
Monitoring and Stochastic Analysis of Component-Based Control-Systems

Anders Möller‡ ⋆ Mikael Nolin‡ ⋆ Ian Peake† Heinz W. Schmidt†

‡MRTC, Mälardalen University, Västerås, Sweden
†Monash Univeristy, Melbourne, Australia

⋆CC Systems, Uppsala, Sweden

Anders.Moller@mdh.se

Abstract

A software component is a suitable vehicle to introduce ad-
vanced analysis techniques in a software-engineering context
for embedded control-systems; a feat that has yet to be fully
accomplished.

This project is adopting a component-based approach to
control-system software development. We are extending and
combining methods from disparate disciplines, such as prob-
abilistic reliability predictions, stochastic scheduling analysis
and software component technologies. We study theories and
methods for probabilistic modelling, analysis, and prediction
of control-system software executing in resource-constrained
embedded computers.

Combining the behaviour models and the architectural
model of a component assembly we are deriving stochastic
properties, such as reliability, expected delays, and resource
consumption. Using components as the fundamental unit of
reuse, we employ run-time monitoring techniques to extract
probabilistic models of the component behaviour.

1 Introduction

Developers of embedded real-time control-system face
challenges of (i) high demands on reliability and performance
(ii ) requirements on lowered product cost, and (iii ) support-
ing many configurations, variants and suppliers. Computer
systems offer the performance needed for the functions re-
quested, but at the same time product reliability and safety
must not suffer. Unfortunately computers and software add
new sources of failures, and therefore can cause lessened
product reliability. This yields a strong focus on the ability
to model, predict, andverify software functionality, reliabil-
ity, and safety. However, many companies lack the techni-
cal support to verify their computer system behaviour (both
with respect to functional and extra-functional aspects ofthe
software) - and black-box testing together with manual code
inspections are usually the only methods used to "confirm"
system functionality and reliability.

Also, in order to keep the software development costs
within budget, more and more Original Equipment Manufac-
turers (OEMs) use sub-contractors (and/or Commercial-Off-

The-Shelf (COTS) Components) to develop various parts of
their computer system. This increases complexity of system
analysis and jeopardises software system trust. Due to the
potentially high (economic and/or safety) impact of software
failures (e.g., passenger safety in a car) – predictable software
becomes increasingly important.

The real-time systems of interest to us are distributed, and
therefore require dealing with parallel behaviour (or at least
communication of a sequential component with parallel com-
ponents in its deployment environment). Our work focuses
initially on the sequential components and the behaviour of
multiple components executing on the same embedded con-
troller. Therefore asynchrony and scheduling issues are inside
the boundaries of our project while true parallelism is outside.

2 Project Aims
In this project, we are studying theories and methods for

probabilistic modelling, analysis, and prediction of control-
system software executing in resource-constrained embedded
computers. The overall goal is to come up with methods that
will result in (1) a decrease in system life-cycle costs, and(2)
an increase in system quality.

Using components as the fundamental unit of reuse, we
employ run-time monitoring techniques to observe the sys-
tems and extract probabilistic models of the component be-
haviour [24]. Combining the behaviour models and the ar-
chitectural model of a component assembly, we are deriv-
ing stochastic properties, such as reliability, expected delays,
and resource consumption. We are extending and combin-
ing methods from disparate disciplines, such as probabilistic
reliability-predictions [1, 21] stochastic scheduling-analysis
[12, 20, 26], run-time monitoring [2, 24, 25], and software-
component technologies [3, 10].

The data obtained from monitoring the components are
used to address the following key areas in software engineer-
ing of embedded control-systems:

• Model-extraction. By monitoring component-based soft-
ware, information about the component properties can be
extracted. This information can be used to describe the
components’ externally visible properties. These proper-
ties provide a basis for trust in components and can be used

1



for system-level predictions.

• System-level predictions. By using models of the com-
ponent behaviour, key properties such as reliability, tim-
ing behaviour and resource consumption can be predicted.
Early prediction of such properties can be used to guide
system designers and aid in dimensioning hardware re-
sources, hence reduce the development effort and increase
quality.

