
Deriving Annotations for Tight Calculation of

Execution Time�

Andreas Ermedahl� and Jan Gustafsson�

� Dept� of Computer Systems� Uppsala University� Sweden� ebbe�docs�uu�se
� Dept� of Computer Engineering� M�alardalens h�ogskola� Sweden� jgn�mdh�se

Abstract� A number of methods have been presented to calculate the
worst case execution time �WCET� of real�time programs� However� to
properly handle semantic dependencies� which in most cases is needed
to reduce overestimation� all these methods require extra semantic infor�
mation to be given by the programmer �manual annotations for paths�
loops and recursion depth�� To manually derive these annotations is of�
ten di�cult and the process is error�prone� In this paper we present a
new method to automatically derive safe and tight annotations for paths
and loops� We illustrate our method by giving some examples and by
presenting a prototype tool� implementing the method for a subset of C�

� Introduction

Real�time systems are systems in which the correctness depends not only on the
results of computations� but also on the time at which the result is produced� To
be able to guarantee the deadlines of a real�time system� the software execution
time is needed before run�time�

The execution time of most programs depends on the input data and the sys�
tem state� For programs with some complexity� it is intractable to �nd the data
and the state which causes the actual worst case execution time �WCETA�� This
approach is therefore not a feasible method� Instead� static analysis� which from
the source code derives the calculated worst case execution time �WCETC�� has
been proposed by many researchers� The calculation must be safe �i�e�� WCETC

� WCETA�� yet as tight as possible� to avoid waste of resources�
To achieve a tight WCETC � more information about the program behaviour�

than what is contained in the �ow graph� is needed� False paths �non�executable
paths� i�e�� paths that never can be taken� must be identi�ed and excluded from
the calculation� Maximum number of iterations in loops and maximum depth of

recursion calls must be given� because to calculate them is� in the general case�
equivalent to the well�known halting problem�

Existing methods require this information to be given asmanual annotations�
However� a fundamental problem with this approach� beside being di�cult and

� This work is performed within the ART�project within the Advanced Software Tech�
nology �ASTEC� competence centre� and is supported by the Swedish board for tech�
nical development �NUTEK�� IAR Systems AB� Mecel AB and Uppsala University�



time�consuming for the programmer� is that the annotations may be incorrect�
The WCETC may be untight or� worse� unsafe�

In this paper we present a static analysis method which automatically derives
safe and tight annotations from the program semantics� It can be seen as a �rst
phase in a tight WCETC calculation� These annotations can be used by the
following phase� an object code analysis� which also considers modern hardware
architectures� If simple hardware is used� this next phase may be unnecessary�
and the WCETC calculated by our method can be used�

The remainder of the paper is organised as follows� The next section illus�
trates how our approach relates to other methods� In section 	� we introduce
our new method� In section 
 we present our tool and an illustrative example�
Finally� section � gives some results� conclusions and ideas for future work�

� Related work

Timing analysis of software has been an important area in real�time research
during the last � � 
� years� The issues this research has dealt with are�


� Mapping the high�level source code constructions to the corresponding object
code instructions by static analysis� Compiler optimisations will make this
more di�cult �
���

�� Deriving dynamic properties of programs� i�e�� how many times each instruc�
tion will be executed in the worst case� Information of false paths� maximum
number of iterations in loops and maximum depth of recursion calls are nor�
mally given as manual annotations� However� symbolic execution methods

has been proven to �nd some false paths automatically �
�
��
	� Calculating the WCETC using the static and dynamic information above�

Timing schema �
��
�� analysis calculates WCETC by recursively adding the
times for the constructs in the program� Another method is Integer Linear

Programming �ILP� ���
�� analysis� which is used in most recent research� It
transforms the program to a �ow graph where each edge corresponds to a
basic block� For each edge� the worst execution time is calculated from the
instructions in the basic block� The total execution time is represented as a
linear expression� and the WCETC is calculated by �nding the maximum of
the expression with linear programming optimisation�


� Modern hardware with cache and pipeline is analysed in extensions to TS
�

�� ILP �
�� or using constraint techniques �
	�� This analysis must take into
consideration the current cache and pipeline contents before each instruction
execution� To get a tight calculation� detailed information on dynamic pro�
gram behaviour� especially nested loops� is needed�

As we can see� all published methods rely more or less on manual annotations to
work and to give a small overestimation� But to give these annotations is extra
work for a stressed programmer� and it is certainly easy to �nd very simple
examples where� e�g�� the maximum number of iterations in a loop is very hard
to calculate �see Fig� 
�a� for an example�� And what happens if the manual



annotation is incorrect� One possible e�ect is that a program could be given a
too small time slot in a schedule� ending up in a missed deadline� with possible
catastrophic consequences�

Park discusses this problem in �

�� proposing a method that veri�es the cor�
rectness of the annotations� But why not let the analysis method try to �nd the
annotations automatically� as they are inherent in the semantics of the program�

� Deriving Annotations

In our analysis of a program we will use data �ow analysis to �nd out values
of variables at di�erent points in the program� Using this information we can
automatically derive path and loop annotations�

Control points� c�� c�� � � � � cm� are introduced at points in the program where
the value of a variable may change �after assignments�� or when we can constrain
the possible values of variables �after conditions�� For an example� see Fig� 
�a��

With each control point� ci� we associate an environment� �hi � An environment
holds all combinations of variables values that are possible at the control point
in a program execution� �hi � fa� �� v�� � � � � am �� vmg denotes an environment
where the variables a�� � � � � am have been assigned the values v�� � � � � vm� respec�
tively� We will by the index h separate between di�erent passings of the same
control point� e�g�� in loops and continuations after selection statements �h will
in the sequel only be included when necessary��

�c��
a � �� �c��
b � b � �� �c��
a � a � b� �c��

��
�� 	 ��a � �����
�� 	 ��b � b � �����
�� 	 ��a � a � b����

�� 	 fa �� 
� b �� �g
�� 	 fa �� �� b �� �g
�� 	 fa �� �� b �� 
g
�� 	 fa �� �� b �� 
g

�� 	 fa �� 
���� b �� 
��� � �g
�� 	 fa �� �� b �� 
��� � �g
�� 	 fa �� �� b �� ���
 � �g
�� 	 fa �� ���� � 
�� b �� ���
 � �g

�a� �b� �c� �d�

Fig� �� The statements �with inserted control points� in �a� gives the semantic rules in
�b� and the concrete and abstract evaluation in �c� respectively �d��

��� Concrete and abstract semantics

The concrete semantics �meaning� of a program is de�ned as the environments
that can be generated by the program description �
��� We will use a semantic
function� ������ that takes an environment� �� and a rule on how to modify �or
constrain� the environment and return a modi�ed environment� �� � ��rule����
Depending on the nature of the rule� i�e�� if it is a statement or a condition� we will
further subdivide ����� into S����� and C������� See Fig� 
�b� for the semantic rules that
corresponds to the statements in 
�a�� If each variable in the initial environment�
��� is assigned to a single value� like �� � fa �� 
� b �� 
g� the evaluation of the
equations will correspond to a �normal� execution of the program� see Fig� 
�c��

� S stands for statement and C for condition rule�



For our analysis� we will de�ne an abstract environment where variables can
be assigned to several values� For each concrete semantic rule� in the program�
ming language� a corresponding abstract rule is de�ned� For example� our ab�
stract version of the ��� operator handles sets of values� An abstract evaluation
can be seen in Fig� 
�d�� Note that the abstract evaluation corresponds to a
set of concrete evaluations and that each concrete evaluation corresponds to a
possible execution�

In this paper� and in our tool �see section 
�� we will represent abstract values
with split integer intervals� For example� b �� ���
 � � means that b�s value is
either � or between � and 
� This representation has some drawbacks� e�g�� it
does not express conditions between variables in an environment� on the other
hand it is simple to manipulate and allows e�cient implementations�

The domain of the environments is in the general case a partially ordered
set �poset�� hD��������i� The set D contains possible combinations of value
tuples for variables� The bottom element� �� means that one or several of the
variables within the environment can not have any value at all� �� � �� is true
i� at least all tuples of variable value combinations that exists in �� also exists
in ��� ����� creates a new environment that holds exactly all tuples of variable
value combinations in both �� and ���

The cost� in terms of time and memory� to express an exact environment�
i�e�� all possible tuples of variables value combinations� is often to expensive� The
representation can then be simpli�ed by a safe abstraction� e�g�� a �� 
�	������
can be safely approximated to be in the interval 
����� The approximation must
be safe �possible values must not be removed�� tight �as few extra values as
possible�� and e�cient �in terms of time and memory�� We will face a trade�o�
between cost of computation and quality of results� For the above reason we will
also use an approximative meet operator �� that applied on �� and �� creates a
new environment that holds at least all tuples of variable value combinations in
�� and ��� Abstract interpretation techniques ��� can be used to de�ne a correct
relation between the abstract and the concrete domains�

��� Finding false paths

We will use a sequence of if�statements to illustrate how dependencies between
di�erent program parts can be found�

A condition can be seen as a constraint to be applied on the variables in a
given environment� Fig� ��c� shows how the start environment� �� � fa �� �����g�
will be constrained� by the conditions in the two if�statements in Fig� ��b�� The
evaluation in Fig� ��c� has the disadvantage that it does not take into account the
dependencies between the if�statements �a � �� implies a � ��� Thus� it will
not detect that S� � S� is a false path� Our solution is to continue the analysis
from each of the two environments that are generated after an if�statement�
giving the semantic rule in Fig� ��a��

� We are assuming that a will not be changed in any of the statements S� � � � S��



S��if�C	 S� else S���� 	 f��� ��g
where

�� 	 C��C���
�� 	 S��S�����
�� 	 C���C���
�� 	 S��S�����

�c��
if�a 
 ��	 �c�� S� �c��
else �c�� S� �c��
�c��
if�a 
 �	 �c�� S� �c��
else �c�� S� �c	�
�c���

�� 	 fa �� ���
�g
�� 	 �� 	 fa �� 

��
�g
�� 	 �� 	 fa �� ���
�g

�� 	 fa �� ���
�g
�� 	 �� 	 fa �� ���
�g
�� 	 �	 	 fa �� ����g

��� 	 fa �� ���
�g

�a� �b� �c�

�� 	 fa �� ���
�g
�� 	 �� 	 fa �� 

��
�g
�� 	 �� 	 fa �� ���
�g

� �
�c�
�

	 fa �� 

��
�g
�c�
�

	 �c�
�

	 fa �� 

��
�g
�c�
�

	 �c�
	

	 fa �� �g
� �

�c�
�

	 fa �� ���
�g
�c�
�

	 �c�
�

	 fa �� ���
�g
�c�
�

	 �c�
	

	 fa �� ����g
� �

�c��c�
��

	 fa �� 

��
�g �c��c�
��

	 fa �� �g �c��c�
��

	 fa �� ���
�g �c��c�
��

	 fa �� ����g

�d�

Fig� �� The semantic rule for an if�statement in �a� gives for the program in �b� the
evaluation in �d� instead of the one in �c��

As seen in Fig� ��d� each if�statement will now generate two di�erent envi�
ronments� It can now be seen that the path S� � S� is a false path�

��� Finding the number of iterations in loops

We will use a while�statement to illustrate how our analysis method will work
for loops� The core idea is to transform them into if�statements� giving the
semantic rule in Fig� 	�a�� The if�statement yields two environments each time
it is analysed �as before��

� The environment in which the loop shall be executed again� �true�
�� The environment in which the loop terminates� �false�

S��while�C� S��� 	
S��if�C�fS� while�C� Sg���

�a�

while �a 
 �	 � �ctrue�
a � a � ��

� �cfalse�

Iter �true �false
� fa �� ���
 � �g fa �� �g

 fa �� 
��� � �g fa �� �g

 fa �� ����g fa �� �g min 	 

� fa �� ����g fa �� �g
� fa �� �g fa �� ���
�g
� fa �� �g fa �� 
�g max 	 �

�b� �c�

Fig� �� The semantic rule for loop�evaluation in �a� gives for the program in �b� the
table in �c��



A loop is �rolled out� until it cannot execute again� or until the time budget is
exceeded �see section 	���� For example� with the start environment � � fa ��
����� �g� the code in Fig� 	�a� will generate the table in Fig� 	�b�� The analysis
shows that the loop will iterate at least two times �since � iterations is needed
to set �false 	� �� and at most � times �since after � iterations �true � �� which
means that we cannot enter the loop again�� The analysis also shows that a

always will be in the interval ���
� after the loop�

��� Merging environments

Environments will� for several reasons� be merged �using the � or �� operations�
at certain points during the analysis� In our current tool the chosen merge points
are the ends of loops� functions and programs� The reasons for merging are�


� Many evaluations from �false� environments will be redundant� For example�

�hi

false � �
hj

false� means that �hi

false is redundant since the evaluation from

�
hj

false will include all possible executions that could result from �hi

false
��

�� To reduce the number of continuous evaluations� For example� a loop body
with n if�statements will generate �n environments for each iteration� Merg�
ing of �possible� non�redundant environments will reduce the computational
cost� However� overestimation may occur�

	� The goal for the analysis of a program is to generate annotations for the
corresponding �ow graph� Several methods for low level cache� and pipeline�
analysis demands this ���
��

�
	�� The annotations must then be true for
all iterations of each loop�

��� Introducing time

The analysis described so far will often not terminate if the program does not
terminate� To terminate our analysis� we will use the fact that a real�time pro�
gram must complete its task within a given deadline� A program is given a time
budget� Tbudget� which should be a realistic upper time limit for the program on
a given hardware� The time budget may be calculated during the design phase
and can be seen as part of the speci�cation of the program� The Tbudget is the
only manual �annotation� needed by our method��

Each statement or program block has a minimum and a maximum execu�
tion time� tminc and tmaxc� For each analysed statement the corresponding time
interval will be added to a accumulated time� The time for the longest path�
Tminc��Tmaxc� will be compared to the time budget during the analysis� Three
cases can be identi�ed�

� In Fig� ��b� the continuing analysis from �false in both the second and �fth iteration
can be included in the continuing analysis from �false in the fourth iteration�

� Note that our time annotation is di�erent from the annotations of other methods�
Erroneous path or loop annotations may lead to wrong WCETC � but an erroneous
Tbudget may in the worst case only lead to too early ending of the analysis�




� Tminc � Tmaxc � Tbudget� In this case we can guarantee that the program
will not exceed its time budget�

�� Tminc � Tbudget � Tmaxc� There is now a risk that the program does not
terminate within the time budget� Our analysis tool �see section 
� will stop
and generate a warning message� If we suspect that the time budget is too
narrow� we may extend it and continue further�

	� Tbudget � Tminc � Tmaxc� In this case we know that the program will exceed
its time budget� The analysis will normally not reach this point�

Thus� our method calculates WCETC for the program� However� note that the
main reason for this calculation is not to get the WCETC for the program� but
to make sure that the analysis terminates�

� Implementation and Example

To test the described ideas a prototype tool has been implemented in the pro�
gramming language Erlang ���� The tool uses a split integer interval represen�
tation of environments� So far only a subset of C is handled� including inte�
ger variables and the standard arithmetical operations ��� �� �� 	�� decla�
rations� assignments� selection statements �if� and if�else� statements� and
loop�constructs �while� and for�statements�� Still� this simple language serves
to illustrate our ideas� To add more types �e�g�� �oats�� more complicated con�
structions� �e�g�� arrays and structs� will be relatively simple� Functions calls�
dynamic memory and pointers demands a much more complicated analysis�

There is also an option in our tool to annotate the code manually with
possible input values� This can be used by the programmer to� for instance�
study the program behaviour for di�erent inputs�

��� Example

The information retrieved from the analysis of the program in Fig� 
�a� is pre�
sented in Fig� 
�b� and �c�� We are assuming that both a and b are within the in�
terval 
��	� at the beginning of the program� that is� �� � fa �� 
��	�� b �� 
��	�g�
The values presented in Fig� 
�d� and �e� has been extracted by running the pro�
gram for all its possible combinations of input values� in this case� 	� 
 	� � ���
executions�� For a program with large number of arguments� with varying input
values� this is not a feasible option� Our analysis tool extracted� among other
things� the following information�

� A safe estimation of the minimum and maximum number of iterations in the
outer loop� Fig� 
�a��

� A safe estimation of the minimum and maximum number of iterations in the
inner loop for each iteration of the outer loop� Fig� 
�c��

� The fact that the a 
 a � ��� statement never will be executed and there�
fore is dead code�

� Without any abstractions the analysis would derive these values as well�



� A safe estimation of the possible values for a and b within the program�
�
��

 and ������ respectively��

An interesting comparison can be made between the actual maximum number
of iterations in the inner loop� 
	� �given by �� � fa �� 
� b �� �g�� the number
derived without abstractions� 
�� the number derived with our tool� ��� and a
coarse manual annotation given by a programmer�� which could be 	��� The
reason for the di�erence� between the actual maximum number of iterations in
the inner loop and the values given by the analysis tool� is that the analysis
result includes all possible executions and reduces the computational cost by
using abstractions� When the program iterates very di�erently depending on the
input values our analysis results will of course deteriorate�

while�a 
 ��	

�lout�
f

while�b 
 a	

�lin�
f

if�b 
 �	

b � b � ��

else

b � b � ��

if�b 
� �� ��

b 
� ��	

a � a � ���

else

a � a � ��

g
a � a � ��

b � b � ���

g

�a�

min max
lout lout
� 
�

�b�

� min max
lout lin lin

 � �

 � 
�
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � 



 � 



 � 


� � 


� � 


� � 

P

� ��

�c�

min max
lout lout
� 



�d�

� min max values giving max
lout lin lin � of iterations


 � � fa �� 
�� b �� 
g

 � � fa �� 
� b �� 
g
� � � fa �� 
� b �� 
�g
� � � fa �� 
� b �� 
�g
� � � fa �� 
� b �� 
�g
� � 
 fa �� 
� b �� 

g
� � 
 fa �� 
� b �� 
g
� � 
 fa �� 
� b �� �g
� � 
 fa �� 
� b �� 
g

� � 
 fa �� 
� b �� �g


 � 
 fa �� 
� b �� ��g
P

� ��

�e�

Fig� �� For the program in �a� our tool gives the estimated min and max iterations in
the outer �b� respectively inner �c� loop� The actual values are those in �d� and �e��

� A programmer may see that a increases with at least � every outer iteration� giving
���
 	 
� iterations in the outer loop� He may also note that b increases with at
least � for each iteration in the inner loop� As b also is decreased with 
� for each
iteration in the outer loop� the maximum number of iterations in the inner loop will
be� ��� � 
���
 	 
� times� This gives a total of 
� � 
� 	 ��� iterations�



� Conclusions� results and future work

We have presented a static analysis method which automatically derives safe
and tight annotations from the semantics of the source�code program� Normally�
these annotations are given manually� but to derive them is often di�cult and
error�prone� The analysis shall be seen as a �rst phase in a tight worst case
execution time �WCETC� calculation� The derived annotations can be used by
the following phase� an object �micro� or assembler� code analysis� which also
considers modern hardware architectures�

A short summary of the information derivable with our method are�

� Information of false paths and dead code within programs �section 	����
� Safe estimations of maximum and minimum of iterations both for single and
nested loops �section 	�	��

� Possible values for all variables in each point�� program block or entire pro�
gram� 	�

� A WCETC that can be used on simple hardware architectures �section 	����

As future work we plan to investigate other forms of environment represen�
tation� General constraint techniques is one of the candidates �
���

We also plan to investigate how the degree of merging a�ects the analysis
result� We can in one extreme analyse all paths� without merging� but such an
analysis will be both very time� and space�consuming� On the other hand� too
much merging will generate a lot of pessimism in the analysis�

Backward analysis ��� can be of interest to further enhance our analysis� It
is performed by analysing a program backwards from the goal environments�

An obvious future task is to extend the analysed language� An interesting
extension will be functions� since a function may have di�erent possible input
values at di�erent invocations� These input values can be derived automatically
through our method and may lead to a tighter WCETC

���
Future work will also be to investigate how programmers of hard real�time

systems are writing their programs� Is there a need for complicated construc�
tions� Should the programmer be forced to write his programs in a certain way�
to allow analysis� Can we abandon recursion in real�time programs� An investi�
gation of the programming style used in real�time companies will be performed
during spring 
��� to give answers to these and similar questions ����

References


� P� Altenbernd� On the false path problem in hard real�time programs� In Pro�

ceedings of the Eight Euromicro Workshop on Real�Time Systems� pages 
�
�
���
June 
����

� Derived by merging all n environment generated at the i�th control point� �
j
���n

�
hj
i �

� Derived by merging all environments generated at all di�erent control points�
	 This information can be used for compiler optimisations �e�g�� reduction of size of
variables� and program veri�cation �e�g�� index checking� ����

�� The only other method we know that considers input values for WCETC calculation
is ���� but it relies on manual annotations�




� J� Armstrong� R� Virding� C� Wikstr�om� and M� Williams� Concurrent program�

ming in Erlang� Prentice Hall� 
 edition� 
���� ISBN ��
�������
�X�
�� F� Bourdoncle� Abstract debugging of high�order imperative languages� In Pro�

ceedings of SIGPLAN��� Conference on Programming Language design and Imple�

mentation� pages ������ 
����
�� R� Chapman� A� Burns� and A� Wellings� Integrated program proof and worst�case

timing analysis of SPARKAda� In ACM Sigplan Workshop on Language� Compiler

and Tool Support for Real�Time Systems� June 
����
�� P� Cousot and R� Cousot� Abstract interpretation� A uni�ed model for static

analysis of programs by construction or approximation of �xpoints� In �th ACM

Symp� on Principles of Programming Languages� pages 
���
�
� 
����
�� P� Cousot and R� Cousot� Comparing the Galois connection and widen�

ing�narrowing approaches to abstract interpretation� In Programming Language

Implementation and Logic Programming� Proceedings of the Fourth International

Symposium� PLILP���� volume Lecture Notes in Computer Science ��
� pages

���
��� Aug 
��
�

�� A� Ermedahl and J� Gustavsson� Real�time industry inquiry of execution time
analysis tools� Technical report� Department of Computer Systems� Uppsala Uni�
versity� Sweden� 
���� To be published�

�� M� Harmon� T� Baker� and D� Whalley� A retargetable tecnique for predicting
execution time of code segments� The Journal of Real�Time Systems� �� 
����

�� Y��T� Li and S� Malik� Performance analysis of embedded software using implicit
path enumeration� In ACM Workshop on Lang�� Comp� and Tools for RTS� May

����


�� Y��T� Li� S� Malik� and A� Wolfe� Cache modeling for real�time software� Beyond
direct mapped instruction caches� In �	th IEEE Real�Time Systems Symposium�

RTSS��
� pages 
�� � 
��� 
����


� S� Lim� Y� Bae� G� Jang� B��D� Rhee� S� Min� C� Park� H� Shin� K�Park� S��M�

Moon� and C� Kim� An accurate worst case timing analysis for risc processors�
IEEE Trans� on Software Engineering� 

������� � ���� July 
����



� H� R� Nielson and F� Nielson� Semantics with Applications� John Wiley � Sons�

��
�


�� G� Ottosson and M� Sj�odin� Worst�case execution time analysis for modern hard�
ware architectures� In Proc� SIGPLAN ���	 Workshop on Languages� Compilers

and Tools for Real�Time Systems� June 
���� To appear�

�� C� Park� Predicting program execution times by analyzing static and dynamic

program paths� The Journal of Real�Time System� ���
��
� 
����

�� C� Park and A� Shaw� Experiments with a program timing tool based on a source�

level timing schema� Proceeding of ��th IEEE Real�Time Systems Symposium�
pages �
��
� Dec 
����


�� P� Puschner and C� Koza� Calculating the maximum execution time of real�time
programs� The Journal of Real�Time Systems� 
�
��
���
��� Sep 
����


�� P� Puschner and A� Schedl� Computing maximum task execution times with lin�
ear programming techniques� Technical report� Report� Techn� Univ�� Inst� f�ur
Technische Informatik� Vienna� April 
����


�� E� Tsang� Foundations of Constraint Satisfaction� Academic Press� 
����

�� A� Vrchoticky� The Basis for Static Execution Time Prediction� PhD thesis� Institut

f�ur Technische Informatik� Technische Universit�at Wien� Austria� April 
����


