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Abstract

Developers of distributed embedded systems face chal-
lenges of high demands on reliability and performance, re-
quirements on lowered product cost, and supporting many
configurations, variants and suppliers.

Component-based development is a promising software
engineering approach to cost efficiently deal with software
variability, reusability and maintainability. However, we
claim that existing tools and methods do not address prob-
lems related to assembling applications based on large and
complex commercial off-the-shelf components developed by
different vendors and sub contractors.

In this paper we present our ongoing work towards a
method that deals with integration problems present when
assembling large software components into distributed em-
bedded systems. Our approach makes it possible to exe-
cute the software from several electronic control units in
one electronic control unit - which in turn decrease the
amount of hardware needed in the system and, also, facil-
itates large software components to be trade units between
different organisations as replacement for electronic control
units (hardware components).

1 Introduction

In this paper we discuss our ongoing work on software
components for distributed embedded systems. We address
large systems that are developed by several organisations,
where components can be classified as large and complex
Commercial Of-The-Shelf (COTS) components, developed
by different vendors and sub contractors. This is different
from many other research projects within the Component
Based Software Engineering (CBSE) community focusing
on software components for embedded systems. Their fo-
cus is on smaller software components, where components
typically are developed within a single company, and aimed
for dealing with configuration and maintenance of a prod-
uct (often a product-line), e.g., Koala [34], Space4u [30],

SaveCCM [15], and Pecos [23].
Distributed embedded systems developed by several or-

ganisations are common in, e.g., the vehicle industry and
in the automation industry. The systems consist of several
computer nodes connected with one or several networks,
where each node can be developed by different organisa-
tions specialised on different areas. For example, a mod-
ern car in the premium segment has 40 or more computers
(Electronic Control Units (ECUs)), where the engine con-
trol ECU comes from a specialized engine developing or-
ganization, and the climate control ECU is developed by an
organisation that focuses on the passenger cabin [14]. These
different ECUs can be seen as large and complex COTS
components, they contain hardware (processor, communi-
cation hardware, memories, and I/O units), and software
(operating system, device drivers, and control system soft-
ware).

We investigate the possibility to adopt a software com-
ponent based approach in development of these systems,
as replacement for the ECUs (i.e., hardware components)
used today. In other words we investigate the possibilities
of changing the trade unit between developers of these sys-
tems from hardware- to software-components. This is visu-
alised by Figure 1, the future scenario we will help to re-
alise is that suppliers will deliver software components that
are partitioned on hardware nodes by the system integrator,
instead of state of practice today, where suppliers deliver
hardware components that are connected to a network by
the integrator. The relevance of that scenario is motivated
by recent efforts by industry, e.g., AUTOSAR [2] within the
vehicle industry. These industry efforts indicate that major
actors in the domain foresee the benefits in moving from
hardware components into software components. The most
important expected benefits are:

1. A decreased number of hardware components, means
lower cost since each computer node requires expen-
sive cabling and communication hardware, it means
lower weight, less space, and lower power consump-
tion.
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2. Less expensive logistics related to production and de-
liveries.

3. Transferability of functions (software components)
across different computer nodes enables to optimize
the use of hardware resources throughout a system’s
electronic architecture.
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Figure 1. State of practice vs. a possible
future scenario. Today suppliers deliver an
Electronic Control Unit (ECU), consisting of
both hardware and software that is connected
to a bus by the integrator. The future scenario
is that suppliers deliver software components
that are partitioned on a smaller number of
ECUs by the integrator.

The remaining part of this paper is outlined as follows.
Section 2 addresses central technical concepts of CBSE.
Section 3 discusses relevant questions when trying to apply
CBSE principles on embedded distributed systems devel-
oped by different organisations. Finally Section 4 concludes
the paper.

2 Component-Based Software Engineering

This section provides an introduction to central techni-
cal concepts and research within the CBSE community. For
more information about CBSE we refer to Crnkovic and
Larsson’s bookBuilding Reliable Component-Based Soft-
ware Systems[9].

Fundamental to CBSE is that software applications are
built from existing components. The components are to
becomposedor assembledinto applications, i.e., combined
with some connection logics that give a desired behaviour.
A component technologyis a central technical concept. It
often contains various development tools for simplifying the
engineering process asmodelling tools, analysis tools, and
component repositories. It provides the necessary run-time

support for the components, and imposes certain patterns
for assembling components. Figure 2 illustrates the basic
elements of a component technology. It is a photograph of
a table top in a playground, on which is placed a tray on
which different building blocks can be arranged in differ-
ent combinations. This playground table will be used as a
metaphor for a component technology in the following de-
scription of its elements.

