
Introducing Substitution-Queries in Distributed Real-Time Database
Management Systems ∗

Thomas Nolte and Dag Nyström
Mälardalen University

MRTC
Västerås, Sweden

{thomas.nolte, dag.nystrom}@mdh.se

Abstract

This paper introduces query mechanisms that allow
automotive control-systems (using a distributed real-time
database management system (RTDBMS)) to be queried,
monitored and stimulated during run-time without violat-
ing its temporal properties. The mechanisms are completely
transparent to the control application since they are han-
dled by the RTDBMS. The COMET RTDBMS is extended
with ad hoc capabilities to support the introduction of sub-
scription and substitution queries, which are used for mon-
itoring and stimulation. These queries are intended to be
used by service and calibration tools to help in the develop-
ment and maintenance of modern automotive systems. Us-
ing these queries could reduce development costs, result in
higher quality of the system design and consequently yield
higher reliability.

1 Introduction

In recent years, automotive control-systems have
evolved from simple single processor systems to complex
distributed systems. At the same time, the amount of data
that needs to be managed by these systems is increasing dra-
matically; the data volume managed by automotive systems
is predicted to increase 7-10% per year [8]. Current tech-
niques for storing and manipulating data objects in automo-
tive systems are ad hoc in the sense that they normally ma-
nipulate data objects as internal data structures. This lack of
a structured approach to data management results in a costly
development process with respect to design, implementa-
tion, and verification of the system [21]. It also makes the
system difficult to maintain and develop while preserving

∗This work is supported by SSF within the SAVE project, SAfety criti-
cal components for VEhicular systems.

Authors in alphabetical order.

consistency with the environment, e.g., maintaining tempo-
ral properties of data. As data complexity is growing, the
need for a uniform, efficient, and persistent way to store
data is becoming increasingly important. One way of han-
dling this complexity is to use a real-time database man-
agement system (RTDBMS) as a tightly integrated part of
the automotive control-system. RTDBMSs has the poten-
tial to solve many of the problems that application design-
ers have to consider with respect to data management, e.g.,
locking of the data, persistency and deadlock situations.
More importantly, incorporating an RTDBMS into an au-
tomotive control-system could reduce development costs,
result in higher quality of the design of the systems, and
consequently yield higher reliability [11]. Moreover, an RT-
DBMS enables development of advanced diagnosis tools,
by providing a uniform interface to access data.

Today, there exists a number of both commercial and
research databases suitable for embedded systems. Com-
mercial embedded platforms include Pervasive.SQL [24],
Polyhedra [9], Berkeley DB [26], and TimesTen [29]. Re-
search real-time platforms include, DeeDS [2], RODAIN
[16], STRIP [1], and BeeHIVE [27]. The general trend
among these platforms is that commercial systems focus to-
wards the embedded systems market, i.e., focus on flexi-
bility, adaptability, and efficiency, while the research plat-
forms mainly address real-time requirements. This dis-
crepancy makes neither type of database system suitable
for the automotive domain, where the adaptability and ef-
ficiency must be combined with maintaining real-time re-
quirements. However, the real-time database management
system COMET [20] aims to bridge this gap by provid-
ing both a light-weight, adaptable, and reconfigurable de-
sign paradigm [28], as well as efficient and predictable RT-
DBMS mechanisms [19].

This paper shows how the COMET RTDBMS can be ex-
tended with distribution mechanisms to allow service tools
to query, monitor and stimulate a control system at run-



time, while still maintaining a high level of abstraction.
Three types of database queries, ad hoc queries, subscrip-
tion queries, and substitution queries are introduced to ob-
tain this behavior. These queries are handled by the RT-
DBMSs on each node and are completely transparent to the
control application and are not violating the temporal prop-
erties of the control system.

The outline of the paper is as follows; in Section 2, a
background of automotive systems, current service tools,
CAN, and COMET are given. The paper continues in Sec-
tion 3, in which the extended data distribution is presented.
Finally, in Section 4 the paper is summarized and con-
cluded.

