
Worst-Case Execution-Time Analysis for Embedded

Real-Time Systems?

Jakob Engblomxy, Andreas Ermedahlx, Mikael Sj�odinxz

www.docs.uu.se/f~jakob,~ebbe,~micg

Jan Gustafsson{, Hans Hanssonx{

www.idt.mdh.se/personal/fjgn,hang

xDepartment of Computer Systems, Uppsala University, Sweden
{M�alardalen Real-Time Research Centre, Sweden

Abstract

In this article we give an overview of the Worst-Case

Execution Time (WCET) analysis research performed

by the WCET group of the ASTEC Competence Center

at Uppsala University.

The basis for this work is our modular architecture

for a WCET tool, used both to identify the components

of the overall WCET analysis problem, and as a start-

ing point for the development of an industry strength

WCET tool prototype. Within this framework we have

proposed solutions to several key problems in WCET

analysis, including representation and analysis of the

control
ow of programs, modeling of the behavior and

timing of pipelines and other low-level timing aspects,

integration of the control
ow information and low-level

timing to obtain a safe and tight WCET estimate, and

validation of our tools and methods.

We have focussed on the needs of embedded real-

time systems in designing our tools and directing our

research. Our long-term goal is to provide WCET

analysis as a part of the standard tool chain for em-

bedded development (together with compilers, debug-

gers, and simulators). This is substantially facilitated

by our close cooperation with the embedded systems

programming-tools vendor IAR Systems.

? The work is performed within the Advanced Software Tech-

nology (ASTEC, http://www.docs.uu.se/astec) competence

center, supported by the Swedish National Board for Industrial

and Technical Development (NUTEK, http://www.nutek.se).
y Jakob is an industrial PhD student at IAR Systems

(http://www.iar.com) and Uppsala university, sharing his time

between research and development work.
z Supported by the Swedish Research Council for Energineer-

ing Sciences (TFR, http://www.tfr.se).

Keywords: WCET analysis, software architecture,

programming tools, embedded systems, hard real-time.

1. Introduction

An increasing number of vehicles, appliances, power

plants, etc. are controlled by computer systems inter-

acting in real-time with their environments. Since fail-

ure of many of these real-time computer systems may

endanger human life or substantial economic values,

there is a high demand for development methods which

minimize the risk of failure. A common cause of such

failures is timing problems.

The purpose of Worst-Case Execution Time

(WCET) analysis is to provide a priori information

about the worst possible execution time of a piece of

code before using it in a system.

WCET estimates are used in the development of

real-time systems and embedded systems to perform

scheduling and schedulability analysis, to determine

whether performance goals are met for periodic tasks,

to check that interrupts have su�ciently short reaction

times, and for many other purposes.

In this article, we present the work we have per-

formed on WCET analysis. We present both the meth-

ods developed and a WCET tool framework in which

they are used.

The WCET of a piece of code depends both on the

program
ow (like loop iterations, decision statements,

and function calls), and on architectural factors like

caches and pipelines. Thus, both the program
ow and

the hardware the program runs on must be modeled by

a WCET analysis method.

1

Our focus on embedded systems have guided us,

both when deciding which types of hardware to fo-

cus on and to identify acceptable limitations regard-

ing program
ow and structure. We present the salient

characteristics of the embedded systems �eld, and its

repercussions on our work. Since the embedded mar-

ketplace is very fragmented we have strived to make

our methods as portable and modular as possible.

A WCET tool should ideally be a component in

an integrated development environment, making it a

natural part of the embedded real-time programmers'

tool chest, just like pro�lers, hardware emulators, com-

pilers, and source-code debuggers are today. In this

way, WCET analysis will be introduced into the nat-

ural work-
ow of the real-time software engineer. To

this end we are cooperating with IAR systems [IARa],

an embedded systems programming-tools vendor.

The main technical contributions of our work are:

� A modular architecture for a WCET tool, where

di�erent WCET analysis components can be in-

corporated.

� Two control
ow analysis methods, one based on

abstract interpretation [EG97, Gus00] and one

based on structural analysis of loops [HSRW98,

HSR+00].

� A compact and e�cient method for representing

information about the control
ow of a program

[EE00a].

� A pipeline analysis method that uses a generic

CPU simulator instead of a special-purpose

WCET CPU model [EE99].

� A calculation method that allows control
ow

and hardware analysis results (including the ef-

fects of caches) to be integrated and used to e�-

ciently calculate tight and safe WCET estimates

[OS97, EE99, EE00a].

� A method for validating the components of our

WCET tool, aiming at a complete validation of

the entire tool suite [EE00b].

� We have investigated the properties of commercial

embedded real-time programs and the attitudes of

real-time practitioners regarding WCET tools and

WCET analysis in general [Eng99, Gus00].

Paper outline: In Section 2 we give a motivation for

WCET analysis with focus on embedded real-time sys-

tem development. Section 3 presents previous work

and Section 4 gives an overview of our WCET tool.

Sections 5, 6, and 7 present our work on the di�erent

components of WCET analysis. In Section 8, we out-

line work performed on validation of WCET tools. Sec-

tion 9 gives experimental results. Finally, Section 10

presents conclusions and ideas for future work.

2. Background and Motivation

We begin by providing a background and motiva-

tion for our work, in the industrial context that we are

considering.

2.1. Uses of WCET

The concept of a worst-case execution time for a pro-

gram has been part of the real-time community for a

long time, especially when doing schedulability analysis

and scheduling [ABD+95, CRTM98]. Many scheduling

algorithms and all schedulability analysis assume some

form of knowledge about the worst-case timing of a

task. However, we consider WCET analysis to have a

much broader application area. In any product devel-

opment where timeliness is important, WCET analysis

is a natural tool to apply.

Designing and verifying hard real-time systems (i.e.

a system where a missed deadline is unacceptable) can

be much simpli�ed by using WCET analysis instead of

extensive and expensive testing. WCET estimates can

be used to verify that the response time of a critical

piece of code is short enough, that interrupt handlers

�nish quickly enough, or that the sample rate of a con-

trol loop can be kept.

Tools for modeling and veri�cation of real-time sys-

tems like UppAal [BLL+98], SPIN [Hol97], HyTech

[HHWT97], and Kronos [BDM+98] can use WCET

analysis to obtain the timing of the code in a system,

allowing veri�cation to be applied to implementations

as well as models of systems.

When developing reactive systems using graphi-

cal programming tools like IAR visualSTATE [IARb],

Telelogic Tau [Tel], and I-Logix StateMate [I-L], it is

very helpful to get feedback on the timing for model

actions and the worst-case time from input event to

output event, as demonstrated by Erpenbach et al.

[ESS99].

WCET analysis can also be used to assist in selecting

appropriate hardware. The designers of a system can

take the application code they will use and perform

WCET analysis for a range of target systems, selecting

the cheapest (slowest) chip that meets the performance

requirements (assuming that there are usable models of

the target systems available).

For straight-line code, the WCET is the execution

time for the code (assuming a predictable target plat-

form). In this case, we can use WCET as the basis for

programming tools to perform tricks like interleaving

background tasks with a foreground program [DS99],

or maintaining the timing of a virtual peripheral (i.e.

a piece of software emulating a peripheral device)1.

1The use of software to replace hardware has grown very pop-

2

Chip Category Number Sold

Embedded 4-bit 2000 million

Embedded 8-bit 4700 million

Embedded 16-bit 700 million

Embedded 32-bit 400 million

DSP 600 million

Desktop 32/64-bit 150 million

Figure 1. 1999 World Market for Microproces-
sors [Ten99]

2.2. Target Hardware

In our work, we strive to provide tools that target

the actual hardware and software used in embedded

systems. This section discusses the hardware aspects of

embedded systems, while the next section will discuss

the software.

Embedded system designs are usually based on mi-

crocontrollers, microprocessors with a set of peripherals

integrated on the same die. Microcontrollers are pack-

aged products like the Atmel AT90 line, or full-custom

ASICs based on a standard CPU core (an example is

Ericssons BlueTooth core using an ARM7).

As shown in Figure 1, microcontrollers completely

outnumber the desktop chips in terms of units shipped.

Only about 2% of the total number of chips used were

in desktop and server systems.2 Also, simple microcon-

trollers dominate. The reason for this is that embedded

systems designers use chips that are just fast and big

enough to solve a problem, in order to minimize the

power consumption, size, and cost of the overall sys-

tem.

For most 4-, 8-, and 16-bit processors, WCET anal-

ysis is a simple matter of counting the executing cy-

cles for each instruction, since they are usually not

pipelined. In our research, we have focussed on the

need of the 32-bit and DSP processors.

