
 
 

 

  
Abstract—Real-time operating system kernels in embedded 

systems need to be configurable. Unfortunately many of 
today's commercial real-time kernels are monolithic. These 
optimized code packages are difficult to change and 
maintain. This is motivated mainly to achieve short response 
time and easy access of debugging information.  

To solve the drawbacks of the monolithic real-time 
kernels, the microkernel structure was introduced. The 
microkernel approach has been discussed for having 
disadvantages regarding performance. We have 
implemented a prototype that shows how a modular 
microkernel architecture in hardware can be used to speed 
up task management, semaphores and flags for a commercial 
real-time kernel.  The implementation shows both the 
adaptability of the hardware kernel and the performance 
speed up associated with hardware implementations.  

This article demonstrates that a hardware based real-time 
kernel can keep or increase the performance of a monolithic 
structured real-time operating system, while improving 
system modularity.  
 

Index Terms—Real time systems, Operating system kernels, 
Field Programmable gate arrays, multitasking 

I. INTRODUCTION 
eal-time operating systems used in today’s embedded 
systems need to reflect the modularity of the underlying 

hardware and the increasing demand for adding and replacing 
functionality in the system. [1] A real-time operating system 
structured with the microkernel concept fulfils these 
requirements. [7]  
 Monolithic kernels are large in size and the structure, or 
lack of structure, makes them difficult to change and maintain 
without affecting other parts of the kernel. 

The microkernel approach is based on the idea of only 
placing essential core real-time operating system functions in 
the kernel, and other functionality is designed in modules that 
communicate through the kernel via minimal well-defined 
interfaces. The microkernel approach results in easy re-
configurable systems without the need to rebuild the kernel. 
 The first generation of microkernels suffered from poor 
performance, which led to bad reputation of this kernel 
 

 

structure. In the second-generation microkernels, performance 
has increased and is no longer a problem. [3]   

The client-server message passing idea of the microkernel 
structure results in more context switching compared to 
monolithic systems. [3] Implementing the real-time kernel in 
hardware, following the microkernel structure approach, 
results in a microkernel with the same or better performance 
as monolithic structured systems; but without the latencies that 
microkernel systems has been discussed for suffering from. In 
addition to decreasing the size of the software footprint, the 
RTU hardware solution also realizes the possibility to draw 
benefits from hardware characteristics such as parallelism, 
determinism and unburden of the CPU.  

The goal of this work is to show that a microkernel-
structured kernel in hardware can be ported to an existing 
monolithic real-time operating system, and how it affects the 
performance of the system-calls. Minimal changes of the 
microkernel are done.     
 The paper is organized as follows. Section II describes 
previous work and related work, divided in the aspects of 
hardware support in real-time systems and microkernel 
structured real-time systems. In section III challenges and 
consideration of the implemented prototype is described 
followed by the experimental results in section IV. Finally, 
our conclusions are presented in section V. 

II. PUBLISHED WORK  
The real-time kernel in hardware, called real-time unit 

(RTU), was developed at Mälardalen Real-Time Research 
Centre, Mälardalen University, Sweden. It has been a topic for 
research in both uni- and multiprocessor projects at the 
Computer Architecture Laboratory for many years, by Lindh 
et al. [2], [8], [9], [14] In the RTU, the scheduling, inter 
process communication, interrupt management, resource 
management, synchronization and time management control 
are implemented in hardware (using VHDL). The hardware 
implementation is utilized through memory mapped registers 
and is used together with a software driver of 2 Kb code (also 
called API, Application Programmers Interface) which makes 
it possible for the programmer to utilize the hardware, i.e. 
handle the service calls to the kernel.  

Previous work [2], [8], [9], [14] has shown the benefits of 
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having the RTOS kernel activities implemented in hardware; 
system overhead is decreased resulting in improved 
predictability and response time, the CPU load and memory 
footprint is reduced and less cache misses are seen.  

The RTU has been further developed into a commercial 
product in the form of an Intellectual Property component, 
named Sierra, by the company RealFast AB, Vasteras, 
Sweden [13]. 

To begin with, related work performed in the aspect of 
hardware support for real-time systems will be mentioned. 
Mooney et al have implemented a configurable hardware 
scheduler in [6]. The scheduler provides three scheduling 
disciplines: priority-based, rate monotonic and earliest 
deadline first. The hardware implementation eliminates the 
scheduling and the time-tick processing overhead from the 
real-time operating system.  

The Industrial TRON (µITRON) is a subproject of The 
Real-time Operating System Nucleus project (TRON). In [11], 
Nakano et al. presents a solution that consists of a hardware 
part, called “silicon TRON”, and a software part, called 
µITRON. The Silicon TRON together with the µITRON is 
called a “Silicon OS”. The hardware part implements the 
scheduler with system call functions and the software provides 
other system call functions and interface processes between 
applications and the hardware part. Like the RTU, this 
solution also communicates with the CPU through register and 
interrupts for task switch. The time measurements on system 
calls regarding flags and semaphores showed that the system 
call processing time in hardware could be reduced by 130 to 
1880 compared to a conventional implementation in software, 
i.e. two to three orders of magnitude speed enhancement. 

