

Abstract—Real-time operating system kernels in embedded

systems need to be configurable. Unfortunately many of
today's commercial real-time kernels are monolithic. These
optimized code packages are difficult to change and
maintain. This is motivated mainly to achieve short response
time and easy access of debugging information.

To solve the drawbacks of the monolithic real-time
kernels, the microkernel structure was introduced. The
microkernel approach has been discussed for having
disadvantages regarding performance. We have
implemented a prototype that shows how a modular
microkernel architecture in hardware can be used to speed
up task management, semaphores and flags for a commercial
real-time kernel. The implementation shows both the
adaptability of the hardware kernel and the performance
speed up associated with hardware implementations.

This article demonstrates that a hardware based real-time
kernel can keep or increase the performance of a monolithic
structured real-time operating system, while improving
system modularity.

Index Terms—Real time systems, Operating system kernels,
Field Programmable gate arrays, multitasking

I. INTRODUCTION
eal-time operating systems used in today’s embedded
systems need to reflect the modularity of the underlying

hardware and the increasing demand for adding and replacing
functionality in the system. [1] A real-time operating system
structured with the microkernel concept fulfils these
requirements. [7]
 Monolithic kernels are large in size and the structure, or
lack of structure, makes them difficult to change and maintain
without affecting other parts of the kernel.

The microkernel approach is based on the idea of only
placing essential core real-time operating system functions in
the kernel, and other functionality is designed in modules that
communicate through the kernel via minimal well-defined
interfaces. The microkernel approach results in easy re-
configurable systems without the need to rebuild the kernel.
 The first generation of microkernels suffered from poor
performance, which led to bad reputation of this kernel

structure. In the second-generation microkernels, performance
has increased and is no longer a problem. [3]

The client-server message passing idea of the microkernel
structure results in more context switching compared to
monolithic systems. [3] Implementing the real-time kernel in
hardware, following the microkernel structure approach,
results in a microkernel with the same or better performance
as monolithic structured systems; but without the latencies that
microkernel systems has been discussed for suffering from. In
addition to decreasing the size of the software footprint, the
RTU hardware solution also realizes the possibility to draw
benefits from hardware characteristics such as parallelism,
determinism and unburden of the CPU.

The goal of this work is to show that a microkernel-
structured kernel in hardware can be ported to an existing
monolithic real-time operating system, and how it affects the
performance of the system-calls. Minimal changes of the
microkernel are done.
 The paper is organized as follows. Section II describes
previous work and related work, divided in the aspects of
hardware support in real-time systems and microkernel
structured real-time systems. In section III challenges and
consideration of the implemented prototype is described
followed by the experimental results in section IV. Finally,
our conclusions are presented in section V.

II. PUBLISHED WORK
The real-time kernel in hardware, called real-time unit

(RTU), was developed at Mälardalen Real-Time Research
Centre, Mälardalen University, Sweden. It has been a topic for
research in both uni- and multiprocessor projects at the
Computer Architecture Laboratory for many years, by Lindh
et al. [2], [8], [9], [14] In the RTU, the scheduling, inter
process communication, interrupt management, resource
management, synchronization and time management control
are implemented in hardware (using VHDL). The hardware
implementation is utilized through memory mapped registers
and is used together with a software driver of 2 Kb code (also
called API, Application Programmers Interface) which makes
it possible for the programmer to utilize the hardware, i.e.
handle the service calls to the kernel.

Previous work [2], [8], [9], [14] has shown the benefits of

Application Specific Real-Time Microkernel in
Hardware

Susanna Nordström {susanna.nordstrom@realfast.se}, Lennart Lindh {lennart.lindh@realfast.se},
Lars Johansson, Tobias Skoglund

Department of Computer Science and Electronics, Mälardalen University, Västerås, Sweden

R

having the RTOS kernel activities implemented in hardware;
system overhead is decreased resulting in improved
predictability and response time, the CPU load and memory
footprint is reduced and less cache misses are seen.

The RTU has been further developed into a commercial
product in the form of an Intellectual Property component,
named Sierra, by the company RealFast AB, Vasteras,
Sweden [13].

To begin with, related work performed in the aspect of
hardware support for real-time systems will be mentioned.
Mooney et al have implemented a configurable hardware
scheduler in [6]. The scheduler provides three scheduling
disciplines: priority-based, rate monotonic and earliest
deadline first. The hardware implementation eliminates the
scheduling and the time-tick processing overhead from the
real-time operating system.

