds on a modern computer (Intel Pentium 4, 2.4
GHz). The two execution traces in the example are medium-sized (containing
10.000 and 60.000 events respectively). However, some exotic PPL queries
where more than one task is involved may take considerable time to compute,
minutes rather than seconds for larger execution traces, i.e. 100.000 events.

The tool reads one or two execution traces as well as acomparison file
containing a set of PPL queries. If two execution traces havebeen specified,
the results are presented side-by-side in a table, consisting of two columns
corresponding to the execution traces and one row for each PPL query. In the
user interface depicted in Figure 3.6, the actual PPL queries are however not
visible. For better tool understandability, instead of presenting a cryptic PPL
expression, the tool presents a descriptive name of the property that is queried.
The PPL queries can however be inspected and edited in this tool by clicking
on the property.

Figure 3.6: The Property Evaluation Tool

The tool can automatically inspect the analysis results using comparison
rules. These comparison rules may be specified for each property inthe com-
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parison file and are intended to define which analysis resultsare acceptable and
which are not. When PET has evaluated the PPL queries, it inspects the results
of each query and applies any specified comparison rule. Any results that vio-
late a comparison rule is then pointed out to the user. The comparison rules are
defined in a simple language consisting of four functions, where each function
has one parameter.

• absdiff(n) – Absolute difference at most n

• reldiff(n) – Relative difference at most n %

• max(n) – The value should be below n

• min(n) – The value should be above n

A comparison rule consists of one of these four functions anda specified
value, which may be a limit (max, min) or a tolerance (absdiff, reldiff). The
two latter comparison rules require two execution traces, as they compare two
analysis results, while the first two (min, max) compares a single analysis result
with a constant value.

3.3.3 The Tracealyzer

The Tracealyzer has two main features, visualization of an execution trace and
a PPL terminal, i.e. a front-end for the PPL analysis tool. The execution trace is
presented graphically. The task execution and the values ofgeneric probes are
presented in parallel, allowing e.g. resource usage and theexecuted services to
be presented next to the task execution. Moreover, it is possible to navigate in
the trace by using the mouse and also to zoom in and out and to search for task
instances based on name and (optional) a minimum or maximum execution
time, response time or fragmentation (number of preemptions).

The user can select a task instance (execution) by clicking in the graph-
ics. The selected task instance is highlighted, which visualize what fragments
correspond to the task instance and information about the task instance is pre-
sented, such as the execution time and response time of the instance and the
average execution and response times for the task. If more task statistics are
desired, it is possible to generate a report, containing a variety of information
about all tasks.

The window contains a list labeledprobe visibility, presenting a list of the
generic probes that have been recorded in the current execution trace. Select-
ing one of the generic probes in the probe list will display its value over time,
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Figure 3.7: The Tracealyzer tool
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next to the task execution. Since a probe can monitor logicalresources of any
type, the meaning of a certain probes is defined by the contextof the associ-
ated probe. The probe visualized in Figure 3.7 of the Tracealyzer monitors the
number of messages in a particular message queue. The value “20” next to the
probe name is the numerical identifier of the probe. This information is im-
portant as the PPL language is limited to identifying probesby their numerical
identifier. It is also possible to save a list of the task instances to a text file. This
way, the data can be imported into other applications and visualized in other
ways than the ones provided by Tracealyzer.

Apart from visualizing the data in an execution trace, the Tracealyzer also
contains a PPL terminal. It is basically a front-end for the PPL analysis engine.
The terminal contains two fields, one input where PPL queriescan be typed
and one output where the result are presented.

The graphical visualization of execution traces, providedby the Trace-
alyzer tool is, according to our experiences, an effective way of increasing
the understandability of the system. The tool has been introduced at a collab-
orating company, ABB Robotics, with good results. When developers at the
company first visualized execution traces from the latest version of their sys-
tem, there were immediate reactions on details and suspicious behaviors in the
execution trace. We provided them with a new view of the system behavior,
which increased the system understandability and facilitated debugging activi-
ties.
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3.4 Discussion

In this chapter we have presented how dynamic analysis may beused for im-
proving the analyzability of complex embedded systems. We have presented
what properties are of interest for analysis and why. Moreover, the necessary
code instrumentation and the resulting impact on resourcessuch as CPU and
memory were discussed. The impacts on such resources are negligible for large
systems as the one considered in this thesis. However, thereis a risk of experi-
encing problems with the probe effect if code instrumentation is removed after
the analysis. In this work, we assume that we can leave probesin the system,
partially due to the fact that they have little impact, and partially due to the fact
that they can be used for other purposes than modeling for behavior impact
analysis; they allow regression analysis and may also be used for debugging
purposes.

In relation to the research questions stated in Section 1.2,this chapter has
partially answered Q1, the first of two sub-questions.

Q1: What methods are suitable for extracting the information necessary for
a temporal behavior model from a complex embedded system implementation
containing millions of lines of code?

Dynamic analysis is a suitable method for extracting information from very
large implementations and may be used for modeling of complex embedded
systems. Dynamic analysis is especially suitable for collecting quantitative in-
formation regarding the dynamic aspects of the system behavior. However,
since only a limited amount of software probes may be used in order to keep
the resource usage on a reasonable level, additional sources of information is
necessary, especially for the construction of detailed models also including se-
mantic dependencies between the temporal behaviors of tasks.

Dynamic analysis does not only enable the construction of models for be-
havior impact analysis, but also enables regression analysis and improves sys-
tem understandability. Two tools have been presented whichutilize dynamic
analysis, for different but related purposes.

The main purpose of the Tracealyzer is to visualize an execution trace. The
task execution and the values of generic probes are presented graphically, in
parallel. Visualizing the task execution is far from unique; there are several
commercial tools that have similar functionality, e.g. thesystem WindView
from WindRiver [WRW].

The second tool, the Property Evaluation Tool, allows comparison of exe-
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cution traces with respect to a set of PPL queries. This tool enables regression
analysis, presented in Section 3.1.3, as well as behavior impact analysis based
on temporal behavior models (Chapter 4) and validation of temporal behavior
models (Chapter 5). PPL is unique as far as we know and the mostimportant
part of this framework, as it provides the possibility to formulate and system-
atically evaluate system properties with respect to recordings.

Developers at ABB Robotics are successfully using the Tracealyzer today
as a debugging tool. Further, regression analysis and the Property Evaluation
Tool have been introduced to a small group of experienced system developers.
They quickly understood how they could benefit from the new possibility of
analyzing the system and the method will gradually be introduced into their
software development process. The software behavior recorder that is required
by both the presented tools has been integrated in their robot control system
and is active in both debug- and release-versions of the system.

The Property Evaluation Tool basically uses what [LK93] refers to as the
inspection approach, extended with comparison rules allowing a tolerance to
be specified for each property to be compared. This is not an ideal solution,
since it is based on a comparison of a single execution trace from the two
system versions. There is a risk that at least one of these execution traces is not
representative for the system version as it contains extreme values.

The confidence interval approach, presented in [LK93], is highly relevant
for the comparison of execution traces, e.g. in a regressionanalysis. A future
implementation of this method could utilize PPL in order to extract the statis-
tics of interest from each recording, e.g. average responsetimes of tasks etc.
However, additional functionality in the form of a program or a script of some
sort is necessary in order to construct the confidence interval.
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Modeling Temporal Behavior

This chapter presents an approach for the development of models describing
the temporal behavior of existing complex embedded systems, i.e. large in-
dustrial software systems typically with cost-, dependability- and real-time re-
quirements.

Temporal behavior models allow for analyses of important properties of
the system behavior related to timing and resource usage, e.g. response times,
CPU utilization and utilization of limited logical resources. Such properties
may be of vital importance for the correct operation of the system and also
effect softer issues such as user-perceived system performance. As discussed
in Chapter 1, introducing analyzability with respect to these properties may
improve productivity in maintenance of such systems, sincepotential problems
associated with changes may be predicted early, before implementation, and
thereby avoided.

Without such models it is often hard to predict how changes tothe system
may effect the temporal behavior since the temporal behavior is dependent
on many factors, such as varying execution times, the systemenvironment,
the task scheduling causing preemptions, and communication/synchronization
between tasks.

Today, most companies developing complex embedded systemshave no
suitable models that allow analysis of the temporal behavior of their systems.
The exceptions include systems that have been designed withanalyzability in
mind, e.g. the automotive systems produced by Volvo Construction Equipment
[MWN+04]. For systems that have not been initially designed with analyzabil-
ity in mind, introduce analyzability without redesigning the system requires the

69
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development of an analyzable behavior model of the system, an abstraction fo-
cusing on a particular aspect of the system behavior, in thiscase the temporal
behavior.

A temporal behavior model, together with suitable analysismethods, pro-
vides analyzability which can be used to predict the effect on the system be-
havior caused by a proposed change to the system, e.g. addinga new feature.
The original model of the system is extended with a prototypeof the change.
Due to the high level of abstraction in the temporal behaviormodel, changes
can be prototyped with little effort.

The impact on the system behavior caused by the proposed change is pre-
dicted by comparing analyses of the original model with analyses of the modi-
fied model, the one containing the prototype change. If the comparison reveals
unacceptable impacts of a proposed change, the change may bere-designed
and future problems associated with this impact are therebyavoided.

The ability to predict the temporal behavior of a future system can also be
used to predict how existing parts of the system will effect new functionality. If
an analysis reveals that the new functionality is significantly affected by other
parts of the system, i.e. higher priority tasks, the new functionality may have to
be re-designed in order to function as intended. An example is to estimate the
response time distribution of a new task. For simple systemsresponse times
can be calculated using the analytical methods discussed inSection 2.3.1, i.e.
[LL73, MJ86], but as discussed in Section 2.5, such methods can typically not
be used for complex embedded systems.

As an analysis of the temporal behavior of a future version ofa system can
be performed in an early phase, it is possible to avoid problems that otherwise
are discovered late, in integration testing or post-release, and thereby costly.
This improves productivity during system maintenance and as potential prob-
lems are identified and avoided in an early phase, the qualityand reliability of
the system can be improved as well. The use of this analysis allows companies
developing complex embedded systems to better handle a highand increasing
complexity, i.e. to stay longer in life-cycle phase III as depicted by Figure 1.1
presented in the introduction.

In previous works [Wal03, AWN04a, WAN03b, WAN+03a, AN02] we
have used the term “impact analysis” referring to the analysis of the impact
on a system’s temporal behavior caused by a maintenance operation. However,
this term is general and there is at least one other definitionof the term “impact
analysis” in Software Engineering research; analysis of the static dependen-
cies between components in an implementation which needs tobe considered
when implementing a change. Works in this area are e.g. [AB93] where the
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authors define a framework for comparison of different approaches for impact
analysis and [CFV99, QVWM94] which presents two interesting case studies.
In order to avoid confusion we will hereafter use the more specific termbehav-
ior impact analysisto denote impact analysis with respect to system behavior.
Another terminology issue is the relationship between the terms “change” and
“maintenance operation”. The term “maintenance operation” refers to the ac-
tivity of adding or changing functionality in the system, while “change” refers
to the resulting alteration of the implementation. Thus, a behavior impact anal-
ysis predicts the impact of a change, which in turn is the result of a maintenance
operation.

The construction of a temporal behavior model of a complex embedded
system, detailed enough to allow behavior impact analysis,requires informa-
tion about the system design and behavior from several sources:

System Implementation The most accurate and reliable documentation avail-
able is the systems implementation, i.e. the source code. However, due to the
size of complex embedded systems, the construction of a behavior model from
a systems implementation requires a significant effort, which may require tool
support. It is therefore important to focus the modeling effort on the relevant
parts of the system. However, information about the temporal behavior can
not be obtained from the implementation alone, as e.g. execution time is not
visible in the implementation.

Run-time system As the systems considered in this thesis are real-time sys-
tems, the model needs to include information about timing, e.g. execution
times. Moreover, systems of this type interact with an environment, physical
processes or other computers. This environmental interaction effects the sys-
tem behavior and thus needs to be modeled as well. This information can be
collected using dynamic analysis, discussed in Chapter 3, i.e. recordings on
the run-time system in a realistic environment.

System Documentation Various documentation typically exists that can fa-
cilitate the understanding of the system implementation, system architecture,
and the requirements of the system. Other important documentation is realistic
test-cases, which are necessary for dynamic analysis activities.

System and Domain Experts An important information source is the inter-
views and discussions with system experts and developers. This facilitates the
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understanding of e.g. the application domain, the requirements of the system,
the software architecture and what properties that are of interest for analysis.

Given that a model has been developed, the main problem associated with per-
forming a behavior impact analysis is themodel validity, i.e. if the model suf-
ficiently and accurately describes the system with respect to the properties of
interest. One way of increasing the probability that the model is valid is to fol-
low a well-defined process when developing the model; we therefore propose a
modeling process suitable for complex embedded systems later in this chapter.
However, in order to assure that the model is a valid description of the intended
system, a model validation activity is necessary. A model validation typically
compares the results from analyzing the model with observations from the cor-
responding system. Model validity and techniques for modelvalidation are
discussed in Chapter 5.

The remainder of this chapter is divided into four sections where Section
4.1 discusses the primary use of temporal behavior models, the behavior impact
analysis, in greater depth. Section 4.2 presents an approach for modeling of a
complex embedded systems behavior and timing, while Section 4.3 focuses
on modeling the environment of complex embedded systems. Finally, Section
4.4 concludes the chapter and discusses how this contribution relates to the
research questions of this thesis, stated in Section 1.2.

