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General Chairman’s Message 
 

 

The FPGAworld program committee welcomes you to the 2nd FPGAworld 
conference.  This year’s conference is held in Electrum-Kista, Stockholm, 
Sweden.  We hope that the conference provides you with much more then you 
expected.  This year it is the first time we have academic reviewed papers; this 
is an important step to incorporate the academic community into the 
conference program. 

We will try to balance academic and industrial presentations, exhibits and 
tutorials to provide a unique chance for our attendants to obtain knowledge 
from different views. This year we have over 24 exhibits, 14 reviewed 
industrial papers (12 accepted), 6 academic papers (3 accepted), 7 sponsors 
and 2 three-hour hands on tutorials. 

The FPGAworld 2005 conference is more then two times bigger than the 
FPGAworld 2004 conference. 

Next year the industrial parts of FPGAworld conference will be in Stockholm, 
Munich and London.  The academic FPGAworld conference will only be in 
Stockholm.  

All are welcome to submit industrial/academic papers, exhibits and tutorials to 
the conference, both from academic and industrial backgrounds.  Together we 
can make the FPGAworld conference exceed even above our best expectations! 

Please check out the website (http://fpgaworld.com/conference/) for more 
information about FPGAworld 2006.  In addition, you may contact the following 
people for more information: 

David Källberg (david@fpgaworld.com) or Kerstin Åberg (k@realfast.se). 

 

Lennart Lindh 

General Program Chair 
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2005 KEYNOTE ADRESS 

 
 

Faster, Cheaper and Safer FPGA development 
 
Most companies have a major potential for efficiency improvement in 
developing complex FPGAs. Paradoxically most of these actually believe they 
are already really efficient… 
 
The keyword is ‘efficient’ reuse. It is very important to differentiate between 
'ad hoc reuse' and 'efficient reuse'. Companies mastering efficient reuse have 
experienced more than 50% reduction in total development time, - far, far 
better than any ad hoc reuse…  
 
This keynote presentation will discuss these issues - and then introduce the 
“Efficient Reuse Methodology - Impact Chart”. This will give the audience an 
overview of the most important reuse methodology elements, how these affect 
your current and future projects, the investments required and the actual 
probability of improvements. Special attention will be given to efficient reuse 
within a single FPGA project.  

 

Espen Tallaksen, Digitas and Embla, Norway 
Espen Tallaksen is an independent consultant on FPGA design and verification - 
with a special focus on efficiency improvement. He has initiated and assisted in 
implementing structured verification and efficient reuse in several companies.  
 
Espen Tallaksen graduated from University of Glasgow in Scotland in 1987. He 
has been involved in numerous ASICs and FPGAs - as a designer, architect and 
project manager. For more than ten years he has also had special 
responsibilities for efficiency improvements in companies like Philips 
Semiconductors in Switzerland, and as a technology manager at Nordic VLSI.  
 
Espen Tallaksen is also coordinating an inter company working group on 
efficiency improvement (Embla) and a new FPGA development initiative in 
Norway.  
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Embedded 3D Graphics Core for FPGA-based System-on-Chip Applications

Hans Holten-Lund
Informatics and Mathematical Modelling

Technical University of Denmark
hahl@imm.dtu.dk

Abstract

This paper presents a 3D graphics accelerator core for
an FPGA based system, and illustrates how to build a
System-on-Chip containing a Xilinx MicroBlaze soft-core
CPU and our 3D graphics accelerator core. The system
is capable of running uClinux and hardware accelerated
3D graphics applications such as a VRML viewer.

The 3D graphics core is connected to a PLB 64-bit
on-chip bus, and can render graphics into an on-chip tile
buffer, which is later copied, using bus-master DMA trans-
fers, to the frame-buffer in external DDR SDRAM mem-
ory. This memory is shared between the CPU, the 3D
graphics core, and the video display which periodically
reads from memory to display the final rendered graphics.
The graphics core uses internal scratch-pad memory to re-
duce its external bandwidth requirement, this is achieved
by implementing a tile-based rendering algorithm. Re-
duced external bandwidth means that the power consump-
tion is reduced as well.

We show how an FPGA based embedded system is ca-
pable of most tasks in a single chip solution, without re-
quiring additional CPU or graphics chips.