Figure 2 shows market shares for 1999 in the 32-

bit embedded processor segment. It is clear that

rather simple architectures dominate the �eld. The

best-selling 32-bit microcontroller family is the ARM

from Advanced Risc Machines [ARM]. All ARM vari-

ants have a single, simple pipeline, and very few have

caches. The second-best selling architecture is the ven-

erable Motorola 68k, which in most variants lack both

pipelines and cache.

ular in the past few years, as exempli�ed by microcontrollers

from Scenix [Sce00], Tera-Gen [Mic99], and others.
2Note however, that the desktop processors represent a much

larger share of the revenues, since the per-chip costs is on the

order of dollars in the embedded �eld but hundreds of dollars in

the desktop �eld.

Chip Family Number Sold

ARM 151 million

Motorola 68k 94 million

MIPS 57 million

Hitachi SuperH 33 million

x86 29 million

PowerPC 10 million

Intel i960 7.5 million

SPARC 2.5 million

AMD 29k 2 million

Motorola M-Core 1.1 million

Figure 2. 1999 32-bit Microcontroller Sales
[Hal00]

We conclude that our target hardware has the fol-

lowing characteristics:

� Pipelines are common on 32-bit chips, and they are

usually scalar or VLIW. Out-of-order, dynamically

scheduled pipelines are extremely rare.

� Floating-point pipelines or coprocessors are rare.

� Instruction caches are rare, (since they cost power

and lead to unpredictable performance), and data

caches are even more rare.

� On-chip RAM and ROM are the most impor-

tant forms of memory, while external memory is

avoided if possible due to cost and power consid-

erations.

� The chip market is very fragmented, with tens of

competing architectures just in the 32-bit �eld.

According to this, we have focussed on �nding a

WCET method that is easy to port and that supports

the e�cient handling of on-chip memory and periph-

erals, while allowing for the analysis of more advanced

features in the future. Our �rst goal has been to handle

scalar pipelines, and then expand to the more complex

cases of superscalar architectures and caches.

2.3. Target Software
Since the WCET of a program depends heavily on

the program
ow, WCET analysis methods must be

able to analyze and represent as much of the control

ow of a program as possible.

Today, most embedded systems are programmed in

C, C++, and assembly language [SKO+96]. More so-

phisticated languages, like Ada and Java, have found

some use, but the need for speed, portability, small

code size, and e�cient access to hardware will keep C

the dominant language for the foreseeable future.

We have investigated the properties of embedded

software, to provide some data about the types of pro-

gram
ows to expect. The result is that while most of

3

the code is quite simple (using single-nested loops, sim-

ple decision structures, etc.), there are some instances

of highly complex control
ow [Eng99].

For instance, deeply-nested loops and decision struc-

tures do occur, and more problematically, recursion

and unstructured code. Much of the complexity is due

to automatically generated code, and since code gener-

ators are expected to grow in use over the next years,

the problems posed by generated code must be han-

dled.

The most common focus for WCET analysis is user

code, but in any system where an operating system is

used, the timing of operating system services must also

be taken into account. This means that WCET anal-

ysis must also consider operating system code. Colin

and Puaut [CP99] have investigated how the code for

the RTEMS operating system is written, and found no

nested loops, unstructured code, or recursion. In this

case, operating system code can be considered a well-

behaved special case.

Ernst and Ye [EY97] reach some interesting conclu-

sions regarding the actual program
ow of some com-

mon signal-processing algorithms. While the program

source code contains lots of decisions and loops, the

decisions are structured in such a way that there is

only a single path through the program { regardless of

the input data. Identifying and expressing such single

feasible paths is essential for tight WCET analysis.

Another important aspect of the expected software

is that only small parts of the applications are re-

ally timing-critical. For example, in a mobile phone,

the GSM code is very small compared to the non-

real-time user interface. Thus, the WCET analysis

can be rather computation-intensive, provided that the

timing-critical parts can be e�ciently extracted.

Conclusions: We �nd it natural to support programs

written in C, (and C++ in the future), possibly with

inlined assembly code, and we need to have methods

that e�ciently handle nested loops, complex decision

structures, recursion, and unstructured code. It should

be possible to take advantage of detailed knowledge of

the control
ow, when such knowledge is available, and

to analyze small parts of a large system (but taking the

e�ects of the entire system into account).

2.4. Users of Execution Time Analysis

The expected users of a WCET tool are system de-

signers and programmers (both for basic system soft-

ware and for application software).

In order to �nd out more about the need for WCET

analysis in an industrial environment, an enquiry was

sent out to Swedish companies related to real-time and

embedded systems during the spring of 1997. The an-

swers contained a lot of interesting information about

current practice of WCET estimation.

WCET analysis was used to verify real-time require-

ments, to optimize programs, to compare algorithms,

and to evaluate hardware. None of the companies used

a commercial WCET tool. Among the many measure-

ment tools used were emulators, time-accurate simula-

tors, logic analyzers and oscilloscopes, timer readings

inserted into the software, and software pro�ling tools.

Practically everyone answered that a WCET tool

would be valuable, for the following reasons:

� to save time, as measurements become unneces-

sary.

� it would be advantageous to be able to see the time

directly for the program being developed.

� the tool could show execution times for di�erent

processors, clock frequencies, etc., without run-

ning the program on these targets.

The following functions in a WCET tool were re-

garded as valuable by a clear majority of the answers:

� mean execution times, as well as minimum and

maximum execution times.

� input data dependency.

� supervision of time budgets, (a time budget is an

upper limit of the WCET of a program, calculated

e.g. in the system design phase).

� speci�cation of the input data for which the pro-

gram exceeds its time budget.

� identi�cation of the parts of the program that ex-

ecute for certain input.

� hypothetical execution times for empty code

blocks, i.e., a possibility to reserve slots with a hy-

pothetical execution time for code to be developed

later.

� a choice between a fast but coarse analysis, and a

slow but more exact one.

� WCET calculation between timer points in the

code.

The inquiry was followed up by interviews with se-

lected companies, as summarized in [Gus00].

2.5. Our Goals and Visions

Our long term goal is to produce a WCET tool,

that is available as shrink-wrapped software. To this

end, we need to perform basic research into particular

methods, design a sound architecture for a tool, and

�nd a way to come in contact with the development

tools market.

On the research side, we are building a proto-

type system, integrating useful results from other re-

searchers and �lling in the gaps we �nd. We work from

4

actual
BCET

actual
WCET

possible execution times
safe WCET
estimates

safe BCET
estimates

tighter tighter
time

0

Figure 3. The Relation between WCET, BCET,
and Possible Program Execution Times.

the low-level, basing our models on the hardware view

of the software (i.e. the object code), since this is the

only level at which all e�ects of the hardware and the

programming environment is visible.

Regarding architecture, we are making the struc-

ture of the WCET tool as modular as possible, both to

ease retargeting to new target hardware and to make it

possible to use the components in other ways than just

WCET analysis. For instance,
ow analysis is useful

for compiler optimizations.

On the industrial adaption end, we cooperate with

IAR Systems (Uppsala, Sweden), a vendor of embed-

ded system programming tools. We aim to integrate

WCET analysis into their integrated development en-

vironment. WCET analysis is most appropriate as a

new tool inside a familiar environment, not as a stand-

alone tool.

We believe that this integration with accepted tools

is the best way to get WCET analysis accepted on the

market, and to make practitioner in the real-time �eld

actually use execution-time analysis. To be really use-

ful and realize the potential time savings, WCET anal-

ysis should be employed on a daily basis.

3. WCET Analysis Overview and Previ-

ous Work

The goal of WCET analysis is to generate a safe

(i.e. no underestimation) and tight (i.e. small overes-

timation) estimate of the worst-case execution time of

a program (or program fragment). A related prob-

lem is that of �nding the Best-Case Execution Time

(BCET) of a program. See Figure 3 for an illustration

of WCET, BCET, tightness, and safe estimates. An-

other execution time estimate is the average execution

time, which is much harder to obtain analytically, since

it requires statistical pro�les of input data, instead of

just boundary values, together with methods that can

take advantage of such information.

When performing WCET analysis, it is assumed

that the program execution is uninterrupted (no pre-

emptions or interrupts) and that there are no interfer-

ing background activities, such as direct memory ac-

cess (DMA) and refresh of DRAM. Timing interference

caused by such resource contention should be handled

by some subsequent analysis, for instance schedulabil-

ity analysis [BMSO+96, LHS+96].

To generate a WCET estimate, we consider a pro-

gram to be processed through a number of steps: pro-

gram
ow analysis, low-level analysis, and calculation.

The low-level analysis is further divided into global low-

level analysis and local low-level analysis.

