A component-based development framework for supporting
functional and non-functional analysis in control system design>k

Johan Fredriksson
Malardalen University
Malardalen Real-Time Research
Centre
Vasteras, Sweden

johan.fredriksson@mdh.se

Abstract

The use of component-based development (CBD) is growinigen t
software engineering community and it has been succegsipH
plied in many engineering domains such as office applicatéomd
in web-based distributed applications. Recently, the mé&BD is
growing also in other domains related to dependable and edielde
systems, namely, in the control engineering domain. Cosy®
tems constitute the core functionality of modern embedgstems
such as vehicles and consumer electronics. However, thelywid
used commercial component technologies are unable todwea-
lutions to the requirements of embedded systems as theiyedqa
much resource and they do not provide methods and tools for de
veloping predictable and analyzable embedded systemse Tha
need for new component-based technologies appropriatevis-d
opment of embedded systems.

In this paper we present a component-based developmergfram
work called SAVEComp. SAVEComp is developed for safety-
critical real-time systems. One of the main charactessifSAVE-
Comp is syntactic and semantic simplicity which enablesgh hi
analyzability of properties important for embedded systerBy
means of an industrial case-study, we show how SAVEComp is
able to provide an efficient support for designing and imgetn
ing embedded control systems by mainly focusing on sintglici
and analyzability of functional requirements and of réalet and
dependability quality attributes. In particular we disetise typical
solutions of control systems in which feedback loops arel asel
which significantly complicate the design process. We mie\a
solution for increasing design abstraction level and Btihg able
to reason about system properties using SAVEComp appréach.
nally, we discuss an extension of SAVEComp with dynamic run-
time property checking by utilizing run-time spare capatitat is
normally induced by real-time analysis.

*This work is an extended and revisited version of [18].

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesiarmade or distributed
for profit or commercial advantage and that copies bear ttisenand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Massimo Tivoli
University of LAquila
Computer Science Department
L'Aquila, Italy

tivoli@di.univag.it

Ivica Crnkovic
Malardalen University
Malardalen Real-Time Research
Centre
Vasteras, Sweden

ivica.crnkovic@mdh.se

1 Introduction

The use of component-based development (CBD) is growinigen t
software engineering community and it has been succegsipH
plied in many engineering domains such as desktop envirotene
office applications, e-business and in web-based dis&ibappli-
cations. To improve control systems analysability, reiiggkflexi-
bility and to decrease thene-to-marketthe need of CBD is grow-
ing also in other domains related to dependable and embexyded
tems (i.e., control engineering domain). Control systeamstitute
the core functionality of modern embedded systems suchfds ve
cles and consumer electronics. One of the main issues imatont
engineering domain is how to design control systems in sweéya
that functional requirements (safety and liveness praggras well
as real-time attributes (end-to-end timing, freshnessatd,dsimul-
taneity, jitter tolerances, WCET) can be analyzed alrendyiearly
phase of the system life-cycle, namely during design-time.

Due to the increasing complexity of control systems, theycoditen
constructed performing a modular approach by means ofrigsra
of building blocks with high functionality and a high degrefeflex-
ibility. This has lead to a need of a component-based apprfmc
building control systems out of a set of already implemeriteah-

trol modules”[15]. The control module concept has been imple-
mented iNABB’s new control system, Control BS a more reliable
andeasy-to-us@eneralization of a traditional IEC61131-3 function
block! [1]. A control module might be considered a control system
component and hence it is the mean to build control systems by
adopting a component-based approach supported by a eustaik
ponent technology. Unfortunately, commercial componech+
nologies are too complex and unpredictable and hence,qbabdi

ity of the functional and non-functional behaviour of thestgm
would be weakly supported and in most cases not supportdt at a
Moreover, although component models that support prdaiitia

of the system behaviour exist, they are often not able toauipipe
requirements of embedded systems. For example, softwane co
ponents for embedded systems should provide an interfawifisp
cation that points out specific resource requirements a@rqitop-
erties of interest for the target application, e.g., timingemory
usage and dependability-related attributes such as iljaénd
safety. Specific architectural constraints should be iragam the
system design in such a way that predictability of propsrtieat
are relevant for the domain can be supported. Even a componen
framework for embedded systems should use predictable anech
nisms and be light weight. Thus, a component-based developm
framework which supports the requirements of embeddee st

1in the reminder of the paper, we will use the term “function
block” to identify a “IEC61131-3 function block” and all ifsirther
extensions (e.g., IEC61499 function blocks [9]).

is highly needed in order to be able to predict functional aod-
functional behaviour of control systems during designetim

In this paper, we present a component-based developmenefra
work, called SAVECom$ that supports predictability of control
system behaviour during design-time. The main purpose ¥ESA
Comp is to provide efficient support for designing and impeata

ing embedded control applications by mainly focusing onpdiica

ity and analysability of functional requirements and riéale and
dependability properties. Our reference component madghve-
Comp Component ModgBaveCCM) [8] which is designed for
safety-critical real-time systems. SaveCCM has been fiotay
support predictability of the real-time behaviour of emthed sys-
tems. We show how to extend the current version of SaveCCM in
order to incorporate the control module concept in SAVECamp
such a way that we are able to predict the system behaviour. A
control module in SAVEComp is inherently able to correctgat
with outer and inner control loops that are typical of cohsys-
tems, where control flow feedbacks must be handled to detlieer
response for the time-critical computation as fast as ptessiBy
exploiting the existent architectural elements of SaveC@#®lcan
define a control module as a new composite architecturalexiem
that - when composed with other control modules to build nt
loops - satisfies requirements that are needed for the ¢dumec-
tioning of the control system and to predict its behaviowr &x-
ample, the SaveCCM control modules within a control loojs§at
that the backwards flow is always executed only after the doda
flow has been completely performed. Moreover, the design of a
SaveCCM control module can be enriched with informationuabo
the module quality attributes by providing the ground supjpar

the system analysis. By means of both the extended cajebilit
of SaveCCM and the analysis tools provided by SAVEComp, we
show how the developer is able to build control systems by-com
posing already implemented components in such a way that bot
functional requirements and real-time attributes can ladyaed in
control systems design. We also discuss an extension of SAVE
Comp with dynamic run-time property checking by utilizingne
time spare capacity that is normally induced by real-timalysis.

We validate the applicability of SAVEComp and its approtaiess

for the domain of embedded systems by means of an indusasal ¢
study.

The remainder of the paper is organized as follows. Sectidis-2
cusses related work and a brief comparison between Save@@M a
other component-technologies. Section 3 discusses baakgno-
tions of our work by referring to control modules as a solutior

an “easy-to-make” component-based design of control systén
Section 4 the main features of SaveCCM are summarized. h Sec
tion 5 we first outline the overall structure of SAVEComp ahdn

- by means of an explanatory example - we discuss its rel@asnt
pects in more detail. Section 6 validates the applicabditg ap-
propriateness of SAVEComp for the embedded systems dorgain b
means of an industrial case study that is concerned with aytiae
cruise controller. Section 7 concludes and discussesdfutork.

2 Related Work

In addition to widely used component technologies, new aBmp
nent technologies appear in different application domaiath in
industry and academia. We will refer to some of them: Koala
and Rubus used in industry and the research technologied,PEC
PECOS and ROBOCOP. We will also discuss smilarities with
ADLs like, e.g., Darwin.