2 System model

In this section, typical automotive control-systems are
presented together with how these systems distribute data.
Furthermore, the COMET RTDBMS is presented in detail,
including how it is distributed using CAN. Also, typical ser-
vice tools used for automotive systems are presented, mo-
tivating the contribution of this paper, namely the database
queries allowing for querying, monitoring and stimulation
of data during run-time of real-time control-systems.

2.1 Automotive control-systems

Typical automotive control-systems are found in chas-
sis and vehicle safety systems, such as Vehicle Dynam-
ics Control (VDC) systems, also known as Electronic Sta-
bility Program (ESP). VDC/ESP is designed to assist the
driver in over-steering, under-steering and roll-over situa-
tions [32]. This, and similar safety systems, such as the
Anti-lock Brake System (ABS), all require feedback con-
trol.

Other safety-systems are air-bag systems [6], that control
the operation of air-bags in the vehicle. Typically a vehicle
contains several air-bags that are connected to sensors that
detect abnormal situations, e.g., sudden acceleration or de-
celerations of the vehicle. Once an abnormal situation is de-
tected the correct (depending on the type of crash) air-bags
are inflated in a matter of half a millisecond.

Body and comfort electronics require both feedback and
discrete control for subsystems such as climate control,
cruise control, locks, window lifts, seat control and HMI,
to mention a few. Typically body and comfort electronics
rely on driver interaction and are not safety-critical, they
involve hundreds of system states and events, and they in-
terface to physical components in the vehicle, e.g., motors
and switches.

Other automotive control-systems are powertrain sys-
tems and x-by-wire systems. Powertrain is the assembly
of gears by which power is transmitted from the engine of

the vehicle to the driving axis. Powertrain includes engine
control which involves the coordination of fuel injection,
engine speed, valve control, cam timing etc. X-by-wire
is the notation for new subsystems replacing hydraulic and
mechanical parts with electronics and computer (feedback)
control systems. Examples of x-by-wire systems are steer-
by-wire, shift-by-wire, throttle-by-wire and break-by-wire.

During the development and maintenance of these con-
trol systems, support through hardware tools is essential.
These tools are used to monitor and diagnose both the soft-
ware control-system and the mechanical systems.

2.2 Architecture

An automotive control-system (subsystem) consists of
one or several Electronic Control Units (ECUs). An au-
tomotive system, consisting of several subsystems with a
total of up to 70 ECUs, has to distribute thousands of vari-
ables and signals (data) over several communication net-
works [17], e.g., CAN networks. This makes a modern au-
tomotive system complex.

In this paper, all ECUs are assumed to be equipped with
the COMET RTDBMS [20]. Moreover, these ECUs are as-
sumed to be connected using the Controller Area Network
(CAN) [25].

2.3 CAN

CAN, or the Controller Area Network [25], is a serial
bus that was developed in the beginning of the eighties by
Bosch. Today CAN is the most widely used vehicular net-
work in the automotive industry. Over the years several
different CAN standards have been developed and used in
different applications, where the ISO 11898 [12, 13] is the
most commonly used fieldbus in the European automotive
industry.

A typical CAN application is any type of embedded sys-
tem with soft real-time requirements and loop times of 5-50
ms. CAN transmits messages in an event-triggered fashion
using frames containing 0 to 8 bytes of data and 4 to 6 bytes
of header. These frames can be transmitted at speeds of 10
Kbps up to 1 Mbps.

CAN handles communication faults by retransmission,
and there is no error containment or support for higher level
of fault tolerance. However, it holds a strong position and
will most likely continue to be the most used communica-
tion bus in the automotive application domain for a long
time.

With CAN, messages are not interrupted while in trans-
mission. Moreover, the CAN message identifier (ID) is rep-
resenting the priority of the message. Hence, CAN is imple-
menting non-preemptive Fixed Priority Scheduling (FPS),
and suitable analysis techniques can be used, like the FPS



response-time tests to determine the schedulability of CAN
message frames, presented by Tindell et al. [30, 31].

Using FPS, priorities are assigned to the messages before
execution (offline), by the allocation of message identifiers
(IDs). The message with the highest priority among all mes-
sages available for transmission is scheduled for transmis-
sion.