1. Introduction

Hardware accelerated 3D graphics is gaining influence
in low-cost embedded devices such as GPS navigators,
etc. For some applications FPGAs are on the way to re-
place CPUs, 3D graphics chips and other ASICs with soft-
cores located inside the FPGA, giving a reconfigurable
System-on-Chip solution. The main reason for this is the
fact that FPGA chips are rapidly getting cheaper, while
improving time-to-market. Although dedicated graphics
ASICs are used for high performance applications such as
game consoles, other applications which require moderate
performance above that achievable with software render-
ing may be better served with a soft-core graphics proces-
sor in an FPGA. A similar trend can be observed with soft-
core CPUs such as the Xilinx MicroBlaze and Altera Nios
replacing traditional CPU chips by moving the CPU into
the programmable FPGA fabric.

This paper presents a graphics core for such an FPGA
based system, and illustrates how to build a simple SoC

containing a Xilinx MicroBlaze soft-core CPU and our 3D
graphics accelerator core. The system is capable of run-
ning uClinux and hardware accelerated 3D graphics appli-
cations such as a VRML viewer.

The target for this implementation is the Xilinx Virtex-
4 ML401 XC4VLX25 FPGA evaluation platform. This
board features 64 MB 32-bit external DDR SDRAM
memory. The peak external memory bandwidth is 800
MBytes/sec when operating at 100 MHz. The board also
provides an external ADV7125 3x8-bit RGB video DAC
which is used for the VGA display.

The 3D graphics core is connected to a PLB 64-bit on-
chip bus, and can render graphics into a frame-buffer us-
ing bus-master DMA to external DDR SDRAM memory.
This memory is shared between the CPU, the 3D graph-
ics core, and the video display which periodically reads
from memory to display the final rendered graphics. The
graphics core uses internal scratch-pad memory to reduce
its external bandwidth requirement, this is achieved by im-
plementing a tile-based rendering algorithm.

We show how an FPGA based embedded system is ca-
pable of most tasks in a single chip solution, without re-
quiring additional CPU or graphics chips.

For the embedded application example with a GPS
navigator, the GPS signal processing tasks can also be em-
bedded in the FPGA to avoid the need for a dedicated GPS
signal processing ASIC.

2. The Hybris Graphics Architecture

The Hybris graphics architecture [6] is scalable from a
minimal embedded implementation to larger parallel im-
plementations. The first FPGA implementation of the
graphics architecture is presented in [7] where a sim-
pler version of the core is implemented on a Celoxica
RC1000PP PCI board using a Xilinx Virtex XCV1000
FPGA. The FPGA is streaming the input data from a host
PC via the PCI bus, and outputs the rendered graphics di-
rectly to a VGA monitor.

In this context we will look at a new implementa-
tion suitable for an embedded System-on-Chip based on
a cheap FPGA and low-cost 32-bit wide DDR SDRAM
external memory. The FPGA contains an embedded Mi-
croBlaze CPU and on-chip buses which replaces the PC
from the earlier PCI-bus based implementation. To keep
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the cost low, the external memory is shared as main mem-
ory for the CPU, graphics memory for the 3D graphics
accelerator and framebuffer memory for the display. This
means that we need to have a bandwidth budget for the
complete system. Internally in the FPGA all the main
memory traffic is also present on a bandwidth matched
64-bit PLB (Processor Local Bus) on-chip bus.

The Hybris graphics architecture uses tile based ren-
dering to allow for scalable parallel implementations. The
method gets its name as it divides the screen into rectan-
gular tiles. Each tile is relatively small so it can easily fit
into on-chip memory next to the rendering engine. While
we can divide the screen into many tiles, e.g. a 640x480
pixel framebuffer can be divided into 20x15 32x32 pixel
tiles, we cannot afford to implement 20x15 tile rendering
engines running in parallel. If we have one tile engine ren-
dering to a virtual tile, we can render all tiles in sequence.
This is also known asvirtual local framebuffersee [5].
Similar techniques are also used in [8, 4, 9, 3] as well as by
GigaPixel, which was acquired by 3dfx and then Nvidia.
Some more recent work is [1, 2]. The advantages are that
we do not need to access off-chip memory while rendering
a tile, that we can use more bits per pixel in the small tile
than we would in a global framebuffer without increas-
ing off-chip bandwidth, that we can render multiple tiles
in parallel, and that we can render at a higher resolution
to implement supersampled anti-aliasing again without in-
creasing off-chip bandwidth. Unfortunately since we must
collect and bucket sort input data (triangles) for a tile be-
fore rendering it, we need a potentially large input buffer,
which is the main drawback of the tile based rendering
method. This is not a problem for scenes with a relatively
low triangle count.