2SAVEComp is developed in the projeBAfety critical compo-
nents for VEhicular systems - http://www.mrtc.mdh.seESAV

The Koala component technology [9] is designed and used by
Philips for development of software in consumer electrenkoala

has passive components that interact through a pipes{éerd-fi
model, which is allocated to active threads. However, Kamlas

not support analysis of run-time properties. The Robocoppm
nent technology [Jon03] is a variant of the Koala componeciit
nology. A Robocop component is a set of models, each of which
provides a particular type of information about the compdnAn
example of such a model is the nonfunctional model that degu
modeling timeliness, reliability, memory use, etc. Rolpeams

to cover all aspects of a component-based developmentgsrdae
embedded systems.

The Rubus Component Model [8] is developed by Arcticus syste
aimed for small embedded systems. It is used by Volvo Coaistru
tion Equipment. The component technology incorporatels tecg.

a scheduler and a graphical tool for application design itindai-
lored for resource constrained systems with realtime reqents.

In many aspects Rubus Component Model is similar to SaveCCM,;
actually some of the basic approaches from Rubus are intlude
SAVEComp. One difference is that SAVEComp is focused on mul-
tiple quality attributes and independences of underlyipgrating
system.

PECT (Prediction-enabled Component Technology) fromv@ok
Engineering Institute at CMU [12] [13] focuses on qualitiridutes
specification and methods for prediction of quality atttéaon sys-

tem level from attributes of components. The component inode
enables description of some real-time attributes. Contpaii¢h
SAVEComp, PECT is a more generalpurpose component technol-
ogy and more complex. PECOS (PErvasive COmponent Systems)
[6], developed by ABB Corporate Research Centre and academi
is designed for field devices, i.e. reactive embedded systhat
gathers and analyze data via sensors and react by corgratiin-
ators, valves, motors etc. The focus is on nonfunctiongbenties
such as memory consumption and timeliness, which makes BECO
goals similar to SaveCCM.

Darwin is a general declarative ADL for distributed softevaar-
chitectures. Differently form SaveCCM, Darwin providesanith
primitives of a‘pure” structural language since the underlying con-
cepts of components and binding are independent from theaicyt
tion mechanisms between components. Thus, Darwin is more ge
eral and can be applied to more conventional program stegtu
On the other hand, SaveCCM has been designed to represesit a sp
cific real-time component model. Although the domain-sieap-
proach means loss of generality, it has the advantages pfesiand
precise expression of the design, better design comprieimerad
support of automatic analysis and verification. Moreoveaviin
does not support the specification of non-functional progeand,
hence, real-time attributes analysis would be unfeasiblsing the
Darwin component model without a applying a suitable extans
of it aimed at supporting real-time properties.

These examples show that there are many similar comporant te
nologies for development of embedded systems. One could ask
it would not be more efficient to use a single model. Expemgsnc
have shown that for many embedded system domains efficiency i
run-time resources consumption and prediction of systemavier
are far more important than efficiency in the software dgwelent.
This calls for specialization, not generalization. Anethegument
for specialization is the typically very close relationWween soft-
ware and the system in which the software is embedded. Biffer
platforms and different system architectures requiresdiffit solu-
tions on the infrastructure and interoperability level,iethleads

to different requirements for component models. Also thinea
of embedded software limits the possibilities of interatdlity be-

tween different systems. Despite the importance of pergasss,
dynamic configurations of interoperation between systetgs this

is still not the main focus of vast majorities of embeddedeys.

These are the reasons why different application domaihgcalif-
ferent component models, which may follow the same basiepri
ples of componentbased software engineering, but may fezetit
in implementations. With that in mind we can strongly matéva
need for a component technology adjusted for vehiculaesyst

3 Background: Control Modules

mean that will make it possible to use a component-basedaplpr
and predict the system behaviour.

4 The SaveCCM component model

In this section we briefly describe the main characteristiceur
reference component model called SaveCCM. Refer to [8] for a
detailed description of it.

The SAVEComp Component Model (SaveCCM) [8, 2] is a restric-
tive component model for control software development. oit-c
sists of the following main architectural elements: congrus,
switches, assemblies angh-time frameworkwhich provides a set
of services, such as communication between componentgpeom
nent execution and control of sensors and actuators.

In Section 1, we said that many modern control systems are de-The interface of an architectural element is defined by a bet o

signed by using a modular approach in which its constituen¢-f
tion blocks are combined together.

Function blocks are very complex and have many configurgt#en
rameters because the rapid development of control algasitias
lead to a tremendous increase of the function block’s fonéti-
ties. There are two main disadvantages due to the increased c
plexity of the function blocks. The first one is that there ariet

of parameters to be set and interface points to be conneotd a
hence, the developer should have a deep knowledge of the-diff
ent function blocks. The second one is the obvious risk toemak
mistakes when the developer has to deal with a large amount of

parameters and interface points. In [15], a componentebase

ports, i.e., points of interaction between the element énénvi-
ronment. SaveCCM distinguishes between input and outpts$,po
and there are two complementary aspects of ports: the data th
can be transferred via the port and the triggering of compber-
ecutions. SaveCCM distinguishes between these two asperts
allows three types of ports: (@ata-onlyports, (ii) triggering-only
ports, and (iii)data and triggeringoorts. An architectural element
emits trigger signals and data at its output ports, andveseiigger
signals and data at its input ports. Systems are built by osing
architectural elements. This composition is obtained necting
input ports to output ports.

Since predictability and analysisability are of primaryncern for

lution to overcame these disadvantages has been propodesl. T the considered application domain, the SaveCCM executimein

main idea is to reduce the complexity of control systems binde
ing a standard interface for the signals between the bgjldiocks.
This implies that the blocks have to be constructed accgrttn
component-oriented principles (as we will see later each an
them can be constructed as an aggregate component in aarnmede
component model). £ontrolConnection data structure which al-
lows one to connect these building blocks has been definekbin [
This data structure contains all the signals that are sewees the
function blocks of the control system. Since real-scaldrobsys-
tems, often, have to deal with control loops, some of theadgare
sent forwards and some are sent backwards; thus, Contno#Cen
tion collects all the signal in two substructures calfeatward and
Backward respectively.

In Figure 1A we show an example of a control system made of a

cascade control loop [14] where its building blocks areitiawkl

function blocks. In Figure B we show the same cascade control

loop where its building blocks are connected by means of phira
cal connection of ControlConnection type. Note that a crgys-

tem is configured in a much simpler way if the blocks are con-

nected with a ControlConnection structure.As showed irffithee,
we will hereafter refer to the simpler configuration as tiye-level
design of the control system and to the other one astiésnal de-
sign In order to deal with connections of ControlConnectionetyp
all the building blocks of the loop have to be able to trandmit
formation forwards as well as backwards, with low delays. this
reason, in [15], the concept of control module has beendntred
as a generalization of a traditional function block. Thetomirmod-
ule contains two parts of code for transmitting informatiorwards
and backwards respectively. Although the control modulecept
considerably reduces the complexity of control loops byjaliag

a component-based approach, current component techesldgi
not allow one to realize a control module in order to provide t
developer with facilities for supporting predictability the control
system behaviour. This leads to a real need of a componeetiba
approach for designing and composing control modules ih suc

way that such a support can be provided. Our aim is to provide a

is rather restrictive. The basis is a control-flow (i.e., ggfmnd-
filter) paradigm in which executions are triggered by clockex-
ternal events, and where components have finite, possibigble,
execution time. At the beginning a component is inidle state
where it waits for the activation of all its triggers. Oncé @m-
ponent triggers have been activated, the component reaofgpitt
ports teading state), performs its computationsxécutingstate)
based on the inputs read and its internal state, writes gt ref
the execution on its output portsviiting state) and finally goes
back to thedle state. A list of quality attributes and (possibly) their
value and credibility (i.e., a measure of confidence of thessed
value) is included in the specification of components anérass
blies. In this paper we will only consider real-time attriést We
will show how such attributes can be specified and used irnyanal
sis. Component behaviour is defined by means of variablas tha
express internal states, and actions that describe thea@mnpex-
ecution. Actions are abstract specifications of the extirusible
behaviour of the component. Components are specified by thei
interfaces, behaviour and quality attributes.
A subset of the UML2 component diagratris adopted as graph-
ical specification languade The symbols showed in Figure 2 are
sed.

