
Towards analyzing the fault-tolerant operation of Server-CAN

Thomas Nolte†, Guillermo Rodrı́guez-Navas‡, Julián Proenza‡, Sasikumar Punnekkat†, Hans Hansson†

†MRTC, Department of Computer Science and Electronics, Mälardalen University, Västerås, Sweden
email: {thomas.nolte, sasikumar.punnekkat, hans.hansson}@mdh.se

‡Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma de Mallorca, Spain
email: {guillermo.rodriguez-navas, julian.proenza}@uib.es

Abstract

This work-in-progress (WIP) paper presents Server-CAN
and highlights its operation and possible vulnerabilities
from a fault tolerance point of view. The paper extends ear-
lier work on Server-CAN by investigating the behaviour of
Server-CAN in faulty conditions. Different types of faults
are described, and their impact on Sever-CAN is discussed,
which is the subject of on-going research.

1 Introduction
The usage of communications in embedded real-time

systems is nowadays very common as these systems are
typically distributed. A number of communication stan-
dards are available, e.g., [5, 8, 9, 12]. One of the more
common real-time networks for embedded systems is the
Controller Area Network (CAN) [6]. This network can be
found in many application domains; however, automotive is
its stronghold. The requirements set by distributed applica-
tions on their network include fault-tolerance and real-time.
Many protocols have been developed on top of CAN to en-
hance these requirements [1, 7, 11]. Server-CAN [10, 11]
is an approach with real-time capabilities and fairness prop-
erties, scheduling both periodic and aperiodic messages us-
ing servers. This work-in-progress (WIP) paper extends the
work on Server-CAN by investigating its operation from the
point of view of fault tolerance.

Server-CAN has been proposed to support communica-
tions in flexible open systems where users of the system
might be added, removed and updated during runtime. This
flexibility is provided by the Server-CAN admission con-
trol mechanism. Servers are providing bandwidth isolation
among users of the network. The network is scheduled
as one resource using server-based techniques and a cen-
tralised scheduler. Server-CAN can therefore easily sup-
port mode changes where the system go from one operating
mode to another, possibly completely change the usage of
the network. Moreover, the adding, removing and updat-
ing of users does not affect the guarantees provided to the
other users. In total, the above inherent properties of Server-

CAN, such as flexibility and robustness, if combined with
appropriate mechanisms for ensuring continued and consis-
tent transmissions, can provide fault-tolerant real-time com-
munications over CAN.

The system may suffer from different types of faults,
namely, node software faults, node physical faults, channel
permanent faults and channel transient faults. The impact
of these faults on Sever-CAN is discussed. Inherent mecha-
nisms of Server-CAN in order to achieve fault-tolerance, as
well as mechanisms which could be easily incorporated, are
also discussed.

The paper is organised as follows: Server-CAN is pre-
sented in Section 2, with a focus on its relevant, from a
fault-tolerance point of view, protocol mechanisms. Then,
Section 3 presents the fault model used in this paper and dis-
cusses Server-CAN behaviour in presence of errors. Finally
the paper is concluded in Section 4.

2 Server-CAN
In Server-CAN, bandwidth is allocated to users of the

network by the usage of servers called network access
servers (N-Servers). Each node has one or more N-Servers
allocated to it. The N-Servers have exclusive associated
bandwidth in terms of capacity, C, and a period time, T .
Moreover, all N-Servers have an associated deadline in or-
der to be scheduled for message transmission. Time is di-
vided into Elementary Cycles (ECs), similar to the FTT-
CAN [1]. The length of an EC is denoted TEC . The N-
Server period is required to be an integer multiple of TEC .

All N-Servers have a local message queue, in which all
its user messages are stored. A user is a stream of messages,
e.g., the sending of messages by an application, and can be
of either periodic or aperiodic nature.

The scheduling is performed at a specialised master
node, called the M-Server. The M-Server keeps all informa-
tion regarding the N-Servers in the system. The M-Server is
updating the N-Server deadlines according to the schedul-
ing policy in use. As soon as an N-Server is being scheduled
for message transmission, the N-Server selects a message
from its local message queue. Since each N-Server has ex-



clusive right to a share of the total system bandwidth, all
users sharing an N-Server will share this portion of band-
width. Hence, depending on the type of queue used at the N-
Server, e.g., FIFO or priority-based, different guarantees of
timeliness can be offered. Suppose a priority-based queue
is used, then the users will experience a service, in terms
of timeliness, similar to the one of an exclusive network,
essentially with the only difference being the lower band-
width offered. Hence, the timely behaviour will, compared
to an exclusive CAN network, be divided by C/T , i.e., the
server’s share. A variant of the response-time analysis for
fixed priority systems could be used to calculate the timing
properties.