In [12], a hardware architecture for real-time operating 
systems support using special hardware components 
implemented in one FPGA, called the F-timer, is presented. 
The F-Timer is a co-processor that communicates with the 
microprocessor and releases the processor of the tasks time 
management. A similar software solution, based on a micro 
controller, was created for comparison. Measuring the 
performance, the conclusion was that the software solution 
was 18 times worse than the F-Timer hardware architecture 
solution. 

Kohout et al. [5] presents a real-time task manager (RTM), 
a processor extension that implements scheduling, time 
management and event management with the purpose to 
minimize real-time operating system performance drawbacks. 
The RTM was implemented to handle these functionality in 
µC/OS with the result of reducing processing overhead with 
60 to 90%. 

Related work in the aspect of microkernel structures of 
operating systems and real-time operating systems has been 
performed by Engel et al. who stated in [1] that microkernel 
structured systems have an advantage over standard embedded 
real-time operating systems in system-on-chip (SoC). This is 
because of the microkernel associated modularity, 
encapsulation of functionality and the adaptability to changes 
in the design partitioning during development in SoC.  

The work of Liedkte et al. in [3]  presented that microkernel 
based systems are usable in practice with good performance 
by porting a microkernel designed kernel, the L4 kernel, to the 
monolithic structured Linux kernel. Linux operating system 
was implemented on top of L4. 

As mentioned, work has been done in the area of hardware 
support of real-time systems and the microkernel real-time 
operating system structure approach. We have combined these 
aspects by looking into the microkernel structured real-time 
kernel in hardware (RTU). 

III. IMPLEMENTATION 
The configuration of the RTU used in this work is a uni-

processor solution that consists of the internal components in 
fig. 1; an interface, a scheduler, an interrupt handler, a 
resource manager and a time manager. The RTU as a whole 
supports 16 tasks, 8 priority levels, 8 external interrupts, 16 
semaphores, 8 flags, 4 watchdogs and timers for delay and 
periodic start of tasks. The scheduling concept in the RTU is a 
priority-based pre-emptive algorithm. The processor is 
interrupted only when a task switch is about to occur. (This 
configuration is equal to the Sierra IP component [13]). 

 

 
 

Fig. 1. RTU architecture. GBI – Generic Bus Interface, TDBI – Technology 
Dependent Bus Interface, i.e. the MicroBlaze On-Chip Peripheral Bus in this 
implementation. [13]   

The implementation that has been done is adapting the 
existing real-time kernel in hardware, as hardware support for 
the commercial real-time operating system µC/OS-II by 
Micrium [10]. The µC/OS-II kernel is implemented 
completely in software and is a well-used real-time operating 
system for embedded systems. It is written as a monolithic 
kernel in the language of  ANSI C with a minor part in 
assembler for context switching.  

In the prototype implementation, the RTU has been 
implemented to replace the scheduling and partial task 
management, semaphore handling and flag handling in 
µC/OS-II. 

In order to measure the result, benchmarking of service call 
response time has been executed to a system running 
µC/OS-II and another system running µC/OS-II on top of the 
RTU. The measurements have been carried out with a timer 
component connected to the system bus  

 
 



 
 

 

The hardware/software implementation has been developed 
in Xilinx Embedded Development Kit (EDK) 6.2i with the 
MicroBlaze CPU @24 MHz in a 1 million gate Xilinx Virtex-
II FPGA [15]. 

The implementation of the different parts is described 
below in the aspects of limitations and considerations of the 
porting of µC/OS-II and RTU functionality.  

A. Task management 
In µC/OS-II, the task management is performed by an 

algorithm, which results in constant time for scheduling, 
regardless of number of created tasks in the system. Further, 
the µC/OS-II data structure for events implicates a limitation 
of the possibility to have several tasks at same priority. This 
means that the maximum number of tasks in the prototype 
implementation must be the same as the maximum number of 
priorities in the RTU, which is 8. No changes to the RTU were 
made regarding task management. Since the RTU has no 
support for dynamic change of priority, the µC/OS-II 
OSTaskChangePrio() call was not supported in the prototype. 
For the same reason, mutual exclusion semaphores were also 
excluded. All other service calls regarding task management 
was however implemented. The data structure for scheduling 
could be removed since this is handled by the RTU. 