2.4 Data distribution in automotive control-
systems

OSEK/VDX [22] is an effort to standardize and increase
portability of automotive software. Among the OSEK/VDX
specifications, OSEK/VDX COM [23] is a uniform commu-
nication environment for automotive control unit applica-
tion software. OSEK/VDX COM provides communication
services through a well defined API. Moreover, it specifies
an Interaction Layer (IL) that provides the communications
interface to the application. The application can transmit
messages to other applications resident on the same ECU
or on other ECUs. If the receiving application is resident
on the same ECU, the IL handles the communications inter-
nally. If receiving applications are resident on another ECU,
the IL packs one or more messages (signals) into Interac-
tion Layer Protocol Data Units (I-PDUs). These I-PDUs are
then sent to the Network Layer (NL), either periodically or
explicitly initiated by some event. However, OSEK/VDX
COM does not specify the NL other than defining some
minimum requirements.

AUTOSAR [4], which aims at providing a global stan-
dard for software in automotive systems, proposes similar
mechanisms for data distribution using a run-time environ-
ment to route communications both inter- and intra-ECU.

Apart from OSEK/VDX and AUTOSAR, automotive
systems distribute signals over CAN in several ways, e.g.,
with the usage of Volcano as done by Volvo Car. The Vol-
cano system [8] provides tools for packaging signals into
messages, as well as assigning priorities for CAN messages
to achieve a high utilization of the bus. Moreover, it is pos-
sible to perform timing analysis of the system using the Vol-
cano tools. An offline schedulability test is done to ensure
that all deadlines are met.

2.5 The COMET real-time database management
system

The COMET RTDBMS [20] is a data management sys-
tem intended primarily for embedded control-systems, e.g.,
automotive systems. COMET contains data management
concepts that allow hard and soft application tasks to access
and share data in a predictable and efficient way [19].

Tasks in the system interact with the RTDBMS through
database transactions. Different types of tasks require dif-

Data distribution
manager

ELECTRONIC CONTROL UNIT

COMET
RTDBMS

D
B

 pointer interface

R
elational interface

I/O task

I/O task

Control
task

Control
task

CAN
Controller

Logging
task

HMI
task

Sensors &
Actuators

CAN Network

Soft Real-TimeHard Real-Time

Figure 1. The architecture of an ECU using
COMET

ferent kinds of transactions. Therefore, transactions are di-
vided into the following two classes, see Figure 1:

1. Soft transactions, either precompiled or ad hoc (for-
mulated and parsed at run-time) reside in soft real-time
tasks. These transactions utilize the relational database
query interface, such as, SQL [7], for database access.
Soft transactions provide a flexible and dynamic ac-
cess to the data in the database to the system and are
especially suited for management tasks, e.g., logging,
diagnosis, and, user interface (HMI) tasks, e.g., tasks
controlling the dash board.

2. Hard transactions, which are precompiled, reside in
hard real-time tasks. A hard transaction utilizes the
database pointer interface (see Section 2.5.1) [19], pro-
viding an efficient and predictable access to individual
data elements in the database. A majority of the trans-
actions in a vehicle, i.e., transactions used for vehicle
control, would fall into this class.

2.5.1 Database pointers

Database pointers allow individual data elements in an RT-
DBMS to be accessed in an efficient and predictable man-
ner [19]. They are intended as a complement to the rela-
tional data model, without limiting the expressibility of the
relational query processing.

Figure 2 shows an example of an I/O task that periodi-
cally reads a sensor and propagates the sensor value to the
database using a database pointer, in this case the oil tem-
perature in the engine relation. The task consists of two
parts, an initialization part (lines 2–4) executed when the



1 TASK OilTempReader(void) {
2 int s;
3 DBPointer *ptr;
4 bind(&ptr, "SELECT temperature FROM engine

WHERE subsystem=oil;");
5 while(1){
6 s=read_sensor();
7 write(ptr,s);
8 waitForNextPeriod();

}
}

Figure 2. An I/O task that uses a database
pointer

ptr
...

ptr
...

ptr
...

dataPtr
type
...

Database

Database pointer
entries

Data pointer

Figure 3. The data structures used by
database pointers

system is starting up, and a periodic part (lines 5–8) scan-
ning the sensor. The initialization of the database pointer is
first done by declaring the database pointer (line 3) and then
binding it to the data element containing the oil temperature
in the engine (line 4). When the initialization is completed,
the task begins to periodically read the value of the sensor
(line 6), then propagates the value to the RTDBMS using
the database pointer (line 7), and finally awaits the next in-
vocation of the task (line 8).