The Industrial TRON (µITRON) is a subproject of The
Real-time Operating System Nucleus project (TRON). In [11],
Nakano et al. presents a solution that consists of a hardware
part, called “silicon TRON”, and a software part, called
µITRON. The Silicon TRON together with the µITRON is
called a “Silicon OS”. The hardware part implements the
scheduler with system call functions and the software provides
other system call functions and interface processes between
applications and the hardware part. Like the RTU, this
solution also communicates with the CPU through register and
interrupts for task switch. The time measurements on system
calls regarding flags and semaphores showed that the system
call processing time in hardware could be reduced by 130 to
1880 compared to a conventional implementation in software,
i.e. two to three orders of magnitude speed enhancement.

In [12], a hardware architecture for real-time operating
systems support using special hardware components
implemented in one FPGA, called the F-timer, is presented.
The F-Timer is a co-processor that communicates with the
microprocessor and releases the processor of the tasks time
management. A similar software solution, based on a micro
controller, was created for comparison. Measuring the
performance, the conclusion was that the software solution
was 18 times worse than the F-Timer hardware architecture
solution.

Kohout et al. [5] presents a real-time task manager (RTM),
a processor extension that implements scheduling, time
management and event management with the purpose to
minimize real-time operating system performance drawbacks.
The RTM was implemented to handle these functionality in
µC/OS with the result of reducing processing overhead with
60 to 90%.

Related work in the aspect of microkernel structures of
operating systems and real-time operating systems has been
performed by Engel et al. who stated in [1] that microkernel
structured systems have an advantage over standard embedded
real-time operating systems in system-on-chip (SoC). This is
because of the microkernel associated modularity,
encapsulation of functionality and the adaptability to changes
in the design partitioning during development in SoC.

The work of Liedkte et al. in [3] presented that microkernel
based systems are usable in practice with good performance
by porting a microkernel designed kernel, the L4 kernel, to the
monolithic structured Linux kernel. Linux operating system
was implemented on top of L4.

As mentioned, work has been done in the area of hardware
support of real-time systems and the microkernel real-time
operating system structure approach. We have combined these
aspects by looking into the microkernel structured real-time
kernel in hardware (RTU).

III. IMPLEMENTATION
The configuration of the RTU used in this work is a uni-

processor solution that consists of the internal components in
fig. 1; an interface, a scheduler, an interrupt handler, a
resource manager and a time manager. The RTU as a whole
supports 16 tasks, 8 priority levels, 8 external interrupts, 16
semaphores, 8 flags, 4 watchdogs and timers for delay and
periodic start of tasks. The scheduling concept in the RTU is a
priority-based pre-emptive algorithm. The processor is
interrupted only when a task switch is about to occur. (This
configuration is equal to the Sierra IP component [13]).

Fig. 1. RTU architecture. GBI – Generic Bus Interface, TDBI – Technology
Dependent Bus Interface, i.e. the MicroBlaze On-Chip Peripheral Bus in this
implementation. [13]

The implementation that has been done is adapting the
existing real-time kernel in hardware, as hardware support for
the commercial real-time operating system µC/OS-II by
Micrium [10]. The µC/OS-II kernel is implemented
completely in software and is a well-used real-time operating
system for embedded systems. It is written as a monolithic
kernel in the language of ANSI C with a minor part in
assembler for context switching.

In the prototype implementation, the RTU has been
implemented to replace the scheduling and partial task
management, semaphore handling and flag handling in
µC/OS-II.

In order to measure the result, benchmarking of service call
response time has been executed to a system running
µC/OS-II and another system running µC/OS-II on top of the
RTU. The measurements have been carried out with a timer
component connected to the system bus

The hardware/software implementation has been developed
in Xilinx Embedded Development Kit (EDK) 6.2i with the
MicroBlaze CPU @24 MHz in a 1 million gate Xilinx Virtex-
II FPGA [15].

The implementation of the different parts is described
below in the aspects of limitations and considerations of the
porting of µC/OS-II and RTU functionality.

A. Task management
In µC/OS-II, the task management is performed by an

algorithm, which results in constant time for scheduling,
regardless of number of created tasks in the system. Further,
the µC/OS-II data structure for events implicates a limitation
of the possibility to have several tasks at same priority. This
means that the maximum number of tasks in the prototype
implementation must be the same as the maximum number of
priorities in the RTU, which is 8. No changes to the RTU were
made regarding task management. Since the RTU has no
support for dynamic change of priority, the µC/OS-II
OSTaskChangePrio() call was not supported in the prototype.
For the same reason, mutual exclusion semaphores were also
excluded. All other service calls regarding task management
was however implemented. The data structure for scheduling
could be removed since this is handled by the RTU.