4.1 Behavior Impact Analysis

A behavior impact analysis predicts how a change will impactthe behavior
of the system with respect to specific properties of the system behavior, the
properties of interest. Using this analysis, a designer of anew feature can try
alternative designs on a model, evaluate their impact on thesystem and thereby
avoid designs that negatively impact the system behavior, causing e.g. reduced
performance or potential timing errors. Such problems onlymanifest them-
selves in full system testing, i.e. after implementation, unit testing and integra-
tion, and often occur in rare situations only making them difficult to reproduce
[Sch91] and thereby time-consuming and costly to detect andcorrect.

Consequently, as the risk of introducing such errors is reduced, the pro-
ductivity during maintenance is increased and the development time becomes
more predictable. This may also improve system reliabilityas the quality of
the system is improved through better design.

In a behavior impact analysis, two behavior models are compared, theorig-
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Figure 4.1: The behavior impact analysis

inal modelcorresponding to the current version of the system, and aprototype
corresponding to the future version of the system, which represent the results
of implementing the change. The comparison is done by analyzing both mod-
els with respect to the properties of interest, resulting intwo sets of analyses
results, one set for each model. These sets of analyses results are compared
property by property. Any statistically significant differences are impacts of the
change. The steps of the behavior impact analysis are depicted in Figure 4.1.

Changes are prototyped on a behavior model by comparing the existing
model with the design of the proposed change. Thereby, the parts of the model
that may be effected by the change can be identified and modified to represent
the change. As the model represents the system using different levels of ab-
straction for the different tasks and services, depending on their relevance for
the model, a prototyped change may in some cases correspond only to a small
increase in the execution time of a service. In other cases, where a change
effects the tasks that are described in detail, the change may be prototyped in
a detailed manner, e.g. similar to a full implementation butwith focus on the
control flow and timing.

Figure 4.2 depicts the process of using behavior impact analysis in the
maintenance of complex embedded systems. The output of the analysis, the
predicted impact, typically needs to be inspected by a system expert in order
to decide whether or not the predicted impact is acceptable.However, if a set
of rules are defined, that for each property specify what results are acceptable,
this activity can easily be automated.

If the predicted impact is unacceptable, the designers needto change their
design in order to consume fewer resources, i.e. CPU time or logical resources,
or if possible, change the system in order to provide the resources required
by the new feature, by e.g. switching to a faster CPU, and repeat the anal-
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Figure 4.2: Using behavior impact analysis in maintenance

ysis. When the predicted impact is acceptable, the proposedchange may be
implemented, but the implementation of the change must not consume more
resources than the analyzed prototype. This means in practice, to impose a
resource budget on the implementer, specifying e.g. a maximum allowed ex-
ecution time of the functionality. This implies that the developer needs to be
aware of the resource usage when developing a feature. When the change has
been implemented, the behavior model needs to be updated in order to reflect
the final implementation of the change, since it may be different compared to
the prototype used in the early analysis. If a major difference is discovered
between the prototype and the final implementation when updating the model,
the analysis should be repeated in order to check if the previous analysis re-
sult remains valid. This is especially important if the model used for the early
analysis turns out to be optimistic.

A behavior impact analysis is motivated for major changes tothe system,
such as:

• changes effecting the activation of services in other tasks,

• changes effecting the use of shared state variables and other logical re-
sources such as message queues and semaphores,

• changes that are likely to have a significant impact on the execution time
of a service (especially if the task has a high scheduling priority),

• the addition of new tasks to the system.

It may not be motivated to use behavior impact analysis if thechanges are
very small and unlikely to have any side effects, for instance a small change
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in a calculation of output data. Even though small changes may have major
undesirable side effects in the worst case due to the discontinuous nature of
software systems, the probability of this is low with regardto our experiences;
otherwise industry would use formal analysis tools much more extensively than
today.

4.2 Modeling System Behavior

This section presents a process for developing models of thetemporal behavior
of complex embedded systems. Further, the section proposesa structure divid-
ing the model into two components; where each component is further divided
into two subcomponents. Thus, in total, the complete analyzable model, the
system model,consists of four components:

• A behavior model– describing the functionality of a complex embedded
system, including timing. The behavior model consists of the following
components:

– Functional model– describes the behavior of the individual tasks
and services in the system, with a focus on control flow.

– Model parameters– contains quantitative information on systems
timing and probabilities that is used by the Functional model.

• An environment model– describing stimuli from the environment that
effects the behavior of the system. The Environment model consists of
the following components:

– Specific stimuli model -describing stimuli specific for a certain test
case.

– Common stimuli model -describing stimuli that are always present.

The rest of this section presents an approach for the development of the be-
havior model, while the environment model and its components are separately
discussed in Section 4.3.
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4.2.1 The Modeling Process

The construction of a behavior model of a complex embedded system consists
of three main activities:

• Development of themodel specification

• Construction of the functional model

• Constructing the model parameters

Figure 4.3 depicts these activities in construction of a behavior model and
the resources on which the activities depend. When constructing the behavior
model, the first activity is the construction of a model specification, a document
describing the system and the properties of interest for analysis. The purpose
of this document is to gather information from several sources in order to de-
scribe the many factors that effects the temporal behavior of the system. This
is especially important when the modeler has limited experience of the system,
but also important if the modeler is an experienced system developer or archi-
tect, as the document serves as a specification of the modeling effort and may
be communicated with other system experts.

Model Parameters

Behavior Model

Functional Model

System Model (Analyzable)

Environment Model

Source Code

DocumentationSystem Experts

Runtime System

Model Specification

Reverse Engineering Dynamic Analysis

Model Parameters

Behavior Model

Functional ModelFunctional Model

System Model (Analyzable)

Environment Model

Source Code

DocumentationSystem Experts

Runtime System

Model SpecificationModel Specification

Reverse EngineeringReverse Engineering Dynamic AnalysisDynamic Analysis

Figure 4.3: The process of constructing a behavior model

The next activity is to construct the functional model, based on the model
specifications and reverse engineering of the system implementation. Based on
the information in the model specification the relevant tasks and services are
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modeled with respect to the externally visible events. During the reverse engi-
neering it is appropriate to prepare for the construction ofthe model parameters
by performing the code instrumentation necessary for the dynamic analysis, as
discussed in Chapter 3. This code instrumentation needs to specify identifiers
for the different model parameters resulting from the dynamic analysis. These
identifiers are necessary in the functional model in order torefer to specific
model parameters.

The third activity in the modeling process is to build the instrumented code
into an executable system and perform recordings using appropriate test cases.
From the recorded execution traces the model parameters arefinally extracted.

4.2.2 The Model Specification

When constructing a behavior model, it is important that themodeler
understands the “big picture”, e.g. how the system is used bythe customers,
the requirements on the system and the various configurations that may exist.
However, the modeler does not need to be a system expert if regular meetings
can be arranged with system experts or other experienced developers in order to
develop the necessary system understanding. The understanding of the system
requires documentation in a model specification, developedby the modeler in
cooperation with the system experts.

The model specification is a document describing the system architecture
and runtime behavior at a high level of abstraction, as well as the properties of
interest for analysis. It is important that the model specification is carefully re-
viewed by other system experts in order to avoid misunderstandings and allows
for system experts to contribute with additional information and comments rel-
evant for the modeling.

In order to assure the validity of the model specification, itshould be based
on interviews/discussions with several system experts anddevelopers. More-
over, the modeler needs to study the code, runtime behavior (through dynamic
analysis tools) and available documentation in order to better understand the
details of system and verify the model specification.

To provide the reader with an example of a small model specification as
well as a brief description of the system that has been studied in earlier work
[Wal03, WAN+03a, AN02], we present a model specification describing the
system in Appendix C. Names are omitted due to business secrecy reasons.

According to Figure 4.3, the model specification is based notonly on code
studies, documentation and discussions with system experts, but also on studies
of the runtime system, i.e. the information in recorded execution traces. When
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trying to understand the behavior of a complex embedded system, visualization
of execution traces is a powerful method complementary to studying code and
documentation. This is especially true when studying the temporal behavior of
the system, as it is seldom documented and not visible in the implementation.
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Figure 4.4: Visualization of observed execution and response times of two
tasks

An execution trace can be graphically visualized in different ways in or-
der to increase the understandability of the systems behavior. In Figure 4.4,
two graphs are depicted, showing the temporal behavior of two tasks in a real
system. These tasks are complex and time-critical, communicating with many
parts of the system.

The two graphs correspond to two particular tasks during thesame period
of time. Each execution of a task results in two dots, where the Y-value describe
the execution time (E) or response time (R) and the X-value correspond to the
start time of the task instance. In both these graphs, we can observe a discrep-
ancy around time 300. This is most likely due to a dependency between these
tasks, e.g. they might both react to changes in the same global state variable.
Such dependencies between task’s temporal behavior may be difficult to detect
based on the other sources of information, since they are rarely documented.

4.2.3 The Functional Model

Constructing the functional model of a system is the task of documenting the
behavior of the system in a notation suitable for analysis, at an appropriate level
of abstraction. The resulting model describes the behaviorof the tasks in the
system, the attributes of the tasks such as scheduling priority. In many cases,
a task consists of a set of services, separate behaviors, which are executed on
request from other tasks in the system. Each service in a taskmay be regarded
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as a set of sequences ofexternally visible events, i.e. events that effects other
tasks or the environment. An externally visible event may bee.g. the send-
ing an IPC message to another task, the writing to a shared state variable or
the locking of a semaphore. By modeling the implementation on this level
of abstraction, the interactions between tasks are modeledwhile still keeping
the model sufficiently abstract. This level of abstraction is commonly used in
formal verification tools for software e.g. VeriSoft [CGP02] and SPIN/Modex
[Hol97, SPI, Hol03]. In comparison with the real implementation, models on
this level of abstraction do not describe the data flow, i.e. calculations and as-
signments of data variables, but the focus is on the events that may effect the
task scheduling.

In order to find such events in the source code, reverse engineering tools
may be utilized, such as Rigi [BG97], Imagix 4D [BG97], Fujaba [KSS+02]
and Rational Rose [KSS+02]. These tools parse the code and visualize the
relationship between classes and files, for instance as class diagrams or call
graphs. A problem with such tools is that they are general, i.e. not adapted
for the specific system in focus, and the resulting views are therefore subop-
timal. Most embedded systems are implemented in imperativelanguages, not
object oriented languages, and therefore naming conventions are commonly
used to group related functionality. Also, if tasks consistof multiple services,
the reverse engineering tool needs to be aware of this in order to identify the
individual services. This is very important, as the reverseengineering is to be
performed service-by-service, and it is therefore desiredto isolate the behavior
of individual services in the task. Thus, knowledge of naming conventions and
other system-specific properties of the implementation canfacilitate the reverse
engineering significantly. There are existing reverse engineering tools that are
highly adaptable, e.g. Rigi. Such a tool could possibly be adapted in order to
better present implementations containing naming conventions and services.

When constructing the functional model, it is important to focus the mod-
eling effort on the areas of the system that are relevant to the properties of
interest. Moreover, as a task may consist of a large set of services, the relevant
services need to be identified as well. Only tasks and services that are consid-
ered relevant need to be described in detail, while less relevant tasks/services
can be described on a higher level of abstraction. In a temporal behavior model,
tasks can be modeled in a high level of abstraction by describing the temporal
behavior only, i.e. inter-arrival time, scheduling priority and execution time.
In the same way, individual services may be modeled solely bytheir execu-
tion times. The tasks and services in focus of the modeling effort should be
specified in the model specification.
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A problem when modeling is that most services have more than one pos-
sible path of execution, as there are selections (includingloops). To model all
possible paths through a service in detail may not always be possible, as the
selections may depend on variables not included in the modeldue to the nec-
essary level of abstraction. When such selections are discovered the modeler
may either extend the model to include the necessary variables, or model the
selection in a probabilistic manner, by identifying the probabilities of differ-
ent behavior using dynamic analysis and specifying these probabilities in the
model. Probabilistic models are often accurate in the average case, which is
suitable for e.g. performance estimation, but as the underlying mechanisms
of selection is not modeled there is a risk of missing semantic dependencies
between the selection and other behavior in the system. Suchdependencies
may make the model overly optimistic or pessimistic, depending upon the situ-
ation. Consider a case where a service contains two selections, which are both
modeled in a probabilistic manner. The code executed by these selections cor-
responds to a major part of the total execution time of the service. The code
and the corresponding probabilistic behavior model are presented in Figure 4.5.
The behavior model is divided into a functional model and model parameters
as discussed in Section 4.2.

Implementation Behavior model
if ( foo > 100 )
{

CalculateA(foo);
}
if ( bar > 200 )
{

CalculateB(bar);
}

Functional model
chance ( P1 )
{

execute(A);
}
chance ( P2 )
{

execute(B);
}

Model parameters
P1: 0.1
A: 1000-2000
P2: 0.05
B: 1100-2300

Figure 4.5: Probabilistic modeling of selections

The functional model is expressed using the modeling language ART-ML
proposed in earlier work [Wal03, AWN04a, WAN+03a]. This thesis presets
a new version of ART-ML, version 2.0, which can use temporal data stored
separately, in the model parameters. This was not possible in the previously
proposed version, version 1.0. By separating the information in the model pa-
rameters from the functional model, a more modular model is obtained, where
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different model parameters can be used for the same functional model to rep-
resent different hardware platforms.

In ART-ML, the chancestatement expresses probabilistic selection, while
theexecutestatement expresses the consumption of CPU time. Consequently,
in Example 1, the calculations in the system implementation(CalculateA and
CalculateB) are only modeled from a temporal perspective. According to the
behavior model, the probability of both execute-statements being executed is
0.5 %, as the probabilities P1 and P2 are assumed to be independent. However,
in the real system, this may not be the case. If the variables foo and bar are
correlated, the probability of executing both calculations may be very different.
It may be the case that CalculateA and CalculateB are mutually exclusive due
to a dependency between the variables foo and bar. Probabilistic modeling
are thus not suitable methods for sequences of selections that are likely to be
dependent, but may in other cases be a powerful way of modeling an observed
behavior for which the underlying mechanisms are unknown..Probabilistic
models are however non-deterministic and thus harder to analyze compared to
a deterministic model, as the number of possible scenarios become very large.
The modeling should therefore strive to minimize the numberof probabilistic
selection in the functional model.