Database pointers are implemented using the data struc-
tures shown in Figure 3. The binding of a database pointer
to a database element is performed in the following steps:

1. A new database pointer entry is created in the RT-
DBMS.

2. The SQL query is executed. It is required that the re-
sult of the query is a single data element. If it is the first
time the data element is bound to a database pointer, a
new data pointer is created in the RTDBMS. The data
pointer is initialized with the address of the data ele-
ment and its type.

3. The database pointer entry is set to point at the data
pointer.

4. Finally, the pointer to the database pointer entry is re-
turned as a DBPointer*.

In addition to the bind(ptr,q) operation, the
database pointer interface consists of the remove(ptr)

operation which deallocates a database pointer, the
write(ptr,data), and the read(ptr) operations
which updates, respectively reads the data element.

2.5.2 Concurrency in COMET

For applications that use multiple transactions possibly ex-
ecuted in parallel, some form of concurrency control in
the RTDBMS is needed to maintain the consistency of the
database. One common way of enforcing concurrency con-
trol is to introduce database locks. Before a transaction is
allowed to access a data element in the database, the appro-
priate lock must be obtained. Database locks are similar to
semaphores in the sense that they protect a shared resource.

For real-time systems, e.g., automotive control-systems,
using locks might introduce unwanted blocking. This is es-
pecially true for systems that have both hard tasks executing
at high frequencies, and soft tasks that might execute trans-
actions with long execution times.

In COMET, this problem is solved by combining
database locks (for soft transactions) with a versioning al-
gorithm (for hard transactions). The concurrency control
algorithm, denoted 2-version database pointer concurrency
control (2V-DBP) [19], allow hard and soft transactions to
share common data elements without interfering with each
other.

2.5.3 Data distribution in COMET

To be able to support distributed automotive control-
systems, COMET needs to be equipped with a distribution
manager that communicates using the Controller Area Net-
work (CAN). The distribution manager supports periodic
pre-compiled queries (sporadic queries are treated as pe-
riodic based on their minimum inter-arrival time). When
queries are distributed between ECUs in the system, data is
mapped onto periodic CAN frames (messages) with iden-
tifiers (IDs) assigned to fulfill timing requirements of the
transactions. The mapping of query data onto CAN frames
is done similar to what is explained in Section 2.4, i.e., us-
ing a tool where signals and data are mapped onto mes-
sages. These messages are then periodically sent (multicas-
ted/broadcasted) on the CAN bus. For the remainder of this
paper, this periodically sent traffic is defined as the original
system CAN traffic.

Both hard and soft periodic transactions are mapped
between CAN frames and the COMET database using
database pointers with 2V-DBP for efficient access. Hence,
both packaging of data into messages for transmission,
and updating data in the database upon message reception,
are fast and simple operations. Moreover, the usage of
a database simplifies data access. Using, e.g., the CAN
Calibration Protocol (CCP) [3], lists of data elements are
used to describe which data elements that are to be mapped



into specific messages. In the CCP specification, these lists
represent physical memory addresses. However, using the
COMET RTDBMS with the database pointer concept, data
access is handled on a logical (relational) level. Hence, no
direct access to the ECU memory is required, protecting the
ECU while providing a clear interface to the ECU’s data
elements, still allowing fast access to its data elements.

Note that the mapping of data onto a set of periodic CAN
frames, together with performing the schedulability test on
the set of messages, is done offline hence not requiring re-
sources during runtime. During runtime mapping is done
simply based on lookup tables, containing database point-
ers.

2.6 Service tools for automotive systems

During the development and maintenance of a modern
automotive system, support through hardware tools con-
nected to the control system is essential. These tools are
mainly used to calibrate, test and diagnose both the soft-
ware control system and the mechanical systems. For the
remainder of this paper, these tools are simply referred to as
service tools.