Program Flow Analysis

The task of the program
ow analysis is to determine

the possible paths through a program, i.e. the dynamic

behavior of the program. The result of the
ow analysis

is information on which functions get called, how many

times loops iterate, if there are dependencies between

di�erent if-statements, etc.

The information can be obtained using manual

annotations integrated in the programming language

[Par93, PK89], or as additional information [FMW97,

LM95, PS95]). Automatic
ow analysis can also be

used to obtain the
ow information from the program

source code without manual intervention [CBW94,

EG97, HSRW98, LG98, LS98, SA00, Gus00].

Global Low-Level Analysis

The global low-level analysis considers the execu-

tion time e�ects of machine features that reach across

the entire program. Examples of such factors are in-

struction caches, data caches, branch predictors, and

translation lookaside bu�ers (TLBs). The analysis only

determines how global e�ects a�ect the execution time

but it does not generate actual execution times.

For WCET analysis, instruction caches [LBJ+95,

FMW97, HAM+99, SA00], cache hierarchies [M�ul97],

data caches [KMH96, WMH+97, SA00], and branch

predictors [CP00] have been considered.

Local Low-Level Analysis

The local low-level analysis handles machine tim-

ing e�ects that depend on a single instruction and its

immediate neighbors. Examples of such e�ects are

pipeline overlap and memory access speed.

Researchers have considered simple scalar pipelines

[LBJ+95, EE99, HAM+99] and superscalar CPU

pipelines [LHKM98, SF99, SA00].

Calculation Method

The purpose of the calculation is to calculate the

�nal WCET estimate for the program, given the pro-

gram
ow and global and local low-level analysis re-

sults. There are three main categories of calculation

methods proposed in literature: path-, tree-, or IPET-

(Implicit Path Enumeration Technique) based.

5

F
lo

w
 A

na
ly

si
s

C
al

cu
la

tio
n

Constraint
System

WCET

Object
Code

Constraint
Solver

Compiler

Flow
Analysis

Scope Tree
Construction

Manual
Annotations

Scope
Tree

Scopes with
Flow Info

Constraint
System

Construction

Local Low-Level Analysis

Timing
Graph

Timing Graph
Construction

Timing Graph
with Times

Simulator

Pipeline
Analysis

Global Low-Level
Analysis (not yet
implemented)

Scopes with
Cache Info

Cache
Analysis

Program
Source

Input Data
Specification

Figure 4. Overview of our current WCET analysis system

In a path-based calculation, the �nal WCET es-

timate is generated by calculating times for di�er-

ent paths in a program, searching for the path with

the longest execution time. The de�ning feature is

that possible execution paths are explicitly represented

[HAM+99, SA00].

In tree-based methods, the �nal WCET is gener-

ated by a bottom-up traversal of a tree representing

the program. The analysis results for smaller parts

of the program are used to make timing estimates for

larger parts of the program [LBJ+95, CP00].

IPET-based methods express program
ow and

atomic execution times using algebraic and/or logical

constraints. The WCET estimate is calculated by max-

imizing an objective function, while satisfying all con-

straints [LM95, PS95, OS97, FMW97].

Integrated Approaches
Most WCET tools integrate several of the above

steps into a single tool, even though the algorithms

are kept separate. There are also some methods that

integrate several steps into a single algorithm, making

the above division inappropriate.

Lundqvist and Stenstr�om [LS98] use a modi�ed

CPU simulator to simultaneously perform
ow, cache,

and pipeline analysis, and calculation. The results

are nice but rely on a very sophisticated and detailed

CPU modeling, and the method is therefore not very

portable.

Liu and Gomez [LG98] as well as Persson and Hedin

[PH98] perform WCET analysis on the source code of

a program by assigning timing values to operations of

the target language (Scheme respectively Java). Such

analysis is not e�ective for programs running on mod-

ern hardware or compiled using optimizing compilers,

since the time for each operation will in these cases de-

pend on its context. This is similar to the problems

encountered with the early timing schema approach

[PS90].

Bernat et. al performs WCET analysis on the Java

Byte code [BBW00] level. Their method is easily

portable between di�erent target platforms but en-

counters similar e�ectivity problems as the source code

WCET analysis methods mentioned above.

Petters and F�arber [PF99] perform sophisticated

measurements of programs running on target hard-

ware, aided by static o�-line analysis. No attempt is

made to perform a static time analysis, and the cal-

culation is conceptually integrated with the cache and

pipeline analysis.

4. Prototype WCET System

Figure 4 gives an overview of our WCET analysis

system as implemented today. In order to generate

a WCET estimate, a program is processed through a

number of steps (as described in Section 3 above). Note

that although the global low-level analysis is currently

not implemented, the implementation is prepared to

include this in a future.

There are two central data structures used in our

tools: the scope tree and the timing graph. The scope

tree re
ects the structure of function calls and loops in

the program, and is used for
ow analysis and global

low-level analysis. The timing graph represents an ex-

plicit low-level view of the program and is used for local

low-level analysis.

The target chip for the present implementation is

the NEC V850E, a typical 32-bit RISC microcontroller

architecture [Cor99]. It is mainly a classic RISC, but

it has variable-length instructions to make the code

6

smaller, a pipeline that allows some instruction combi-

nations to be issued on the same clock-cycle, and sev-

eral complex instructions that address the typical em-

bedded needs of bit manipulation and compact code.

These features make it an appropriate vehicle for our

experiments. Good contacts with NEC Europe also

made information, support, and hardware available.

The compiler is a modi�ed IAR V850/V850E

C/Embedded C++ [IAR99] compiler which emits the

object code of the program in an accessible format. We

only support C code in our prototype tool.

At present, each program must be contained in a

single source �le, since we need access to the whole

program. In the future, we plan to integrate with

a whole-program compiler developed by the ASTEC

WPO Project [Run00], which will remove the single-

�le limitation.

The simulator is a cycle-accurate model of the

V850E, created in our research group using a generic

framework for modeling pipelined processors.

In the following sections, we will present the research

we have performed on each problem. Note that the two

ow analysis methods are very di�erent in character

and in the form of information generated. We are ex-

ploring the tradeo�s between analysis power and cost,

both in terms of calculation and data representation.

Such trade-o�s and the use of varying representa-

tions for analysis and analysis results is very common

in compiler research and construction, since di�erent

representations are appropriate for di�erent types of

analysis.

The results can in all cases be converted to our uni-

fying notation for WCET
ow information [EE00a].

5. Flow Analysis

The task of the
ow analysis is to identify the pos-

sible ways a program can execute. The �nal WCET

path extraction is made in the subsequent calculation

phase.

We therefore consider
ow information handling to

be divided into three phases:

1. Flow information extraction: Obtaining
ow

information by manual annotations or automatic

ow analysis.

2. Flow representation: Representing the results

of the
ow analysis in a uniform manner.

3. Conversion for calculation: Converting the

control
ow (as represented in the
ow represen-

tation) to a format suitable for the �nal WCET

calculation.

We believe that an interaction between manual an-

notations and automatic
ow analysis is the best choice

for
ow information extraction. However, to avoid te-

dious work and errors from the programmer we should

rely on automatic
ow analysis as much as possible.

Our WCET group has developed methods for auto-

matic
ow analysis [EG97, Gus00, HSRW98, HSR+00].

We have developed a framework for representing ob-

tained
ow information and described how the
ow in-

formation can be converted to the IPET style of cal-

culation [EE00a]. We have also investigated how to

convert
ow information obtained on the source code

level to the object code level, in the presence of opti-

mizing compilers [EAE98].

5.1. Automatic flow analysis based on abstract in-
terpretation

In [EG97, Gus00] we present a
ow analysis method

based on abstract interpretation [Cou96]. The idea is

to extract properties of the run-time behavior of a pro-

gram by making an \interpretation" of the program

using abstractions of values instead of concrete values.

Based on the data abstraction we must also make a

transformation of the constructs in the target language,

from a concrete semantics handling concrete values to

an abstract semantics running on the abstract values.

The goal is to obtain a safe approximation of the

possible executions of the program, i.e. the calculated

set of paths must be equal to, or a superset of, the

set of possible paths. For example, it is allowed to

report that the program iterates more times in a loop

than it actually does, but not the other way around.

The safety of the analysis can be proven using abstract

interpretation theory. Provided that the abstraction

of values and the semantic operations in the language

are safe, we can show that the approximation of the

run-time behavior of a analyzed program is also safe.

The results of the analysis are safe estimations of

the number of iteration of loops and the possible out-

come of decision statements (in some relation to the

iterations of surrounding loops). As a side-e�ect, safe

bounds of variables' values at di�erent points in the

program are also generated.

The current analysis is performed at the source code

level of a program, but the same ideas should be ap-

plicable to intermediate and object code analysis. The

abstract domain for variable values currently imple-

mented is intervals and split intervals, but more com-

plex value domains might be considered in the future.