The M-Server and all N-Servers are sending their mes-
sages to their corresponding CAN controller, where all mes-
sages are scheduled according to the native CAN message
arbitration mechanism. In this paper, all CAN controllers
are assumed to have an infinite message buffer that is or-
dered based on message identifiers (i.e., message priorities).

2.1 Scheduling mechanism

The server-scheduling mechanism is depicted in Fig-
ure 1.

??

TM
N-Server Parameters

STOP

2 6 8

1 ?

TM

N-Server

Message Queue
3

5

4
M-Server

7

STOP

CAN

Node

Figure 1. Server-scheduling mechanism.

The scheduling is performed at the M-Server according
to the Earliest Deadline First (EDF) policy (Figure 1:1, i.e.,
(1) in Figure 1). A schedule is created containing the N-
Servers with the earliest deadlines, filling up one EC. As
this is done, the schedule is put into a trigger message (TM)
and sent to all the N-Servers in the system (Figure 1:2).

When the N-Servers receive the TM (Figure 1:3), they
will read it to see whether or not they are allowed to send a
message (Figure 1:4). If they are, their message is immedi-
ately queued for transmission (if existing) at the CAN con-
troller (Figure 1:5). Otherwise, if not scheduled, the node
has to wait for the next TM to see if it will be scheduled.

In order to terminate the EC, the M-Server is also send-
ing a STOP message to itself (Figure 1:6). However, a small
delay before sending STOP is required. This is needed to
make sure that the STOP message is not sent before at least
one of the other nodes have both processed the TM (in order
to find out whether it is allowed to send or not), and (if it is
allowed to send) enqueued its message in the corresponding
CAN controller. The STOP message is of lowest priority

possible, acting as an indicator for when all the nodes that
were allowed to send a message within the active EC actu-
ally have sent their messages. If the M-Server receives the
STOP message, all nodes that were allowed to send mes-
sages within the EC have already sent their messages. This
since the STOP message, with its low priority, is the last
message to be sent within the EC.

The M-Server is always reading all the messages that
are sent on the CAN bus (Figure 1:7), i.e., the M-Server is
polling the bus. This in order to update its server variables
based on the actual traffic sent on the bus. Since servers
are scheduled for message transmission even though they
might not always have any messages to send, this has to be
taken care of by updating the server parameters accordingly.
There are different ways of updating the server-parameters
in the case when the server did not send a message. Depend-
ing on how the server-parameters are updated the server will
have different real-time characteristics [10, 11].

When the M-Server reads the STOP message (Fig-
ure 1:8), the EC is terminated, and the next EC is initiated
based on the updated server-variables. Hence, the actual
length of the EC might be less thanTEC due to slack [10, 11].

Using the Server-CAN concept, N-Servers can poten-
tially join and leave the system arbitrary as long as the total
utilisation by all the N-Servers in the system (bandwidth
demand) is less or equal to the theoretical maximum. This
joining and leaving is controlled by the admission protocol
presented in Section 2.2.

2.2 Admission control

As an option to add flexibility to Server-CAN, an admis-
sion control mechanism can be used to dynamically add and
remove N-Servers at run-time. In order for the admission
control to work, each node in the system is required to have
an N-Server that can be used to transmit protocol messages,
e.g., an N-Server that is used for non real-time traffic.

Each N-Server has an N-Server ID i, and is allowed to
send messages with specified identifiers mj

i . Hence, each
N-Server i is associated with a set of message identifiers Mi

and will only allow transmission of messages with identi-
fiers mj

i ∈ Mi. Each node n is allocated a specific message
identifier mn used for protocol specific messages. These
message identifiers are known and allocated to nodes at the
initiation of the system. Hence, the M-Server will read these
messages as protocol messages, automatically decoding the
message.

When implementing the admission control, three re-
quests are encoded into a single request-message. These
request messages are used to add an N-Server, remove an
N-Server, and update N-Server parameters. Moreover, three
corresponding reply-messages are used to acknowledge the
request. Hence, two types of messages are involved in the
admission control mechanism, namely request- and reply-



messages. For example, the M-Server receives a request,
performs some admission control, possibly updates its pa-
rameters and finally sends an appropriate reply-message.

2.3 Bandwidth sharing

Server-CAN allows the implementation of bandwidth
sharing mechanisms. By having the M-Server monitoring
the traffic it is possible to share bandwidth between N-
Servers, even changing their N-Server parameters. Band-
width sharing is done directly in the M-Server using band-
width sharing algorithms, e.g., [2], and the changing of N-
Server parameters (Cj and Tj) is done using the admission
control presented in Section 2.2.

2.4 Mode changes

When the system performs a mode change, the M-Server
changes its server parameters from one set to another. The
mode change is triggered by the reception of a mode-change
message. Upon the reception of this message the M-Server
changes to the mode indicated in the message.