• System-level testing and debugging. By monitoring in-
dividual components and component interactions, errors
can be found and traced. Monitoring can also be used to
support replay debugging [25], where erroneous system-
executions are recreated in a lab environment to allow trac-
ing of bugs. Testing and debugging of embedded systems
are notoriously difficult and time-consuming. Hence, in-
creased support for test and debug has great potential for
cost savings.

• Run-time contract checking. The run-time monitoring
allow surveillance of third party components. Both func-
tional (e.g. range of output values) and extra-functional
(e.g. memory usage) properties can be monitored. During
acceptance testing, the contract checking is used to vali-
date that a component does not violate its specification. In
systems that fail after deployment, logs from the contract
checking can be used in post-mortem analysis. The pos-
sibility for post-mortem assessment of contract breaches is
likely to increase the willingness to deploy third-party com-
ponents in critical systems, since such assessments can be
coupled to financial liabilities.

• Observability. Computer systems in general and embed-
ded systems in particular, are infamous for the difficulty
of observing their internal behaviour. This has drawbacks
throughout the debugging, testing and maintenance phases.
Systems that are unobservable become very difficult to
analyse and validate. Also after deployment, observabil-
ity is an important feature, allowing inspection and perfor-
mance tuning of running systems.

To realize the above goals, this project contains two main
strands of research:

X Development of monitoring techniques suitable for
resource-constrained embedded systems. Monitoring of re-
source constrained systems requires lightweight techniques
to be developed. Also, the number of metrics (and their
quality/granularity) should be limited. This presents a
trade-off between achieved results of the monitoring and
the resources consumed.

X Development of techniques to predict system properties
from component properties. We focus our research on sto-
chastic methods such as reliability prediction and proba-
bilistic scheduling-analysis. Whether to deploy stochas-
tic or deterministic (worst-case) predictions is a strategic
decision for each project. However, the majority of sys-
tems (aerospace applications exempted) are not designed

for worst-case scenarios; it is not possible to motivate the
cost incurred by dimensioning and validating the system
for the worst-case scenario. Hence, our focus is on sto-
chastic methods that allow designers to make well founded
trade-offs between, e.g., reliability and production cost.

3 Component-Based Development

Component-Based Development (CBD) for resource-
constrained embedded real-time systems usually differ from
genaral CBD for Internet/office applications, in which com-
ponents are individually compiled and deployed. At run-time,
components are loaded and bindings between component are
dynamically created by a middleware. Figure 1 illustrates the
typical process when using CBD forembeddedsystems. Sys-
tems are developed by assembling components from a repos-
itory, or by using newly developed components. In the next
step a system generator generates C source code where com-
ponent bindings are explicitly represented and connected.Fi-
nally the C code is compiled and the system executed. Upon
the detection of bugs or undesired system properties, the sys-
tem designer goes back and modifies the system.

System Development
(Component Assembly)

Architectural Model Component 
Repository

System Generation

C Source Code

Compilation

Binary load modules

System Execution

New ComponentLedgend:

Process

Artefact

Figure 1. Traditional CBD Processes for Embedded
Systems

Using the results of this project, a much more attractive
process can be obtained. Figure 2 illustrates the new pos-
sibilities with highlighted activities. Firstly, using analysis,
early assessments about system properties can be made, also
– if the system is redesigned undesired properties can be de-
tected. Secondly, the system generator can be augmented to
automatically insert the instrumentation code needed to per-
form run-time monitoring. Finally, dynamic properties forthe
components are extracted during run-time. These properties
are then stored together with the components in the repository
and can be used in subsequent development cycles.

4 Survey of the Field

This project will draw upon results from several estab-
lished research fields.

2



4.1 Component-based Development

During the last decade, tremendous advancements have
been made in component-based development (CBD) for
desktop- and Internet-applications. A set of commercially
available techniques has transformed the way commodity
software is developed. Some of the most well known tech-
niques are Microsoft’s COM and .NET, SUN’s Enterprise
Java Beans, OMG’s Corba Component Model (CCM). How-
ever, for embedded systems no readily available technique
exist [3, 16]. Within the research community a plethora of
component models and component techniques for embedded
systems exits, see e.g. Nolinet al. for a survey [19].