Figure 2. A component technology for build-
ing arbitrary shapes.

One of the most important parts of a component tech-
nology is thecomponent framework, which provides neces-
sary run-time support for the components not provided by
the underlying execution platform (i.e., operating system or
similar). In the playground table metaphor, the blocks rep-
resent the components, the tray on which they stand repre-
sents the framework which provides the components with
support, and the table on which the tray stands represents
the execution platform. In the metaphor the component
framework mainly provides strength to the construction that
is not offered by the underlying execution platform. While
for software components, the component framework typi-
cally handles component interactions, and the invocation of
services provided by the components, in addition to provid-
ing services frequently used within the application domain
targeted by the technology.

A component technology is a concrete realisation of a
component model. A component model defines a set of
rules to be followed by users. It defines different compo-
nent types that are supported by the technology, possible
interaction schemes between components, and clarifies how
different resources are bound to components. In our play-
ground example, the component model is represented by
the abstract rules that the children must follow when as-

2



sembling blocks because the blocks can only be assembled
in a certain pattern. The supplier of the blocks also follows
the component model when manufacturing the blocks, to
ensure that the blocks are compatible with each other and
the tray on which they are supported.

Software componentsthemselves are also of basic im-
portance. A software component can be different in dif-
ferent component technologies. They can be distinguished
from other forms of packaged software by compliance with
a component model [4]. Furthermore components shall not
be mixed with objects, it is fundamental that components
are not aware of each others to simplify composition and
reuse. In contrast to objects that call each others in their
implementation and depend of each others through inher-
itance, components shall be composed without touching
their internal implementation (subject to external compo-
sition). However, to date several questions are discussed
within the CBSE community [10]. Similar questions can
even be found in the simple playground metaphor. For ex-
ample, do several components assembled together to build
an element (such as a wall), make a new component or
should they be treated as a set of assembled components?

One of the key terms in current CBSE research is pre-
dictable assembly [26], which also represents a main dif-
ference between former approaches of integrating pieces
of software, and the CBSE approach. Predictable assem-
bly of components goes beyond integration. Integration of
components is concerned with fitting components APIs to-
gether, e.g., as in current commercial component technolo-
gies Corba CCM, COM, and EJB. While predictable assem-
bly also takes properties of the resulting component assem-
bly in consideration, the approach is to predict the system
properties based on properties of the components and how
they are interconnected. In chapter 9 in [9] Stafford and
Wallnau very illustrative explains the difference by the fol-
lowing analogy:

”...consider the incompatibility of connecting a
very powerful audio amplifier to low-wattage
speakers. The speakers will plug in with no prob-
lem and at low volumes will probably function ac-
ceptably, but if the volume is raised the speakers
will most likely be destroyed.”

Stafford and Wallnau

Predictable assembly take bothplug and play in con-
sideration, as in contrast to integration. The amplifier and
speakers in their analogy had compatible APIs, it was pos-
sible to integrate orplug them, but they did notplay well
together.

3 Application of CBSE principles on dis-
tributed embedded systems

In this section we discuss the application of CBSE prin-
ciples on large distributed embedded systems that are de-
veloped by several organisations. In general, such a compo-
nent technology should support general domain characteris-
tics of embedded systems, which often can be classified as
resource constrained safety critical real-time systems. We
stress related CBSE research that address some of the re-
quirements of embedded systems described by Wolf [36]:

• System architecture. The architecture of an em-
bedded system should be defined to serve the func-
tions of a particular application using resources effi-
ciently. This calls for specialised component technolo-
gies which use resources efficiently, to meet the de-
mands of a specific application domain, not for a broad
range of (embedded) applications. There are several
component technologies that target the requirements
of specific domains, e.g., vehicular systems [15, 20],
consumer electronics [34, 30], and automation systems
[23, 33].

• Modelling. To simplify analysis and understanding
of the system, developers need models of different as-
pects of applications at a higher abstraction level than
the source code provides, e.g., timing models for real-
time analysis, and behaviour models for safety analy-
sis. Most analysis methods in existing CBSE related
work are based on some specialised models of the sys-
tems, e.g., Markov chains [28], and real-time models
[6, 15].

• Analysis. A suitable component technology should
provide support for reasoning about such quality at-
tributes as the performance and size of systems at an
early stage in the design process. This is a goal the
designers of embedded systems strive to achieve. Cur-
rently much work within the CBSE community fo-
cus on predictable assembly, which can be explained
as predicting system attributes from component at-
tributes. The Prediction-Enabled Component Technol-
ogy (PECT) [21, 35] is a development infrastructure,
building on the idea that any component technology
can be used in the bottom but composition rules en-
forced by the development tools guarantee critical run-
time properties. Reussner et al [28] shows how relia-
bility can be calculated using Markov chains. Further-
more, among other contributions in the field of quality
attributes of component-based applications real-time
attributes are considered in [6, 15].

