
A Software Component Technology for Vehicle Control Systems

Mikael Åkerholm
Mälardalen Real-Time Research Centre

Mälardalen University, Västerås, Sweden
CC Systems AB, Västerås, Sweden

mikael.akerholm@mdh.se

Abstract

This research aims at developing a component
technology for embedded control systems in vehicles.
Such a technology would enable software engineers in the
vehicular domain to practice component-based software
engineering.

1. Introduction

We addresses the problem of defining a component
technology for embedded control systems in vehicles e.g.,
in passenger cars, trucks, and heavy vehicles. Control
systems in vehicles are highly critical for the vehicles
functionality, controlling, e.g., engine, brakes, and
steering. They are characterized by high demands on
safety, reliability, and hard real-time constraints.
Furthermore, vehicles are produced in large volumes,
meaning that the systems also must be cheap to produce.
As a consequence software systems must be resource
efficient, to allow the use of cheap hardware.

There are several challenges related to the problem, in
an area relatively unexplored in comparison with
component technologies for desktop- and web-
applications. The existing commercial component
technologies have been developed within the PC domain,
which is a domain with requirements fundamentally
different from those of vehicular systems.

In this report we describe our work so far, towards a
component technology for embedded control systems in
vehicles. Section 2, briefly describes our research focus
by discussing the main questions. Section 3 introduces the
SaveCCM Component Technology that is the result of the
research. Conclusions and future work is discussed in
section 4. More details are found in [1].

2. Research Focus

The main problem of component technologies for
vehicular systems is broad. A component technology
contains a component model, which defines a set of rules
to be followed by users. It defines different component
types that are supported by the technology, possible
interaction schemes between components, and clarifies

how different resources are bound to components. A
component technology also contains a component
framework, which provides the necessary run-time
support for the components not provided by the
underlying execution platform (i.e., operating system or
similar). Furthermore a component technology often
incorporates a set of tools, e.g., graphical modeling tools,
compilers, component repositories, and analysis or testing
tools.

To limit the research from all these different artifacts
we have been addressing three main questions:

Which quality attributes are the most important in the

vehicular domain, and how do they relate to a component
technology?

Quality attributes define the quality of software. It is

reasonable to expect that attributes can have different
priorities in different software domains. The second part
of the question addresses the relations between a
component technology and the quality attributes that are
important in the domain.

How can a component model support predictability of

important quality attributes and be suitable for
expressing common functionality in vehicular control
systems?

This question calls for an approach by defining

components and possibilities for component interaction,
with respect to ease of implementing vehicular control
systems, and support for prediction of quality attributes
considered important in the domain

How can an efficient utilization of resources be

achieved in component based applications?

By resources we mean shared limited run-time

resources, e.g., processor and memory capacity.
Resource-efficiency, (the consumption of a minimum of
resources in achieving an objective) is a quality attribute
that has received special attention in this work. This focus
is based on the belief that poor resource efficiency is an

important reason for vehicular companies not choosing to
utilize commercial component technologies.

3. Component Technology Overview

As shown in figure 1, the SaveCCM technology can be
described by distinguishing three main phases of its
utilization, design-time- compile-time, and run-time. The
following sub-sections will describe this three phases.

Figure 1. Component Technology Overview

3.1. Design-Time

During design-time developers use a component-based

strategy, supported by the SaveCCM component model.
The component model allows connecting components and
expressing high level constraints.

The architectural elements are components, switches,
and assemblies. Components are the basic units in a
design, and encapsulate a portion of functionality.
Switches are special components used to (re)configure
component interconnections. Assemblies represent sub-
systems and are aggregated behavior from a set of
components, switches, and possibly other assemblies.

The component model has been designed to easily
express common functionality in vehicular systems. Some
specific examples of key functionality are: feedback
control, system mode changes, and static configuration
for product-line architectures.

3.2. Compile-Time

During compile-time, a set of tools are used to
automatically produce necessary low level code for the
run-time system (i.e. glue-code), and different specialized

models of the application for analysis tools, e.g., finite
state processes, timed-automata, and fixed priority
scheduling models.

All low level code (i.e., hardware and operating
system interaction) is automatically generated, meaning
that components contains no dependencies to the
underlying system and can be transferred between
different execution platforms. Furthermore, the code
generation step statically resolve resource usage and
timing, with the strategy to resolve as much as possible
during compile-time instead of depending of costly
algorithms during run-time.

3.3. Run-Time

During run-time efficiency and predictability are

achieved by systematic use of efficient and analyzable
run-time mechanisms, provided by a fixed priority real-
time operating system.

4. Conclusions and Future Work

We have presented our prototype component
technology for vehicular software.

The key concept is clear distinctions between design-
time, compile-time, and run-time. The compile-time
techniques enable a component-based approach during
design-time, combined with resource effective run-time
models of real-time operating systems, by statically
resolve resource usage and timing during compilation. It
also enables automated analysis, and platform
independent software components.

We have conducted initial evaluation of our prototype
component technology in cooperation with industry,
which indicates that the component technology is
promising but need further development to be applicable
in an industrial context.

In future work we will incorporate more supporting
tools, e.g., for graphical modelling, configuration
management, and analysis. New mechanisms like
databases for structured handling of shared data, and run-
time monitoring and test support are also targets for
future work.

We will also continue to investigate other possible
definitions of component technologies and component
models, within the automotive domain as well as expand
to a broader scope of embedded systems.

References

[1] Mikael Åkerholm, A Software Component
Technology for Vehicle Control Systems, Licentiate
Thesis, Mälardalen University Press, February, 2005

Design-
Time

Compile-
Time

Run-
Time

RTOS

APPLICATION

Glue Code
Generation

Model
Generation

Analysis
Tools

<<Assembly>>
ACC Controllers

<<Assembly
Distance

Controller

<<Assembly>>
Speed

Controller

Design Tool

Start

Design-
Time

Compile-
Time

Run-
Time

RTOS

APPLICATION

RTOS

APPLICATION

Glue Code
Generation

Model
Generation

Analysis
Tools

<<Assembly>>
ACC Controllers

<<Assembly
Distance

Controller

<<Assembly>>
Speed

Controller

<<Assembly>>
ACC Controllers

<<Assembly
Distance

Controller

<<Assembly>>
Speed

Controller

<<Assembly>>
ACC Controllers

<<Assembly
Distance

Controller

<<Assembly>>
Speed

Controller

Design Tool

Start