As an example of the type of
ow information that

can be generated, consider the code fragment in Figure

5(a). We will analyze the program using our automatic

ow analysis method, using intervals as the abstract

domain.

Figure 5(b) shows the structure of the analysis. In

7

/* Input limits for x: 0 � x � 3 */

while(x < 4) f
if (x < 3) x = x * 2; S1

else x = x + 1; S2

if (x == 1) x = x + 2; S3

else x = x + 1; S4

g

(a) Example program.

x = [0::3]

[0::4]

[1::5] [5::5]

[4::4]

[3::3]

[1::3] [4::5]

[4::4][2::4]

[3::5]

[5::5]

[4::4]

[4::5]

[5::5]

[4::5]

[5::5]

[3::3]

#1

#2

#3

[1::5]

merge

S1 S2

S3 S4 S3 S4

[3::5]

S1 S2

S3 S4S3 S4

merge

merge

S1 S2

S3 S4

merge

(b) Flow analysis run.

Figure 5. Example Program and Flow Analysis

the �gure, the analysis starts at the top with the initial

value for x which is the interval [0..3]. As the while-loop

cannot terminate at this point for any possible input

value, the analysis continues in iteration #1. The infea-

sible loop termination path is indicated with a dashed

line.

Since both edges are feasible in the �rst if-statement,

the analysis continues in both. In S1, x will assume the

value [0..2] initially and [0..4] at the end of the edge.

In S2, the corresponding values will be [3..3] and [4..4].

Two possible x values will encounter the second if-

statement. For the �rst, x = [0..4], both S3 and S4 are

feasible, leading to two possible end cases where x is

[3..3] and [1..5], respectively. In the second case, S3 is

infeasible, since x 6= 1, i.e. we have found the infeasible

path S2 ! S3, marked with a dashed line in the �gure.

Thus, only S4 is analysed further, with an end value

x = [5..5].

When the analysis of the �rst iteration of the loop

is �nished our method merges the values to form the

union of all variable values. The purpose of this is to

reduce the complexity of the calculation. In the �gure,

we see that the merged value of x is [1..5].

The analysis of iterations #2 and #3 are performed

similar to #1. We can see that four additional infea-

sible paths are found. All possible exit values of x are

merged together to form the �nal value of x.

To sum up, the
ow analysis extracted the following

information: the loop may iterate one to three times,

and the path S2 ! S3 can never be executed. Further-

more, in iteration two the path S1 ! S3 is impossible,

and the statement S1 cannot be executed in the third

iteration. Safe bounds on possible values for x where

also generated.

Executing the program for all possible inputs, (pos-

sible for this small input space), we can see that the

ow analysis result is safe but somewhat pessimistic,

since the path S1 ! S3 is also infeasible in the �rst

iteration, something not discovered by our analysis.

5.2. Bounding the Number of Loop Iterations
The single most important piece of
ow information

is the maximum number of iterations performed in each

loop. Hence, methods to automatically derive tight

bounds on the number of loop iterations are of great

importance.

In cooperation with the WCET research group at

Florida State University (Florida, USA), we have de-

veloped a method to predict tight bounds on a mul-

titude of di�erent types of loops [HSRW98, HSR+00].

The method can bound the number of iterations of, for

instance,

� loops with multiple exits,

� loops with multiple loop-index variables,

� loops that have bounds that are dependent on vari-

ables or function parameters (assuming that the

values of the variables can be predicted, e.g. using

our abstract interpretation method), and

� nested loops where the number of iterations of the

inner loop depends on the loop index of the outer

loop.

The method works on optimized object code and

is thus language independent. It is currently imple-

mented in an optimizing C compiler for the SPARC

architecture [BD88], but our intentions are to imple-

ment it in our current framework.

For an example on how the method works, consider

the C-program in �gure 6(a) and its compiled counter-

8

main()

f
int i,j;

extern int somecond;

for(i = 0, j = 1; i < 100; i++, j+=3)

if(j > 75 && somecond || j > 300)

break;

g

(a) Source code.

return

j>300
jump if true

i++
j+=3

i<100
jump if false

jump

1

2

3

4

5

6

7

8

i=0
j=1
jump

j>75
jump if false

somecond
jump if false

(b) Compiled pseudo assembler.

Figure 6. Example Program for Loop Bound
Analysis.

part in �gure 6(b). The details of the method are de-

scribed in [HSRW98, HSR+00].

The method progresses in four phases:

1. The branches that can a�ect the number of loop

iterations are iteratively identi�ed. First, we iden-

tify branches that either exit the loop or that

restart another iteration. Second, we �nd the

branches that indirectly a�ect the number of iter-

ations by conditionally transferring control to one

of two branches already identi�ed.

In �gure 6, we have identi�ed all branches a�ecting

the number of loop iterations.

2. Next, branches whose direction depends on loop-

index variables are identi�ed and the iteration

number when they change direction is determined.

In �gure 6 the branches in blocks 2, 5 and 7 are

identi�ed as being dependent on loop-index vari-

ables and they change direction on iteration num-

ber 26, 101 and 101 respectively.

3. Using the information from step 2 we can �nd out

during which iterations it is possible to reach the

branches identi�ed in step 1 (i.e. branches that

exit the loop or continue to the next iteration).

4. Finally, knowing when di�erent branches can be

reached and in which direction they will jump we

can calculate the minimum and maximum number

of iterations of the loop.

For the example in �gure 6 the minimum number

of iterations is 26 and the maximum is 101.

As a side e�ect we also identify the test in block

5 to be redundant and hence block 5 could be re-

moved by a dead-code elimination pass in the com-

piler.

In the case where loop bounds depend on variables

the method produces a symbolic expression including

the dependent variables. Given bounds on the values

of those variables the number of iterations can be cal-

culated. This, for instance, allows di�erent bounds to

be calculated for di�erent calls to functions that have

loops that are dependent on function parameters.

For nested loops the symbolic expression may con-

tain loop-index variables from an outer loop. In those

cases we consider the loop-index variable value for each

iteration of the outer loop, thus obtaining a tight esti-

mate of the number of iterations of the inner loop.

5.3. Representing Flow Information

To help us obtain tight WCET estimates, we have

de�ned a
ow representation formalism that is power-

ful enough to describe the complex
ows found in em-

bedded real-time systems (as discussed in Section 2.3

above). The representation is
exible enough to cap-

ture the output from a variety of
ow analysis methods

and manual annotations, while remaining compact and

e�cient to work with [EE00a].

Our representation is based on the concept of a

scope. Each scope corresponds to a certain repeating or

di�erentiating execution context in the program (typ-

ically a function call or loop, but the exact de�nition

is up to the
ow analysis method employed), and de-

scribes the execution of the object code of the program

within that context.

Since the behavior in a scope may depend on the

call path to the scope (e.g. a function called with dif-

ferent parameters from di�erent places in a program),

we use the scope tree structure to describe the dynamic

execution of the program3. Each function or loop can

be present more than once in the tree, corresponding

to di�erent execution contexts.

3Note that the compiler concept of a call graph [Muc97] bun-

dles di�erent invocations of a function into a single node, which

would give a loss in precision for WCET analysis.

9

���������	
�������

��������������
�����
�������������
�������
������������
��������
����������
����������������������
����������
�������������������
������
���
�����������
�

�����
�����
	���

�����

�����

�
������

�������������� ����������
�������

������������	���

�������

���	���

������
�������

������
�����

��������

���

���

���

��������

�
�����
���

��������

Figure 7. Example Scope Hierarchy

A structure similar to our scope tree is used in most

other WCET work [FMW97, PK89, HAM+99, CP00].

An example of a small scope tree containing loops and

function calls is shown in Figure 7.

A scope consists of nodes and edges. A node belongs

to exactly one scope, and represents the execution of a

certain basic block of the program in the environment

given by a scope and its superscopes.

Inside each scope, we have nodes corresponding to

the execution of a certain basic block of the program in

the context given by the scope. Note that although we

are discussing program
ow, we are doing so on a struc-

ture given by the object code of the program. There-

fore, the
ow analysis information must be mapped

onto the object-code structure of a program.

All scopes are supposed to be looping, thus there ex-

ists a concept of iterations of scopes (note that recur-

sive functions are considered the same as loops). Each

scope has a header node which has the property that

no other node in the scope can be executed more than

once without every possible execution path passing the

header node. The iteration numbers of a scope can be

thought of as being counters which are reset to zero at

the entry to scopes and incremented by one each time

the header node is executed.

Each scope has a set of associated
ow informa-

tion facts. Each
ow information fact consists of three

parts: the name of the scope where the fact is de�ned,

a context speci�er, and a constraint expression.