5 The SAVEComp development framework

In this section we outline the overall structure of the SAVGED
development framework(see Figure 3). SAVEComp implements
the approach we present in the following subsections as arte p
of its overall structure. SAVEComp has been thought to bexan e
tensible component-based development framework for degige
analysis (both functional and non-functional) and develept of

SUML2.0 specification - http://www.omg.org/technologyfdonents/
modelingspeccatalog.htm#UML.

“4In [8], the complete textual syntax (i.e., BNF specificajioh
the specification language is reported.

5The framework is under construction

(A) internal design

Figure 1. Two different designs

Master | CogirolConnection

Slave

MinReached
Range.Min
Range.Max

(B) top-level design

of the same control system

Symbol Interpretation Symbol Interpretation
Component - A component with the
O—> Input ports - The upper symbol is an input <<SaveComp>> s(sregtype changed ts«SavsComp»
port with a trigger, and no data. The middle <name> corresponds to a SaveCCM component.
O—D symbol is an input port with data and no
O_E]> triggering, and the lower one is an input - N R .
port with data and triggering. <<Switch>> Swm:p Components with m? S‘ere‘?'yps
<<Switch>>, correspond to switches in
<hame> SaveCCM.
Assembly - Components with the
—< Output ports - Analogously to the input <<Assembly>> slereotypg <<Assgmbly>> correspond to
S O ports, the upper symbol is an output port <hame> assemblies in SaveCCM. |
with a trigger, and no data. The middle
)—@ symbol is an output port with data and no Delegation - A delegation is a direct
triggering, and the lower one is an output - ~gation | Ir
port with data and triggering. —_— connection from an mw to input or output
to output port, used within assemblies.

Figure 2. The SaveCCM graphical specification language

safety-critical embedded real-time systems. A part of thes Au-
toComp technology [17] which is intended only for predigtithe
real-time behaviour of the system.

As showed in Figure 3, SAVEComp can be described by distin-
guishing three main phases of its utilization. During dedige,
developers may exploit the new capabilities of SaveCCM - we
present in the following subsections - to specify the toplale-
sign of the control system by adopting a component-basdwo/aie
engineering process Moreover, the extended version ofC32ve
allows the developer to enrich the system design with: (irfional
properties of the system expressed in terms of sequences- of a
tions performed on component ports and/or possible valtidata
ports of interest for the analysis (e.g., the set of possiélees of a
data port expressing different operational modes of thérabsys-
tem); and (i) high level temporal constraints in form of eleend
deadlines and jitter supplied with their credibility vadueDuring
compile-time, SAVEComp automatically produces the SayéCC
internal design corresponding to the top-level and derdiéfsr-

ent views of the designed system intended to support bdrelift
kinds of specific functional/non-functional analysis aheé map-
ping process to a real-time operating system (RTOS). In thedi

we show two possible classes of system views/models: (ixbseh
ioural models (e.g., Process Algebras, LTSs, state magHit®Cs,
UML?2 interaction diagrams); and (ii) real-time models (g\Worst-
case execution time analysis and Response-time analy3isg
first class is intended to perform functional analysis ,(ckecking
safety and liveness propert®sthe second one to perform non-
functional analysis in the specific case of guaranteeingtima
attributes. The plug-in based nature of SAVEComp allowsius e
ther to add new classes of system models - whenever it is deede
to perform other specific kinds of analysis - or to extend as-ex
tent class to contain other model notations that are neexsdp-
port/integrate other processes for the same kind of asalySor
example, as sketched in the figure, we might need to add a{roba
bilistic models view (e.g., Markov Chains, Stochastic sscAlge-
bras) to perform reliability analysis by taking into accoung., the
credibility value of each real-time attribute. Each spediiind of

6As usual, for safety and liveness we memthing bad happens
andsomething good eventually happeresspectively.

analysis/transformation is supported by a plug-in basebwihin
SAVEComp. Each “plug-in” might be either an existent toait-su
ably integrated with SAVEComp or built from scratch. By |aads

at the result of each particular analysis, the developerettuer
refine the top-level design since a functional or non-floral re-
quirement has not been met or - if the design matches every re-
quirement - execute a synthesis step. In each utilizatiasghthe
developer has the possibility to interact with a particyparg-in
based tool to set specific configuration parameters of it aptdy
refinements (that are dictated by the analysis results}ttiiren the
generated data/models rather than being forced to go battleto
original design. We choosEclipseplatforn? as implementation
environment since it provides us with all the integratioatéezes we
need to build SAVEComp. Eclipse facilitates the integnatd dif-
ferent tools, that usually manipulate different contepety. SAVE-
Comp is built on a XML-based core which isthe substrate provi
ing an intermediate XML-based representation of systemeatsod
that may work as a common ground to apply functional and non-
functional analysis. To make SAVEComp as extensible asilgess
the XML core is kept general enough to allow its further estens
needed to manage new system model notations and new analysis
processes and tools. In the reminder, we will only focus @n th
parts of SAVEComp that implement the approach presentduisn t
paper. We consider the following SAVEComp plug-ins:

SaveCCM Visual Editor. A visual editor supporting the
SaveCCM graphical specification language for designing the
system architecture and for specifying functional prapert
and real-time attributes that must be analyzed. It is also
responsible for generating the XML code that represents
the SaveCCM textual specification of the designed system.
Moreover, it provides the developer with compiling func-
tionality to, e.g., perform a type-check on the component
connections (e.g., a port of a component can be connected to
a port of a different component only if these ports have the
same type).

SaveCCM top-level (to internal) Design Converter.We recall
that, control loops are often used to deliver the response fo

’The Eclipse project. Eclipse platform technical overview.
Technical report, 2001 - http://www.eclipse.org.

SaveCCM
— - . .
visual editor

behavioral models +
design:) 5aveCCM top-level @ AW [E—J safety and
time i [= |::> liveness
design of the system 0.
i i T4 analyzer
attributes + 1gnctlonal : % , target application
N\ properties) @ + real-time models % 7 <§] : ——
- <y —— n A\ D I:I D
I-time i}
SaveCCM top-level models 0 |<§\ ::> real |—|
design converter generator ::> = —lT attributes synthesizer C:> ==
analyzer ﬁ RTOS
compile- |:“ >
time < SaveCCM internal other classes of models
design of the system i other kinds of
(design + quality e.g., probabilistic models 'ﬁ _ane_ll_yzer g,
attributes + functional \—J reliability analyzer)
LK properties) T)

LY
compile-time

run-time

‘D data :lplugin-basedtool ::>

data flow (i.e., data elaboration
mechanically performed)

developer manual

possible developer
intervention T

manual intervention

Figure 3. The SAVEComp development framework

the time-critical computation as fast as possible. Due ¢o th
increasing complexity of control loops, it is hard to cothgc
design them, and they might limit the predictability of the
control system. As we will see in the following sections,
to address these problems, control loops are designed - in
SaveCCM - by means of assemblies and connectio@oaf
trolComponentand ControlConnectiontype, respectively.
A ControlComponent implements the concept of control
module by providing the developer with a higher level of
abstraction in designing control loops. Thus, a controploo
in a SaveCCM control system has a top-level design. This
plug-in is responsible for automatically deriving from the
top-level design its corresponding internal design caests
of SaveCCM components, switches and their connections.
Since top-level components, as SaveCCM assemblies, do
not reflect the execution model of a basic component, this
translation is required in order to perform functional aodn
functional analysis of the system. The translation albanit
exploits the implicit internal structure and semantics of a
ControlComponent and a ControlConnection.