Today, a substantial effort is put into calibrating the pa-
rameters of an automotive control-system. The aim of this
work is, among others, to optimize the performance of the
system, and to comply with regulations regarding emissions
etc. It is noteworthy that it is not the performance of the con-
trol system and its real-time properties, e.g., keeping dead-
lines and minimizing jitter, that is calibrated, but the perfor-
mance of the mechanical system being controlled. For an
automotive engine, typically several man-years are invested
in calibration.

In order to perform the calibration, a calibration tool is
used. These tools are typically connected to the vehicle via
the CAN network, and then the automotive system can be
monitored or updated using the tools. Even though com-
mercial calibration tools that support the CCP exist, e.g.,
CAMEO for Vehicle Use [5], and CANaph Graph [33], it is
not uncommon that in-house developed tools are used.

Service tools are also used to detect and diagnose poten-
tial system failures, both electrical and mechanical, during
service of the vehicle. By providing service stations with
powerful service tools, more efficient and accurate service
can be performed. Desirable functionalities in such systems
include:

• Downloading of warning- and error-logs from the ve-
hicle. These logs contain information on system
anomalies detected in the vehicle since its last service.
Typical logs might include sporadic failures of sensors
and abnormal sensor readings such as temperatures.

• Reading of a set of data elements in the vehicle. Such

information can be used to further localize errors. An
example of such a reading might be to obtain informa-
tion on all current sensor values regarding the engine.

• Periodically subscribe to data elements to monitor
fluctuations of their values over time, e.g., RPM- or
temperature readings. Such information might be used
to spot intermittent failures.

• Take control of (stimulate) a subsystem or function in
the vehicle. Consider, for example taking over the ac-
celeration pedal to be able to control the RPM of the
engine. This functionality is useful for automated tests
of the vehicle.

Since service tools communicate with the vehicle
through its data, it is natural that the service tools communi-
cate directly with the RTDBMSs in the ECUs, since they are
responsible for managing the data in the automotive system.
An advantage of this is also that the automotive application
itself needs not to be aware of the existence of service tools.

So far COMET has only been discussed in the context
of precompiled, periodic (and sporadic) offline scheduled
data distribution (the original system CAN traffic). Hence,
it must be extended to allow these new event driven ad-hoc
activities to be executed. To allow the above mentioned ac-
tivities, three new types of distributed database transactions
are introduced:

1. Soft ad hoc queries These queries are similar to soft
transactions, in the sense that they use a query lan-
guage, but can now be formulated at run-time. Since
it can not be foreseen which data elements an ad hoc
query will access, these queries must be allowed to
be distributed, i.e., gather information from different
ECUs in the system.

2. Subscription queries These queries allow a data ele-
ment, not currently distributed, to be subscribed to by
a task on a different ECU or by a service tool. This
query type consists of three parts, (i) a start of
subscription in which the subscriber requests that
a subscription is started, (ii) the actual subscription it-
self, and (iii) an end of subscription.

3. Substitution queries These queries allow current pro-
ducers of data (sensors etc.) in the system to be over-
ridden, in order for a service tool to take control of a
certain subsystem. A substitution query has, as sub-
scription queries, three parts, namely, (i) start of
substitution, (ii) the actual substitution itself, in
which the substitution data is propagated through the
network, and (iii) the end of substitution.



3 Extending the COMET data distribution

To be able to incorporate the three query types intro-
duced in Section 2.6, the data distribution in COMET needs
to be extended to support ad hoc CAN traffic, see Figure 4.
From the figure, it can be seen that the ad hoc CAN traffic is
added in a lower priorities segment than the original system
CAN traffic. In this segment, every node (both ECUs and
service tools) are assigned a unique CAN ID to transmit on.
This implies that any message collisions among ad hoc mes-
sages are handled by the CAN network. Furthermore, since
all ad hoc CAN messages are transmitted with lower priori-
ties than the original system CAN traffic, the schedulability
is still valid regardless of the amount of ad hoc CAN traf-
fic. However, it must be checked whether the ad hoc CAN
traffic, although unlikely, introduce longer blocking times
than caused by existing traffic, affecting the timely delivery
of messages. It is common to assume the blocking time to
be equal to the longest possible CAN-frame, in which case
this check is not needed.