3. MicroBlaze Soft-Core CPU

The MicroBlaze [10] is a 32-bit soft-core RISC proces-
sor from Xilinx, optimized for FPGA implementation. We
use the MicroBlaze CPU core mainly because it is well
supported by the Xilinx implementation tools (EDK 7.1
and ISE 7.1), allowing us to focus our work on the system-
design and hardware accelerator design. In addition to the
usual on-chip bus-interfaces, MicroBlaze also provides
eight Fast Simplex Links (FSL) which are useful for di-
rect communication with hardware accelerators. For this
application we use the MicroBlaze CPU to run the user
programs and if necessary also the uClinux operating sys-
tem.

The MicroBlaze CPU is also used for the front-end of
the graphics architecture. This means that 3D transfor-
mation and lighting as well as triangle set-up is done in
software on the CPU. The new MicroBlaze CPU version
4.0 provides hardware floating point support to help ap-
plications such as this, removing the need to convert the
program to fixed-point. In a future implementation a hard-
ware floating point vector co-processing module can be
connected to the CPU using one of the FSL links. This
makes it possible to implement dedicated matrix-vector

multiplication and dot product hardware which is useful
for accelerating 3D transformation and lighting. Since a
FSL core does not need to send anything back to the CPU,
the FSL core can be used to send its processed data di-
rectly to the graphics processor core or main memory, by-
passing the overhead of sending it back through the CPU
and its bus interface.

MicroBlaze

CPU

OPB - PLB

bridge

DDR

SDRAM

controller

VGA display

controller

Hybris 3D

graphics

accelerator

External

DDR

SDRAM

External

Video DAC

Serial PortUART

On-chip

RAM, Inst.

and Data

32-bit

OPB

on-chip

bus

64-bit

PLB

on-chip

bus

Fast

Simplex

Link

Figure 1. Overview of the embedded graph-
ics system.

4. A SoC with CPU and Graphics Core

An overview of the System-on-Chip is presented in
Figure 1. In addition to the graphics and memory sub-
system the system contains the MicroBlaze CPU and two
on-chip buses. We need to use the 64-bit PLB (Proces-
sor Local Bus) on-chip bus to support the performance re-
quirements of the graphics system, while the 32-bit OPB
(On-chip Peripheral Bus) is required for the MicroBlaze
CPU. The on-chip buses are bridged via an OPB-to-PLB
bus bridge which has a slave interface on the OPB side
and a master interface on the PLB side. The bridge allows
the CPU to initiate accesses to the devices on the PLB bus.

An important part of the PLB-side of the system is the
main memory subsystem which is controlled by the DDR
SDRAM controller. The DDR controller provides access
to external DDR memory via the PLB-bus. The PLB bus
bandwidth is dimensioned so it will match the bandwidth
of the external memory. In practice this is accomplished
by using 32-bit wide DDR SDRAM, which is represented
internally as single data rate 64-bits on the PLB on-chip
bus. If wider, e.g. 64-bit, DDR SDRAM is used the PLB
on-chip bus may not be fast enough to match the memory
bandwidth, as we cannot change the bus-width of the PLB,
only the frequency. In such a case a dedicated link be-
tween the graphics core and the DDR memory controller
core will be necessary. The DDR SDRAM in this system
is built from two infineon 16Mbit x 16 chips which each
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internally uses four 8192 row by 256x32 column DRAM
banks, forming 64 MBytes of main memory with a page
size of 4 kBytes.

The other devices on the PLB bus are a VGA video dis-
play core and the 3D graphics accelerator itself. The VGA
video display core is a simple framebuffer display sys-
tem reading pixels from a framebuffer in main memory.
It stores an entire scanline of pixels in on-chip memory
which allows it to use a fixed pixel clock for sending pixel
data to the external video DAC, while periodically read-
ing from the framebuffer at the full bus-speed. The VGA
video display core is a PLB bus-master since it initiates
the read transactions for reading from the framebuffer.

The framebuffer memory area in the main memory can
be written to by the CPU (through the bus bridge), or by
the 3D graphics accelerator core. This makes it possible
to combine software rendering running on the CPU with
hardware rendered pixels from the 3D graphics core.