The context speci�er describes the iterations for

which the constraint expression is valid. This can ei-

ther be for all iterations or for certain iterations. The

type of a context speci�cation is either total, (within

\[" and \]"), for which the fact are considered as a

sum over all iterations of the speci�ed scopes, or fore-

ach, (within \<" and \>"), which consider the fact as

being local to a single iteration of the scope. Facts valid

for all iterations are expressed by <> or [], while facts

�

�

�

�

�

�

��
��

��
�

�
��

	�
��

��
��

��
��

��
��

	�
��

�����������	
����

� �!

�" �"!

� #�!#
�#

�#"

�"���������
�����

�����$��$�%��&��
������������
�����$��$�%��&��
������������

�����$��$�%��&��
������������
�����$�'$�!���� ����
�����$�())��'$�!����
�����$��))*��))���$� �����

��"

Figure 8. Example of Scopes with Attached
Flow Facts

valid for certain iterations are expressed as <ranges:::>

or [ranges:::]. A range speci�cation can cover several

scopes, e.g. [1..2,1..10].

The constraints are speci�ed as a relation between

two arithmetic expressions involving execution count

variables and constants. An execution count variable,

(xentity), corresponds to an entity like a node, a se-

quence of nodes or an edge.

In Figure 8 we show a number of
ow information

facts attached to the two loop scopes:

� A simple loop bound is speci�ed by using an

all/total operator on the count variable that

corresponds to the header node in the loop:

inner : [] :xheader(inner) � 10.

� A loop bound for one scope can also be speci-

�ed for each entry of an upper scope, e.g. the

outer : []: xheader(inner) � 55 fact constrains the

iteration of the inner loop more than the local loop

bound does.

� inner : <> :xC+xD = 1 The nodes C and D cannot

execute on the same iteration of the scope.

� inner : <6..10>:xC = 1 Node C must execute on

all the iterations numbered 6 thru 10.

� inner : [1..2,1..10]:xD � 2 Node D cannot be

executed more than twice in the given iteration

space (covering two scopes).

The style of constraints used is well-known from the

implicit path-enumeration technique (IPET) [LM95,

PS95, OS97, FMW97]. The use of context speci�ca-

tions, however, makes this approach much more pow-

erful than previous methods. For example, we are able

to specify information locally in the scopes where it

is valid. The uni�cation of locally and globally valid

information is unique. Also, information related to cer-

10

tain paths through a loop can be expressed using con-

straints on sequences of nodes.

Our
ow information language is strong enough to

handle the
ow information generated by existing pro-

gram analysis methods, while providing compact rep-

resentations even for complex
ows.

We refer to [EE00a] for a more detailed description

of our
ow information language, and how locally spec-

i�ed
ow information can be converted to global con-

straints that are used for our IPET style of WCET

calculation, (see Section 7).

5.4. Problems with Optimizing Compilers

Flow information can be generated on the source

code or object code level. If generated on the source

code level, the information must be mapped to the ob-

ject code to be used in the WCET calculation. In the

presence of optimizing compilers, this problem is non-

trivial, since the
ows of a program can be changed

radically [EAE98, LKM98].

We have performed some research on the problem.

The solution we devised was to describe the e�ect that

each compiler transformation has on the
ow informa-

tion, and have the compiler emit a trace of the trans-

formations made during optimization of the program.

The transformation trace is then used to transform the

corresponding
ow information [Eng97, EAE98].

An alternative solution to this problem is to perform

ow analysis on the intermediate code level of the com-

piler. The intermediate code level contains enough in-

formation from the source code to get the intention of

the programmer and is close enough to the object code

to have been subjected to most of the optimizations in

the compiler. We plan to port our
ow analysis meth-

ods to the intermediate code format used by the IAR

System C-compilers.

6. Low-Level Analysis

The purpose of low-level analysis is to account for

hardware e�ects on the execution time. As mentioned

above, we consider low-level analysis to consist of two

phases, the global e�ect analysis (handling hardware

features that reach across the entire program) and the

local e�ects analysis (handling hardware features that

do not reach across the entire program).

6.1. Global Low-level Analysis

The global low-level analysis handles machine fea-

tures that must be modeled over the whole program to

be correctly analyzed. The global analysis determines

facts that a�ect the execution time, but it does not

generate concrete execution times. Examples of global

e�ects are instruction caches, data caches, and branch

predictors.

The results of the global low-level analysis are passed

on to the local low-level analysis as execution facts. An

execution fact tells whether a certain instruction hits

or misses the instruction cache, whether a branch is

correctly predicted or not, etc.

The execution facts are used to generate the correct

execution times for the instructions of the program in

the simulator. For example, the icache facts shown in

Figure 9 are examples of the result of global low-level

analysis.

An example of cache analysis that �ts very well with

our approach is the VIVU instruction cache analysis

performed by Ferdinand et al. [FMW97]. Here, each

instruction is given a hit or miss classi�cation, which

is trivial to express as execution facts. Note that the

scope tree might have its structure changed in the pro-

cess of the global analysis. The VIVU approach splits

each loop scope into two scopes, one for the �rst and

one for the other iterations.

We split the global analysis from the local low-level

analysis in order to get modularity, allowing di�erent

global analyses to be used with the same local analy-

sis, and vice versa. Also, the execution fact approach

allows several analyses to be performed on the same

program, with cumulative results. For example, in-

struction cache and branch predicition analysis could

be performed separately, making each analysis simpler.

We have not yet implemented a cache analysis in

our prototype tool, since caches are not very common

on our target systems (see Section 2.2 above).

6.2. Local Low-level Analysis

The local e�ects analysis handles machine timing ef-

fects that depend on a single instruction and its imme-

diate neighbours. Examples of local e�ects are pipeline

overlap between instructions and basic blocks, memory

speed (particularly important for embedded real-time

systems, where multiple memory banks with di�erent

speeds are common), and instruction alignment (on our

example CPU, the NEC V850, 32-bit instructions not

aligned on a 32-bit boundary may take longer time to

execute).

The low-level analysis operates over a timing graph,

which is a
at graph for the entire program. The nodes

and edges in the timing graph correspond to the nodes

and edges in the scope tree, but the scope structure is

removed, since it is not relevant at this level.

Each node in the timing graph has an associated ex-

ecution scenario, generated in the global low-level anal-

ysis and during the timing graph construction (where

issues like memory access time and branch taken/not

11

�

�

�

�

�

�

�

�

�

�

�

�
����

�" ����"!���

� #����!#���
�#�� �#"���

�"���

��"���

�!��� � ���

�+����
�+��

�#+���

�����������
���
���������
��
���

�!�!�����"��	����
���
���������
�

��*�$��
��������
��**$��
�������
��������������
��*($��
�������
��*,$��
�������

����

����

��������

����

����

��
��	����������

�
��������
�
���

�
���
�����
��

�������
�����
���
��������
��
���

Figure 9. Example of Timing Graph

Fragment of
program

11

Simulation runs

15

22

Fragment
with times

tQ=11

tQR= –4

Simulator

Simulator

Simulator

Q

R

Q

Q

R

R

Q

R tR=15

Figure 10. Timing Effect Calculation

taken are converted to execution facts). Figure 9(a)

shows an example of a timing graph.

6.3. Extracting Pipeline Effects by Simulation
The primary problem in low-level analysis for

pipelined processors is to determine the overlap be-

tween two successive basic blocks. Traditionally, this

has been performed by determining a pipeline state for

both blocks, and then concatenating them [LBJ+95,

OS97, SA00].

We solve this problem in a novel and portable way by

using a simulator to obtain execution times for timing

graph nodes and sequences of nodes. The simulator

takes instructions together with the execution facts (to

determine the execution for instructions with varying

behavior).

The pipeline analysis generates times for the nodes

and edges in the timing graph. Times for nodes cor-

respond to the execution times of basic blocks (with

the associated execution scenarios) in isolation, (e.g.

tQ), and times for edges, (e.g. tQR), to the pipeline e�ect

when the two successive nodes are executed in sequence

(usually an overlap).

Timing e�ects for sequences of nodes are calculated

by �rst running the individual nodes in the simulator,

and then the sequence and comparing the execution

times. The process is illustrated in Figure 10. The

timing e�ect for the edge QR is 22� 15� 11 = �4; the
time is negative since the two nodes Q and R overlap.

Since pipeline e�ects can potentially appear across

sequences of nodes longer than two, we run progres-

sively longer sequences of nodes until a termination

condition is satis�ed, generating new times, tsequence ,

as needed. The termination condition depends on the

CPU used, and is true when there is no possibility for

a longer sequence to have any e�ect on the execution

time of the program. The details of these issues are

given in [EE99].