3.1 Ad hoc queries

Ad hoc queries are distributed database queries, formu-
lated at run-time, normally by a service tool. This type of
query allows a user to view the current state of the system
using a powerful high level query language, i.e., SQL.

It is however noteworthy, that ad hoc queries provide nei-
ther transaction nor snapshot semantics, i.e., the result of an
ad hoc query cannot be viewed as the state of the system at a
single instance in time. However, ad hoc queries follow the
COMET consistency properties, namely that data consis-
tency and transaction semantics can be guaranteed locally
on each ECU, but due to the fact that freshness typically
is more favored than global consistency [14], inconsisten-
cies among nodes can be tolerated. This coincides with the
consistency of most automotive systems in practice.

The execution-flow of an ad hoc query is as follows
(numbers in Figure 4 correspond to the list below):

1. An ad hoc query is entered to the service tool. These
queries follow standard SQL syntax.

2. The query parser in the service tool parses the SQL
query, and creates an execution plan. To create and op-
timize the execution plan, the query parser has access
to the metadata, i.e., information such as structure and
size of the data elements and relations in the database.
The metadata is stored in the service tool.

3. The query engine in the service tool starts to pro-
cess the execution plan. Usually, the first step in the
execution plan is to retrieve data from the database,

ECU 1

4
Distribution
Manager

Query
Engine

ECU 2

Query
Engine

4
Distribution
Manager

CAN
Network

2

Ad hoc
query

Service tool

Query
Parser

3
Metadata Query

Engine

Distribution
Manager1 5

Query
result

3

Original system CAN traffic

Ad hoc CAN traffic
4

Database Database

Pri-
ority

Time

Figure 4. Execution of an ad hoc query

so therefore the distribution manager sends out a re-
quest for data on the CAN network, using the ser-
vice tool’s assigned CAN ID. Typically, such a request
is on the form <DATA REQ, REL NAME, COND>,
where all tuples (rows in a relation) for the relation
REL NAME which meet the boolean condition COND
are requested.

4. All distribution managers in the ECUs will then for-
ward this message to its local query engine, which will
launch a soft transaction retrieving the requested tu-
ples. It is however noteworthy that only the tuples
that each ECU has ownership of (stated in each ECU’s
metadata) is retrieved. Declaring ownership for each
tuple avoids several ECUs to retrieve (and thus return)
the same tuple to the service tool. When all tuples
are retrieved, each ECU’s distribution manager packs
them together in CAN messages and transmits them
on its respective CAN ID. When a distribution man-
ager is completed (possibly after sending 0 tuples), it
acknowledges end of transmission.

5. Finally, the query engine in the service tool completes
the execution plan and outputs the query result.

3.2 Subscription queries

Subscription queries are used to monitor individual in-
ternal data elements over a period of time. These queries



utilize just as the ad hoc queries, low priority CAN traf-
fic to initialize and terminate subscriptions. The level of
service, with respect to frequency and Quality of Service
(QoS), of the subscription can be specified. QoS is divided
into two classes, either the subscription is performed as a
background service (soft real-time), using ad hoc traffic,
or it is guaranteed (hard real-time). Guaranteed subscrip-
tions undergo an admission control in which a schedulabil-
ity analysis (as presented in Section 2.3) of the original sys-
tem CAN traffic together with the added subscription traffic
is performed. This analysis determines whether or not to ac-
cept (admit) the subscription. It is assumed that the service
tool has the full knowledge of the system, in terms of the
original system’s CAN traffic. If admitted, the subscription
will temporarily be treated as a part of the original system
CAN traffic. The execution-flow of a subscription query is
as follows:

1. A subscription query is entered into the service tool.
The query consists of the following:

• <NODE, REL NAME, KEY, ATTRIBUTE>,
which corresponds to the relation name, the key
and attribute (row and column) of the tuple lo-
cated in the ECU pointed out by NODE in which
the data element to subscribe upon is located.
This information is enough to uniquely identify
any data element in any database in the system.

• <PERIODICITY, QoS>, which corresponds to
the periodicity and the QoS level (soft or hard)
of the subscription.

2. The query engine of the service tool first checks in its
metadata if the data to view already is distributed (i.e.,
is already in the original system CAN traffic) with at
least the same level of service. In that case the service
tool uses that distribution.