4.2.4 The Model Parameters

When modeling real-time systems, the timing of the system needs to be mod-
eled, e.g. the execution times of different services in tasks and the inter-arrival
times of different events or task activations. When modeling systems in a prob-
abilistic manner, the probabilities of different events need to be modeled as
well. Furthermore, to improve the accuracy of the behavior model it is neces-
sary to also model state variables that are likely to have a large impact on the
execution times of the system.

This information should be separated from the functional model, as the
temporal behavior is dependent on the systems hardware platform (the CPU),
which often changes. Companies manufacturing complex embedded systems
often switch to faster, more recent CPU’s, as the previouslyused CPU becomes
less available and more expensive, while new versions offerbetter performance
for similar or lower price. In a well-designed system, a CPU switch should
not require code changes, apart from in device drivers and other HW-specific
code, and is therefore easily performed. However, as the execution times of the
system are decreased by the faster CPU, the temporal behavior is changed.

By having the timing information stored separately, as model parameters,
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the updating of the timing information can be done without involving the func-
tional model. Model parameters can be automatically generated from execu-
tion traces with ease.

Moreover, if the system has several different hardware and/or software con-
figurations, there may be one set of model parameters for eachhardware con-
figuration, while a single functional model can be used for all configurations,
thereby avoiding problems with inconsistencies between models of different
configurations.

The functional model contains references to the model parameters, where
each reference corresponds to a particular value or a probability density distri-
bution, representing the probabilities of different execution times, inter-arrival
times of tasks, or outcomes of probabilistic selections.

An execution time distribution may describe the execution times of a whole
task, of a service or of a minor part of a service, depending upon the level of ab-
straction required. An inter-arrival time distribution describes the inter-arrival
times of tasks, which may be periodic (fixed inter-arrival time) or sporadic
(probabilistic inter-arrival time). To describe a probabilistic selection requires
only one value, the probability of the condition being true.

The model parameters are acquired through dynamic analysis, as discussed
in Chapter 3. Recordings are made of the real system in different realistic sit-
uations, using existing test cases. Given that the system contains the necessary
code instrumentation, the data can be extracted from the resulting execution
traces.

It is important that several different test cases are used, in order to identify
dependencies between the test cases used and the distributions. For instance,
in a specific test case the execution times of a specific service may be signifi-
cantly higher, as the service is dependent on a state variable effected by the test
case. Such dependencies may be included in the behavior model to improve
accuracy. An example is presented in Figure 4.6.



4.2 Modeling System Behavior 83

Implementation Behavior model
Service A:
PROBE(state7);
result = calcula-
teX(...);
ipc send(result);

Functional model
Service A:
if (state7 == X)

execute(A1);
else

execute(A2);
ipc send(emptymsg);

Model parameters
A1: 1000-2000
A2: 200-300

Figure 4.6: Modeling a dependency between state and temporal behavior

Figure 4.6 shows the implementation of a service and the corresponding
functional model and model parameters. The state variablestate7is assumed
to effect the execution time of the routine calculateX. A software probe has
therefore been inserted in the service to record the state each time the service
is executed and recordings are made using this probe and the general probes
proposed in Chapter 3, e.g. task-switch probe. If the resulting data shows
a correlation between the state and the execution time, the behavior model
needs to be updated to take this state into account, i.e. to specify different
distributions for the execution time of the service depending on the value of
the state variable.

To update the functional model, it is necessary to model thisstate variable,
which implies the construction of a finite state machine describing the different
states and possible state transitions. The finite state machine will be integrated
in the functional model, but may also be stored separately asa UML state
diagram, which contributes to the documentation of the system.

The next step in the process of modeling this dependency is toupdate the
functional model of the service to choose between the available distributions
based on the value of the state variable. This selection could be implemented as
in Figure 4.6, where the functional model explicitly makes aselection between
two distributions. Another possible solution is to expressthe mapping between
states and distributions as expressed in the model parameters. The state would
be used as an argument to the execute statement, which selects the proper dis-
tribution based on the model parameters. This would improvethe readability
of the functional model and is therefore preferable. An example of a behavior
model using this approach is found in Figure 4.7.

In order to ensure the validity of the behavior model, the model parameters
must be constructed in a statistically sound manner that accurately represents
the real system. Preferably the model parameters should be based on a large
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Implementation Behavior model
Service A:
PROBE(state);
result = calculateX(...);
ipc send(result);

Functional model
Service A:
execute(state,A);
ipc send(emptymsg);

Model parameters
A(state):
1: 1000-2000
2: 200-300

Figure 4.7: Expressing the mapping between state and temporal behavior in
the model parameters

set of measurements, collected from the system in various situations and con-
figurations. Ad-hoc estimations based on a few recordings can at most be used
for a rough model of a single configuration of the system.

Given that sufficient amounts of data exist, another important issue is how
to transform execution traces into model parameters. Data on observed execu-
tion times, inter-arrival times and selection outcomes caneasily be extracted
from the execution trace. There are however several methodsof representing
this data in the model parameters. In some situations it may be possible to
represent the data using limits only, i.e. minimum and maximum values, and
to allow for an analysis to randomly choose values in the specified range. This
corresponds to representing the data with a uniform distribution.

However, using uniform distributions is often a major simplification and
may result in models that behave significantly different compared to the real
system. In order to accurately model a system containing queues and other
limited logical resources it then becomes necessary to describe the probability
distribution of the recorded data, i.e. the probabilities of different execution
times, inter-arrival times or selection outcomes. One way of describing the
recorded data is to find a suitable theoretical distribution, such as the Normal
distribution, the Exponential distribution or the Weibulldistribution and use
standard techniques of statistical inference to calculatethe parameters that fits
a theoretical distribution to the recorded data. This is discussed in [LK93].
However, the observed data often has a complex distribution, which makes
the theoretical probability distributions unsuitable. Asan example, Figure 4.8
shows an execution time probability distribution measuredfrom a real system.
The observed execution times have been grouped with a granularity of 3 µs
and the dots in the graph indicate the number of service executions observed
(y-value) for each group of execution times (x-value).

The depicted probability distribution shows two major peaks, which im-
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Figure 4.8: An example of a complex execution time distribution

plies that there are at least two paths through this service.This has not been
taken into account when preparing for the recording and as a result all paths
through the service are described using a single complex probability distribu-
tion. To model this data using one of the standard theoretical distributions
would result in a poor fit. In order to approximate a theoretical distribu-
tion to such complex probability distributions as the one depicted by Figure
4.8, more advanced distributions must be used, such as Bézier distributions
[LK93, WW96]. A Bézier distribution functions with sufficiently high degree
can approximate a distribution of any shape. It is not easy tofind the param-
eters that produce best fit using a manual trial-and-error approach, but there
is software available that does this with accuracy [WW96]. Another problem
that is more serious with Bézier distributions is that there are few or no anal-
ysis tools (simulation frameworks) that support the use of these distributions,
according to [LK93].

Another solution to the problem of describing complex probability distri-
butions is to divide the data into a set of simpler distributions, which may be
modeled using the standard theoretical distributions withgood result. This is
especially suitable if the distribution resembles the one in Figure 4.8, i.e. sev-
eral “peaks” with “empty space” in between. For such distributions, the data
may be divided based upon their values. For instance, if we consider the data
in Figure 4.8, we can define three regions, one from 0µs to 35µs, one from
36 µs to 60µs and finally one region from 61µs and up. Each recorded exe-
cutions of the service are assigned to one of the three regions depending upon
its execution time. This result in three sets of data which can be individually
expressed using a theoretical probability distribution with good result. The
functional model selects between the three distributions in a probabilistic man-
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ner, based upon the number of service executions in each region. Figure 4.9
shows a behavior model describing the service as depicted byFigure 4.8. The
probabilities P1 and P2 express the probabilities of selecting one of the distri-
butions A, B or C. The probability of selecting distributionC is 1-P1-P2. Note
the inner chance statement with the probability P2/(1-P1).This construction
is necessary as the chance statement only allow binary selection. In order to
better support modeling of complex execution time distributions ART-ML can
be extended with a probabilistic version of the C statement “switch”. Figure
4.10 shows the same model using such a statement, referred toaspswitch.

Functional model Model parameters
Service A:
chance(p1){

execute(A);
}else{

chance( P2/(1-P1) ){
execute(B);

}else{
execute(C);

}
}

A: Norm(...);
B: Norm(...);
C: Uniform(...);
P1: 20%
P2: 10%

Figure 4.9: An ART-ML model using three distributions and probabilistic se-
lection to model a complex execution time distribution

Functional model Model parameters
Service A:
pswitch{

p(P1){ execute(A);}
p(P2){ execute(B);}
default{ execute(C);}

}

A: Norm(...);
B: Norm(...);
C: Uniform(...);
P1: 20%
P2: 10%

Figure 4.10: An ART-ML model using the proposed pswitch-statement

Note that the pswitch statement has quite different syntax compared to an
ordinary “switch”. This and other extensions of ART-ML proposed in this
thesis can be found in Appendix A.
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Another method to split the data is to identify the cause of the different
peaks, i.e. the state variable(s) responsible for the different temporal behav-
iors, and add a software probe to record this state as discussed in Chapter 3.
The execution time can then be modeled with respect to the state variable, as
discussed earlier in this section. This is especially suitable if it is not intuitive
how to split the data into regions, for instance if there is no“empty space”
between the peaks.

However, in many cases it is not desired or not possible to investigate and
record the cause of the different temporal behavior, but it is still desired to ac-
curately describe the probability distribution. An example is when modeling
the inter-arrival times of external events, which e.g. triggers a task. In such
situations, an empirical distribution can be used, i.e. a list of observed values,
from which values are either randomly sampled or used in the same order as
they where recorded. That way the probability distributionis accurately de-
scribed. When using the latter approach in the context of simulation, this is
referred to astrace-drivensimulation [LK93]. There are however drawbacks
with this approach. One problem is that it only provides the exact values that
have been observed. There may be “gaps” in range of values observed, which
may not be representative to the “true” underlying distribution but due to ran-
dom fluctuations in the system during the recording. Anotherproblem is that
extreme values, that seldom occur, may not be included in themodel. Such
values are often very interesting for analysis. These problems can be reduced
by making more recordings in order to observe a greater number of values.

To summarize, four general methods of modeling the recordeddata have
been identified:

• Simple distributions may be modeled using a standard theoretical dis-
tribution, e.g. a uniform distribution, Normal distribution, Exponential
distribution or Weibull distribution.

• Complex distributions may be divided into several simple distributions
based on values or extra recorded information, e.g. outcomeof selec-
tions. The subsets of data are more suitable for modeling using a stan-
dard theoretical distribution.

• Complex distributions may be described by using more advanced theo-
retical distributions, such as Bézier distributions.

• The data is used directly, in the form of an empirical distribution, i.e. a
list of observed values. The analysis method samples valuesfrom this
list.
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Different methods may be used in the same set of model parameters for
modeling different set of data. For tasks which are described on a high level
of abstraction, advanced theoretical distributions may beused to accurately
model e.g. complex execution time distributions even without describing the
behavior of the task in the functional model, while prototypes of changes may
use uniform distributions to model execution times (or a fixed worst-case value)
since little is known before implementation.

4.2.5 Identification of Dependencies

When constructing a behavior model of a complex embedded system there
are at least two types of dependencies that are of interest. Dependencies be-
tween temporal behavior and state variables are highly relevant for the model
parameters, as discussed in Section 4.2.2 and Section 4.2.3. Another type of
dependency is interaction between tasks, i.e. externally visible events such as
IPC messages. Dependencies of both types may be identified manually, by in-
specting the source code of each service, but this approach is tedious and error
prone, automation is therefore desired.

A pragmatic approach to automatically identifying state variables that are
likely to effect execution times is to search the source codefor state variables
that are used in specific contexts. If a state variable is readin the condition
of a selection, the value of the state variable is likely to affect the outcome
of the selection, i.e. which branch of the selection that is executed. If the
difference in execution time between the branches is significant, then the state
variable is of interest for modeling. Heuristic rules can beused in order to
automatically identify selections (and thereby state variables) that are likely
to effect the execution time. For instance, an if-statementcontaining a large
number of statements in one branch and no statements at all inthe other branch
(no else-statement) is more likely to have a significant impact on execution time
compared to a selection where both branches consists of a fewassignments
only. Since it is not required to determine the exact execution times of the
branches, but sufficient to determine if one of the branches have significantly
longer execution times than the other, such heuristic rulescan be rather simple,
for instance comparing the presence of loops, the number of routine calls or the
number of statements in each branch. However, the accuracy of this method
has not yet been investigated.

Static analysis may by used to identify explicit dependencies between tasks,
i.e. communcation, with a high degree of automation by generating the func-
tion call graph (the reachable functions) of the service andsearching it for calls
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to OS routines. Each matching routine call will result in an entry in a list,
containing the path of control leading to the externally visible event, in order
to store the context. This is a highly interesting approach,as most reverse en-
gineering tools can generate call-graphs and the only thingthat needs to be
known by an analysis tool is the call-graph and the names of the OS routines
of interest. However, the call-graph should preferably contain not only rou-
tine calls, but also the selections, especially “switch” statements, as they are
commonly used in dispatchers in multi-service tasks, whereeach “case” corre-
sponds to a service. The call graph must therefore show what function calls are
associated to what services in order to allow modeling of individual services.