Simulators are a standard part of embedded devel-

opment environments today, and are often provided by

the chip manufacturers. We expect to utilise this fact

to quickly port our pipeline analysis to new chips.

7. Calculation

The purpose of the Calculation phase is to calculate

the �nal WCET estimate for the program.

We have chosen IPET as our calculation method

since it is the method that best satis�es our goal of

modularity, and since it allows for the expression of the

most complex
ows (including unstructured
ow). We

believe that path- and tree-based methods are harder

to retarget to new platforms and yield more problems

in integrating results from di�erent program
ow and

low-level analyses.

The IPET method for WCET analysis was intro-

duced by Puschner and Schedl [PS95]. A similar ap-

proach was presented by Li and Malik [LM95]. We

have extended IPET to be able to handle more ad-

vanced CPU architectures [OS97, EE99].

In IPET, the
ow of a program is modeled as an

assignment of values to execution count variables. The

variables are considered global, and the values re
ect

the total number of executions of each node for each

execution of the program.

The input of the calculation phase is a timing graph

where each entity (nodes, edges, or sequences of nodes),

have corresponding execution count and time variables

(called xentity and tentity).

The value of an execution count variable corre-

sponds to the number of times the entity is executed,

and the time variable gives the contribution of that

part of the program to the total execution time each

time it is executed.

The WCET estimate is generated by maximizing the

sum of the products of the execution counts and exe-

cution times (subject to the
ow constraints):

12

WCET = maximize(
X

8entity

xentity � tentity)

This maximization problem is solved using a con-

straint solver or integer linear programming (ILP) sys-

tem. At present, we use the constraint solver of the

SICStus Prolog system [ISL95].

Observe that IPET will not explicitly �nd the worst

case execution path, i.e. the precise order in which all

nodes are executed, since paths are not explicitly rep-

resented. However, the execution counts can be inter-

preted as an execution count pro�le of the worst-case

execution, which is very useful to identify hot spots

and bottlenecks in the program.

7.1. Constraint Generation

The WCET expression requires that we have con-

straints on all execution count variables. We dis-

tinguish between three types of execution count con-

straints: structural constraints, �niteness and start

constraints, and tightening constraints.

The possible
ow given the structure of the program

is modeled using structural constraints. For each node

in the timing graph, the sum of the incoming
ows is

equal to the outgoing
ows. For example, for node B

in Figure 8 the constraints xAB + xEB = xB and xB =

xBC + xBD would be generated.

For sequences longer than two nodes, representing

long pipeline overlaps or speci�c paths in the program,

the generation of structural constraints is a little bit

more complicated, but can be handled, as explained

in [EE99]. Our tool automatically generates the struc-

tural constraints from the timing graph.

In addition to the structural constraints, we need

constraints to state that the program is �nite, and that

it executes once. The basic �niteness of a program is

ensured by constraining each loop or recursive function

by an upper bound, stating the maximal number of

iterations of the loop. The program is set to execute

once by constraining the execution count of the entry

node of the program to one (i.e. xentrynode = 1).

Going beyond basic �niteness, we may add
ow in-

formation facts to further tighten the execution time

estimates. They are not necessary to obtain a WCET

estimate, but enhance the quality of the estimate.

Generating the basic �niteness and the tightening

ow information facts is the responsibility of the
ow

analysis. In [EE00a] we describe how basic �niteness

and tightening constraints, provided in our
ow infor-

mation representation (see Section 5.3), can be con-

verted to a format suitable for our IPET-style of cal-

culation.

8. Validating WCET Methods and Tools

For a WCET tool or method implementation to be

used in the development of a safety critical system we

must be able to guarantee that it produces safe and rea-

sonably tight results. In [EE00b] we address the prob-

lems faced during systematic testing of WCET analysis

methods.

When evaluating WCET analysis methods, the com-

mon methodology is to compare a WCET estimate

with an execution of the same program with known

worst-case data on the target hardware. This evalua-

tion method is problematic, since it mixes the e�ects

of several sources of errors. For example, a pessimistic

hardware model might mask errors in a
ow analysis

that generates too short program paths { the resulting

estimates might appear to be safe for any given set of

test cases, but there could be cases where the analysis

would be unsafe. Also, if errors are detected, it is very

hard to pinpoint the error source.

According to Section 3 above, we consider WCET

analysis to be divided into several independent compo-

nents. It is necessary to consider the correctness (and

e�ectiveness) of each component in isolation, since oth-

erwise errors in one component may mask errors in

other components. Each component must be safe and

tight in its own right in order for the complete analysis

system to be safe and tight.

In [EE00b], we applied the idea of component-wise

isolation and testing to our tool in order to give evi-

dence that the pipeline analysis and calculation method

we are using are safe and tight.

We also show the correctness of our local and global

low-level analysis algorithms, independent of the qual-

ity of the simulator used. The next step is to show

the correctness of the simulator in itself, relative to the

target hardware.

The ability to validate each component in isolation

is an important advantage of our modular approach to

WCET analysis. Of course, it is also very important

to show that we preserve the safeness when combining

the di�erent components, e.g. the results of the cache

and pipeline analysis, in the complete WCET tool.

9. Example Analysis Results

Finally, we will present some analysis results ob-

tained using our prototype tool. We have used a num-

ber of benchmarks used by other WCET groups, and

a few programs of our own making. A summary of the

programs is given in Figure 11.

The execution times in our experiments are shown

in Figure 12. The column Basic gives the WCET esti-

mate using only basic �niteness constraints. The col-

umn Improved gives the estimate resulting from adding

13

Program Description Properties

fibcall Simple iterative �bonacci calculation, used to cal-

culate �b(30).

Parameter-dependent function, single-nested

loop.

matmult Matrix multiplication of two 20x20 matrices. Multiple calls to the same function, nested func-

tion calls, triple-nested loops.

jfdctint Discrete-cosine transformation on a 8x8 pixel

block.

Long calculation sequences (i.e. long basic blocks),

single-nested loops.

fir Finite impulse response �lter (signal processing

algorithms) over a 700 items long sample.

Inner loop with varying number of iterations,

loop-iteration dependent decisions.

crc Cyclic redundancy check computation on 40 bytes

of data.

Complex loops, lots of decisions, loop bounds de-

pend on function arguments, function that exe-

cutes di�erently the �rst time it is called.

insertsort Insertion sort on a reversed array of size 10. Input-data dependent nested loop with worst-case

of n2=2 iterations.

duff Using \Du�'s device" [Ray00] to copy a 43 byte

array.

Unstructured loop with known bound, jump table

for switch statement.

Figure 11. Benchmark programs

Basic Improved No pipeline Actual
Program Cycles +% Cycles +% Cycles +% Cycles

fibcall 287 0.3 286 0.0 616 115.4 286

matmult 239528 0.0 239528 0.0 312047 30.3 239528

jfdctint 5550 0.0 5550 0.0 6197 11.7 5550

fir 326967 1.1 323277 0.0 505276 56.3 323277

insertsort 2077 66.3 1249 0.0 1435 14.9 1249

duff 1248 1.8 1226 0.0 2116 72.6 1226

crc 35878 7.0 35436 5.7 71918 114.6 33518

Figure 12. Execution Time Estimates

ow information facts. The column No pipeline gives

the WCET estimate obtained when assuming the
ow

information and pipeline overlap within nodes but ig-

noring the pipeline overlap between nodes. The column

Actual gives the actual WCET of the program, as given

by a simulation of the target platform. The numbers

in the +% columns give the pessimism of each WCET

estimate in percent.

The better results for the \improved" column indi-

cate the advantage of using more complex
ows than

simple loop bounds in WCET analysis, and show that

our method is able to capture complex
ows in an ef-

fective and e�cient manner. The sensitivity to
ow

analysis depends on the program.

One should also note that for some programs, sim-

ple loop bounds are su�cient to describe the behavior,

while other programs have very hard-to-describe
ows

(for example crc, where we were unable to capture all

the wrinkles of the
ow).

The much worse results for the \no pipeline" column

show that the modeling of pipelines is very important

for tight WCET analysis. In most cases, the e�ect of

the pipeline is much greater than the control
ow. Note

that we are still using pipeline e�ects inside each basic

block { completely ignoring pipelines would create a

WCET about �ve times higher (our chip has a �ve-

state pipeline).

It is obvious that the length of the basic blocks

vary between the programs: for jfdctint, we have

few and long blocks, giving a low overestimation with-

out pipelines, while crc and fibcall have many short

blocks and are very sensitive to pipeline analysis.

10. Conclusions and Future Work

In this paper we have described the motivation,

strategy and achievements of our WCET group.

We are working with a focus on embedded real-time

systems, which puts certain demands on the methods

and tools we develop, and a�ects the priorities assigned

to various components of the WCET analysis problem.