Below is a simplified pseudo code example of how the
prototype implementation is carried out in the µC/OS-II
system call OSTaskCreate():

Turn RTU taskswitch_off()
 If priority is available and valid
 Reserve priority
 Turn RTU taskswitch_on()
 Initiate Task Control Block (TCB)
 If TCB initiation was successful
 call RTU task_create()
 Return status

The other system calls implementations are carried out in

similar way, i.e. calling RTU system calls in a µC/OS-II
system call in appropriate locations.

B. Semaphore and flag management
µC/OS-II supports both binary and counting semaphores

while the RTU only supports binary semaphores. For this
reason only binary semaphores are supported in the prototype.
In order not to remove the µC/OS-II query-functionality for
semaphore handling, the data structure was preserved and the
hardware support was limited to the use of task switch, delay-
and undelay calls in connection with semaphore handling.

No changes to the RTU were made regarding semaphore
management.

All µC/OS-II flag functionality could be supported except
for the timeout functionality in connection with waiting for a
flag.

The number of flags in the RTU was extended to handle
8 flags and the ability to handle disjunctive synchronization
was added in hardware part and API.

C. Time management
µC/OS-II supports both delay in clock ticks and time. The

RTU only supports delay in clock ticks and hence only clock-
ticks is supported in this prototype. Another difference is the
maximum value of clock ticks. In µC/OS-II the highest value
is 65534, in the RTU it is 1024. This is because of the size of
the amount of possible transferable data through the current
bus interface. In this implementation we chose not to extend
the RTU value. The problem is solved with several calls to the
RTU call being made instead.

IV. EXPERIMENTAL RESULTS
Benchmarking of service call response time was executed

to a system running µC/OS-II and another system running
µC/OS-II on top of the RTU. The experimental results of the
measurements can be seen in table 1 [4].

The most extreme positive result is the modified
OSFlagPost system call. It was measured to be executed in
less than a third of the time of the original µC/OS-II system
call. This is because the execution time increases with the
number of tasks waiting for the posted flags in the original
µC/OS-II call. This is not the case in the prototype
implementation with the RTU support. In the RTU, the
number of tasks waiting for posted flags does not affect the
execution time, since the processor is not involved in the flag
queue handling. In the prototype, the µC/OS-II code was
severely reduced in size when most of the functionality could
be executed in the RTU hardware instead. The only time the

TABLE I
MEASUREMENTS

System Call µC/OS-II
(ticks)

µC/OS-II/RTU
(ticks)

Difference

(ticks)

frac-
tion of
ex.time

OSTaskCreate 498 356 142 0.71
OSTaskSuspend 586 412 174 0.70
OSTaskResume 346 315 31 0.91
Manual
taskswitch

357 367 -10 1.03

OSFlagCreate 96 133 -37 1.39
OSFlagPost 158 123 35 0.78
OSFlagPost1 343 123 220 0.36
OSFlagPost2 455 123 332 0.27
OSFlagPost3 529 467 62 0.88
OSFlagPend4

 410 353 57 0.86
OSFlagPend5 142 128 14 0.90

OSSemCreate 98 90 8 0.92
OSSenPend 98 91 7 0.93
OSSemPost 92 81 11 0.88
OSSemPost6 229 182 47 0.79
OSSemPost7 451 531 -80 1.18
OSSemPend8 370 417 -47 1.13

1 One task with power priority waiting for flags
2 Two tasks with lower priority waiting for flags
3 One task with higher priority waiting for flags
4 One task pending, task switch occur
5 One task pending, task switch do not occur
6 One task with lower priority waiting for semaphore
7 One task with higher priority waiting for semaphore
8 Semaphore not available, task switch occur

processor will be interrupted is when a task switch is
necessary.

The most extreme negative result was the modified
OSFlagCreate() system call. It was measured to have
increased the execution time with a factor of 1.39 of the
original µC/OS-II system call. The code in the system call
performs mainly initialization of data structures. Most of this
code was preserved in the modified system call. This is
because the concerned data structures are used in the
µC/OS-II fault checking functionality and the RTU does not
support this. Further, the RTU call flag_set() had to be
executed to initialize the flags to a specified value. This results
in an overhead compared to the original system call, because
the execution time of RTU system call is added to the original
µC/OS-II code.