Using these approaches for dependency identification the modeler can with
little effort obtain lists of both important state variables as well as interactions
between different tasks and services, which significantly facilitate the modeling
of the system.

4.3 Modeling the Environment

The process presented in Section 4.2 targets modeling the behavior of com-
plex embedded systems. However, in order to construct a complete analyzable
model, the system model, and the environmental stimuli mustbe modeled as
well, i.e. external events that effect the behavior of the system. Examples of
environmental stimuli are:

• commands from a human operator,

• interaction with other computer systems,

• interaction with subsystem not included in model,

• interrupts caused by e.g. network traffic or I/O signals, or

• variations in input values from sensors.

By modeling the environment as well as the system behavior, aclosed sys-
tem is obtained from which an analysis can be performed usinge.g. discrete
event simulation.

Information on environmental stimuli is typically collected using dynamic
analysis, i.e. by recording the events corresponding to environmental stimulus
on the real system and extracting the necessary informationfrom the recorded
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execution traces. The information that is of interest when recording environ-
mental stimuli is the inter-arrival time probability distribution of the different
events that are recorded.

The environmental stimuli are modeled usingenvironment tasks, which in-
teract with the tasks in the behavior model. The environmenttasks are included
in an analysis of the model in the same way as “real” tasks are,but do not con-
sume any CPU time and can therefore be safely excluded from the analysis
output if desired. Environment tasks have higher scheduling priority than the
behavior model tasks, allowing them to preempt all behaviormodel tasks at
any given point in time, as the environment tasks corresponds to truly concur-
rent external events. The corresponding reaction to the stimuli is described in
the behavior model and may thus be delayed due to the task scheduling, in the
same way as in a real system.

If the modeled system is interacting with external computersystems for
which the implementation is available, e.g. another systemdeveloped in-house,
that system does not have to be modeled as an environment tasks, but can be
modeled in detail, as described in Section 4.2, and integrated in the behavior
model. This, however, requires that the modeling language and analysis tools
support distributed systems, i.e. systems with more than one CPU, which is not
always the case. This is especially valuable if the externalsystem is complex
and it is desirable in order to describe sequences of interaction between the two
systems in detail.

4.3.1 Identification and Classification of stimuli

The environment affects the system through well-defined interfaces, which are
identified based on documentation, code studies and discussions with system
experts and documented in the model specification (discussed in Section 4.2.2).
By introducing code instrumentation in the environmental interfaces, dynamic
analysis can be used in the same way as when recording the systems behavior,
as discussed in Chapter 3. The information of interest is theinter-arrival times
(rate) of the different environmental events, i.e. minimum-, maximum- and
average inter-arrival time but also the inter-arrival timeprobability distribution,
in order to allow for probabilistic modeling.
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Environmental stimuli can be classified into two categories, as follows:

• Common stimuli- stimuli occurring in any situation and configuration,
e.g. interrupts caused by network traffic. The common stimuli are de-
scribed, typically in a probabilistic manner, in thecommon stimuli model.

• Specific stimuli- stimuli specific for a particular situation, i.e. a test case.
The specific stimuli is described in thespecific stimuli model,typically
in a more detailed manner compared to the common stimuli model, i.e.
as a timed sequence of events.

The motivation for separating the two types of stimuli in different models
is to make the complete analyzable model modular, allowing the use of a single
common stimuli model together with several different specific stimuli models.
The specific stimuli models can be automatically generated from execution
traces recorded from different systems configurations and situations.

System Model (Analyzable)

Common stimuli 
model

Environment Model

Specific stimuli 
model

Behavior Model

Dynamic Analysis

Relevant test cases

Instrumented
Runtime System Model Specification

System Model (Analyzable)

Common stimuli 
model

Environment Model

Specific stimuli 
model

Specific stimuli 
model

Behavior Model

Dynamic Analysis

Relevant test cases

Instrumented
Runtime System Model Specification

Figure 4.11: Modeling environmental stimuli

As depicted in Figure 4.11, both the common stimuli model andthe spe-
cific stimuli model are based on dynamic analysis, i.e. recordings made on an
instrumented system. The environment interfaces, found inthe model spec-
ification, are instrumented in order to register a time-stamp and an identifier
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for each time an environmental event occurs. It is also important to identify
relevant test cases for the dynamic analysis, in order to execute realistic sce-
narios. Many different test cases can typically be found in system documen-
tation (test documentation) but in order to facilitate the selection of relevant
test cases, where the specific environment interfaces are frequently used, it is
recommended to consult system experts.

Stimuli is classified based on the situations in which it occurs. By studying
the recordings of environmental stimuli in different situations a certain stimuli
can be classified either as common stimuli or specific stimuli, depending on if
the stimuli is found in all recordings or only in subset of therecordings. If the
stimuli occurs in all recordings, it should be included in the common stimuli
model. Otherwise, the stimuli should be included in the specific stimuli models
corresponding to the test cases executed when recording thestimuli.

present in all recordings is modeled as common stimuli, while stimuli that
only occur in a subset of the test cases (recordings) should be modeled in the
specific stimuli models corresponding to the test-case. Thespecific stimuli
models should include information on what test-case the modeled stimuli rep-
resent. This way, an analysis tool can attach this information to the analysis
output, thereby avoiding possible mix-ups of analysis results based on differ-
ent test-cases.

4.3.2 Modeling Approaches for Environment Models

Given that recordings have been made providing the necessary information on
inter-arrival times of different types of environmental stimuli, the information
needs to be included in the environment models. One option isto use the
same solution as for modeling execution times and probabilities in the behavior
model, i.e. separate sets of model parameters for each environment model,
which contains the inter-arrival time information.

However, since the behavior of the environment tasks are typically trivial,
they may be automatically generated based on the recordings. It is therefore
not motivated to have two sub-models for each environment model, the inter-
arrival time data may be integrated in the environment tasks. An ART-ML
implementation of a typical environment task is described in Figure 4.12. The
example depicts an extension of ART-ML in the form of the keyword “En-
vTask”, which declares an environmental task.
This environment task is activated every p1 time units and sends a message to
a task in the behavior model, TaskX, containing the value “1”. After a delay
of d1 time units, another message is sent to TaskX, containing the value “0”.
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Specific Stimuli Model
EnvTask SignalX

Trigger period p1
Behavior
{

send(TaskX, 1);
delay(d1);
send(TaskX, 0);

}

Figure 4.12: An environment task in ART-ML

This may e.g. correspond to when an I/O interface of system receives a short
pulse on a “digital in”. It is assumed that TaskX is modeled inadequate detail
in order to receive and react to these the messages.

In the same way as e.g. execution times are modeled in the behavior model,
inter-arrival times and delays such as p1 and d1 may be modeled in several dif-
ferent ways. Section 4.2.4 that discusses the model parameters, i.e. the quan-
titative information on the systems temporal behavior, mentions basically two
methods for probabilistic modeling of the recorded information. Firstly, fitting
the inter-arrival time data to a theoretical distribution or secondly, using values
from a list of observed values, i.e. an empirical distribution. Either approach
may also be used for environment models. For further information on the use
of theoretical standard distributions the reader is referred to Section 4.2.4. Us-
ing list-basedenvironment models allow a more detailed analysis, insteadof
using sampling in the analysis, the list of observed inter-arrival times are used
in the same order as they where registered, in order to replayrecorded stimuli
exactly as it was observed. This is very suitable for modeling the specific stim-
uli. Constructing list-based environment models is straight-forward, it is only
a matter of identifying the specific stimuli, as described earlier, and extract
lists of the inter-arrival times of the different types of specific stimuli. It may
also be of interest to use worst case environment models, where the minimum
inter-arrival times are used all the times. Constructing worst-case environment
models is similar, but instead of storing all observed inter-arrival times as lists
in the environment models, only the shortest inter-arrivaltimes are stored, as
they typically correspond to the worst-case.
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4.4 Discussion

This chapter has further motivated and explained the approach of this thesis by
presenting how analyzable behavior models may be utilized in maintenance of
complex embedded system. Together with Chapter 3 the chapter answers the
sub-question Q1 stated in the introduction of the thesis:

Q1: What methods are suitable for extracting the information necessary for
a temporal behavior model from a complex embedded system implementation
containing millions of lines of code?

A modeling process has been presented targeting complex embedded sys-
tems, specifying how to obtain and structure the necessary information into a
set of submodels, a functional model, which is typically constructed through
reverse engineering of the system implementation, and three other components
containing different kinds of quantitative information, the model parameters,
describing the execution times, inter-arrival times and probabilities used in the
behavior model, and two environmental models, describing inter-arrival times
of common and situation-specific environmental stimuli. All components apart
from the functional model may be automatically generated using dynamic anal-
ysis. To automatically generate also the functional model is important, chal-
lenging future work.

The modeling process emphasizes the development and use of amodel
specification serving as a specification for the modeling effort and focus. Each
task is modeled using different levels of abstraction depending on the tasks
importance for the properties of interest for analysis. Fortasks that are to be
modeled in detail, the important services and the state variables affecting these
services are identified and modeled.

Models constructed using this modeling approach should be of high quality
due to the well-defined modeling process adapted for the domain. However, to
ensure that a constructed model is a valid description of thesystem, a model
validation activity is necessary, where model validation techniques are used
in order to increase the confidence of the constructed models. This is further
discussed in Chapter 5, which focus on model validation and model validation
techniques.



Chapter 5

Model Validity

Since a model is by definition an abstraction of a real system,a model can not
precisely predict the behavior of a complex system in all situations. This is
an inevitable consequence of the higher level of abstraction of models in com-
parison to the corresponding implementation. The higher level of abstraction
is, however, a desired property of a model. It improves understandability and
allows for easy prototyping and analysis. Even though a model is not a perfect
description of a system, it can be sufficiently detailed and accurate in order to
allow for accurate predictions to be made with a high degree of confidence.

How to determine if a model is sufficiently detailed and accurate, i.e.valid,
is not trivial. A valid model is not “perfect” but an analysisof the model should
nevertheless give predictions that are “good enough”. The validity of a model
is investigated in an activity known asmodel validation.

Model validation has been defined as “substantiation that a computerized
model within its domain of applicability possesses a satisfactory range of accu-
racy consistent with the intended application of the model” [SCG+79]. Thus,
a model can not be shown valid in general, only for a specific use. According
to the definition of model validation, a model can only be validated given that
the following has been defined:

• The domain of applicability specifies the system that is described by
the model. For a model of the temporal behavior of a complex embedded
system, this includes versions and setup of software, as well as hardware.

• The required accuracy is dependent on the properties of interest and
the situation. For instance, if the model is used for studying the response

95
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times of software functions without hard real-time requirements but with
requirements on user-perceived performance, i.e. typicalresponse times,
it may be sufficient with, e.g. 10 % accuracy in the predictions of the
model, since the consequences of a minor error in the predictions are low
and can be easily verified after implementation. In other situations, if the
model is used to predict properties critical for correct system operation,
such as a critical response time or the utilization of a limited logical
resource, a much higher accuracy is required since the consequences of
an error in the prediction may result in a system failure and it may be
difficult to verify the analysis results after implementation. The worst
case scenario predicted by the model may be hard to test on thereal
system, and it is difficult to verify if the the predicted worst case scenario
is the actual worst case scenario.

• The intended application of the modelconsidered is, as discussed in
Chapter 4, primarily behavior impact analysis with respectto typical
changes of the system. Another application of the model is toserve as
documentation.

This chapter proposes a five-step process for validation of temporal be-
havior models of complex embedded systems. The model validation process
utilizes the tools presented in Chapter 3 and the behavior impact analysis pre-
sented in Section 4.1. Section 5.1 provides a discussion of the potential threats
against the validity of a model. Section 5.2 presents the proposed validation
process, consisting of five tests of the model. Section 5.3 discusses the fourth
test in the validation process in greater depth, the observable property equiv-
alence test. Section 5.4 discusses model robustness and presents the fifth and
final test in the validation process, the sensitivity analysis, which is a test of
model robustness. Finally, Section 5.5 concludes the chapter and relates its
contributions to the research questions of this thesis stated in Section 1.2.
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5.1 Validity Threats

The need for model validation emerges from the risk of makingdecisions based
on a model that contains errors or lacks information about important details
of the system’s behavior. The process of constructing a model of a software
system consists of several different activities and errorscould be introduced in
any of them. There are at least five potential error sources:

• the understanding of the system,

• the understanding of modeling language and tools,

• the observations of the system,

• the probe effect, and

• the level of abstraction.

The understanding of the system and domain In order to develop a valid
model, it is important that the person or persons that construct the model, the
modeler, understands the system’s software architecture and how itworks in
general, i.e. the roles, responsibilities, and dependencies between the subsys-
tems and the external systems. It is also important that the modeler understands
the typical use of the system, i.e. the domain in which it is used, and the re-
sulting requirements. This is addressed by the modeling process proposed in
Chapter 4 through the development and review of a model specification. How-
ever, missing or ambiguous information in the model specification may result
in model errors.

The understanding of modeling language and tools The modelers must
have adequate knowledge about the different tools used for modeling and anal-
ysis as well as the semantics of the modeling language. To avoid misunder-
standings or misinterpretations, the tools and modeling language must be well
documented and communicated. It is important to document both the gram-
mar of the languages as well as the exact semantic meaning of the different
primitives. Moreover, it is also important to document moretrivial issues, such
as the time unit used in the model (ms,µs or ns?). Such information may be
obvious for an expert, but may be confusing for developers that less knowledge
of the details of the system’s temporal behavior.
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The observations of the system When constructing a model based on the
observations of a system’s behavior, it is important that the observations are
made in several different, but representative, situationsin order to ensure that
as much as possible of the behavior of the system is captured.For instance,
it is likely that a system that is exposed to large amounts of stimuli from its
environment behaves differently from a system that is in itsidle mode. Thus,
if a model is based on recordings from a single system environment solely, it
may not be valid for other environments. The concepts of system environment
and environment models are discussed in Section 4.3.