Functional behaviours Models Generator. A part of themodels

generatorplug-in based tool. It is responsible for generating

models of the functional behaviour of the designed system.
The kind of generated model (e.g., Process Algebras, LTSs,
state machines, MSCs, UML2 interaction diagrams) depends

operational mode).

Component to Task Converter. A part of the models generator

plug-in based tool. In cooperation with thask Attribute As-
signment it is responsible for generating a real-time model.
The algorithm strives to reduce the number of operating sys-
tem tasks by allocating components to the same task accord-
ing to a set of rules, e.g., when components execute with the
same period-time or are triggered by the same event. The task
allocation approach utilizes stochastic search techsidae
find allocations that are optimized considering user-djgeti
properties, e.g., low context-switch overhead or low mgmor
usage.

Task Attribute Assignment. It is part of themodels generator

plug-in based tool. In cooperation with tf@&omponent to
Task Converterit assigning attributes considering platform
and analysis goal.

Real-Time Analyzer. The analysis step is dependent on the un-
derlying platform, e.g., schedulability analysis is ligttto
the algorithms available in the OS used. In the current pro-
totype implementation, response-time analysis accortbng
FPS theory is performed. If the response-time analysis,fail
the affected parts of the system are highlighted. For imgtén
may be possible to find another allocation from components to
tasks that satisfies the given real-time constraints. @ftiser
the design may have to be revised.

on the XML template used - during design-time - to specify Code Synthesizer.The code generation module of the compile-

the system’s functional properties that must be checkedeOn
the kind of model that must be generated is established, the
model is generated by taking into account the system’s-inter
nal design, the execution model of the SaveCCM components
forming the system, the set of possible actions performaible
a SaveCCM port and its possible values. Furthermore, a con-
sistent model (with respect to both the notation used to inode
the system’s functional behaviour and the analyzer thdt wil
be used) of the functional properties is generated.

Safety and Liveness Analyzer.lt is a plug-in based tool integrat-
ing an analyzer for each kind of model of the system’s func-
tional behaviour that can be generated. By exploiting thre ge

time activities generates all source code that is dependent
on the underlying operating system. Each operating system
needs to have a transformation AP| where platform indepen-
dent system calls can be translated to OS specific. Such lay-
ers can easily be derived from reference manual of a specific
RTOS. Within this step the binary representation of theesyst

is created, often the operating system and the run-timegfram
work are also included with the application code in a single
bundle.

5.1 Extending SaveCCM to design and use
control modules

erated models of the system and of the properties that must beThe control module concept can be implemented in SaveCCM by

checked, the developer can interact with the suitable aaaly
in order to mechanically verify the specified safety and-live

means of a new type of assembly which composes two compo-
nents. We denote this new assembly type as “ControlCompbnen

ness properties. For example, the developer can verify that yype. One component within a ControlComponent is denoted as
deadlocks do not occur or that the system always progresses<ronyard”, the other one is denoted as “Backward”. Forward a

(i.e., can every action eventually be performed?) or other s
cific functional properties of the system (e.g., a specifib€o

Backward are for transmitting information forwards andkveards

(within a loop in a control system), respectively. In othesrus,

ponent must be disabled if the system is running in a specific Forward is responsible - given input values and taking ictmant

the state of its ControlComponent - for calculating the atit@alue

of the ControlComponent. Analogously, Backward is resjias
for updating the state of its ControlComponent dependinghen
feedback signals. Forward exports an interface made ot iapdi
output data-and-triggering ports and, possibly, othetspexplic-
itly specified by the developer for specific purposes depgndn
the system functionality. The same is for Backward. Co@tooh-
ponent, in turn, exports the same interface of Forward antkBa
ward. As itis usual in SaveCCM, the ports of ControlCompadnen
are connected to the corresponding ports of Forward andvigarck
through delegation. In Figure 4, we show both the SaveCCM top
level design of a ControlComponent (i.e., left-hand side) #s
internal design (i.e., right-hand side). In the figure wevstadso
labels that are used to refer the 1/0O ports. They model portasa
and they are specified only internally and do not appear agjiles

level.
a al <<SaveComp>> b b
a b - O01p <Forward>— (DA
o> > —_ &
<<Assembly>> ©) 5
f|_ <ControlModul € h 9
{j<ControlModule> €, 5 -
f fl <<SaveComp>> |e e
* U Backward> O

(top-level design)

(internal design)

Figure 4. Top-level and internal design of “ControlModule”

It is worth mentioning that Forward and Backward, as usual

SaveCCM components, respect the component execution model

mentioned in Section 4. Since a ControlComponent is an ddgem
in SaveCCM, it is not subject to the rules of the execution ehod

Input Control port Output Control port

<<Assembly>>
<ControlModule>

top-level design | internal design

o—{>
—d

top-level design | internal design

>——-<
<0—o0

(top-level design)

Figure 5. Top-level and internal design of a Control port and
final top-level design of “ControlModule”

Note that - internally - a Control port is a bidirectional oné/e
distinguish between input and output Control ports. Whernan
put Control port is attached to a ControlComponent - intdyna
the “SaveCCM top-level design convertegroduces: (1) an in-
put and an output data-and-triggering port on the Controifm
nent (i.e., “a” and “f” in Figure 4); (2) an input data-andggering
port on Forward (i.e., “a@”); and (3) an output data-andgedng
port on Backward (i.e., “f”). Finally, the input data-antiggering
port of the ControlComponent is associated - through détaga
with the corresponding one of Forward. Analogously, thepout
data-and-triggering port of the ControlComponent is aisted to
the corresponding one of Backward. When an output Contndl po
is attached to a ControlComponent, the design converteavash
analogously. By means of Control ports, the top-level desify
“ControlModule” (showed in Figure 4) looks as it is showedlie
right-hand side of Figure 5.