There are some other aspects that affect the service call
response time besides those already mentioned in the extreme
cases. Whenever a taskswitch is included in a service call the
processor has to be interrupted. The RTU does not help much
in this case, because the taskswitch has to be done in the CPU
by software control. However, when clock-tick occurs,
scheduling decisions has to be made and delays for tasks have
to be decremented. All of this is performed by the RTU
hardware in the prototype implementation without
involvement of the CPU. In the unaided µC/OS-II, this is done
in software, which means the processor will be interrupted for
every clock tick. This results in overhead. The size of the
overhead depends on how often the ticks occur and number of
tasks existing in the system.

All pend-calls include a timeout (RTU task_delay call).
Since the maximum timeout value is higher in the µC/OS-II
call than in corresponding RTU call, overhead is introduced
when the RTU has to be called several times.

V. CONCLUSIONS
Shortest service call response time was measured in those

cases where the RTU hardware was closely compatible to the
µC/OS-II software. In order to reach further response time
improvements when the RTU hardware differs the most from
the µC/OS-II software, the RTU has to be adjusted.
Suggestions of adjustments would be to change the bus
interface and extend the amount of transferable data to 32 bits.
This would increase the size of number of clock ticks possible
to set in a timeout, which would consequently shorten the
response time in associated service calls when repetitive calls
to RTU timeout function can be avoided. Another adjustment
would be to add dynamic change of priority in order to further
support the µC/OS-II functionality.

Our conclusion is that the principal structure of the RTU
can be preserved and the changes suggested concerns only
extending of support of functionality.

Finally, hardware support is motivated in embedded
systems where the application uses the real-time operating
system extensively and when higher performance, smaller
software footprint and determinism are of great importance.
Having the hardware support structured in a microkernel

approach adds flexibility to the system without decrease of
performance.

REFERENCES
[1] F. Engel, G. Heiser, I. KuZ, S. M. Petters and S. Ruocco, “Operating

Systems on SoCs: A Good Idea?,” in ERTSI in conjunction with 25th
IEEE RTSS04, Lisbon, Portugal, December 2004.

[2] Furunäs, J. “Benchmarking of a Real-Time System that utilises a
booster.” In International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA200), June, 2000.

[3] H. Härtig, M. Hohmuth, J. Liedkte, S. Schönberg and J. Wolter, “The
performance of µ-Kernel-Based Systems”, in proceedings of the 16th
ACM symposium on Operating Systems Principles, p 66-77, Saint Malo,
France, 1997.

[4] L. Johansson and T. Samuelsson, “Integration of an Ultra-fast Real-Time
Accelerator in the Real-Time Operating System µC/OS-II”, Master
Thesis report, Malardalen University, Vasteras, Sweden, October 2004.

[5] P. Kohout, B. Ganesh and B. Jacob, “Hardware Support for Real-Time
Operating Systems”, in Conference on Hardware/Software codesign and
system synthesis of contents, p.45-51, Newport Beach, USA, 2003.

[6] P. Kuacharoen, M. A. Shalan and V. J. Mooney III, “A Configurable
Hardware Scheduler for Real-Time Systems,” in Precedings of the
International Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA´03), p 96-101, Las Vegas, USA, June 2003.

[7] J. Liedkte, “Toward Real Microkernels,” in Communicatons of the
ACM, vol. 39, No 9, September 1996.

[8] L. Lindh, and F. Stanischewski, “FASTCHART – A Fast Time
Deterministic CPU and Hardware Based Real-Time-Kernel.” In IEEE,
Euromicro workshop on Real-Time Systems, June 1991.

[9] L. Lindh, T. Klevin, and J. Furunäs, “Scalable Architecture for Real-
Time Applications – SARA”. Swedish National Real-Time Conference
SNART99 Linköping, Sweden, August, 1999.

[10] Micrium, Inc, www.micrium.com, (2005)
[11] T. Nakano, Y. Komatsudaira, A. Shiomi and M. Imai. VLSI

Implementation of a Real-time Operating System. Proc. of ASPDAC '97,
pp. 679-680, January, 1997.

[12] A. Parisoto, A. Souza, L. Carro, M. Pontremoli, C. Pereira, and A.
Suzim, “F-Timer: dedicated FPGA to real-time systems design support.
In Real-Time Systems”, In Proceedings in the Ninth Euromicro
Workshop, p.35 – 40, June, 1997.

[13] RealFast Intellectual Property, Vasteras, Sweden, www.realfast.se/sierra
(2005)

[14] T. Samuelsson, M. Åkerholm, P. Nygren, J. Stärner and L. Lindh, “A
Comparison of Multiprocessor Real-Time Operating Systems
Implemented in Hardware and Software.” International Workshop on
Advanced Real-Time Operating System Services (ARTOSS), Porto,
Portugal, 2003.

[15] Xilinx, Inc. www.xilinx.com, (2005)