The probe effect If software probes are used to make recordings on which a
model is constructed, and then the software probes are removed, the behavior of
the system may be effected in such as way that the model is no longer valid. As
discussed in Section 3.2.1, the impact of software probes iscommonly referred
to as the probe effect [Sch91]. In this thesis it is assumed that the probe effect
can be avoided by allowing the probes to remain in the system.However, this
may not be possible for some systems due to the cost of these probes, i.e.
CPU and memory usage. Another solution to avoid the probe effect is to use
specialized hardware monitors that non-intrusively observe the system without
effecting the temporal behavior of the system [Sho02]. Thisis however not
always an option, since custom hardware is required.

The level of abstraction If information about important details of the sys-
tem’s behavior is missing, the model will be less accurate, and the validity
of the model may also be more sensitive to changes as fewer dependencies be-
tween tasks, state variables, and other system component are modeled. Missing
dependencies may prevent that a change in one part of a systempropagates to
other parts of the model in the same way as it does in the real system. As a re-
sult, the updated model may behave differently compared to the corresponding
updated system.
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5.2 A Model Validation Process

This section presents a five-step process for validation of behavior models of
complex embedded systems. The process utilizes the tools described in Section
3.3. Each step in the process is a test that either fails the model, or allows
the model to pass to the next test in the validation process. The individual
tests in this process have been previously proposed in research literature, e.g.
[LM01, Sar99], but not in this specific context.

It is important to bear in mind that the purpose of model validation is not to
show the validity of a model. This is is not possible in the same way as it is not
possible to show the absence of errors in a software implementation through
testing. Each test is only a single sample from a huge set of possible behavior.
The purpose of the model validation is, in the same way as software testing, to
attempt to show that the model is incorrect. The more tests performed that fail
to show that the model is incorrect, the more confidence in themodel.

The proposed model validation process starts with less powerful but also
less time-consuming tests, which allows for quick discovery of any major er-
rors in the model. The more powerful tests in the later steps of the process are
only used when the model has passed the previous tests, thus avoiding the use
of overly powerful and time-consuming tests early in the validation process.

1. Trace comparisonAn execution trace from an analysis of the model is
visualized and subjectively compared with a correspondingvisualization
of an execution trace recorded from the real system. The visualization
is accomplished by presenting the recorded execution traces graphically
over time, using e.g. the Tracealyzer tool presented in Section 3.3.3.
The purpose of this test is to determine if there are major errors in the
model or if the execution traces from the model are reasonably similar
to the execution traces from the real system. The trace comparison test
is discussed in Section 5.2.1.

2. Property comparison The second test compares execution traces in a
more detailed manner. Execution traces from a model analysis and from
a real system recording are visualized with respect to a set of properties
of the temporal behavior, thecomparison properties, such as interarrival-
time and response-time distributions. Each property results in two visu-
alizations, one representing the model and the other representing the real
system. The vizualisations are subjectively compared in order to identify
major differences in specific properties. The property comparison test is
discussed further in Section 5.2.2.
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3. Analysis variability Since an analysis (simulation) of a probabilistic
model corresponds to random samples from a very large set of possible
behavior, the values predicted by the model will differ between analy-
ses. In this test several independent replications are madeof the model
analysis in order to study the amount of variability in the analysis output,
i.e. the predicted values of different properties. If the analysis variability
is too high the model is failed. The analysis variability canbe reduced
by making the model “less probabilistic” or use longer simulation runs.
Analysis variability is further discussed in Section 5.2.3.

4. Observable property equivalenceThe test of observable property equiv-
alence is a detailed numerical comparison between the predictions from
the model and the behavior observed on the real system, with respect
to concrete statistical measures of the comparison properties used pre-
viously, in the property comparison test. Minor errors in the model that
reflects in the comparison properties are identified by this test and fail
the test if the differences exceed specified limits. This test identifies any
minor errors in the model, which may not be apparent in visualizations.
The test of observable property equivalence is discussed indetail in a
dedicated Section 5.3.

5. Sensitivity analysisThe accuracy indicated by step 4 is not a sufficient
measure of model validity if the model is to be used for behavior impact
analysis or in other ways used to prototype changes. The model need
to berobustwith respect to typical changes, meaning that if the model
is exposed to a certain change, the impact of the change should corre-
spond to the impact caused by the same change on the real system. The
sensitivity analysis investigates whether or not the modelis robust with
respect to common types of changes to the system,change scenarios.
This is accomplished by performing a set of behavior impact analyses
of different change scenarios, where an expected result is known from
experiments with the real system. Model robustness and the sensitivity
analysis test is discussed in a dedicated Section 5.4.

Before the validation process can be initiated it is important to select at least
one system environment on which the tests in the model validation process can
be based, thevalidation environment(s). An environment specifies e.g. what
test cases that are used to stimulate the system and the amount of disturbances
in the form of interrupts, caused by network traffic or I/O events, as discussed
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in Section 4.3. A validation environment specifies the environment models as
well as the corresponding setup of the real system.

Preferably, more than one validation environment should beused to better
compare the system and the model, since a model that is valid in one environ-
ment may not be valid in other environments. Unfortunately,since the effort
of performing the test is linearly proportional to the number of validation envi-
ronments used, only a limited amount of validation environments can be used
in order to keep the required effort on a realistic level. It is therefore important
to select the validation environments with care.

The validation environments should stimulate the model in many different
ways in order to compare as much as possible of the model behavior with the
corresponding behavior of the real system. Since only a limited amount of
validation environments can be used they should differ as much as possible
from each other in order to compare the model with the real system in a variety
of situations. At least one validation environment should correspond to the
presumed worst-case system stimuli that may occur in any realistic situation,
but it is also important to use validation environments corresponding to the
normal use of the system, i.e. different common scenarios, including when the
system is idle.

The selected validation environments are used in all steps of the process.
Each test is performed once for each validation environment, and if a test fails
for any of the validation environments, the model validation is terminated in
order to debug the model. When the model has been adjusted, the validation
process is restarted from step 1.

5.2.1 The Trace Comparison Test

The first step in the process is trace comparison, i.e. visualization and com-
parison of execution traces. This may be performed by using the Tracealyzer
tool presented in Section 3.3.3. Two instances of the Tracealyzer is started, one
displaying the execution trace from the model, and the otherone displaying the
execution trace from an analysis of the model.

When comparing the traces, it is important to note that the traces are sam-
ples of a very large set of possible behaviors. Even though the validation envi-
ronment has been specified, the model is still an abstractionof the real system,
modeled in a probabilistic manner. Hence, an exact match cannot be expected.
However, it should be possible to identify patterns in the task execution de-
picted by the two traces. If the execution pattern of a task that has been pre-
dicted by the model differs considerably from the observation, the model will
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Figure 5.1: Trace Comparison using the Tracealyzer tool
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fail the test.
An example is depicted in Figure 5.1, where two execution traces are com-

pared side-by-side, one from an analysis of the model (on theright) and the
other recorded on the corresponding real system. In the realsystem, the task
Drive always preempts the taskCtrl, but in the model this is not the case. This
is a typical example of an execution pattern which may also beused as a com-
parison property in later tests in the process, such as the observable property
equivalence test which will be discussed in Section 5.3.

As depicted by Figure 5.1, theDrive task has a matching inter-arrival time
(periodicity) and execution time, but it has the wrong offset compared toCtrl;
it is therefore executed too early.

In general, it is likely that the first versions of a model are failed by this test,
but when the model becomes more refined, more demanding testsare required.

5.2.2 The Property Comparison Test

The second step in the validation process is the property comparison test. In
this test specific properties of the observed system behavior and the corre-
sponding predictions from the model are visualized and compared subjectively.
This test has been discussed in e.g. [Sar99], where it was referred to as the op-
erational graphics test.

This test is stronger than trace comparison, as it apart froma set of val-
idation environments also requires selecting a set of properties to compare,
thecomparison properties. This is very similar to the behavior impact analy-
sis presented in Chapter 4 and the regression analysis presented in Chapter 3.
In model validation, two execution traces are compared withrespect to a set
of properties, in the same manner as behavior impact analysis and regression
analysis. However, in these analyses the execution traces are of the same ori-
gin, i.e. both are recorded from a real system (regression analysis) or both are
from model analyses (behavior impact analysis). In model validation, execu-
tion traces from the two different origins are compared, onefrom an analysis
based on a model and one recorded from a real system.

The definition of comparison properties is a very important part of the val-
idation process, since the comparison properties are used in all later steps of
the process. For each validation environment, all comparison properties are to
be visualized and compared. Suitable properties to comparein this test are re-
sponse time distributions (an example is depicted in Figure5.2), and utilization
of logical resources over time (see Figure 5.3). These properties are affected by
many different tasks and are, consequently, sensitive to a large set of possible
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differences between the model and the real system. These properties may be
presented in a scatter-plot, with the X-axis as a time-line and the Y-axis show-
ing the corresponding value, i.e. response-time of each instance of the task or
the utilization of the resource.

Since execution traces exists from the previous step, tracecomparison, as-
suming that the generation of the visualizations are automated the main effort
in this test is then the visual comparisons of each property for each validation
environment. The amount of comparisons required may be significant since it
is the product of the number of environments and the number ofproperties to
compare. If 5 environments are used for the model validationand 20 proper-
ties are to be compared, a total of 200 visualizations are generated, resulting
in 100 comparisons. However, if each comparison takes on average 1 minute,
this takes less than 2 hours for a single person to perform
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Figure 5.2: Visualization of the usage of a task response time

It is important to understand that the purpose of this test isto look for major
differences only. In most cases there will be small differences even if the model
is of good quality. However, to determine if these differences are small enough
is done in a more systematic and objective way later in the validation process.
Property comparison is a quick method of identifying the major errors at an
early stage in the validation process, prior to more time-consuming testing.



5.2 A Model Validation Process 105

Queue A

0

1

2

3

4

5

6

7

8

9

0,4 0,45 0,5 0,55 0,6

Time (s)

U
til

iz
at

io
n

Figure 5.3: Visualization of the usage of a logical resource

5.2.3 The Analysis Variability Test

The third step in the validation process, the analysis variability test, is im-
portant when using probabilistic modeling since an analysis (simulation) of a
probabilistic model may generate different results from time to time. The rea-
son for this is that a probabilistic simulation correspondsto a random sample
from a large set of possible behavior. If the amount of variability in the analysis
results is large, this implies that the results from a singleanalysis of the model
may not be representative for the system behavior. The results of such an anal-
ysis are not incorrect in the sense that the behavior predicted by the model may
occur in the real system, but there are other situations in which the system may
behave differently. Thus, such results are of low confidence. To increase the
confidence level of the analysis results, the analysis variability can be reduced
by basing the predictions on multiple or longer execution traces.

The analysis variability test does not rely on visualization. By making sev-
eral independent replications of an analysis and calculating the statistic mea-
sures of the comparison properties, e.g. average response times, it is possible
to use standard statistical methods when calculating the amount of variability
for each statistic measure. A model passes the analysis variability test if the
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amount of variability is low, e.g. below 1 %, for all comparison properties in
all validation environments.

The statistical measures of the comparison properties can be formulated
using the Probabilistic Property Language, PPL, and calculated using the Prop-
erty Evaluation Tool, as presented in Section 3.3.2. The analysis variability test
is mentioned in [Sar99] as the internal validity test.

5.3 Observable Property Equivalence

This section presents the fourth test of the model validation process proposed
in Section 5.2, the observable property equivalence test. This test is a detailed
numerical comparison of specific properties of the temporalbehavior, with re-
spect to two execution traces. This enables a model and the corresponding
implemented system to be compared in a more objective and detailed manner,
compared to the property comparison test, which relies on subjective compari-
son of visualizations.

The test of observable property equivalence is made with respect to the
comparison properties defined in step 2 of the validation process, property
comparison, and in all validation environments. This test is potentially very
demanding for the model, if many comparison properties is used. Any minor
errors in the model that reflects in the comparison properties are pointed out by
this test, and depending on the desired tolerance, the modelis either failed or
passes the test.

The observable property equivalence test may, in the same way as the Anal-
ysis Variability test, utilize the Property Evaluation Tool and the previously
defined PPL specification of the comparison properties. However, additional
information, apart from the comparison properties and the set of validation
environments, are required in order to perform the observable property equiva-
lence test: the tolerance to use in the different comparisons, e.g. the prediction
should be within 1 % of the observations. This tolerance is necessary in or-
der to compensate for the analysis variability. A model passes this test if it
is observable property equivalent to the real system, i.e. all predictions of the
comparison properties are within the specified tolerances.A formal definition
of observable property equivalence is given in Section 5.3.2.
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5.3.1 Comparing Behavior

As presented in Section 5.2, the two first steps of the validation process rely on
a subjective comparison of visualizations of the behavior of the model and the
real system. In order to test the model validity in more detailed, accurate and
objective way, a numerical comparison is necessary.

Since a model is per definition an abstraction of the system, an analysis of
a model can not predict the behavior of the real system precisely in all situa-
tions. Hence, it makes little sense to compare the predictedbehavior with the
observed behavior directly, event by event, especially if the model is proba-
bilistic. As an example consider Figure 5.4, which depicts the predicted and
real response times of a task. Each dot represents the response time of an in-
stance, or execution, of the task where the Y-axis is the response time and the
X-axis is the time when the instance started.
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Figure 5.4: Response Time Distribution of task C - Simulation vs. Real System
Recording

The temporal behavior predicted by the model resembles the behavior ob-
served on the real system. Distinct classes of response times can be identified
in the observed and the predicted behavior and these match very well. How-
ever, it is not possible to compare these two data sets task instance by task
instance.