Below is a simplified pseudo code example of how the 
prototype implementation is carried out in the µC/OS-II 
system call OSTaskCreate(): 
  

Turn RTU taskswitch_off() 
 If priority is available and valid 
   Reserve priority 
   Turn RTU taskswitch_on() 
   Initiate Task Control Block (TCB) 
   If TCB initiation was successful 
     call RTU task_create() 
 Return status 
 
The other system calls implementations are carried out in 

similar way, i.e. calling RTU system calls in a µC/OS-II 
system call in appropriate locations. 

B. Semaphore and flag management 
µC/OS-II supports both binary and counting semaphores 

while the RTU only supports binary semaphores. For this 
reason only binary semaphores are supported in the prototype. 
In order not to remove the µC/OS-II query-functionality for 
semaphore handling, the data structure was preserved and the 
hardware support was limited to the use of task switch, delay- 
and undelay calls in connection with semaphore handling. 

No changes to the RTU were made regarding semaphore 
management. 

All µC/OS-II flag functionality could be supported except 
for the timeout functionality in connection with waiting for a 
flag. 

The number of flags in the RTU was extended to handle 
8 flags and the ability to handle disjunctive synchronization 
was added in hardware part and API.  

C. Time management 
µC/OS-II supports both delay in clock ticks and time. The 

RTU only supports delay in clock ticks and hence only clock-
ticks is supported in this prototype. Another difference is the 
maximum value of clock ticks. In µC/OS-II the highest value 
is 65534, in the RTU it is 1024. This is because of the size of 
the amount of possible transferable data through the current 
bus interface. In this implementation we chose not to extend 
the RTU value. The problem is solved with several calls to the 
RTU call being made instead.  

IV. EXPERIMENTAL RESULTS 
Benchmarking of service call response time was executed 

to a system running µC/OS-II and another system running 
µC/OS-II on top of the RTU. The experimental results of the 
measurements can be seen in table 1 [4]. 

The most extreme positive result is the modified 
OSFlagPost system call. It was measured to be executed in 
less than a third of the time of the original µC/OS-II system 
call. This is because the execution time increases with the 
number of tasks waiting for the posted flags in the original 
µC/OS-II call. This is not the case in the prototype 
implementation with the RTU support. In the RTU, the 
number of tasks waiting for posted flags does not affect the 
execution time, since the processor is not involved in the flag 
queue handling. In the prototype, the µC/OS-II code was 
severely reduced in size when most of the functionality could 
be executed in the RTU hardware instead. The only time the 

TABLE I 
MEASUREMENTS 

System Call µC/OS-II 
(ticks) 

µC/OS-II/RTU 
(ticks) 

 
Difference 

(ticks) 
 

frac-
tion of 
ex.time 

 
OSTaskCreate 498 356 142 0.71 
OSTaskSuspend  586 412 174 0.70 
OSTaskResume 346 315 31 0.91 
Manual 
taskswitch 

357 367 -10 1.03 

     
OSFlagCreate 96 133 -37 1.39 
OSFlagPost 158 123 35 0.78 
OSFlagPost1 343 123 220 0.36 
OSFlagPost2 455 123 332 0.27 
OSFlagPost3 529 467 62 0.88 
OSFlagPend4

 410 353 57 0.86 
OSFlagPend5 142 128 14 0.90 
     
OSSemCreate 98 90 8 0.92 
OSSenPend 98 91 7 0.93 
OSSemPost 92 81 11 0.88 
OSSemPost6 229 182 47 0.79 
OSSemPost7 451 531 -80 1.18 
OSSemPend8 370 417 -47 1.13 

1 One task with power priority waiting for flags 
2 Two tasks with lower priority waiting for flags 
3 One task with higher priority waiting for flags 
4 One task pending, task switch occur 
5 One task pending, task switch do not occur 
6 One task with lower priority waiting for semaphore 
7 One task with higher priority waiting for semaphore 
8 Semaphore not available, task switch occur



 
 

 

processor will be interrupted is when a task switch is 
necessary. 

The most extreme negative result was the modified 
OSFlagCreate() system call. It was measured to have 
increased the execution time with a factor of 1.39 of the 
original µC/OS-II system call. The code in the system call 
performs mainly initialization of data structures. Most of this 
code was preserved in the modified system call. This is 
because the concerned data structures are used in the 
µC/OS-II fault checking functionality and the RTU does not 
support this. Further, the RTU call flag_set() had to be 
executed to initialize the flags to a specified value. This results 
in an overhead compared to the original system call, because 
the execution time of RTU system call is added to the original 
µC/OS-II code. 

There are some other aspects that affect the service call 
response time besides those already mentioned in the extreme 
cases. Whenever a taskswitch is included in a service call the 
processor has to be interrupted. The RTU does not help much 
in this case, because the taskswitch has to be done in the CPU 
by software control. However, when clock-tick occurs, 
scheduling decisions has to be made and delays for tasks have 
to be decremented. All of this is performed by the RTU 
hardware in the prototype implementation without 
involvement of the CPU. In the unaided µC/OS-II, this is done 
in software, which means the processor will be interrupted for 
every clock tick. This results in overhead. The size of the 
overhead depends on how often the ticks occur and number of 
tasks existing in the system. 