Such techniques, like the well known Koala component
model from Phillips [28], often strive to generate resource-
conservative systems. However, as outlined in section 2, de-
signers of control-systems often have to pay attention to other
properties, such as reliability and timeliness. To this end,
many projects have come up with component models that
should support analysable systems, e.g. [10, 23, 31, 33]. All
these techniques are based upon static, worst-case analysis of
the system. Hence, they are dependent on the availability of
models that bound the behaviour of the components. How-
ever, methods to statically and safely bound properties like
execution-time, memory usage, and reliability are not readily
available1. Also, as discussed in section 2, in most projects it
is not feasible to design the system to sustain worst-case sce-
narios. Unfortunately, no component technologies explicitly
address the issue of providing statistical metrics for system
behaviour.

Crnkovic and Larsson provides a good overview of the
problems needed to be tackled when employing CBD for em-
bedded systems [4]. Mölleret al. [17], and Hammeret al.
[7] describes, specifically for embedded systems, what are the
requirements to be met by a component technology.

4.2 Run-Time Monitoring and Model Extraction

In [24] we give an overview of the work done on moni-
toring software-components. Typically, existing component-
related monitoring techniques are not suitable for our goals
of supporting test, debug, and model extraction (the exception
being PECOS [33]). The most relevant work in this area is:

• Monitoring of real-time systems is covered by Chodrow et
al. [2]. And monitoring of distributed real-time systems is
presented by Tokuda et al. [27]. The generally conclusion
is that it is necessary to leave the software probes in the
target system at all time in order to eliminate probe-effects.

• Monitoring to support replay debugging [25], where logs
from a system are used to exactly recreate the execution
of the system. Typically this is used to recreate the faulty
execution leading up to a failure of the system.

1Even though good progress in static analysis areas such as execution time
analysis has been made the last few years, one can hardly claim that such
methods are readily available to the general public.

• Stochastic model extraction has been proposed by Wallet
al. [9, 29]. They are tackling the problem of extracting
models for complex real-time systems, not using any infor-
mation about architectural style or software structure.

• The PECOS component technology [33] stands out by be-
ing, to the best of our knowledge, the only technology that
proposes a general approach to monitoring in order to ex-
tract component properties. PECOS enables support for in-
strumenting components during run-time, with respect to,
e.g., periodicity, memory consumption, and execution time.
However, in PECOS, only worst-case figures are collected.

4.3 Reliability Predictions for Component-Based
Software

Mitzenmacher [15] gives a good introduction to probabilis-
tic analysis techniques. The stochastic behaviour of software
can be modelled by using Markov chains, where the states are
defined by the software components. Markov processes are
useful when modelling random behaviours of software, e.g.,
faults remaining at timet or failures experienced by the timet.

The most relevant work in the area of reliability predictions
is:

• Littlewood’s "Littlewood model" [13, 14] is the first
architecture-based software reliability model. It is de-
signed for continuously running systems, and is based on
continuous time Markov chains. Several extensions have
been made, e.g., by Ledoux [11] whom introduces failure-
process effects of the execution, and delays in recovering
after a failure.

• Cheung [1] introduced a user-oriented model to predict re-
liability by using a Markov process to represent the control-
flow between different software modules. Reussneret
al. [21, 22] extended this work to component-based ar-
chitectures by introducing contractually specified compo-
nent contracts. Cheung’s work is further extended by, e.g.,
Wanget al. [32] whom presents a prediction model to es-
timate architecture-based software reliability for different
architectural patterns.

• Musaet al. [18] gives an overview of software reliability in
general, and presents a generalised approach of reliability
predictions using Markov processes. Musaet al. also put
forward a classification of finite-failure category models,
for Markovian models.