Obviously, an exact match of the execution traces is a too strict criterion
of equivalence for probabilistic models. Instead, the execution traces have to
be compared on a higher level of abstraction by using the comparison proper-
ties defined in step 2 of the validation process, e.g. task response times. The
comparison properties used for visualizations in step 2 typically correspond
to distributions, so in order to allow for simple comparisonof two execution
traces, it is necessary to use statistical measures describing these distributions,



108 Chapter 5. Model Validity

e.g. mean value, the median, various quantiles etc., in the same way as in
the analysis variability test. Each statistical measure corresponds to a single
numerical value which may easily be compared to the corresponding value ex-
tracted from another execution trace.

5.3.2 Observable Property Equivalence – A Formal Defini-
tion

This section gives a formal definition of observable property equivalence. In
previous works, e.g. [AWN04b], this was presented as an equivalence relation,
but since the relation of observable property equivalence is not transitive, this
is not true. The relation expresses similarity, but not equivalence.

A model and a corresponding system are observable property equivalent if
they are equivalent with respect to a set of comparison properties, i.e. statistical
measures of the observed temporal behavior. However, as discussed earlier,
since the model is an abstraction of the system, it is necessary to allow a certain
amount of tolerance in comparison.

In Definition 1 we formalize the observation of a system,x, that is either
the real implemented system, executing on the real hardware, or a model of
a system executed in a simulator. The resulting recording isa list of time-
stamped events related to tasks-switches and operations onlogical resources.
The environmente specifies the configuration of the system and any external
stimuli of the system, as discussed in Section 4.3.

Definition 1. R = Rec(x, e, d)
The function Rec returns a recording, R, of the execution of x, in the environ-
ment e, with the duration d time units. R is a list of events, where each event
contains a time-stamp, an event type and generic data, wherethe semantics are
specific for each event type.

Definition 2 presents the function Eval, which evaluates a system property
p with respect to the recording R.

Definition 2. v = Eval(p, R)
The function Eval evaluates the property p with respect to the recording R. The
result, v, is a decimal value. If the property p is a boolean expression, v is either
1 (true) or 0 (false).

Since a certain amount of tolerance is often necessary in thecomparison,
we introduce a function which expressing the tolerance allowed for a specific
comparison property,
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Definition 3. t = Tol(p)
The function Tol returns the maximum allowed difference between two evalu-
ations of the same property p on two different recordings. The return value, t,
is a decimal value. If the property p is of boolean type, the function returns a
tolerance of 0.

Definition 4 presents the definition of observable property equivalence. If
evaluations of all comparison properties with respect to the model results in
values sufficiently close to the values from the real system recording, the model
and the system are observable property equivalent.

Definition 4. Given that P is the set of comparison properties, M is a model of
the system S, EM is the environment model of M and ES is the environment of
the system S, iff

∀p ∈ P : Abs(Eval(p, Rec(M, EM , d))−Eval(p, Rec(S, ES , d))) ≤ Tol(p)

then S≡ M, i.e. S and M are observable property equivalent with respect to P,
in the specific environment.

Obviously, this relation of similarity relies heavily on the comparison prop-
erties and tolerances used. It is important to select a suitable set of comparison
properties in order to compare as much as possible of the behavior of the model
with the corresponding system. A discussion regarding the selection of com-
parison properties is therefore provided in Section 5.3.3.

5.3.3 Selecting Comparison Properties

The observable property equivalence test depends on a set ofcomparison prop-
erties. If sufficient comparison properties have been used and the comparison
has been made with little tolerance, any model that passes the observable prop-
erty equivalence test should be highly accurate. If too few (relevant) compar-
ison properties is used, the comparison is of low value. Typically, as many
comparison properties as possible should be used, in the same way as when
defining test cases for software. However, in the same way as when defining
test cases for software, it is only possible to use a limited amount of test cases.
The selection of comparison properties is therefore crucial for this test as well
as other tests in this process.
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In order to allow for numerical comparison of two execution traces, the
comparison properties used are statistical measures of therecorded data, in the
same way as in the analysis variability test, i.e. the third step of the valida-
tion process. Each statistical measure corresponds to a single numerical value
which may easily be compared with the corresponding value extracted from
another execution trace. Examples of suitable statisticalmeasures to use as
comparison properties are:

• The maximum task response time

• The average task response time

• Different quantiles for task response times

• The average task interarrival time

Typically, for each comparison property used in step 2 of thevalidation pro-
cess, the property comparison test, a set of statistical measures are formulated.
These statistical measures correspond to concrete comparison properties which
may be specified as PPL queries and evaluated using the Property Evaluation
Tool.

The comparison properties typically includes explicitly defined system re-
quirements and other system properties of interest for analysis but may also
include system properties that are of less interest when analyzing the model,
but required in order to increase the coverage of the comparison. We refer to
these extra properties assupporting properties. These supporting properties are
typically effected by many aspects of the system and characterize the temporal
behavior. Typical supporting properties are average task interarrival times and
response time properties that are not explicit requirements.

Selecting the appropriate system properties for the comparison is very im-
portant in order to achieve a valid comparison. As many system properties as
practically possible should be included in the set of comparison properties in
order to get a high confidence level in the comparison. However, the use of
irrelevant comparison properties may result in the rejection of a valid model.
In [Sar99] this is denoted aType I error, or themodel builder’s risk. The op-
posite situation, i.e. an erroneous model is accepted as valid, may occur if too
few relevant comparison properties are used or if the model has not been suf-
ficiently analyzed in order to detect the erroneous behavior. In [Sar99] this is
denoted aType II error, or themodel user’s risk.

Even if a large set of system properties are used for a comparison there
is a risk of accepting an invalid model, e.g. if they represent too few types
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of system properties, For instance, imagine that only response-time properties
are used as comparison properties. The rate of a task could inthat case differ
between the system and the model without being discovered inthe comparison.
If system properties related to patterns in the scheduling had been used as well,
this would have been discovered. Thus, the selected system properties should
not only be relevant, but also represent a variety of aspectsof the temporal
behavior.

We have identified three general types of comparison properties that are
suitable for comparison of the temporal behavior of complexembedded sys-
tems:

• response-time properties,

• pattern properties, and

• resource utilization properties.

Response-time properties The response time of tasks can be used as a com-
parison property, since it is dependant on not only the execution time of the
task, but it also depends on the temporal behavior of other tasks. The response
time may be interesting in terms of worst case, since it mightbe a requirement
(a deadline), but also the distribution of response times can be used as a sup-
porting property, as it contains a significant amount of information about the
temporal behavior of the system.

Pattern properties It is often possible to identify patterns in the scheduling
of tasks and in the occurrence of different internal events.A system property
of this type can, for instance, be that a certain fraction of the instances of task
A are preempted by task B. The occurrence of a certain patternin the execution
time of a task is also a pattern property that can be used for comparison.

Resource utilization properties Properties in this category include those re-
lated to logical resources, such as the minimum or maximum utilization of
message queues, how long a task waits for a message, or how often a task
writes or reads messages from the buffer. Another example ofsuch a property
is the probability of a certain message buffer being empty (or full).
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5.4 Model Robustness

A model isrobustwith respect to a change in the implementation of the system
if the change, when applied to the model, effects the predictions based on the
model in the same way as it effects the observed behavior of the system. If a
model is robust, it implies that the relevant behaviors of the system are indeed
captured by the model at an appropriate level of abstraction. In this section
we propose a method for determining the robustness of a behavior model of a
complex embedded system. This activity is referred to as asensitivity analysis.

To exemplify the importance of model robustness, consider asystem con-
taining a binary semaphore protecting a shared resource. A time-out occurs if
a task has been waiting for the semaphore for a certain predefined time. If the
time-out occurs, the task is activated as usual, but executes longer than normal
due to the necessary error handling. In all previous versions of the system, this
time-out has never occurred. If the time-out is left out whenconstructing the
timing model of the system the model still seems accurate since the time-out
never occurs.

However, as a result from changing the system, e.g. increasing the exe-
cution time of another task, the time-out will in some cases occur. Since the
time-out was not captured in the model the system’s behaviorwill now differ
from the predicted behavior.

Our approach to sensitivity analysis is influenced bysystem identifica-
tion. System identification is a technique used in the domain of control the-
ory [Joh93]. By measuring and observing the input-output relationship be-
tween signals in the process a model can be determined in terms of a transfer
function. Validating models based upon the system identification approach is
somewhat related to testing. Typically, output signals arepredicted by using
the model which are then compared with the output signals of the physical pro-
cess. Hence, the model is regarded as correct if the analysisand the physical
processes generate approximately the same output, when fedwith the same
input.

Testing the model with different input signals and comparing the prediction
with the signals produced by the actual system is acceptablegiven that the
process is continuous in its nature. It is fair to assume thatwe can interpolate
the behavior in between the tested signals. However, computer software is not
continuous; they have a discontinuous nature, meaning thatthe behavior may
change dramatically as a result of small changes in the system. A model of a
software system can therefore quickly become invalid as thesystem evolves,
if the model is not robust with respect to typical changes. Byanalyzing the



5.4 Model Robustness 113

impact on the system caused by different changes, it is possible to determine if
the model is sensitive to such changes, i.e. less robust.

5.4.1 Sensitivity Analysis

In this section, we will present how to analyze the robustness of a model using
a sensitivity analysis. The basic idea is to test different alterations and verify
that they effect the behavior predicted by the model in the same way as they
effect the observed behavior of the system. First a set ofchange scenarioshas
to be selected. The change scenarios should be representative for the probable
changes that the system may undergo. Typical examples of change scenarios
are:

• to change the execution times distribution of a task or service,

• to introduce or remove new services in existing tasks,

• to change the usage of logical resources.

The selection of change scenario requires experienced engineers that can
perform educated guesses about relevant and probable changes. It is also valu-
able to study the documentation of previous changes to the system, i.e. change
logs, in order to identify different types of common changes.

Given that a set of N changes scenarios have been defined, the next step is
to construct a set of N systems variants{S1, ..., SN} and a set of correspond-
ing models{M1, ..., MN} by applying the change scenarios on the original
versions of the system and model.

Note that applying the change scenarios to the system does not require real
implementations of new features, i.e. functional improvements of the system.
The sole purpose of the necessary changes is to reflect the impact on the tempo-
ral behavior caused by the change scenarios, for instance byadding an empty
loop that increases the execution time of a specific task. These changes are
therefore easy to implement. The model variants are constructed in a similar
way, by applying the N change scenarios to the original model.

Each model variant is then compared to its corresponding system variant by
investigating if they are observable property equivalent as defined in Definition
3, Section 5.3. If all variants are equivalent, including the original model and
system, the model is robust with respect to the change scenarios. Formally we
define the robustness test, sensitivity analysis, as follows:
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Definition 5. A modelM is robust with respect to a system implementationS

and a set of change scenariosC, iff:

∀c ∈ C : Sc ≡ Mc

whereSc andMc corresponds to the implementation of the change scenarioc

on the systemS and modelM respectivly.

As an example, consider a sensitivity analysis consisting of a single val-
idation environment and a single change scenario: an overall increase in the
execution time of task Y by 100µs. The increase in execution time is imple-
mented in the real system by e.g. an empty loop tuned to execute for 100µs.
A corresponding ART-ML model is changed by adding an execute-statement
to the task, specifying 100µs additional execution-time consumption.

The next step is to perform recordings of the modified system version in
the selected validation environment (test case etc) and an analysis of the modi-
fied model using the appropriate environment model. The recording of the real
system is compared to the analysis output with respect to thecomparison prop-
erties, which, in this case, should include at a minimum the average response
times of task Y. If the model is robust with respect to this change scenario
there should not be any statistically significant discrepancies in this compari-
son, assuming that the model was sufficiently accurate priorto the sensitivity
analysis. The general sensitivity analysis process is illustrated by Figure 5.5.
This process is performed for each validation environment.

A sensitivity analysis can be regarded as a behavior impact analysis, where
the expected result is known from recordings of the prototype implementa-
tions. Since change scenarios are rather abstract descriptions of changes, they
are representative for a large set of concrete changes of thespecified type. For
instance, the change scenario “increases the execution time of task X with 100
µs in all executions”is representative for a large set of changes to internal
computations in the task which results in a similar increasein average execu-
tion time.

It is therefore not necessary to perform the sensitivity analysis every time
the model has been updated and is to be validated. It is sufficient if a sensitivity
analysis is performed on the initial model of system, after major changes of the
model, or if new change scenarios are identified. A sensitivity analysis is also
necessary if details are removed from the model, i.e. the level of abstraction
is increased. Thus, a sensitivity analysis is valid as long as changes are made
to the model that can be considered equivalent to one of the change scenarios
used in the sensitivity analysis.
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Figure 5.5: The sensitivity analysis

A sensitivity analysis typically represents a significant effort. If e is the
number of validation environments,c is the number of change scenarios, and
p is the number of concrete comparison properties, the numberof numerical
comparisons required in a sensitivity analysis ise × c × p.

If using PPL, described in Chapter 3, for specifying the concrete compar-
ison properties, the Property Evaluation Tool, PET, can be used to evaluate
and compare a batch of PPL queries in a single job. However, inthe current
implementation this is possible only with respect to two execution traces at a
time. Therefore,e×c runs of PET are necessary, where each run compares two
execution traces with respect top comparison properties, one execution trace
from a model variant and one execution trace from a system variant. Thus, the
comparison of execution traces is relatively simple. The time-consuming part
is the generation of the execution traces for comparison. Torun simulations of
the model is relatively swift, to make a small change of the model and run an
extensive simulation typically takes 1-2 minutes according to our experience.