5.3 Analyzing functional requirements
In this section we formalize the execution model of a CoQowh-

of a SaveCCM component. In other words, a SaveCCM assembly ponent. This formalization is intended to support funcaicemaly-

is only intended for design purpo$eg.e., for modelling a collec-
tion of components and hiding the internal structure rathan for
component composition) and when we want to reason about-its e
ecution model we have to refer to its internal structure. Hipe

of a data transmitted through a port of the ControlCompoiseat
structured data type as defined by the ControlConnectiootstie.
The triggering data are used for activating a Forward or Bac
component depending on the control flow of the system. Ttag-inf
mation required to update the state of all the ControlCorapts

in a loop is not available until all the Forward componentgehex-
ecuted their code. This is required for a correct functigrofi the
control system. Note that a ControlComponent can handlerout
control loops as well as inner loops. An inner control loop be
performed by means of the inner connections among Forwatd an
Backward (i.e., “c”, “g” and “h”, “d” port connections). Tise in-
ner connections are internally generated - after the gtoeraf
Forward and Backward - by tH&aveCCM top-level design con-

sis of control systems during design-time. We are intecegte
proving safety and liveness properties. To formalize thexation
model of a ControlComponent we look at (i) its internal desig)
the execution model of a SaveCCM component; (iii) the sebsf p
sible actions performable on a SaveCCM port and, in somestase
(iv) its possible values. By referring to Section 4, the exemn
model of a component may be expressed as a combination of ac-
tions that can be executed on its ports. The only action that c
be performed on an input (output) data port is a reading ifvg)it
action. We denote it as “read” (“write”). “read” and “writedre
non-blocking actions (i.e., there will always be a value odata
port and it will always be possible to overwrite that valu&n an
input (output) triggering port we can perform a checkingti(et-
ing) action that we denote as “check” (“activate”). “chedk”a
blocking action, that is it makes a component waiting for dg-
vation of an input triggering port. “activate” simply actes the
trigger associated to an output triggering port. On an ifputput)

verter” (see Figure 3). So far, we just have presented the structuredata-and-triggering port a component executes “checkivied by

of a control module as it can be built in SaveCCM. To be able to
specify a top-level design, we have to be able to connect, teug
ControlComponent by means of a connection of ControlCaiimec
type. Thus we have to show how to build a ControlConnection in
SaveCCM. The next subsection has been intended for thi®gerp

5.2 Extending SaveCCM to compose control
modules

For our purposes, we extend the set of SaveCCM port types by

adding a port of “Control” type. A Control port is allowed grdn
the functional interface of a ControlComponent. In the-kethd
side of Figure 5 we show both the top-level design of a Coiptool
and its internal design.

8Assemblies are really useful, e.g., for identifying patgenf
aggregates of component instances that serve for provitinge
high-level functionality.

“read” (“write” followed by “activate”). These rules can lm®m-
bined in the obvious way in order to specify the executiorelveur
of a component, with an arbitrary number of ports of differngpe,
by means of a process algebra. Note only that if a compo@ent
hasps, ..., pn input data-and-triggering ports then - during the ini-
tial part of its execution € will execute a sequence of“check”
(each of them for eaclp;) followed by a sequence af “read”.
We choose FSP [10F(nite State Processgas process algebra to
model the execution behaviour of components and assenablies
sign level. FSP fits our purposes because it is notoriousieeto
use than other more expressive process algebras and ifasrsegh
by LTSA [10] (Labelled Transition System Analy3elL.TSA is a
plug-in based verification tool for concurrent systems. dtchman-
ically checks that the specification of a concurrent systatisfees

9This is required only for specific data ports of interest,.e.g
boolean data ports used to set different operational mofi¢seo
control system.

required properties of its behaviour. In addition, LTSA gors
simulation to facilitate the interactive exploration oétkystem be-

haviour. Thus the FSP specification of a SaveCCM system rep-

resents the mean to integrate SAVEComp with LTSA in order to
support functional analysis. In FigureA6we show the top-level

design of the control system - showed in Figure 1 - as specified

by the developer using tHSaveCCM visual editorl9, its inter-
nal design (Figure &) as mechanically derived by tli8aveCCM
top-level design convertey'its FSP specification (Figure®) and
an its liveness property (Figurel®) that we want to verify.

The FSP specification has been mechanically derived btfahe-
tional behaviours model generatotéaking into account the loop’s
internal design, the execution model of a SaveCCM compaaraht
by combining the above mentioned rules (defining the settafras
that can be performed on a port) in the obvious wa8/has been in-
cluded in the system top-level design (in a XML format) ankais
been mechanically translated in the LTSA property notaipthe
“functional behaviours model generator’integrating SAVEComp
with LTSA (i.e., a possiblésafety and liveness analyzey'allow
us to easily verify functional properties of the system'sPFpec-
ification. For example, we can mechanically verify that deeks
do not occur in the execution of the control system (i.e.etyf
Moreover, we can also verify that the execution of the cdrdys-
tem holds the liveness property showed in the figure. In EBi¢W3
we show the graphical notation used by LTSA to express adisen
property. Itis given in form of its Buichi Automaton [4]. lofmally,
the Blchi Automaton is an operational description of theperty
and specifies the set of system behaviours that hold it. Oteetioe
initial state. 3 denotes the accepting st&és an error state (i.e., a
non-accepting sink node). Each arc label denotes a possibin
of the system. To minimize the graphical view of the automato
LTSA might label one arc with more than one action. Theseasti
have an OR semantics, i.e., havimgctionsa, ..., an labelling one
arc is like havingn arcs each one of them labelled wih ..., an
respectively. Thétau” action means all the possible complemen-
tary actions with respect to the actions that are explictgcified
as performable from that node. By meansL8f we specify - as
valid behaviours of the system - all the ones in which the Back
ward component of the Master will always read from “e” onlteaf
that the Forward component of the Slave has read from 8.
expresses a requirement of the correct functioning of thérab
loop. Satisfying.3 assures that the information required to update
the state of all the ControlComponent in the control systiemis is
not available until all the Forward components have exettlieir
code.

5.4 Analyzing Real-Time properties

In this section we will discuss the non-functional model of
SaveCCM. We will show how we can analyze SaveCCM consider-
ing real-time properties in an automated way, and discussarce
reclaimingextension to SaveComp that utilizes spare capacities in-
troduced by pessimistic real-time predictions. Furtherwill also
discuss analysis techniques and synthesis. In order torredmut
real-time behaviour we need to transform the design-tinmepm
nents into tasks conforming to a real-time model. The tasks c
then be analyzed considering the design requirements. rbce$s

is performed in the steps:

Model transformation: Model transformation involves the steps
(i) component to task allocatioand (i) attribute assignment
which are necessary in order to transit from the component
model, to a run-time model enabling verification of temporal
constraints and usage of efficient and deterministic ei@tut

10For the sake of simplicity we omitted the Als and the AO.

environments.

Real-Time Analysis: To show that the run-time tasks will meet
their stipulated timing constraints, schedulability aséd
must be performed. We assume a fixed-priority systems (FPS)
(the predominant scheduling method in today’s real-time op
erating systems).

Synthesis: Synthesis involves mapping the tasks to operating sys-
tem specific entities, mapping data connections to an OS spe-
cific communication, generating glue code, compiling, dink
ing and bundling the program code.

5.4.1 Model transformation

When designing a control system with components, the design
not required to consider the schedulability of the systamshould
rather focus on the functionality. The components shouldre®-
tated with non-functional information corresponding te tiontrol
performance, e.g., periods and jitter constraints. Taansdtion of
components to tasks and scheduling the tasks on a real-pere o
ating are automated processes.

In order to reason about, e.g., real-time each componerttbaus-
notated with appropriate quality attributes. These qualitributes

are; A finite worst-case execution timé&/CET). A nominal period

(T), and in the case it is appropriate jitter constrailitt¢r). The
SaveCCM model also has transactions that can be used for defin
ing timing constraints of data and/or control paths. Tratisas

has end-to-end deadlineEZED), that define the longest allowed
latency between two components in the system.

The FPS model, which is used for analyzing the timelines$ef t
systems, defines a system as a set of tasks with a set of ttribu
It is necessary to translate the components with their teahjgon-
straints in to tasks The component to task converter pegdamwo
separate steps; firstly a transformation from componentagk
(task allocation) and secondlyask attribute assignmento assign
the FPS model attributes in such a way that the high level temp
ral constraints on transactions are met is non-trivial aasl heen
addressed in research by e.g., [3], [16].