All pend-calls include a timeout (RTU task_delay call). 
Since the maximum timeout value is higher in the µC/OS-II 
call than in corresponding RTU call, overhead is introduced 
when the RTU has to be called several times. 

V. CONCLUSIONS 
Shortest service call response time was measured in those 

cases where the RTU hardware was closely compatible to the 
µC/OS-II software. In order to reach further response time 
improvements when the RTU hardware differs the most from 
the µC/OS-II software, the RTU has to be adjusted. 
Suggestions of adjustments would be to change the bus 
interface and extend the amount of transferable data to 32 bits. 
This would increase the size of number of clock ticks possible 
to set in a timeout, which would consequently shorten the 
response time in associated service calls when repetitive calls 
to RTU timeout function can be avoided. Another adjustment 
would be to add dynamic change of priority in order to further 
support the µC/OS-II functionality.  

Our conclusion is that the principal structure of the RTU 
can be preserved and the changes suggested concerns only 
extending of support of functionality. 

Finally, hardware support is motivated in embedded 
systems where the application uses the real-time operating 
system extensively and when higher performance, smaller 
software footprint and determinism are of great importance. 
Having the hardware support structured in a microkernel 

approach adds flexibility to the system without decrease of 
performance.   

REFERENCES 
[1] F. Engel, G. Heiser, I. KuZ, S. M. Petters and S. Ruocco, “Operating 

Systems on SoCs: A Good Idea?,”  in ERTSI in conjunction with 25th 
IEEE RTSS04, Lisbon, Portugal, December 2004.  

[2] Furunäs, J. “Benchmarking of a Real-Time System that utilises a 
booster.” In International Conference on Parallel and Distributed 
Processing Techniques and Applications (PDPTA200),  June, 2000. 

[3] H. Härtig, M. Hohmuth, J. Liedkte, S. Schönberg and J. Wolter, “The 
performance of µ-Kernel-Based Systems”, in proceedings of the 16th 
ACM symposium on Operating Systems Principles, p 66-77, Saint Malo, 
France, 1997.  

[4] L. Johansson and T. Samuelsson, “Integration of an Ultra-fast Real-Time 
Accelerator in the Real-Time Operating System µC/OS-II”, Master 
Thesis report, Malardalen University, Vasteras, Sweden, October 2004. 

[5] P. Kohout, B. Ganesh and B. Jacob, “Hardware Support for Real-Time 
Operating Systems”, in Conference on Hardware/Software codesign and 
system synthesis of contents, p.45-51, Newport Beach, USA, 2003. 

[6] P. Kuacharoen, M. A. Shalan and V. J. Mooney III, “A Configurable 
Hardware Scheduler for Real-Time Systems,” in Precedings of the 
International Conference on Engineering of Reconfigurable Systems and 
Algorithms (ERSA´03), p 96-101, Las Vegas, USA, June 2003. 

[7] J. Liedkte, “Toward Real Microkernels,” in Communicatons of the 
ACM, vol. 39, No 9, September 1996. 

[8] L. Lindh, and F. Stanischewski, “FASTCHART – A Fast Time 
Deterministic CPU and Hardware Based Real-Time-Kernel.” In IEEE, 
Euromicro workshop on Real-Time Systems, June 1991. 

[9] L. Lindh, T. Klevin, and J. Furunäs, “Scalable Architecture for Real-
Time Applications – SARA”. Swedish National Real-Time Conference 
SNART99 Linköping, Sweden, August, 1999. 

[10] Micrium, Inc, www.micrium.com, (2005) 
[11] T. Nakano, Y. Komatsudaira, A. Shiomi and M. Imai. VLSI 

Implementation of a Real-time Operating System. Proc. of ASPDAC '97, 
pp. 679-680, January, 1997. 

[12] A. Parisoto, A. Souza, L. Carro, M. Pontremoli, C. Pereira, and A. 
Suzim, “F-Timer: dedicated FPGA to real-time systems design support. 
In Real-Time Systems”, In Proceedings in the Ninth Euromicro 
Workshop, p.35 – 40, June, 1997. 

[13] RealFast Intellectual Property, Vasteras, Sweden, www.realfast.se/sierra 
(2005) 

[14] T. Samuelsson, M. Åkerholm, P. Nygren, J. Stärner and L. Lindh, “A 
Comparison of Multiprocessor Real-Time Operating Systems 
Implemented in Hardware and Software.” International Workshop on 
Advanced Real-Time Operating System Services (ARTOSS), Porto, 
Portugal, 2003. 

[15] Xilinx, Inc. www.xilinx.com, (2005) 
 
 