Our approach is based on the IPET- (Implicit Path

Enumeration Technique) method [PS95] for calculating

worst-case execution times, since it is the most
exible

and powerful calculation method we have found.

14

We presented the following main contributions of

our group:

� A modular architecture for a WCET tool, where

di�erent WCET analysis components can be in-

corporated. The architecture allows integration of

previous published components, thus we leverage

on state-of-the art methods, and we have a plat-

form that allows us to compare di�erent methods

to implement a particular component. We have

implemented a straw-man prototype of the archi-

tecture, and several of the components.

� Two control
ow analysis methods, one based on

abstract interpretation [EG97, Gus00] and one

based on structural analysis of loops [HSRW98,

HSR+00].

� A compact and e�cient method for representing

information about the
ow of a program [EE00a],

including an algorithm to convert the
ow infor-

mation for use in an IPET calculation.

� A pipeline analysis method that uses a generic

CPU Simulator instead of a special-purpose

WCET CPU model [EE99]. The advantage of this

approach is that the simulator can be veri�ed in

isolation and that the WCET analysis method is

easy to port to new architectures.

� A calculation method that allows
ow and hard-

ware analysis results (including the e�ects of

caches) to be integrated and used to e�ciently

calculate tight and safe WCET estimates [OS97,

EE99, EE00a].

� A methodology for validating the components of

our WCET tool, aiming to obtain a complete

validation of the entire tool suite [EE00b]. We

have validated the pipeline analysis and calcula-

tion method, and are working on the present sim-

ulator.

� Our work on investigating the properties of real

programs and the wishes of real-time programmers

regarding WCET tool features [Eng99, Gus00].

We are still working on the tool and the methods

needed to produce a fully working industrial-strength

tool. Our plan is to reuse as much previous research

as possible, while �lling in the gaps between previous

methods and making sure that integration works. The

following are some of the topics that we will investigate

in the near future:

We plan to investigate how cache and branch-

prediction analysis can take advantage of
ow informa-

tion. This should allow us to provide tighter estimates

than previous methods.

In the real world, there will be parts of a pro-

gram that are not available as source code. Thus,

we need to �nd ways to handle incomplete programs,

standard libraries, and operating system interfaces in

WCET analysis. This work is performed in cooperation

with the whole-program compilation group in Uppsala

[Run00].

We are investigating the use of our pipeline analysis

method for VLIW and in-order superscalar pipelines,

since this would allow us to perform WCET for DSP

processors.

In a long-term perspective, we need to investigate

several issues involved in the industrial deployment of

WCET tools. There is, for instance, a need for a good

graphical user interface to the WCET analysis tool,

both to direct the WCET analysis to relevant program

parts and to present the results of the analysis. The

integration of manual annotation and automatic
ow

analysis into the compiler used is another very impor-

tant practicality issue.

Acknowledgements

We would like to thank Bengt Jonsson and Fried-

helm Stappert for their fruitful comments on drafts of

this article.

References

[ABD+95] N. Audsley, A. Burns, R. Davis, K. Tindell, and

A. Wellings. Fixed priority pre-emptive schedul-

ing: an historical perspective. Real-Time Systems,

8(2/3):129{154, 1995.

[ARM] ARM (Advanced Risc Machines) WWW Home-

page.

URL: http://www.arm.com.

[BBW00] G. Bernat, A. Burns, and A. Wellings. Portable

Worst-Case Execution Time Analysis using Java

Byte Code. In Proc. of the 12th Euromicro Work-

shop of Real-Time Systems, pages 81{88, 2000.

[BD88] M. E. Benitez and J. W. Davidson. A Portable

Global Optimizer and Linker. In Proceedings of the

SIGPLAN '88 Symposium on Programming Lan-

guage Design and Implementation, pages 329{338,

June 1988.

[BDM+98] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tri-

pakis, and S. Yovine. KRONOS: AModel-Checking

Tool for Real-Time Systems. In Proc. of the

10th International Conference on Computer Aided

Veri�cation, pages 546{550. Springer-Verlag, 1998.

LNCS 1427.

[BLL+98] J. Bengtsson, K. G. Larsen, F. Larsson, P. Petters-

son, W. Yi, and C. Weise. New Generation of UP-

PAAL. In Proceedings of the International Work-

shop on Software Tools for Technology Transfer,

Aalborg, Denmark, July 1998.

[BMSO+96] J. V. Busquets-Mataix, J. J. Serrano, R. Ors,

P. Gil, and A. Wellings. Adding Instruction

Cache E�ects to Schedulability Analysis of Pre-

emptive Real-Time Systems. In Proc. 2nd IEEE

15

Real-Time Technology and Applications Sympo-

sium (RTAS'96), pages 204{212. IEEE Computer

Society Press, June 1996.

[CBW94] R. Chapman, A. Burns, and A. Wellings. In-

tegrated Program Proof and Worst-Case Timing

Analysis of SPARK Ada. In Proc. ACM SIGPLAN

Workshop on Languages, Compilers and Tools for

Real-Time Systems (LCT-RTS'94), 1994.

[Cor99] NEC Corporation. V850E/MS1 32/16-bit Single

Chip Microcontroller: Architecture, 3rd edition,

January 1999. Document no. U12197EJ3V0UM00.

[Cou96] Patrick Cousot. Abstract Interpretation. ACM

Computing Surveys, 28(2):324{328, June 1996.

[CP99] A. Colin and I. Puaut. Worst-Case Execution Time

Analysis of the RTEMS Real-Time Operating Sys-

tem. Technical Report No 1277 (Publication In-

terne), IRISA, November 1999.

[CP00] A. Colin and I. Puaut. Worst Case Execution Time

Analysis for a Processor with Branch Prediction.

Journal of Real-Time Systems, May 2000.

[CRTM98] L. Casparsson, A. Rajnak, K. Tindell, and

P. Malmberg. Volcano { A Revolution in On-Board

Communications. Volvo Technology Report, 1:9{19,

1998.

[DS99] A. Dean and J. P. Shen. System-Level Issues for

Software Thread Integration: Guest Triggering and

Host Selection. In Proc. 20th IEEE Real-Time Sys-

tems Symposium (RTSS'99), 1999.

[EAE98] J. Engblom, P. Altenbernd, and A. Ermedahl. Fa-

cilitating Worst-Case Execution Times Analysis for

Optimized Code. In Proc. of the 10th Euromicro

Workshop of Real-Time Systems, pages 146{153,

June 1998.

[EE99] J. Engblom and A. Ermedahl. Pipeline Timing

Analysis Using a Trace-Driven Simulator. In Proc.

6th International Conference on Real-Time Com-

puting Systems and Applications (RTCSA'99).

IEEE Computer Society Press, December 1999.

[EE00a] J. Engblom and A. Ermedahl. Modeling complex

ows for worst-case execution time analysis. In

Proc. 21st IEEE Real-Time Systems Symposium

(RTSS'00), November 2000. Accepted for publica-

tion.

[EE00b] J. Engblom and A. Ermedahl. Validating a Worst-

Case Execution Time Analysis Method for an Em-

bedded Processor. In Proc. 21st IEEE Real-Time

Systems Symposium (RTSS'00), November 2000.

[EG97] A. Ermedahl and J. Gustafsson. Deriving Anno-

tations for Tight Calculation of Execution Time.

In Proc. Euro-Par'97 Parallel Processing, LNCS

1300, pages 1298{1307. Springer Verlag, August

1997.

[Eng97] J. Engblom. Worst-Case Execution Time Analysis

for Optimized Code. Master's thesis, Department

of Computer Systems, Uppsala University, Septem-

ber 1997. DoCS MSc Thesis 97/94.

[Eng99] J. Engblom. Static Properties of Embedded Real-

Time Programs, and Their Implications for Worst-

Case Execution Time Analysis. In Proc. 5th IEEE

Real-Time Technology and Applications Sympo-

sium (RTAS'99). IEEE Computer Society Press,

June 1999.

[ESS99] E. Erpenbach, F. Stappert, and J. Stroop. Com-

pilation and Timing Analysis of Statecharts Mod-

els for Embedded Systems. In In The Second In-

ternational Workshop on Compiler and Architec-

ture Support for Embedded Systems (CASES'99),

Washington, D.C, October 1999.

[EY97] R. Ernst and W. Ye. Embedded Program Timing

Analysis Based on Path Clustering and Architec-

ture Classi�cation. In International Conference on

Computer-Aided Design (ICCAD '97), 1997.

[FMW97] C. Ferdinand, F. Martin, and R. Wilhelm. Apply-

ing Compiler Techniques to Cache Behavior Predic-

tion. In Proc. ACM SIGPLAN Workshop on Lan-

guages, Compilers and Tools for Real-Time Sys-

tems (LCT-RTS'97), 1997.