Attributes that are assigned during task attribute assignhare:

T (Period) - All periodic tasks have a period time that is assigned
during the task allocation. Sporadic tasks have a MINT that
analytically can be seen as a period time;

O (Offset) - The offset is an attribute that periodic tasks with jitter
constraints are assigned. The earliest start time is delye
adding the offset to the period time.

P (Priority) - The priority is an attribute that indicates the impor-
tance of the task relative to other tasks in the system. In& FP
system tasks are scheduled according to their prioritytetsie
with the highest priority is always executed first. All tasks
the system are assigned a priority.

WCET (execution time) - The worst case execution time is an at-
tribute that is used for schedulability analysis and dymami
run-time scheduling, e.g., adaptive quality of service [6]

Components can be mapped to tasks in numerous ways. Common

approaches are to map each component to one task, or all eompo

nents to one single task. These two approaches may haveusbvio
drawbacks, in the former, there may be extensive overhetsirirs

of, e.g., cpu-overhead (context-switches). In the latidrere all

components are mapped to one task, the flexibility for thedch

uler is lower and the timing requirements might not be figill

Furthermore, when constructing systems the developetes oé-

quired to manually set task attributes such as prioritieaceSthe

priorities directly decides how the tasks are schedulesjsta hard
task. In our approach this process is automated in the taithae
assignment plug-in.

slive reada

master read master.rearl

Master Slave
s

O T <<SaveComp>> <<SaveComp>>

O Qa <Forward>, <Forward>—
! <7
@ A y o0 R d c
O <Master> <Slave> © f n 9 e
(top-level design) <<SaveComps> '

> <Backward> <[] <Backward>

(A) (B) (internal design)

InnerConnectionCG = (write.c -> activate.c -> check.g -> read.g -> InnerConnectionCG).
ionHD = (write.h -> InnerC; | read.d -> InnerC i

OuterConnectionFE = (slave.write.f -> slave.activate.f -> master.check.e -> master.read.e -> OuterConnectionFE).

||ControlLoop = (s [|| master]

ionCG ||
ter.activat

ter.check.

Forward = (check.a -> check.al -> read.a -> read.al -> read.d -> write.b -> activate.b -> write.c -> activate.c -> Forward).
Backward = (check.g -> check.e -> read.g -> read.e -> write.h -> write.f -> activate. -> write.f1 -> activate.f1 -> Backward).

‘OuterConnectionBA = (master.write.b -> master.activate.b -> slave.check.a -> slave.read.a -> OuterConnectionBA).

_‘/'

tan

o || O ¥t
master.write.h, master.

(C)

i ter.writ ter.read
)
read.h, slave.write.c, slave.activate.c, slave.check.g, slave.read.g, slave.write.h, slave.read.h}.

slave reada

Figure 6. FSP Specification of a cascade control loop and arsitiveness property

The context-switch time is increasing with the number oksas
and the ideal mapping considering stack usage and taskhswitc
overhead is to map all components to one task. However, i mos
cases this is not feasible due to the real-time constrafrtteecsys-
tem. The task allocation strategy aims at increasing efffagieand
dependability of the system since it is important to keepueses

at a minimum in most embedded systems. It also strives at-main
taining traceability and testability. Hence, the notiomofmponents
must be maintained both during development and after depay.

If the notion of components is lost, then traceability argtability

are compromised.

A common approach to preserve the notion of components &lso a
ter deployment is to use a one-to-one mapping between compo-
nents and tasks, i.e., map one component to one task. Howleser
one-to-one mapping often implies worse resource usagenben
essary. By using a stochastic state-space search techméjoan,
given certain criteria, find optimized mappings considgriiffer-

ent properties, e.g., performance or dependability. Byiing com-
ponents during run-time by adding component-informatiarttee
stack (similar to a stack-frame), the notion of componestgre-
served when several components are mapped to one task.

In [7] a framework is proposed to facilitate the mapping besw
components and tasks by setting up mapping rules and expdoit
netic Algorithms(GA) to find feasible mappings that is optimized
considering stack usage and context-switch overhead. fiigrge-
work also constitutes the proposed plug-@emponent to Task
Converter Task Attribute AssignmeandReal-Time Analyzer

5.4.2 Real-Time Analysis

An important issue in obtaining high resource utilizatisrta de-
ploy an efficient and tight schedulability analysis. The Igna
sis need to faithfully model the complex execution behavibat
arises in control systems. Especially, the analysis shbaldble
to handle arbitrary large jitter and deadlines , task syomization
and shared resources, and operating systems overhead.

For fixed-priority systems (the predominant scheduling hoet
in today’s real-time operating systems), the recent fasit taght
response-time analysis (RTA) for tasks with offsets presid suit-
able efficient and tight analysis [11]. This technique cardeithe
precedence relations between tasks and hence gives a cenagc
model of the system behaviour. Furthermore, the execupeed
of this technique widely outperforms previous methods aretnce
highly suitable for deployment in an optimization algonith

An efficient schedulability analysis requires an efficiergdiction
of WCET. Developers often use manual instrumentation nustho
in order to obtain WCET estimates. However, the accuracfténo
low, hence to be safe the WCETSs are often heavily overestimat

Current work on SaveCCM includes adding context-depenalecht
stochastic methods to predict WCET of SaveCCM components.
[13,12].

5.4.3 Synthesis

For synthesizing an assembly, platform specific API callgeha
to be inserted in the code. SaveCCM uses a general APl and
an API-translator (Code generator) The code generatoivesso
communication within and between tasks by translatingfqiiat-
independent system calls with platform-specific systens aaid
adds platform specific glue code.

To maintain traceability and testability, it is importaotraintain

the notion of components, also after task allocation, casfeern-

tion and deployment. Hence, we propose that the code gererat
module should be extended to add frames to componentsasimil
to stack-frames. In other wordsnter component andleave com-
ponent xcan be pushed and pop on the stack. This leads, e.g., to
easier debugging.

5.4.4 Resource Reclaiming Extension

Real-Time Analysis is based on worst-case behaviour inrdale
guarantee correct behaviour in all situations. Due to thissanaly-
sis often becomes pessimistic because the worst-caseiscdoas
not always reflect the actual case. Thus, when the worst cese d
not occur, there are left over resources in terms of prooggsie,
i.e., residual time. The residual can be dynamically rectal and
used for, e.g., dynamic property checking or other types afim
toring in low priority tasks.

The resource-reclaiming strategy is performed with anioa-der-
vice scheduler that uses hybrid scheduling to choose apatep
actions considering a residual time and. Low priority moriitg-
tasks can use the residual time. The residual time can alsedk
for scheduling higher quality versions of the normal tasksle-
scribed in [6].

6 The ACC case study

We use an Adaptive Cruise Controller (ACC) prototype, imple
mented in SaveCCM [2], to evaluate our ideas (see Figure 7).
The ACC extends the regular cruise controller in that it behe
driver to keep a safe distance to a preceding vehicle, aotoosly
changes the speed depending on the speed limit regulatiods,
helps the driver to slam the brake in extreme situations.