4.4 Stochastic Schedulability-Analysis of Real-
Time Systems

Different from traditional (worst-case) scheduling-
analysis, this research aims at predicting statistical properties
of real-time systems by using stochastic models of the
executing tasks. Stochastic schedulability-analysis hasnot
yet been addressed for component-based systems. However,
there are some initial results within the real-time computing
area:

3



• Tia et al. [26] present Probabilistic Time Demand Analysis
(PTDA) which is restricted to systems that are using fixed
priorities. Gardneret al. [6] present Stochastic Time De-
mand Analysis (STDA) which is better than PTDA in the
sense that it can cope with general deadlines.

• Another group of stochastic analysis methods is the Real-
Time Queueing theory by Lehoczky [12]. Real-Time
Queueing theory can provide stochastic guarantees. How-
ever, it requires high traffic load, thus not suitable for a
general system configuration. Approaches using Markov
processes to scheduling analysis has been proposed by Diaz
et al. [5].

• Simulation-based predictions of execution-times has also
been proposed [8, 30]. While difficult to quantify the relia-
bility of the results, these approaches have the potential to
deal with highly complex models and system behaviour.

5 Research Topics
This project draw upon existing results from several re-

search directions. The main challenges will include (1) to
identify suitable techniques, and (2) modify these techniques
to suit component-based development of embedded systems.
For each of the research directions we list some of the key
research questions addressed within this project.

System Development
(Component Assembly)

Architectural Model Component 
Repository

System Generation

C Source Code

Compilation

Binary load modules

System Execution

New Component

Analysis

Instrumentation

Model Extraction

Figure 2. Our proposal to CBD for Embedded Sys-
tems

5.1 Software Component Monitoring

Current approaches rely on software instrumentation to
produce the logs. Part of this instrumentation can be placed
from operating system functions, which minimises the man-
ual effort for instrumentation. However, not all data needed
for the logs can be extracted in operating system calls, and
manual instrumentation of application code is required. Fur-
thermore, this manual instrumentation requires expert knowl-
edge of the application code and about replay debugging, to
make sure that all the needed data is collected.

Using a component-based approach gives us the opportu-
nity to automatically add code instrumentation. This is possi-

ble if the component model makes explicit all data flows and
state variables, and this is the case for the component models
considered in this project [10].

Some specific questions studied within this project are:

• Monitoring embedded systems require resource conserv-
ative monitoring-techniques. Are current techniques good
enough? Can they be modified to better suit embedded real-
time systems?

• Since resources are constrained, the number of metrics (and
their quality/granularity) should be limited. This presents
a trade-off between achieved results of the monitoring and
the resources consumed. A key problem in this project is to
identify the metrics that have the highest beneficial impact
on the software engineering process.

• Ideally, metrics should be collected and refined through-
out the life-cycle of a component. However, resource lim-
itations may hinder this ideal solution since different met-
rics could be more important during different phases. This
presents a trade-off of which metrics to obtain during what
stage. A goal of this project is to identify which metrics are
most important during what stages.

• The problem that arises with monitoring is the large num-
ber of executions necessary to establish a reasonable statis-
tical confidence. Due to the complex behaviour of software
components, traditional statistical methods to estimate the
statistical validity, such as confidence intervals, may have
to be used together with more domain specific validity met-
rics. We will investigate to what extent traditional statisti-
cal methods are suitable and, if needed, try to find methods
to complement them.

5.2 Reliability Predictions

We focus on reliability predictions using Markov models,
as described in, e.g., [1, 21]. However, such methods require
that a system has a well-defined start and end state. Unfortu-
nately, this is not the case for reactive control-systems. In ad-
dition, the Markov behaviour of software components has to
be mapped to the execution histories and their stochastic prop-
erties. This requires blending automata models with Markov
chains.

Also, since reusable components are intrinsically open -
they have to interact with a range of different external compo-
nents in different deployment environments, each exhibiting
different extra-functional properties. A single fixed or con-
stant model for their behaviour or extra-functional properties
results in hopelessly inaccurate predictions. This is because
the extra-functional properties of interest aresystem proper-
tiesemerging from a system model (deployment environment)
that is the result of composing (partial) component-level mod-
els of those properties developed (in isolation) and reusedwith
the component themselves.