[Gus00] J. Gustafsson. Analyzing Execution-Time of

Object-Oriented Programs Using Abstract Inter-

pretation. PhD thesis, Department of Computer

Systems, Information Technology, Uppsala Univer-

sity, May 2000.

[Hal00] T. R. Halfhill. Embedded Market Breaks New

Ground. Microprocessor Report, January 17, 2000.

[HAM+99] C. Healy, R. Arnold, F. M�uller, D. Whalley, and

M. Harmon. Bounding Pipeline and Instruction

Cache Performance. IEEE Transactions on Com-

puters, 48(1), January 1999.

[HHWT97] T. A. Henzinger, P-H. Ho, and H. Wong-Toi.

HYTECH: A Model Checker for Hybrid Systems.

In Proc. of the 9th International Conference on

Computer Aided Veri�cation, pages 460{463, 1997.

LNCS 1254.

[Hol97] G. J. Holzmann. The model checker spin. IEEE

Transactions on Software Engineering, 23(5):279{

295, May 1997.

[HSR+00] C. Healy, M. Sj�odin, V. Rustagi, D. Whalley, and

R. van Engelen. Supporting Timing Analysis by

Automatic Bounding of Loop Iterations. Journal

of Real-Time Systems, May 2000.

[HSRW98] C. Healy, M. Sj�odin, V. Rustagi, and D. Whalley.

Bounding Loop Iterations for Timing Analysis. In

Proc. 4th IEEE Real-Time Technology and Appli-

cations Symposium (RTAS'98), June 1998.

[I-L] I-Logix WWW Homepage.

URL: http://www.ilogix.com/smover c.htm.

[IARa] IAR Systems WWW Homepage.

URL: http://www.iar.com.

[IARb] IAR Systems. Reference Applications of Visual-

STATE.

http://www.iar.dk/products/references.htm.

[IAR99] IAR Systems. V850 C/EC++ Compiler Program-

ming Guide, 1st edition, January 1999.

[ISL95] ISL (Intelligent Systems Laboratory). SICStus Pro-

log user's manual. ISBN 91-630-3648-7, Swedish

Institute of Computer Science, 1995.

[KMH96] S.-K. Kim, S. L. Min, and R. Ha. E�cient Worst

Case Timing Analysis of Data Caching. In Proc.

of RTAS'96 , pages 230{240. IEEE, 1996.

[LBJ+95] S.-S. Lim, Y. H. Bae, C. T. Jang, B.-D. Rhee, S. L.

Min, C. Y. Park, H. Shin, K. Park, and C. S. Ki.

An Accurate Worst-Case Timing Analysis for RISC

Processors. IEEE Transactions on Software Engi-

neering, 21(7):593{604, July 1995.

16

[LG98] Y. A. Liu and G. Gomez. Automatic Accurate

Time-Bound Analysis for High-Level Languages. In

Proc. SIGPLAN Workshop on Languages, Compil-

ers and Tools for Embedded Systems (LCTES'98),

1998.

[LHKM98] S.-S. Lim, J. H. Han, J. Kim, and S. L. Min.

A Worst Case Timing Analysis Technique for

Multiple-Issue Machines. In Proc. 19th IEEE Real-

Time Systems Symposium (RTSS'98), December

1998.

[LHS+96] C. Lee, J. Han, Y. Seo, S. Min, R. Ha, S. Hong,

C. Park, M. Lee, and C. Kim. Analysis of Cache-

Related Preemption Delay in Fixed-Priority Pre-

emptive Scheduling. In Proc. 17th IEEE Real-Time

Systems Symposium (RTSS'96), December 1996.

[LKM98] S-S. Lim, J. Kim, and S. L. Min. A Worst Case

Timing Analysis Technique for Optimized Pro-

grams. In Proc. of the �fth International Confer-

ence on Real-Time Computing Systems and Appli-

cations (RTCSA); Hiroshima, Japan, pages 151{

157, Oct 1998.

[LM95] Y-T. S. Li and S. Malik. Performance Analysis of

Embedded Software Using Implicit Path Enumer-

ation. In Proc. of the 32:nd Design Automation

Conference, pages 456{461, 1995.

[LS98] T. Lundqvist and P. Stenstr�om. Integrating Path

and Timing Analysis using Instruction-Level Sim-

ulation Techniques. In Proc. SIGPLAN Workshop

on Languages, Compilers and Tools for Embedded

Systems (LCTES'98), June 1998.

[Mic99] Microprocessor Report. Tera-Gen Reveals 8-bit

Threaded Processor. Microprocessor Report, Jan-

uary 25, 1999.

[Muc97] S. S. Muchnick. Advanced Compiler Design. Mor-

gan Kaufmann Publishers, 1997.

[M�ul97] F. M�uller. Timing Predictions for Multi-Level

Caches. In Proc. ACM SIGPLAN Workshop on

Languages, Compilers and Tools for Real-Time

Systems (LCT-RTS'97), pages 29{36, Jun 1997.

[OS97] G. Ottosson and M. Sj�odin. Worst-Case Execution

Time Analysis for Modern Hardware Architectures.

In Proc. ACM SIGPLAN Workshop on Languages,

Compilers and Tools for Real-Time Systems (LCT-

RTS'97), June 1997.

[Par93] C. Y. Park. Predicting Program Execution Times

by Analyzing Static and Dynamic Program Paths.

Real-Time Systems, 5(1):31{62, March 1993.

[PF99] S. Petters and G. F�arber. Making Worst-Case Ex-

ecution Time Analysis for Hard Real-Time Tasks

on State of the Art Processors Feasible. In Proc.

6th International Conference on Real-Time Com-

puting Systems and Applications (RTCSA'99), De-

cember 1999.

[PH98] P. Persson and G. Hedin. Interactive Ex-

ecution Time Predictions using Reference At-

tributed Grammars. In Proc. of the 2:nd

Workshop on Attribute Grammars and their

Applications (WAGA'99), Amsterdam, Nether-

lands, pages 173{184, Aug 1998. URL:

http://www.dna.lth.se/home/Patrik Persson.

[PK89] P. Puschner and C. Koza. Calculating the Maxi-

mum Execution Time of Real-Time Programs. The

Journal of Real-Time Systems, 1(1):159{176, 1989.

[PS90] C. Y. Park and A. C. Shaw. Experiments with

a Program Timing Tool Based on a Source-Level

Timing Schema. In Proc. 11th IEEE Real-Time

Systems Symposium (RTSS'90), pages 72{81, De-

cember 1990.

[PS95] P. Puschner and A. Schedl. Computing Maximum

Task Execution Times with Linear Programming

Techniques. Technical report, Technische Univer-

sit�at, Institut f�ur Technische Informatik, Wien,

April 1995.

[Ray00] E. Raymond. The Jargon File, version 4.2.0.

http://www.tuxedo.org/~esr/jargon/html/in-

dex.html, February 2000.

[Run00] J. Runeson. Code compression through procedu-

ral abstraction before register allocation. Master's

thesis, Department of Information Technology, Up-

psala University, March 2000.

[SA00] F. Stappert and P. Altenbernd. Complete Worst-

Case Execution Time Analysis of Straight-line

Hard Real-Time Programs. Journal of Systems Ar-

chitecture, 46(4):339{355, 2000.

[Sce00] Scenix Semiconductor Inc. Scenix SX Family

User's Manual, 3rd edition, 2000.

[SF99] J. Schneider and C. Ferdinand. Pipeline Behaviour

Prediction for Superscalar Processors by Abstract

Interpretation. In Proc. SIGPLAN Workshop on

Languages, Compilers and Tools for Embedded

Systems (LCTES'99). ACM, May 1999.

[SKO+96] V. Sepp�anen, A-M K�ahk�onen, M. Oivo, H. Pe-

runka, P. Isomursu, and P. Pulli. Strategic Needs

and Future Trends of Embedded Software. Tech-

nical Report Technology Review 48/96, TEKES

Technology Development Center, Oulu, Finland,

October 1996.

[Tel] Telelogic WWW Homepage.

URL: http://www.telelogic.com/tau4.

[Ten99] David Tennenhouse (Intel Director of Research).

Keynote Speech at the 20th IEEE Real-Time Sys-

tems Symposium (RTSS'99), Phoenix, Arizona,

December 1999.

[WMH+97] R. White, F. M�uller, C. Healy, D. Whalley, and

M. Harmon. Timing Analysis for Data Caches

and Set-Associative Caches. In Proc. 3rd IEEE

Real-Time Technology and Applications Sympo-

sium (RTAS'97), pages 192{202, June 1997.

17