The application has three different operational mode#f, ACC
Enabled and Brake Assist In the Off mode, none of the con-
trol related functionality is activated. During t&CC enabled

<<Assembly>
ACCApplication

Road Sign SpeedQ:

)—(Throttle

Distance O

Current SpeedO

O 10Hz

Max Speed

ACCEnabledO
BrakePedalUsedO:

BrakeAssist

ACC

Figure 7. SaveCCM top-level design of the ACC application

mode the control related functionality is active. In tBeake As-
sistmode, braking support for extreme situations is enablece Th
application (Figure 7) is based on four components, onechyit
and one component assembly. To deliver the response fanibe t
critical computation as fast as possible, the assembly (806-
troller, Figure 7) is, in turn, implemented as a cascaderobat
using two control modules as showed in Figure 8.(a). The two c
trol modules Distance Controller and Speed Controller aeds-
semblies of ControlComponent type and they represent ttstema
and the slave of the ACC Controller, respectively. They ane-c
nected through a connection among their Control ports é.€on-
trolConnection). In Figure 8.(b) we show the internal desig
ACC Controller as automatically derived by tBaveCCM top-level
Design Convertemplug-in in our framework. CalcOutputl (Cal-
cOutput?) and UpdateStatel (UpdateState2) represenviivarfl
and the backward components of Distance Controller (Speed C
troller), respectively.

Furthermore, the application has two different triggegtrencies,
10 Hz and 50 Hz. Logging and HMI output activities executehwit
the lower rate, and control related functionality at thehieigrate.

OPRelativeSpeed
AcC -

O Distance OMaxSpeed (CurrentSpeed

Throttle

<<Assembly>>
Distance
Controller

<<Assembly>>
Speed
Controller

OMaxSpeed (SCurrentSpeed

1 1
<<SaveComp>>" [}

>—O-{1> calcOutput2

0]

v

in out

Throttle

outt int outt int

<<SaveComp>> |in2
UpdateState1

out2| - <<SaveComp>>
UpdateState2

Figure 8. SaveCCM (a) top-level and (b) internal design of te
ACC Controller assembly

For a detailed presentation of the ACC application funetiiiy we
refer to [2].

6.1 Checking safety and liveness properties of
the ACC application

We are interested in checking safety and liveness progesfi¢he
ACC application. On one hand, we want to check implicit (ileey
do not have to be specified but can be directly observed by#xpl
ing the model of the system) safety and liveness propertiek s
as deadlock-freeness and livelock-freeness (i.e., pssyrén other

words, we are interested in checking that deadlocks do matroc
and that every action can be eventually performed. Moreaver
want to also check specified safety properties sucbedistyl: “if
the ACC Enabled (Brake Assist) mode is disabled then alswotine
ponent ACC Controller (Brake Assist) must be disablediiveness
ones such akivenessl: “the information required to update the
state of all the components in the ACC Controller is not ala#
until all the output values have been calculated”

Validating the first property allows us to state that the AQPlea-

tion is safe with respect to the different operational motedidat-

ing the second one allows us to state the correctness of tiieoto
loop performed by the ACC Controller with respect to updaiis
state based on the feedback signals. The assumption, ehat i
each basic component in SAVEComp is a black-box one whose be-
haviour (in terms of the entry function that it performs) tmeen
already validated with, e.g., unit testing.

For the purposes of our case study, we consider LTS®adisty and
liveness analyzerThus, we also consider FSP notation as specifi-
cation language used by the developer to enrich the systsigrde
with safety and liveness properties that must be checked.

To check deadlock-freeness and progress, we only need it@der
the model of the functional behaviour of the system in formaof
FSP process (i.e., a LTS) without considering a propertgifipa-
tion. We do this by exploiting th€unctional behaviours Models
Generator which - analogously to what we have showed in Sec-
tion 5.3 - derives the FSP model of the system’s functionhble
iour. This is done by taking into account the ACC applicatite
sign as derived by the converter, the underlining executiodel

of the components forming it (as imposed by the SaveCCM seman
tics), the set of possible actions performable on the compioports
and the possible values of the input ports ACC Enabled ankeBra
Pedal Used. These ports handle boolean values (i.e., theyeha
ON/OFF semantics) and they allow to enable the three diffanp-
erational modes of the ACC application.

Once the generator has derived this model, the developerasily
interact with LTSA to verify that deadlocks do not occur oesy
action is eventually performed during the execution of tiCAap-
plication. For space reasons, here, we do not report theretito
cally derived specification of the ACC applicatidn

Although LTSA exploitspartial order reductionto efficiently per-
form the deadlock-freeness and liveness check, it suffereavell
known state explosion problem. It is worth noticing that,emh
building the model of the system requires too much memorygame
exploit the architectural constraints imposed by the @ipd-filter
style (SaveCCM is based on) to efficiently analyze the sydigm
following a compositional reasoning. That is, we can aralyaly
parts of the system (i.e., its subsystems) by composing thi¢m
an “efficient” (with respect to memory consumption) environment
that is semantically equivalent to the actual environmentthis
way we obtain a minimized model of the system that is equitale
to the original one. Thisefficient” environment can be automati-
cally derived by taking into account the interface of the poments
forming the subsystem selected - by the developer - for thbysis.
In fact, due to the execution model imposed by the pipe-dtet-fi
style, it is the environment that provides the considerdibgstem
with the input and output data expected on its ports. Aftecking

a functional property against the parallel compositionhef ton-
sidered subsystem with tHefficient” environment, the latter must
be checked as functional property of the subsystem cotexditoy
the actual environment. This is required to correctly camythe

Mt is available at the following URL:

http://www.di.univag.it/tivoli/ACCApplication.Its

analysis by following a compositional reasoning.

The previous compositional approach can be adopted toesftlgi
verify that bothSafetyland Livenesslhold during the execution
of the ACC Application.

To checkSafetyl, from the derived FSP specification of the system,
the developer extracts the one of the subsystem formed byeMod
Switch, ACC Controller and the connection among them. Then,
by using themodels generatothe developer can mechanically de-
rive an“efficient” environment for the considered subsystem. This
environment simply provides Mode Switch with the data expec

on the input ports ACC Enabled and Break Pedal Used. It also
provides ACC Controller with the data expected on the inmut
Distance and Current Speed and gets the data sent on thé poitpu
Throttle. It is worth mentioning that, as showed in Sectid the
derived FSP specification contains also the model of the eonn
tion among the output and the input data-and-triggeringsp@e.,
RelativeSpeed) of Mode Switch and ACC Controller, respebti
Safetylis specified in terms of the actions that can be performed
on the ports ACC Enabled, Break Pedal Used and RelativeSpeed

For ACC Enabled and Break Pedal Used the reading actions have

different names based on the possible operational modeis.isTh

a possible way, in FSP, to exploit the boolean values of ACE En
abled and Break Pedal Used in order to model whether a specific
operational mode is enabled or not.

To checkLivenesslit is enough to extract only the FSP specifi-
cation of ACC Controller, since this property idacal one and it

is not related to the interaction with other components. Iyiag
Liveness] as property of ACC Controller, is done analogously to
what we have done to analyk8 as property of the cascade control
loop discussed in Section 5.3. Thus, for space reasons, wetdo
further discuss the analysis biveness1

6.2 Real-time analysis of the ACC application

In this section we are interested in analyzing the real-tirmleav-
iour of the application and prove that the constraints ineplosn
the system will hold. The '"ACC Application’ constitutes 9rapo-
nents. All components except one is triggered by a 50 Hz eater
periodic trigger. The last component is triggered by an 1@kter-
nal periodic trigger.