Our prior research, e.g. [21, 22], has shown that rea-
sonably accurate prediction of these system properties can
be achieved by parameterisation. Component-level, extra-

4



functional, models are variable with formal parameters rang-
ing over different behaviours or different extra-functional
variations.

Interesting research questions include:

• How can the modelling techniques be adapted/extended in
order to fit reactive systems, without start and end states?
One possible solution could be to introduce additional
super-states, defining the start and end states. This, how-
ever, needs to be combined with a way of finding recurrent
states in the reactive control-system, i.e. system states that
will re-occur during execution.

• To facilitate architecture-based reliability predictions, soft-
ware components need to be equipped with reliability fig-
ures. These figures depend on the context in which the
component is used (often called the components usage-
profile), e.g., what input ports of the component are used
and what output is required. The usage-profile of a spe-
cific component in a certain application, of course, has in-
fluence on the reliability. What type of reliability measure
best suits the control-system domain, and what does this
imply in terms of changes in the analysis techniques?

• When the component is deployed with its extra-functional
model, the parameters are actualised and the model is in-
stantiated to reflect more accurately key properties of the
environment components it relies upon, such as the relia-
bility of services it requests from the underlying system or
another used component.

• Is it possible to extend the parameterisation techniques in
order to enhance the prediction accuracy. Is it possible
to extend the parameterisation technique to other extra-
functional models, such as schedulability.

• One basic idea is to transfer the architecture description of
the component-based system into a Finite State Automata
(FSA), and use reliability figures of the components to rep-
resent system reliability. Is it possible to adapt this method,
in order to be more fine-grained, e.g., by representing also
the actual components with FSAs? In this case, reliability
methods can be used to find the weakest part of each of the
used components.

• By using component impact analysis, software developers
can be guided to put focus on the part of the application
that is most crucial in terms of reliability and usage. How
can the architecture-based reliability predictions, using a
Markov chain representation, be extended in order to guide
control-system developers during the design-phase?

5.3 Stochastic Schedulability Analysis

Traditional methods for stochastic schedulability-analysis
assume that execution-times can be described by known prob-
ability functions. However, such a description is often mis-
leading since execution times cannot take on arbitrary values.
Typically, execution times are clustered around a small setof
“probability peaks” which is not easy to represent with gen-
eral probability functions.

On the other hand, if the representation of the execution-
times and their probabilities is too detailed, statisticalanalysis
becomes infeasible due to the combinatorial explosion in the
number of possible combinations of execution times.

• We investigate histogram-based schedulability-analysis. A
histogram can be adapted to provide the desired level of
detail, thus it gives the possibility to reduce complexity of
the analysis.

• When performing stochastic schedulability-analysis there
are two major sources of errors: (1) errors in the mod-
els used (e.g. due to not monitoring the component long
enough), and (2) errors due to simplifications/abstractions
made during the analysis. The effect of both these errors
needs to be quantified and bounded. This means that it
is not enough to calculate the result of the schedulability
analysis, but also a level of confidence that account for both
error source is needed.

6 Conclusion

This project will provide novel models, theories and tech-
niques to monitor and predict the behaviour of embedded, re-
source constrained, control-systems. This class of systems
constitutes an increasing fraction of value in many products,
such as in vehicles and automation robotics.

We fuse scientific methods from disparate disciplines, such
as probabilistic reliability-predictions, stochastic scheduling-
analysis, run-time monitoring, and software-component tech-
nologies. This will result both in novel methods and exten-
sions to existing, well established, methods.

This project takes a unique approach:

X compared to other component-technology projects, we do
not focus on developing our own component technology.
Rather we focus on the ability to use the architectural- and
component-models to facilitate system-level analysis. Our
goal is to automate the whole process, thus we do not in-
troduce additional burdens for the software-engineers.