However, to record the behavior of the real system variants is a more time
consuming activity. Complex embedded systems often takes considerable time
to compile and start up, so each execution trace often takes 20 minutes to gen-
erate. Sincee × c sets of system variants and corresponding models have been
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defined,e×c recordings are therefore necessary. Thus, if three validation envi-
ronments and five change scenarios have been defined, recording the execution
traces takes at least 5 hours (3 × 5 × 20 minutes), while the simulations are
approximately 10 times quicker.
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5.5 Discussion

In this chapter we have proposed an approach for validation of models de-
scribing the temporal behavior of complex embedded systems. This approach
consists of a five-step model validation process targeting temporal behavior
models of complex embedded systems.

The proposed validation process answers the second sub-question (Q2) of
the research questions stated in Section 1.2.

Q2: What methods are suitable for validating models describingthe tempo-
ral behavior of complex embedded systems?

The process consists of five steps, increasingly demanding tests of model valid-
ity. These tests are performed with respect to a set of validation environments
and a set of comparison properties. Different types of suitable comparison
properties have been described.

The proposed validation process does not only consider the similarity be-
tween the model and the current version of the system, but also contains a
sensitivity analysis, a method for evaluation of the robustness of a model based
upon a set of change scenarios.

The individual tests have been previously proposed in research literature,
but in other contexts. Even though there are other methods available for model
validation, these five methods are especially suitable for validation of temporal
behavior models.
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Conclusions

Early work preceding this thesis [WAN+03a, AN02] presented the modeling
language ART-ML, a simulator for ART-ML models and an industrial case
study which showed the viability of the approach. Later work[WAN03b] pre-
sented PPL, the Probabilistic Property Language, allowingthe specification of
probabilistic properties of interest for analysis. This thesis further contributes
by presenting a solution to a fundamental problem of this approach:

Q: How can models be developed that accurately describe the temporal be-
havior of complex embedded systems?

The main research question, Q, was broken down into two subquestions, Q1
and Q2. By providing answers for these subquestions, the main question Q is
thereby answered.

Q1: What methods are suitable for extracting the information necessary for
a temporal behavior model from a complex embedded system implementation
containing millions of lines of code?

The thesis has proposed a framework that divides a temporal behavior model
into four components:

• The functional model, a set of behavior descriptions (imperative pro-
grams) describing the behavior of the tasks and services in the system.

• The model parameters, a set of parameters of the functional model nec-

119
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essary for describing a systems temporal behavior, e.g. execution times.

• The specific stimuli model, describing environmental stimuli associated
to certain scenarios, e.g. a particular test case.

• The common stimuli model, describing environmental stimuli not spe-
cific to a particular scenario, but commonly occurring.

This thesis proposes a modeling process where the functional model is obtained
through reverse engineering of the systems implementationand the other three
components, containing quantitative information of the systems temporal be-
havior, are obtained through dynamic analysis, i.e. analysis of recordings of
the systems temporal behavior. This modeling process, which consists of both
of dynamic analysis and reverse engineering, is proposed asan answer for Q1.

Given that a temporal behavior model has been developed, it is necessary
to assure that the model is valid, i.e. accurately describesthe systems temporal
behavior at an appropriate level of abstraction. The matterof how to assure the
validity of temporal behavior models is the second sub-question Q2:

Q2: What methods are suitable for validating models describing the tempo-
ral behavior of complex embedded systems?

This thesis proposes an answer for Q2 in the form of a process for model val-
idation consisting of a series of increasingly demanding tests of the model:
trace comparison, property comparison, analysis variability, observable prop-
erty comparison and, finally, sensitivity analysis. These tests have been pre-
viously proposed in research literature, but not in the context of validation of
temporal behavior models. Other tests of model validity have been proposed
in the literature, but the five tests proposed in Chapter 5 have been found espe-
cially suitable for validation of temporal behavior models.

To support the solutions proposed, a set of three tools have been developed
and are presented in the thesis:

• The Tracealyzer, a tool for visualization of execution traces. The tool
graphically presents the task execution together with the values of generic
probes over time. The tool supports the model construction process by
allowing the modeler to better understand the temporal behavior of the
system and also supports the first step of the proposed validation process,
the trace comparison.
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• The Property Evaluation Tool (PET), a tool for analysis and comparison
of execution traces with respect to a set of PPL queries. PET allows
for the behavior impact analysis presented in Chapter 4 and may also be
used in the three latter steps of the model validation process presented
in Chapter 5, analysis variability, observable property equivalence and
sensitivity analysis. PET is the first implementation of thePPL language
proposed in [WAN03b]. The implemented version of PPL has been ex-
tended in comparison to the original specification, as presented in Ap-
pendix B.

• A software behavior recorder for the commercial RTOS VxWorks, al-
lowing for the recording of execution traces for the above mentioned
tools. The overall design of the recorder is presented together with an
evaluation of its impact on system performance.

These tools have been introduced in the software development at ABB
Robotics, a world leading developer of industrial robots and robot control sys-
tems. The software behavior recorder has been integrated intheir robot control
system and is activate by default, also in the released versions of the system.
This allows developers at ABB Robotics to use the Tracealyzer for debugging
as well as general system understanding and PET for more systematic analysis
of the systems temporal behavior. Another use of a dynamic analysis tool such
as PET is what we refer to as regression analysis, i.e. to compare recordings
from the latest version of the system with recordings of a previous system ver-
sion. This way, it is possible to automatically identify undesired impacts on
the temporal behavior caused by recent changes. Regressionanalysis was pre-
sented in Chapter 3. The regression analysis is being introduced gradually at
ABB Robotics, in an initial phase for a single subsystem.

6.1 Future Work

This thesis is based on experiences from complex embedded systems devel-
opment and on earlier case studies, but the solutions proposed in this thesis
have not yet been validated in an industrial context. Plans for future studies
therefore include a modeling case study, where the practical usability of the
modeling and model validation processes proposed in this thesis are to be eval-
uated by applying them on a real complex embedded system. Thegoal of the
study would be to perform realistic behavior impact analyses using the devel-
oped model and confirming the accuracy of the analysis by implementing the
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analyzed change scenarios and to make recordings of the updated system in
order to identify the real impact. Apart from the modeling case study required
for validation of the solutions proposed in this thesis, many ideas for future
research exist. The most relevant are:

• Automated modeling

• Alternative analysis methods

• Regression analysis case-study

We intend to look into all three areas, which are further described below.

6.1.1 Automated modeling

The effort of constructing a temporal behavior model is the weakest link of the
behavior impact analysis approach. By automating the construction of models
as much as possible, the effort required for constructing and validating the
necessary model can be significantly reduced.

The model framework proposed in this thesis consists of fourcomponents,
where three components, the model parameters and the two stimuli models, can
be automatically generated by using dynamic analysis. The functional model
can be extracted from the source code using a special purposereverse engi-
neering tool that we plan to implement. This tool would extract and analyze
the function call-graph of each individual service in a taskin order to identify
activations of other tasks. This is accomplished by comparing the names in the
function call-graph with a list of names corresponding to common OS services,
such as IPC communication. For each match, the path of control is stored and
used to construct a rough model, an abstraction of the real implementation
focusing on selections and calls to OS routines. Only function calls that en-
capsulate a call to an OS routine are included in the model. Thus, if a service
does not use any OS routines, the service will only be modeledwith respect to
its execution time. Even though the tool recognizes and models selections, it
will not attempt to analyze the conditions of the selections, but instead model
the selection in a probabilistic manner. The statistical information required for
probabilistic modeling of selections is obtained through dynamic analysis, i.e.
recording the outcomes of the selections during execution of the system. The
tool automatically inserts the necessary code instrumentation while analyzing
the source code.

In order to obtain more detailed models, it is possible to manually ana-
lyze the conditions of the modeled selections and improve the model manually.
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However, a solution must be found to support evolving systems, where the au-
tomatic model synthesis needs to be repeated after each change of the system.
If the model has been improved manually after synthesis, a new synthesis will
require a migration of these improvements to the new model. In order to avoid
the need for manual migration, an automatic solution is necessary. In a further
perspective, program analysis techniques such as program slicing [Tip95] may
be used to automatically model the conditions of selections, which effectively
solves the problem with migration of manual improvements, as high quality
models, with a minimum of probabilistic selections, could then be generated
automatically.

6.1.2 Alternative Analysis Methods

This thesis has assumed the use of random simulation as analysis method.
There are however other analysis methods based on simulation. Future work
therefore includes investigating the use of a multi-stage simulation approach,
in many ways similar to genetic algorithms. Compared to using random sim-
ulation only, this analysis method is expected to better identify the possible
worst-case scenarios of a model. The first step in this multi-stage simulation
process is to run a large series of random simulations, in order to identify a set
of interesting states on which to focus further simulations. These interesting
states correspond to situations with extreme values in a specified property of
interest, e.g. a task’s response time. By storing the simulation state preceding
these situations, a large amount of random simulations can be performed, start-
ing from this state. This way, the analysis is focused on investigating scenarios
likely to be “close” to a worst case scenario. This process may be repeated
several times in order to further focus the analysis, which effectively identifies
a scenario resulting in an extreme value. There is however a risk that this value
may only be a local maximum, and that there are other scenarios, completely
different, that result in even higher values, e.g. responsetimes.

6.1.3 Regression Analysis Case Study

Given that regression analysis (Section 3.1.3) is introduced at ABB Robotics,
relevant research areas include the verification of the expected effect, i.e. re-
duced maintenance cost for the company. This can be investigated in the form
of a case study. This would be aholistic single case study[Yin03], motivated
by the belief that ABB Robotics represents a typical case, i.e. a typical example
of a company developing a complex dependable software system.
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Question and Propositions The question in focus of this case study is how
the introduction of regression analysis will effect the quality of the software
within the robot control system. Theunit of analysis[Yin03] is the introduction
of the analysis method. We believe that, as a result of the newanalysis tool,
more potential problems related to timing and resource usage will be reported
by system developers during the 12 months after the introduction of regression
analysis, compared to the 12 months preceding the introduction of this analysis
method. Due to the increase in potential problems discovered, there should be
a decrease in the number of errors reported from late system testing and end
users.

Collecting the Data ABB Robotics has an extensive database containing
suggestions for improvements and error reports from systemdevelopers, testers
and end users. The reported errors are often well documented; for each error
reported, there is a description of the error and what actions that have been pro-
posed. The developer(s) that are assigned to the error report usually extends
the error report further and add a description of how the problem was solved.

By searching this database, it is possible to adequately estimate the num-
ber of errors related to timing or resource usage. A single source of evidence
is however not sufficient. Potential problems that are discovered are often not
reported formally, and will therefore not be in the database. In order to ac-
commodate for this weakness, the case study will also contain interviews with
developers. This may also help to explain error reports found in the database
as well as to give an estimate on how often the analysis tools are used, the de-
velopers’ opinion on the usability of the tools and hopefully also examples on
when the analysis tools have reported potential problems.
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ART-ML 2.0

ART-ML is a modeling language developed for describing the temporal behav-
ior of complex software systems with real-time requirements. An ART-ML
model consists of a set of tasks communicating through common OS services
such as message boxes (IPC) and semaphores. An ART-ML task consists of
two parts, a set of attributes, such as scheduling priority,and a behavioral de-
scription which is an abstraction of the corresponding taskin the real system,
describing both temporal and functional behavior.

This appendix describes ART-ML version 2.0. Compared to theART-ML
version 1.0 [AN02, Wal03, WAN+03a] the differences are:

• It is based on ANSI C and therefore allows all constructions of ANSI C
embedded in the model.

• A new statement “pswitch” for probabilistic selection, replacing “chance”

• The execute statement has been extended to accept references to distri-
butions of any type, declared elsewhere in the model.

Models in ART-ML 2.0 are intended for analysis in the ART-ML 2.0 sim-
ulation environment, which is under development. An analysis of a model in
ART-ML 2.0 consists of three stages: translating the model to a pure ANSI
C program, compiling and linking with the ART-ML 2.0 C-library and finally
executing the resulting executable file, which produces an output in the form
of an execution trace. This process is fully automated. The resulting execution
trace may be inspected using the Tracealyzer tool or analyzed using PET, both
presented in Chapter 3 of this thesis.
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Elements of ART-ML 2.0

The new version of ART-ML contains the following elements:

C-Block

A C-block is a piece of ANSI C code encapsulated in the ART-ML model. A
c-block is declared using the keyword CBLOCK and ended by thekeyword
END. C-blocks are global and declarations inside a CBLOCK are visible from
all tasks in the model.

Message box

A message box is a FIFO buffer storing messages between tasks. A message
box is declared using MESSAGEBOX keyword, followed by name and max-
imum size of the FIFO buffer. An ART-ML task may put messages in the
message box using the sendMessage library routine and fetchmessages using
the recvMessage library routine.

Semaphore

An ART-ML semaphore is a classic Djikstra binary semaphore,providing mu-
tual exclusion between tasks. A semaphore is declared usingthe SEMAPHORE
keyword, followed by the name of the semaphore. A semaphore is locked us-
ing the semwait library routine (corresponding to Djikstra’s P) and released
using sempost routine (corresponding to Djikstra’s V).

Task

ART-ML tasks define the behavior of the system. A task consists of three parts,
its name, its attributes and its behavior. The attributes are scheduling priority
and task activation strategy. The attributes can be one or more of the following
among.

• TASK TYPE:

– PERIODIC,

– ONESHOT,

– SPORADIC
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• PERIOD: (value) – The periodicity of the task (if periodic)

• DISTR: (identifier) – A reference to a specific inter-arrivaltime distri-
bution declared in the model. The inter-arrival time distributions are
declared in the same way as execution time distributions.

• OFFSET: (value) Optional offset of periodic or one-shot tasks.