3 Fault tolerance in Server-CAN

Message omissions are recovered by retransmissions in
general, provided by the built-in fault tolerance ability of
native CAN protocol. Server-CAN builds on several mech-
anisms (both inherent and supplemented) in order to facili-
tate a fault-tolerant operation.

3.1 Fault model

The fault model used is that the network can suffer from
four types of faults: (1) Node software faults, (2) Node phys-
ical faults, (3) Channel permanent faults, and (4) Channel
transient faults. Each of these faults are discussed together
with its impact on the communications when using Server-
CAN, and how the Server-CAN protocol is affected. In
some cases, feasible solutions for overcoming these faults
are also discussed.

3.1.1 Node software faults
By using N-Servers as an application’s interface between
the application and the network, bad and unexpected be-
haviour of one application will not propagate to other ap-
plications on other nodes. Applications on the same node
might suffer, and there might be a possible overload in the
badly behaving application’s N-Server. Also, propagation
of errors from the badly behaving application could corrupt
the N-Server.

N-Servers are implementing a software bus guardian
preventing babbling idiots. Solutions to the babbling id-
iot problem have been presented for CAN [3] by the us-
age of extra hardware. Server-CAN is a software solution
to this problem. However, compared with hardware bus-
guardians, Server-CAN only solves babbling idiots caused

by software faults. Also, Server-CAN does not present fault
independence with respect to the rest of the node and is
therefore vulnerable to propagation of errors from applica-
tions running on the same node.

Node software faults typically stems from software de-
sign errors. Here, it is assumed that all software, including
the M-Server and the N-Server, are properly designed and
subjected to validation tests and if possible, formally veri-
fied. The M-Server and the N-Server are not complex and
therefore unlikely to exhibit design faults. However, other
applications might suffer from software faults and then it is
important to determine how these faults affect the Server-
CAN communication.

3.1.2 Node physical faults
The M-Server is a single point of failure in the system, and
the probability of a physical fault in the M-Server is not
negligible. If the M-Server crashes there will be no trans-
mission of the TM, i.e., no schedule is sent to the N-Servers
in the systems and the system could in the worst-case be
blocked. For correct operation, the M-Server must always
recover. A solution to this is to have replicated M-Servers
to prevent the scheduler of the network to disappear. This
replication of the M-Server can be done similar to the han-
dling of master-nodes in FTT-CAN [4, 13].

The replication of the M-Server is achieved by having
one or more backup M-Servers (called B-Servers) in the
system. These hot standby B-Servers keep monitoring the
network as normal M-Servers, updating its server states, but
they do not send TMs. Moreover, as N-Servers join or leave
or change their properties, the B-Servers update their infor-
mation as well. The consistency of this information must
be guaranteed, and solutions similar to those existing for
FTT-CAN [13] could be used. All B-Servers can verify that
the TM contains the correct information. If not, a synchro-
nization of M-Server data can be done. When there is no
transmission of a TM by the M-Server, a B-Server takes on
the role as the M-Server and transmits its current TM.

From a system point of view, the N-Server is not a single
point of failure. However, it is a single point of failure from
its user point of view.

3.1.3 Channel permanent faults
Channel permanent faults include link partitions, stuck-at-
dominant, etc. The single link of a bus topology is a single
point of failure. In topologies different from a bus, e.g. a
star, a faulty link does not cause a global failure of the sys-
tem. These types of faults are very important and usually
addressed by bus replication [14]. Hence, in this paper it is
assumed that the channel is free of permanent faults or is
able to tolerate them by its own means.

3.1.4 Channel transient faults
These faults are due to Electro Magnetic Interference (EMI)
and cause message duplications and message omissions,



and can be either consistent or inconsistent [15]. Message
duplications cause a message to be transmitted twice at the
cost of loss of bandwidth, and message omissions cause a
message not to be transmitted at all.

Using the Server-CAN protocol, the M-Server is respon-
sible for scheduling all N-Servers and sending the schedule
to the N-Servers using the Trigger Message (TM) and termi-
nating the Elementary Cycle (EC) using a STOP message.
Hence, protocol specific messages sensitive to channel tran-
sient faults are the TM and the STOP messages, for which
the implications of a channel fault during their transmission
have to be investigated. Also, since these faults can happen
in different combinations, detailed analysis of their impact
on the fault-tolerant operation of CAN and Server-CAN is
essential. Inconsistent message omissions may jeopardize
the consistency among the M-server replicas. Next section
is devoted to outline how these transient faults may affect
M-server and B-servers consistency.