For the simplicity we assume that each component has a WCET
of 1 ms. We assume that the context-switch time is 0.1 ms, and
we also constrain the system with four transactions, dertote<
(components E2ED >

<(Speed unit,Object rec.,Mode Switch,ACC Con.);18ms
<(Speed unit, Mode Switch, ACC Con.);10>ms

<(Speed unit,Object rec.,Mode Switch,Break Assist);5 ms
<(Logger Unit);20 ms-

trq
tro
tra
trg

We will briefly demonstrate how the system is transformeanfro
components to tasks and the resulting task propertiesettfiom
the components. The process is tools oriented and the etbtail
workflow of each tool is not described due to space limitation

The components and transactions are transformed into BRSix
applying the model-transformation, response-time aiga®TA)
and synthesized iteratively, giving feedback to the dexigonsid-
ering fulfilled constraints, and/or possible failures.

Thecomponent to task convertplug-in searches for an optimized
mapping from components and tasks considering contextiswi
overhead, stack size and the stipulated real-time contdraie.,
the end-to-end deadlines of the transactions. tékk attribute as-
signmenplug-in assigns the tasks the derived attributes peridd, of
set, priority and WCET. Theeal-time analyzemplug-in performs

response-time analysis to ensure that the constraintsetre m

In this example, with the above stated constraints, theesy# di-
vided into three tasks as depicted in figure 9. Task A mapsdhe c
ponentsSpeed Unit, Object Recognition, Mode Switcid Break
Assist Task B maps the assemblCC controller’ and task C
maps thdogger component. The derived attributes assigned to the
resulting tasks are:

Task A: Period 20 ms, Offset 0, Priority High, WCET:4 ms
Task B: Period 20 ms, Offset 0, Priority Mid, WCET: 4 ms
Task c: Period 100 ms, Offset 0, Priority Low, WCET: 1 ms

The response-time analysis shows that the transadtipagr4 will
have the worst case response-times, 8.1 ms, 8.1 ms, 4 ms2amd 9.
respectively. By comparing these values to the end-to-eadlthe
(E2ED) constraints we can see that all transactions will beand
the system is correct considering timing.

Figure 9. Resulting task set after model transformation

Considering the systems different modes, we see that sordesno
will not require all components to be run, leaving some oftdeks
with a significantly shorter execution-time than WCET. listbase
an on-line scheduler can use the residual (left over) tinsethedule
either low priority monitoring tasks or higher quality venss of the
standard tasks. In both cases increasing the quality ofysters in
some way.

7 Conclusion and future work

Although component models that support predictabilityhaf $ys-
tem behaviour there exist, they are found to be inapprapftatthe
control systems application domain since they do not sugper
requirements of embedded systems and, hence, are not gk to
dict the behaviour of control systems. The approach predent
this paper represents a possible solution to this problegnm&ans
of it, we can build/compose control systems components (he
designing the control system we can use a component-based ap
proach by exploiting all its notorious advantages) and hindame
time - predict the functional/non-functional behaviourtioé com-
posed system. Although extending SaveCCM with the pogsibil
to specify a top-level design of the system considerablypbfyn
the developer tasks, it internally adds complexity at |l@fedystem
implementation. To validate the real feasibility of our eggech, as
future work, we plan to apply SAVEComp to real-scale casd-stu
ies. Moreover, SAVEComp, as it is currently structured| ktcks
of integration between functional and non-functional ggisl. That
is, functional and non-functional analysis are separgteljormed.
We also plan to incorporate SAVEComp into TOGDNE frame-
work [5] which supports functional and non-functional s in-
tegration, and implement the SAVEComp parts that go beybad t
approach presented in this paper.

Acknowledgements
This work is supported by SSF within both SAVE
(SAfety critical components for VEhicular systems -

http://www.mrtc.mdh.se/SAVE&nd FLEXCON ELEXible em-
bedded CONtrol systems - http://www.control.lth.se/FCEX/)
project.

8 References

(1]
(2]

International Electrotechnical Commission, IEC 61131 Pro
grammable Controllers. Part 1 -,5anuary 1992.

M. Akerholm, A. Mdller, H. Hansson, and M. Nolin. Towasd

a Dependable Component Technology for Embedded System[17]

Applications. InProceedings of the 1DIEEE International
Workshop on Object-oriented Real-Time Dependable Systems
(WORDSO05)February 2005. Sedona, Arizona, USA.

[18

[3] A. Bate and I. Burns. An approach to task attribute assign

(4]

(5]

(6]

(7]

(8]

9]
[10]

[11]

[12]

[13]

[14]

[15]

ment for uniprocessor systems.Rrmoceedings of the 26th An-
nual International Computer Software and Applications €on
ference IEEE, 2002.

J. Buchi. On a decision method in restricted second order
arithmetic. Ininternational Congress on Logic, Method and
Philosophical Science4960.

V. Cortellessa, A. Marco, P. Inverardi, F. Macinelli,cBR. Pel-
liccione. A framework for the integration of functional and
non-functional analysis of software architectures. TACoS
2004.

J. Fredriksson, M. Akerholm, K. Sandstrom, and R. Do-
brin. Attaining flexible real-time systems by bringing to-
gether component technologies and real-time systemsytheor
In Proceedings of the 29Euromicro Conference, Component
Based Software Engineering Trackeptember 2003. Belek,
Turkey.

J. Fredriksson, K. Sandstrom, and M. Akerholm. Caltula
ing resource trad-offs when mapping components to rea-tim
tasks. Inin the 8th International Symposium on Component-
Based Software Engineering (CBSES8), St.Louis, U@ay
2005.

H. Hansson, M. Akerholm, I. Crnkovic, and M. Torngren.
SaveCCM - a Component Model for Safety-Critical Real-
Time Systems. liProceedings of 30 Euromicro Conference,
Special Session Component Models for Dependable Systems
September 2004.

B. Lewis. IEC 61499 Function Blocks: A new way to design
control systemsZontrol Engineering EuropeApril 2002.

J. Magee and J. KrameZoncurrency: State Models and Java
Programs John Wiley and Sons, 1999.

J. Maki-Turja and M. Nolin. Fast and Tight Responsei&s
for Tasks with Offsets. 117" EUROMICRO Conference on
Real-Time SystemiEEE, July 2005. Accepted for publica-
tion.

A. Mbdller, J. Fredriksson, I. Peak, M. Nolin, and H. $Saidlt.
Context Dependent Predictions of Component-Based Control
Software. InSubmitted to ERCIM Workshop on Dependable
Software Intensive Embedded systelfaBEE Computer Soci-
ety, Septembed 2005.

T. Nolte, A. Mdller, and M. Nolin. Using Components to
Facilitate Stochastic Schedulability. Proceedings of the
24" Real-Time System Symposium — Work-in-Progress Ses-
sion IEEE Computer Society, December 2003. Cancun, Mex-
ico.

E. Parr. Programmable Controllers - An Engineer’s Guide
(2nd Edition) Butterworth-Heinemann Ltd, 2001.

L. Pernebo and B. Hansson. Plug and play in control loop
design. InPreprints Reglermdte 2002.inkdping, Sweden,

(16]

May 2002.

C. Sandstrom, K. and Norstrom. Managing complex temp

ral requirements in real-time control systems.nrdth IEEE
Conference on Engineering of Computer-Based Systems Swe-
den IEEE, April 2002.

K. Sandstrom, J. Fredriksson, and M. Akerholm. Introd
ing a component technology for safety critical embeddeH rea
time systems. Iispringer - LNCS 3054May 2004.

M. Tivoli, J. Fredriksson, and I. Crnkovic. A component
based approach for supporting functional and non-funation
analysis in control loop design. Malardalen University,
Malardalen Real-Time Research Centre. Technical Report
May 2005.