• PRIORITY: (value) The priority of the task (between 0-255) where 0 is
the best priority in the system

The behavior is described using a special C-block, identified using the key-
word BEHAVIOR, that immediately following the attributes.The BEHAVIOR
C-block is ended using the keyword END, which also ends the task declara-
tion. When transforming the ART-ML model into ANSI C, the BEHAVIOR
C-blocks are transformed into an ANSI C functions, the code is therefore sub-
ject to the same rules as code in the body of an ANSI C function.Variables and
types declared in a BEHAVIOR C-block are therefore not accessible outside
the task.

Syntax of language elements

Message box - declaration

MESSAGEBOX name size;

Example:
MESSAGEBOX MBOX9 5;

Message box - sending

int sendMessage(MBOX mbox, int msg, int timeout);

Example:

result = sendMessage(MBOX9, REQUEST7, 1000);
if (result == TIMEOUT)
{

/* time out*/
...

}
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Message box - receiving

int recvMessage(MBOX mbox, int timeout);

Example:

result = recvMessage(MBOX9, FOREVER);
switch (result)
{

case REQUEST1: ...
break;

case REQUEST2: ...
break;

}

Semaphore - Declaring

SEMAPHORE name;

Example:
SEMAPHORE sem7;

Semaphore - Locking

int sem wait(SEMAPHORE sem, int timeout);

Example:

result = sem_wait(sem7, 10000);

if (result == TIMEOUT)
{

/* failed locking the semaphore */
...

}
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Semaphore - Releasing

void sem post(SEMAPHORE sem);

Example:
sem post(sem7);

Inline C declarations

CBLOCK
/* c-code */

END

Example:

CBLOCK
int sys_online = 0;
const int CODE_5_MSGS_AVAILABLE = 123;
const int CODE_GENERIC_DATA = 125;

END

Declaring a task

TASK name
Attribute0: value0
...
AttributeN: valueN

BEHAVIOR
/* c-code*/
...

END

Example:

TASK SYSTEM
TASK_TYPE: ONESHOT
PRIORITY: 0

BEHAVIOR
sleep(40000);
sys_online = 1;

END
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An ART-ML 2.0 model

CBLOCK
#include "modelparameters.h"
/* where execution time distributions */
/* are defined (S1, S2, C1, C2...) */

int sys_online = 0;
const int CODE_5_MSGS_AVAILABLE = 123;
const int CODE_NET_COMMAND = 124;
const int CODE_GENERIC_DATA = 125;

END

/* messagebox for sensor data */
MBOX CTRLDATAQ 5;
MBOX CTRLCMDQ 4;

/* This task produces data by reading a hardware sensor */
TASK SENSOR

TASK_TYPE: PERIODIC
PERIOD: 2000
PRIORITY: 1

BEHAVIOR
static int msg_counter = 0;

execute(S1);

if(sendMessage(CTRLDATAQ, CODE_GENERIC_DATA, 0) > -1)
{

msg_counter = msg_counter + 1;
if (msg_counter == 5)
{

execute(S2);
sendMessage(CTRLCMDQ,

CODE_5_MSGS_AVAILABLE,
FOREVER);

msg_counter = 0;
}

}
END
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TASK CTRL
TASK_TYPE: ONE_SHOT
OFFSET: 10000
PRIORITY: 1

BEHAVIOR

execute(C1);

while( forever )
{

if(recvMessage(CTRLCMDQ, forever) > -1)
{

int i;
for(i = 0; i < 5; i++)
{

recvMessage(CTRLDATAQ, forever) > -1)
execute(C2);

}
execute(C3);

}else{

//error
execute(C4);

}
}

END
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ART-ML Library routines

The following ART-ML specific routines are available in an ART-ML task:

int sendMessage(MBOX mbox, int msg, int timeout)
The message msg is sent to the messagebox mbox. If mbox is full, the sending
waits for an empty slot for the duration specified in timeout.If timeout is FOR-
EVER, it waits forever, if it is specified to 0, it immediatelyaborts if there is
no empty slot in the messagebox. If a timeout occurs, the return code is TIME-
OUT, otherwise OK. The message is a single 32-bit integer value. Negative
values are not allowed, they are used for error codes.

int recvMessage(MBOX mbox, int timeout)
A message is received from the messagebox mbox. If mbox is empty, the task
is blocked until a message arrives or the timeout occurs. If timeout is specified
as FOREVER (-1), no timeout will occur. If timeout is specified to 0, the task
is not blocked by an empty mbox, but immediately timeouts if no message is
available.

int semwait(SEMAPHORE sem, int timeout)
This routine attempts to lock a semaphore for a specified amount of time. If
the semaphore is already locked by another task, the task is blocked until it
is allowed to lock the semaphore or the timeout occur. If the semaphore was
locked, the return code is OK, otherwise, if a timeout occurs, the return code
is TIMEOUT. If timeout is specified as 0, the timeout will immediately occur
if the semaphore was already locked. If the timeout is specified to FOREVER,
semwait will never timeout.

int sempost(SEMAPHORE sem)
A previously locked semaphore is unlocked. If other tasks are waiting to lock
the semaphore, they will be made ready to execute. There are two return codes:
if the semaphore is already unlocked or is locked by another task, the return
code is ERROR, otherwise OK.

void delay(int time)
A call to this routine puts the task to sleep fortime time units. After time time
units the task is resumed and put in the ready-state.
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Modeling execution time

The execute statement is used to model the execution time of code, i.e. the con-
sumption of CPU time. Depending on the selected level of abstraction when
constructing the model, an execute statement can representa whole task or a
smaller section of code. The execute statement takes an execution time distri-
bution as parameter from which it samples a value, the amountof CPU time to
consume. The consumption of time corresponds to advancing the simulation
clock, which drives the simulation forwards. During this the duration of an
execute statement the task may be preempted by other tasks. In that case, the
execute statement remembers the amount of execution time left to consume,
and continues consuming the remaining CPU time when the taskis again al-
lowed to execute.

The discrete execution time distributions used in the previous version of ART-
ML will still be supported by ART-ML 2.0, e.g.:

execute( (10, 1000), (90,1300) );

In the above presented example, the probability of selecting an execution
time of 1000 time units in 10 % and the probability of 1300 is 90%. ART-ML
2.0 will also allow specifying identifiers instead of immediate data, e.g.

execute( C1 );

where the identifier refers to a distribution of any type declared elsewhere
in the model. Distributions that are planned to be supportedinclude the Normal
distribution, the Uniform distribution and the Weibull distribution. It will also
be possible to use empiric distribution, i.e. raw data from measurements.
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Probabilistic selection

ART-ML 2.0 allows for probabilistic selection through the “pswitch” state-
ment – probabilistic switch. This statement replaces the chance-statement in
the original version of ART-ML.

The syntax of pswitch is as follows:

pswitch{
p(p1): statement;

statement;
statement;
...
break;

p(p2): ...
break;

...

p(pn): ...
break;

default:
statement;
...
break;

}

The pswitch is similar to the well-known “switch” statementin ANSI C, apart
from that the selection is probabilistic. An arbitrary number of labels are al-
lowed where each label has a specified probability in the formof a floating
point value in the range[0..1]. The sum of the probabilities has to be equal
to, or below,1.0. If the sum of then probabilities is below1.0, an extra la-
bel may is required, “default”, which receives the remaining probability of
1 − (p1 + p2 + . . . + pn).
Even though pswitch is not the only probabilistic element inART-ML 2.0
(there is also sporadic tasks and the execute statement), itis the only way of
specifying probabilistic selection between behaviors.
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PPL Implementation

The Probabilistic Property Language, PPL, was first proposed in [WAN03b].
In comparison to the original specification, the implemented version of PPL
contains many extensions and some differences. The most important are:

• A second argument has been added to the P operator, the quantifier.

• A new operator, following, has been added, which returns thenext in-
stance of the specified task, that follows the activation of the particular
task instance.

• The statistical functions min, max, avg and median have beenadded,
which returns statistical measures of a task property, e.g.response time.

• The function subset has been added, which allows the task instances
matching a condition to be exported to a text file.

• Message queues are handled differently, as generic probes instead of
queues. A generic probe may monitor any logical resource.

These extensions are described in Chapter 3 as well as in the tool documenta-
tion, available at the project website:

http://www.idt.mdh.se/˜jxn01/projects/remodel

A tool for PPL analysis of execution traces, PET (Property Evaluation Tool),
can also be found there, together with the Tracealyzer (for execution trace vi-
sualization). Currently, the tools are available for Microsoft Windows only.
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The grammar of PPL

This section presents the grammar of the implemented version of the Proba-
bilistic Property Language, PPL, in Bachus Naur Form (BNF).

<query> ::= <property> ";" <query>
| <property>

<property> ::= <value> <relop> <value>
| <function>
| subset "(" <arg> ")" ">" FILENAME

<value> ::= "P" "(" ID "(" ID ")" "," <cond> ")"
| "P" "(" "*" "," <cond> ")"
| PROB
| <unbounded>

<cond> ::= <expr> <moreexpr>
| <expr>

<moreexpr> ::= <logop> <expr> <moreexpr>
| <logop> <expr>

<expr> ::= <exp> <relop> <exp>
| <exp> <relop> <unbounded>
| NOT "(" <cond> ")"
| "(" <cond> ")"

<exp> ::= <term> <moreterms>
| <term>

<moreterms> ::= + <term> <moreterms>
| - <term> <moreterms>
| + <term>
| - <term>

<term> ::= <factor> <morefactors>
| <factor>

<morefactors> ::= * <factor> <morefactors>
| / <factor> <morefactors>
| * <factor>
| / <factor>

<factor> ::= "(" <exp> ")"
| abs "(" <exp> ")"
| <function>
| CONST
| <task>
| "*" "." probe NUM
| - <factor>

<function> ::= min "(" <arg> ")"
| max "(" <arg> ")"
| avg "(" <arg> ")"
| median "(" <arg> ")"
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<arg> ::= ID "." <data member>
| ID "(" ID ")" "." <data member>
| ID "(" ID ")" "." <data member> "," <expr>
| "*" "." probe NUM
| "*" "." probe NUM "," <expr>

<unbounded> ::= ID

<task> ::= ID "(" <instance> ")" "." <data member>
| ID "(" <following> ")" "." <data member>

<instance> ::= ID
| ID + <num>
| ID - <num>

<num> ::= "[" NUM ".." NUM "]"
| "[" - NUM ".." NUM "]"
| "[" - NUM ".." - NUM "]"
| NUM

<following> ::= following "(" ID "(" <instance> ")" ")"
| following "(" ID "(" <instance> ")" ")" + <num>
| following "(" ID "(" <instance> ")" ")" - <num>

<data member> ::= start
| end
| resp
| exec
| probe NUM

<relop> ::= <
| >
| <=
| >=
| =

<logop> ::= AND
| OR

PROB ::= x : x ∈ R AND 0 ≤ x ≤ 1

CONST ::= x : x ∈ R

NUM ::= x : x ∈ Z

ID ::= LETTER(DIGIT|LETTER|’_’)*
FILENAME ::= ’"’ID(’.’ID)*’"’
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An example model
specification

The system in focus is a control system for industrial robots, developed by
ABB Robotics. This system was initially designed in the beginning of the
nineties and has been maintained and further developed over10 years by a staff
consisting of about 150 software developers. In essence, the robot controller
has an object-oriented design, but implemented in C. It consists of approxi-
mately 2500 KLOC distributed in 400-500 classes, in turn organized in a set of
subsystems. The controller uses the real-time operating system VxWorks, from
WindRiver [WRW]. The hardware platform is an industrial PC using high-end
Intel processors. The controller consists of three computers: the axis computer,
a DSP which controls the motors of the robot, the I/O computer, and the main
computer, the most complex part and the focus of the modelingstudy. The
software system in the main computer consists of more than 60tasks, which
are scheduled using preemptive fixed priority scheduling. The tasks commu-
nicate through message queues and shared data areas. Many tasks consist of
several services, sometimes over 200, which are activated by messages from
other tasks or by a timer. A task typically spends most of the time blocked,
waiting for incoming messages. When a message arrives, or a timer expires,
the task executes the service corresponding to the event occurred. During the
execution of a service, any incoming messages are buffered and later processed
in a FIFO manner.

A critical part of the main computer is the motion control subsystem, which
is responsible for generating the motor references and brake signals required
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Task A Task B Task C

Axis
computerQueue 1 Queue 2

Task A Task B Task C

Axis
computerQueue 1 Queue 2

Figure C.1: The Motion Control Subsystem

by the axis computer. The axis node sends requests to the maincomputer with
a fixed, high rate, over 200 Hz. The axis computer expects a reply in the form
of motor references within a certain time. This depends on three tasks on the
main computer, in the motion control subsystem. We refer to these tasks asA,
B andC. The tasksB andC have high priority and run frequently with a fixed
period. The taskA executes mostly in the beginning of each robot movement
and has lower priority, but produces data required by theB task. TheB task
processes the data and forwards it in smaller parts to theCtask, which makes
the final processing and sends motor references to the axis computer. The data
passed between C and B, and between B and C are passed through data queues,
as depicted in Figure 4. If any of the queues become empty while the robot is
under control, the C task cannot deliver any references to the axis node. This
state is considered as a system failure, and the robot halts.The queues may
only be empty if the robot has applied its brakes and stopped controlling the
motors. The interface of the subsystem in the task A, which receives orders to
move the robot and other commands from a client, in a way determined by the
application program which varies between different uses ofthe system. Since
the tasks B and C have the highest scheduling priority in the system, they may
only be disturbed by interrupts. Task C has however a mid priority and there are
tasks other than B and C which may disturb task A. The focus of this modeling
study is the motion control subsystem, and the properties ofinterest are if any
of the two queues can become empty while the robot is active, and in that case,
in which situation this may occur.
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