3.2 Consistency of M and B-Servers

Due to the complexity introduced by the Server-CAN
protocol, the following mechanisms are subject to inconsis-
tency among the M and B-Servers, and have to be analysed
in detail:

• Admission control - The admission protocol involves
message passing. Hence, it is vulnerable to channel tran-
sient faults. The admission protocol involves the transmis-
sion of request- and reply-messages. To ensure consistency,
similar techniques as for FTT-CAN can be used [13].

• Bandwidth sharing - As bandwidth sharing mechanisms
involve changing M-Server parameters, special consider-
ation needs to be taken in order to avoid inconsistencies
among the replicated M-Servers. Here, the same messages
as when updating N-Server parameters are used. Hence,
bandwidth sharing suffers from the same fault scenarios as
admission control.

• Mode changes - Changing mode involves message pass-
ing and is therefore vulnerable to channel transient faults.

4 Summary and position of work

In order to use Server-CAN in safety-critical applications
its fault tolerant operation has to be analysed. In this pa-
per the fault model intended to be used has been presented.
Multiple combinations of channel transient faults can occur
and their impact on the Server-CAN protocol has to be anal-
ysed in detail. Protocol messages can be both omitted and
duplicated in either a consistent or inconsistent way.

Babbling applications are tolerated by Server-CAN as
long as they are caused by software faults. We also observe
that some node physical faults may cause a global failure. In
particular, theM-ServerisasinglepointoffailuresoM-Server
replication using B-Servers is required in order to tolerate

physical faults. We observe that B-Servers require consis-
tency and transient channel faults are an impairment to this
requirement. Suitable mechanisms must be incorporated in
order to guarantee consistency of M- and B-Servers under
faults and we are currently analysing this issue in detail.

A possible advantage of Server-CAN is its inherent abil-
ity in improving the fault tolerance capabilities of the sys-
tem, by having a flexible method for taking care of channel
faults, as they can be scheduled as aperiodic messages with-
out having the need to reserve bandwidth a priori. Together
with replicated M-Servers, the Server-CAN approach could
provide a fault-tolerant solution for applications where de-
pendability is a primary requirement.

References

[1] L. Almeida, P. Pedreiras, and J. A. Fonseca. The FTT-CAN
Protocol: Why and How. IEEE Transaction on Industrial
Electronics, 49(6), December 2002.

[2] G. Bernat, I. Broster, and A. Burns. Rewriting history to
exploit gain time. In Proceedings of RTSS’04, pages 328–
335, Lisbon, Portugal, December 2004.

[3] I. Broster. Flexibility in Dependable Real-time Communica-
tion. PhD thesis, Dept. of Computer Science, August 2003.

[4] J. Ferreira, P. Pedreiras, L. Almeida, and J. Fonseca.
Achieving fault tolerance in FTT-CAN. In Proceedings of
WFCS’02, pages 125–132, Västerås, Sweden, August 2002.

[5] FlexRay Consortium. http://www.flexray.com/.
[6] ISO 11898. Road Vehicles - Interchange of Digital Infor-

mation - Controller Area Network (CAN) for High-Speed
Communication. ISO Standard-11898, Nov 1993.

[7] ISO 11989-4. Road Vehicles - Controller Area Network
(CAN) - Part 4: Time-Triggered Communication. ISO
Standard-11898-4, December 2000.

[8] LIN Consortium. LIN - Local Interconnect Network. http://-
www.lin-subbus.org/.

[9] MOST Cooperation. MOST - Media Oriented Systems
Transport. http://www.mostcooperation.com/.

[10] T. Nolte, M. Nolin, and H. Hansson. Real-Time Server-
Based Communication for CAN. IEEE Transactions on In-
dustrial Informatics, 1(3), August 2005.

[11] T. Nolte, M. Sjödin, and H. Hansson. Server-Based Schedul-
ing of the CAN Bus. In Proceedings of ETFA’03, pages
169–176, Lisbon, Portugal, September 2003.

[12] Robert Bosch GmbH. BOSCH’s Controller Area Network.
http://www.can.bosch.com/.

[13] G. Rodrı́guez-Navas, J. Rigo, J. Proenza, J. Ferreira,
L. Almeida, and J. A. Fonseca. Design and Modeling of a
Protocol to Enforce Consistency among Replicated Masters
in FTT-CAN. In Proceedings of WFCS’04, Sept. 2004.

[14] J. Rufino, P. Verı́ssimo, and G. Arroz. A Columbus’ egg
idea for CAN media redundancy. In Digest of Papers, The
29th International Symposium on Fault-Tolerant Computing
Systems, pages 286–293, USA, June 1999. IEEE.

[15] J. Rufino, P. Verı́ssimo, G. Arroz, C. Almeida, and L. Ro-
drigues. Fault-tolerant broadcast in CAN. In Proceedings of
FTCS-28. Munich (Germany), June 1998.