X compared to other analysis-techniques project, we do not
focus on generally applicable methods. Rather we con-
strain our research to methods suitable for component-
based systems. Since component models provides strict
rules on component-interaction this significantly simplifies
our task.

References

[1] R. C. Cheung. A User-Oriented Software Reliability Model.
IEEE Transactions on Software Engineering, 6(2):118–125,
1980. Special collection from COMPSAC 1978.

[2] S. Chodrow. Run-time monitoring of real-time systems. In
Proc. of IEEE 12th Real-Time Systems Symposium, pages 74–
83, December 1991. San Antonio, USA.

[3] I. Crnkovic. Componet-Based Approach for Embedded Sys-
tems. In Proceedings of 9th International Workshop on
Component-Oriented Programming, June 2004. Oslo, Nor-
way.

5



[4] I. Crnkovic and M. Larsson.Building Reliable Component-
Based Software Systems. Artech House publisher, 2002. ISBN
1-58053-327-2.

[5] J. L. Díaz, D. F. García, K. Kim, C. G. Lee, L. LoBello,
J. M. López, S. L. Min, and O. Mirabella. Stochastic Analysis
of Periodic Real-Time Systems. InProceedings of the 23rd

IEEE Real-Time Systems Symposium, pages 289–300, Decem-
ber 2002. Austin, Texas, USA.

[6] M. K. Gardner and J. W. Liu. Analyzing Stochastic Fixed-
Priority Real-Time Systems. InProceedings of the5th Inter-
national Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, March 1999.

[7] D. K. Hammer and M. Chaudron. Component-Based Software
Engineering for Resource-Constraint Systems: What are the
Needs? InProceedings of the 6th Interntational Workshop
on Object-Oriented Real-Time Dependable Systems (WORDS),
January 2001. Rome, Italy.

[8] H. Hansson, T. Nolte, C. Norström, and S. Punnekkat. Integrat-
ing Reliability and Timing Analysis of CAN-based Systems.
IEEE Transaction on Industrial Electronics, 49(6), 2002.

[9] J. G. Huselius and J. Andersson. Model Synthesis for Real-
Time Systems. InProc. of the 9th European Conference on
Software Maintenance and Reengineering (CSMR), pages 52–
60, March 2005.

[10] M. Åkerholm, A. Möller, H. Hansson, and M. Nolin. Towards
a Dependable Component Technology for Embedded System
Applications. InProceedings of the 10th IEEE International
Workshop on Object-oriented Real-Time Dependable Systems
(WORDS05), February 2005. Sedona, Arizona, USA.

[11] J. Ledoux. Availability model of modular software.IEEE
Trans. on Reliability, 48(2):159–168, 1999.

[12] J. P. Lehoczky. Real-Time Queuing Network Theory. In
Proceedings of the18th IEEE Real-Time Systems Symposium
(RTSS’97), pages 58–67, San Francisco, CA, USA, December
1997. IEEE Computer Society.

[13] B. Littlewood. A Reliability Model for Systems with Markov
Structure.Applied Statistics, 24(2):172–177, 1975.

[14] B. Littlewood. Software Reliability Model for ModularPro-
gram Structure.IEEE Transactions on Reliability, 28(3):241–
246, 1985.

[15] M. Mitzenmacher and E. Upfal.Probability and Computing
- Randomized Algorithms and Probabilistic Analysis. Cam-
bridge University Press, 2004. ISBN 0521835402.

[16] A. Möller, M. Åkerholm, J. Fredriksson, and M. Nolin. Eval-
uation of Component Technologies with Respect to Industrial
Requirements. InEuromicro Conference, Component-Based
Software Engineering Track, August 2004.

[17] A. Möller, J. Fröberg, and M. Nolin. Industrial Requirements
on Component Technologies for Embedded Systems. InPro-
ceedings of the 7th International Symposium on Component-
Based Software Engineering. 2004 Proceedings Series: Lec-
ture Notes in Computer Science, Vol. 3054, May 2004. Edin-
burgh, Scotland.