• Verification. Applications must be verified in accor-
dance with functional and non-functional specifica-
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tions. For a component technology, analysis made dur-
ing design stages, should be verified by practically ori-
ented simulation and test methods. Built-in Self Tests
(BIT) is a way to enhance testability of software com-
ponents; the idea is that components should provide
an interface for testing its specification. The European
project Component+ was entirely focused on BIT [8].

However, in the above mentioned related CBSE research
for embedded systems the component based approach is
used mainly for dealing with reuse and product line man-
agement within a company. Software components for these
purposes are small in comparison to the amount of func-
tionality that is traded between different organisations in
the class of systems we are focusing on. In the following
paragraphs we will discuss, the problem, our initial research
questions, and some possible paths in related research.

3.1 Problem description

On a high level we want to explore the requirements for
the described type of distributed embedded systems, built
form large components developed by several vendors. We
want to assess if current CBSE principles for embedded sys-
tems scale to large software components, as large as trade
units encapsulating applications traded between different
organisations. Where current principles are not applicable
we want to explore other solutions. It might be the case that
it is easier, or even only applicable, to deal with small com-
ponents in combination with principles as in the examples
above.

We expect that the methods for, e.g., component specifi-
cation, analysis, modelling, and typical services offered by
the component framework will not scale to the use of large
complex components. The components in the existing work
is more like an encapsulation of a single function (i.e., of-
ten a function in C) with no active thread of execution at
all e.g., [15, 23, 30]. In these cases the dynamics in form
of allocation to execution threads and scheduling are not
target for encapsulation, these things are handled in other
ways. In other cases, e.g., [20, 33] the components are typ-
ically an encapsulation of a single task. To specify compo-
nents encapsulating whole applications as we consider, will
probably not be feasible with these methods. Furthermore
analysis, modelling, and services offered by the component
framework comes as consequences of how components are
specified and implemented. It is naturally easier to spec-
ify and analyse something small, than something large and
complex and as a consequence it might be the case that com-
pletely other types of specifications and analysis techniques
are required.

Also the goals for the system integrator may be differ-
ent when working with small components, in comparison to

working with integration of large components. As compo-
nent complexity increases with larger components, we ex-
pect optimisation to be a minor concern in comparison to
controlling the increased complexity.

3.2 Research questions

In particular interest from the above discussion we find
questions as:

How shall large complex software components for em-
bedded systems be specified?

To be able to answer this question, issues like which at-
tributes are required to know about a component and which
attribute are possible determine about a component has to
be addressed. The answer probably depends of the context
of the application, e.g., if the application is time critical or
safety critical. If the component has requirements on its en-
vironment, e.g., I/O units, processor demands, or depends
on input from other parts of the system.

How to compose and model large complex software com-
ponents, which architectural principles shall be used?

In most existing component models for embedded sys-
tems, the components are composed by specifying data
connections between components. Connected components
form a point-to-point control flow (or pipes-and-filters) ar-
chitecture, which might also be suitable for bigger compo-
nents. However developers of large distributed embedded
systems are used to connect their hardware components to
busses, which also might be a suitable abstraction when us-
ing software components.

Is it possible to apply existing analysis methods for soft-
ware assembled from small components with increased size
of components?

An analysis method is applicable if the input parame-
ters it requires are available, and if it capable of handling
the size of the problem. It is not enough that the method
is possible to apply on problems of realistic size, it is also
necessary that the desired attributes are possible to deter-
mine from the large complex components! It might be the
case that one has to rely on testing or simulation for certain
properties. Analysis can and should where it is possible be
used early in the process on models specialised on certain
critical properties, while test and simulation are more suit-
able for verifying the actual implementation of the whole
system, as well as verification of the analysis and models.

How about possible side effects when software from dif-
ferent vendors share execution platform? Who is responsi-
ble if component A causes component B to fail in some way,
the system integrator or the supplier of A or B?

The answer to this question may be that components
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from different vendors must be separated from each others
very clearly. Possibilities to interference between compo-
nents may have to be totally eliminated by the system inte-
grator.

3.3 Possible answers in related work

In order to support integration of components developed
by different organisations, the runtime framework might
have to provide methods for spatial and temporal isolation.
In general, spatial isolation can be achieved with memory
protection and protocols that guarantee a bounded time in
access to shared resources as Priority Inheritance Proto-
cols (PIP) [29]. Temporal isolation can be achieved with
scheduling algorithms based on General Processor Shar-
ing (GPS) [27] as the EGPS algorithm [17], or some type
of hierarchical scheduling algorithm e.g., the proposal by
Deng and Liu [12] to use the Total Bandwidth Server (TBS)
[31, 32] to serve applications with own local schedulers.
More recent work based on server based scheduling are
some of the extensions of the Constant Bandwidth Server
(CBS) [1] to also handle shared resources. Two of these
extensions are the BandWidth Inheritance protocol (BWI)
[19] and the Constant Bandwidth Server with Resource con-
straints (CBS-R) [7]. BWI allows for shared resources us-
ing a PIP mechanism. Although supporting hard real-time
guarantees, BWI is more suitable for soft real-time systems.
CBS-R is using the Stack Resource Policy (SRP) [5] in or-
der to cope with shared resources. CBS-R is scheduling the
whole system using servers, where each task has its own
server. Looking at all these methods for system and sub-
system integration, they all introduce performance compro-
mises compared to more tightly coupled components.

A more recent research project that is related to the work
presented in this paper is, e.g., the DECOS project [11].
DECOS is targeting a broad application domain, includ-
ing automotive and aerospace applications. By providing
a Platform Interface Layer (PIL) and a middleware with ba-
sic services, components can be developed independently
allowing for easy integration of both safety-critical and non
safety-critical Distributed Application Subsystems (DAS).
A DAS provides a nearly independent distributed subsys-
tem interconnected using virtual networks. The core of
DECOS is the time-triggered communication system back-
bone. On top of this, virtual networks are supported allow-
ing for most types of existing networking technologies to be
emulated. DECOS provides both spatial and temporal par-
titioning, preventing overwriting memory elements of other
jobs (data and code), interference among jobs sharing ac-
cess to devices, as well as the disturbance of timing among
jobs holding shared resources. Overall, the DECOS project
is highly related to the goals of our project and will be in-
vestigated in detail.

Looking at the industrial domain, the latest automo-
tive software standard is AUTOSAR developed by the AU-
TOSAR consortia [2]. AUTOSAR is scheduled to be com-
plete in 2006, and its goal is to create a global standard for
basic software functions such as communications and di-
agnostics. From an integration point of view, AUTOSAR
provides a Run-Time Environment (RTE) routing commu-
nications between software components regardless of their
locations, both within a node and over networks. Tools al-
lows for easy mapping of software onto the existing archi-
tecture of nodes (ECUs). This mapping is depicted in Fig-
ure 3. AUTOSAR is working towards integration of stan-
dardized tools relying on, e.g., operating system standards
such as, e.g., OSEK/VDX OS [25], and various communi-
cation standards as, e.g., OSEK/VDX COM [24], FlexRay
[13], CAN [16], LIN [18] and MOST [22]. In an automo-
tive domain, the AUTOSAR project is highly related to the
goal of our project and will be investigated in detail.

Figure 3. AUTOSAR Virtual Functional Bus
and ECU mapping [3].

4 Conclusions

We have discussed our ongoing work on using software
components in distributed embedded systems. We address
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large systems that are developed by several organisations,
and focus on the case when components are as large as suit-
able trade units between organisations. This focus is differ-
ent from other ongoing research projects within the CBSE
community that address component based development of
embedded systems. These projects typically focus on soft-
ware components for dealing with configuration and main-
tenance of embedded systems within a company. The ex-
pected gains with being able to use software components as
trade unit between organisations, instead of today’s hard-
ware components are e.g.:

1. A decreased number of hardware components, means
lower cost since each computer node requires expen-
sive cabling and communication hardware, it means
lower weight, less space, and lower power consump-
tion.

2. Less expensive logistics related to production and de-
liveries.

3. Transferability of functions (software components)
across different computer nodes enables to optimize
the use of hardware resources throughout a system’s
electronic architecture.

We have presented an initial set of questions that mainly
focus on finding differences between applicability of CBSE
principles in the cases when using smaller or larger com-
ponents for embedded systems. We expect that parts of
the work done with focus on small components might have
problems to scale up to this type of big components. Fur-
thermore the goals of a system integrator might be different.
When using small components, optimisation might be much
more prioritised than in the case with big components devel-
oped by different organisations. Other issues might be in fo-
cus as complexity control, and assuring that components on
the same hardware platform do not interfere with each oth-
ers. Both temporal and spatial isolation must be provided to
allow easy integration of independently developed subsys-
tems into a system. Further study of the ongoing academic
and industrial projects will be done.
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