3. For queries with the QoS level set to hard, the query
engine in the service tool performs an admission con-
trol. In the admission control, the following is de-
termined; (i) if the subscription, given its periodicity,
can be safely inserted into the original system CAN
traffic without violating any system requirements (i.e.,
schedulability analysis is performed), and (ii) at which
priority (CAN id) it can be transmitted.

4. Given that the query is admitted (or if the QoS level
is soft) an ad hoc message is sent out with the follow-
ing format: <SUB REC, NODE, REL NAME, KEY,
ATTRIBUTE, PERIODICITY, CANID>.

5. The ECU being addressed receives the message and
acknowledges it.

ECU

x

Query
Engine

Control
Application

Producer of x

Distribution
Manager

Trashcan

OK

Subst.
 query

Database
pointer

Database

Figure 5. Execution of an substitution query

6. The ECU then creates a new database pointer (if not
already existent) and periodically starts to transmit on
the assigned CAN ID.

7. Eventually, the service tool transmits an end of
subscription, and the subscription is terminated.

3.3 Substitution queries

Substitution queries are used to stimulate the system
from a service tool or similar. When a substitution query
is active for a data element, it overrides the producer of that
element. In Figure 5, a substitution query for data element
x is active, thus any producer in the control application is
overridden. Still however, the producers will receive a nor-
mal response (e.g., query successful or similar) on
their data updates on x. This implies that, from the control
applications point of view, a substitution (or subscription) is
completely transparent since it is handled by the RTDBMS.
The workflow for a substitution query is the same as for a
subscription query, except that data packages are sent from
the service tool to the control application. Just as for sub-
scription queries, substitution queries can be executed on
both a soft and a hard QoS-level.

4 Summary

During the development and maintenance of an automo-
tive system, service tools play an important role in calibra-
tion, testing and diagnosis. These tools need an intimate
access to system data to be able to monitor the system be-
havior during run-time.

This paper presents how a real-time database manage-
ment system can be used to enable this behavior. The
COMET RTDBMS is extended with three new query types



for querying, monitoring and stimulating data during run-
time of the system, without violating the temporal proper-
ties of existing control systems. These new queries could
help in the development of modern automotive systems,
reducing development costs, resulting in higher quality of
the system design and consequently yield higher reliability.
Furthermore, the approach presented in this paper enables
any data residing in the database to be monitored and stim-
ulated during runtime, also data that is not explicitly pre-
configured for this data access.

Future work includes extending the distributed RT-
DBMS to also support other networks [18], such as Local
Interconnect Network (LIN) [15] and Flexray [10].

References

[1] B. Adelberg, B. Kao, and H. Garcia-Molina. Overview of the
STanford Real-time Information Processor (STRIP). SIG-
MOD Record, 25(1):34–37, 1996.

[2] S. F. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndts-
son, and B. Eftring. DeeDS Towards a Distributed and Ac-
tive Real-Time Database System. ACM SIGMOD Record,
25(1):38–40, 1996.

[3] ASAP Standard. CCP - Can Calibration Protocol, Version
2.1, February 1999.

[4] AUTOSAR. Homepage of Automotive Open System Archi-
tecture (AUTOSAR). http://www.autosar.org/.

[5] AVL LIST GMBH. Cameo for Vehicle Use.
http://www.avl.com.

[6] R. Boys. Safe-by-Wire: The Leading Edge in Airbag Con-
trol. In SAE World Congress, Detroit, MI, USA, 2003. SAE.

[7] S. Cannan and G. Otten. SQL - The Standard Handbook.
MacGraw-Hill International, 1993.

[8] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Vol-
cano - a revolution in on-board communication. Volvo Tech-
nology Report 98-12-10, 1998.

[9] Enea AB. http://www.enea.se.
[10] FlexRay Communications System - Protocol Specification.

Version 2.0, June 2004.
[11] T. Gustafsson and J. Hansson. Data management in real-

time systems: a case of on-demand updates in vehicle control
systems. In Proceedings of the Real-Time Application Sym-
posium (RTAS 2004). IEEE Computer Society Press, May
2004.