[18] J. D. Musa, A. Iannino, and K. Okumoto.Software Reliability:
Measurement, Prediction, Application. McGraw-Hill, Series
in Software Engineering ant Technology, 1987. ISBN 0-07-
044093-X.

[19] M. Nolin et al. Component-Based Software for Embedded
Systems - A Literature Survey. Technical report, MRTC Re-
port No 104, ISSN 1404-3041, ISRN MDH-MRTC-104/203-

1-SE, Mälardalen Real-Time Reseach Centre, Mälardalen Uni-
versity, June 2003. Västerås, Sweden.

[20] T. Nolte, A. Möller, and M. Nolin. Using Components to
Facilitate Stochastic Schedulability. InProceedings of the
24th Real-Time System Symposium – Work-in-Progress Ses-
sion. IEEE Computer Society, December 2003. Cancun, Mex-
ico.

[21] R. H. Reussner, I. H. Poernomo, and H. W. Schmidt. Rea-
soning about Software Architectures with Contractually Spec-
ified Components.Component-Based Software Quality. LNCS
2693, Springer-Verlag, pages 287 – 325, 2003.

[22] H. W. Schmidt. Trustworthy components: compositionality
and prediction.Journal of Systems and Software, Elsevier Sci-
ence Inc, 65(3):215–225, 2003.

[23] J. A. Stankovic. VEST – A toolset for constructing and ana-
lyzing component based embedded systems.Lecture Notes in
Computer Science, 2211:390, 2001.

[24] D. Sundmark, A. Möller, and M. Nolin. Monitored Software
Components – A Novel Software Engineering Approach –.
In Proceedings of the 11th Asia-Pasific Software Engineering
Conference, Workshop on Software Architectures and Compo-
nent Technologies, November 2004. Pusan, Korea.

[25] H. Thane, D. Sundmark, J. Huselius, and A. Pettersson. Replay
Debugging of Real-Time Systems Using Time Machines. In
Proceedings of Parallel and Distributed Systems: Testing and
Debugging (PADTAD), pages 288 – 295. ACM, April 2003.

[26] T. S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L. C. Wu,
and J. S. Liu. Probabilistic Performance Guarantee for Real-
Time Tasks with Varying Computation Times. InProceedings
of the1

st IEEE Real-Time Technology and Applications Sym-
posium (RTAS’95), pages 164–173, Chicago, IL, USA, May
1995. IEEE Computer Society.

[27] H. Tokuda, M. Kotera, and C. Mercer. A Real-Time Monitor
for a Distributed Real-Time Operating System. InProceed-
ings of ACM Workshop on Parallel and Distributed Debugging,
May 1988. Madison, USA.

[28] R. van Ommering et al. The Koala Component Model for Con-
sumer Electronics Software.IEEE Computer, 33(3):78–85,
March 2000.

[29] A. Wall, J. Andersson, J. Neander, C. Norström, and M. Lem-
bke. Introducing Temporal Analyzability Late in the Lifecycle
of Complex Real-Time Systems. InProc. of the 9th Interna-
tional conference on Real-Time Computing Systems and Appli-
cations (RTCSA’03), 2003.

[30] A. Wall, J. Andersson, and C. Norström. Probabilistic
Simulation-based Analysis of Complex Real-Times Systems.
In 6th IEEE International Symposium on Object-oriented
Real-time distributed Computing, May 2003.

[31] K. C. Wallnau. Volume III: A Component Technology for Pre-
dictable Assembly from Certifiable Components. Technical
report, Software Engineering Institute, Carnegie Mellon Uni-
versity, April 2003. Pittsburg, USA.

[32] W.-L. Wang, Y. Wu, and M.-H. Chen. An Architecture-Based
Software Reliability Model. InProceedings of the 1999 Pa-
cific Rim International Symposium on Dependable Computing,
1999. Hong Kong, China.

[33] M. Winter, T. Genssler, et al. Components for Embedded Soft-
ware – The PECOS Apporach. InThe 2nd International Work-
shop on Composition Languages, in conjunction with the 16th

ECOOP, June 2002. Malaga, Spain.

6