[12] ISO 11898. Road Vehicles - Interchange of Digital Informa-
tion - Controller Area Network (CAN) for High-Speed Com-
munication. International Standards Organisation (ISO),
ISO Standard-11898, Nov 1993.

[13] ISO 11898-1. Road Vehicles - Controller Area Network
(CAN) - Part 1: Data link layer and physical signalling.
International Standards Organisation (ISO), ISO Standard-
11898-1, 2003.

[14] T.-W. Kuo and A. K. Mok. SSP: a Semantics-Based Proto-
col for Real-Time Data Access. In Proceedings of 14th IEEE
Real-Time Systems Symposium, pages 76–86. IEEE Com-
puter Society, December 1993.

[15] LIN Consortium. LIN - Local Interconnect Network. http://-
www.lin-subbus.org/.

[16] J. Lindstrom, T. Niklander, P. Porkka, and K. Raatikainen.
A Distributed Real-Time Main-Memory Database for
Telecommunication. In Proceedings of the Workshop on
Databases in Telecommunications, pages 158–173. Springer,
September 1999.

[17] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert. Trends
in Automotive Communication Systems. Proceedings of the
IEEE, 93(6), June 2005.

[18] T. Nolte, H. Hansson, and L. Lo Bello. Automotive Com-
munications - Past, Current and Future. In Proceedings of
the 10

th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA’05), Catania, Italy,
September 2005.

[19] D. Nyström, M. Nolin, A. Tešanović, C. Norström, and
J. Hansson. Pessimistic Concurrency Control and Version-
ing to Support Database Pointers in Real-Time Databases.
In Proceedings of the 16th Euromicro Conference on Real-
Time Systems, pages 261–270. IEEE Computer Society, June
2004.

[20] D. Nyström, A. Tešanović, M. Nolin, C. Norström, and
J. Hansson. COMET: A Component-Based Real-Time
Database for Automotive Systems. In Proceedings of the
Workshop on Software Engineering for Automotive Systems,
pages 1–8. The IEE, June 2004.

[21] D. Nyström, A. Tešanović, C. Norström, J. Hansson, and N.-
E. Bånkestad. Data Management Issues in Vehicle Control
Systems: a Case Study. In Proceedings of the 14th Euromi-
cro Conference on Real-Time Systems, pages 249–256. IEEE
Computer Society, June 2002.

[22] OSEK/VDX. Open Systems and the Corresponding Inter-
faces for Automotive Electronics. http://www.osek-vdx.org/.

[23] OSEK/VDX-Communication. Version 3.0.3, July 2004.
http://www.osek-vdx.org/mirror/OSEKCOM303.pdf.

[24] Pervasive Software Inc. http://www.pervasive.com.
[25] Robert Bosch GmbH. BOSCH’s Controller Area Network.

http://www.can.bosch.com/.
[26] Sleepycat Software Inc. http://www.sleepycat.com.
[27] J. A. Stankovic, S. H. Son, and J. Liebeherr. Real-

Time Databases and Information Systems, chapter BeeHive:
Global Multimedia Database Support for Dependable, Real-
Time Applications, pages 409–422. Kluwer Academic Pub-
lishers, 1997.

[28] A. Tešanović, D. Nyström, J. Hansson, and C. Norström. As-
pects and Components in Real-Time System Development:
Towards Reconfigurable and Reusable Software. Journal of
Embedded Computing, February 2004.

[29] TimesTen Performance Software. http://www.timesten.com.
[30] K. W. Tindell, A. Burns, and A. J. Wellings. Calculating

Controller Area Network (CAN) Message Response Times.
Control Engineering Practice, 3(8):1163–1169, 1995.

[31] K. W. Tindell, H. Hansson, and A. J. Wellings. Analysing
Real-Time Communications: Controller Area Network
(CAN). In Proceedings of 15

th IEEE Real-Time Systems
Symposium (RTSS’94), pages 259–263, San Juan, Puerto
Rico, December 1994. IEEE Computer Society.

[32] A. T. van Zanten, R. Erhardt, K. Landesfeind, and G. Pfaff.
VDC systems development and perspective. In SAE World
Congress. SAE, 1998.

[33] Vector-CANtech, Inc. CANape Graph. http://www.vector-
cantech.com.