The 3D graphics core needs to read from a list of trian-
gles to render, and also needs to write to the framebuffer.
To minimize the bandwidth requirement on the PLB on-
chip bus and external memory, we use an on-chip scratch-
pad memory in the 3D graphics core. The scratch-pad
memory is used for rendering pixels in a single e.g. 32
x 32 pixel tile, we will later find the optimal tile size.
By rendering the pixels into a scratch-pad RAM, we can
later use a block-transfer to write a completed tile into the
framebuffer. This similar to the virtual local framebuffer
scheme as described in [5], which is often known as tile-
based rendering. To support tile-based rendering we must
first sort all triangles to be rendered into buckets corre-
sponding to the tiles they overlap, see figure 2. Bucket
sorting is an additional step not found in most commercial
rendering hardware because of its added complexity and
increased per-triangle cost and the requirement of a mem-
ory buffer for storing the bucket sorted triangles (figure
3). This imposes an upper limit on the number of trian-
gles we can process in a single pass. However we gain
several advantage with the on-chip scratch-pad memory
which can be used e.g. for cheap depth-buffering using
only on-chip memory. We can also use a simple solution
for anti-aliasing where a supersampled image is first ren-
dered to the scratch-pad memory and then down-filtered
when writing the resulting tile to the framebuffer. This
way a cheap way to do anti-aliasing can be provided for
low-resolution embedded displays to improve the visual
quality of the graphics. With minor changes to the render-
ing algorithms it is also possible to use sparse supersam-
pling instead of normal full supersampling, Sparse super-
sampling focuses on improving the visual quality by fo-
cusing the sample rate for nearly vertical and horizontal
edges, which is where the human eye is most sensitive to
aliasing artifacts. This can be achieved by using one of
the sub-pixel sampling patterns in figure 4.

  T3

T 2

T 1

Tile
0,0

Tile
1,0

Tile
0,1

Tile
1,1

Tile
2,0

Tile
2,1

X axis

Y axis

Figure 2. Examples of overlap in a tile-based
renderer. Triangle T2 is completely inside
one tile. T3 overlaps two tiles. T1 overlaps 4
tiles if bounding box bucket sorting is used,
but will only overlap 3 tiles if exact bucket
sorting is used.

H

0 63

H 2

H

1

2
3

H

1 3

4 kbyte SDRAM page

Page 0

Page 1

Page 2

Page 3

1 1 1 1 1 3 3 3 3 3 3 3 3 3 3

33 3 3 3 3 3

3 3 3 3 3 3

2 2 2

33 3

H (header):
size
next

Figure 3. Memory management of triangle
nodes in the bucket sorted triangle heap.
Triangles are allocated in buffers of 63 tri-
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bucket. In this example the triangles of ob-
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Figure 4. Sparse supersampling sub-pixel
sample positions within a pixel. Left: 2 sam-
ples in a 2x2 grid. Middle: 4 samples in a
4x4 grid, Right: 8 samples in a 8x8 grid.
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5. Optimizing the Hybris rendering engine

When building an embedded graphics system we must
optimize the datapaths so their performance matches
what is achievable given the limitations of the external
main memory, internal on-chip scratch-pad memory, CPU
caches and on-chip buses.

With a tile-based rendering engine one important para-
meter is the tile size. The size of a tile is mainly dictated
by the available on-chip RAM resources, and also by the
overlap factor which affects the overhead of the bucket
sorting step. A smaller tile size reduces the demands of
on-chip memory, but will also result in a larger overlap
factor as the probability of a triangle overlapping multi-
ple tiles will increase. A larger tile size will improve the
memory coherence within the tile and will also help to
reduce the overlap factor as a triangle will be less likely
to overlap multiple tiles. Figure 2 shows a few cases of
triangle-tile overlap.

This also depends on the triangle size distribution in
the 3D scenes to be rendered. Assuming a typical triangle
area of up to 64 pixels will keep the average overlap factor
below 2 when using a tile size of 32x32 pixels. This is
documented in [6].

Now that we know the bandwidth and memory limita-
tions, we need to use this knowledge to properly configure
the graphics architecture for a suitable implementation.

For the VGA video display we need to allocate main
memory bandwidth for video refresh. With 640 x 480
32-bit pixels at 60 Hz and a 25 MHz pixel clock, the
VGA display core will require an average bandwidth of
74 MBytes/sec from the main memory (100 MBytes/sec
during active display and 0 during the blanking period).
Updating the framebuffer at the same rate will require an-
other 74 MBytes/sec.

The MicroBlaze CPU running at 100 MHz can at peak
use up to 400 MBytes/sec bandwidth through the 32-
bit OPB-to-PLB bus bridge. This is however not very
likely, because the CPU is configured to use 16 kByte
instruction- and data caches. The real bandwidth used by
the CPU is difficult to predict, but is far below the peak
figure mentioned before. If necessary, the CPU can also
run (small) programs from internal block ram based mem-
ory.

This leaves a worst case main memory bandwidth of
at least 800-400-100-74 = 226 MBytes/sec available for
other use. We can use this for either a higher resolution
framebuffer, or for the 3D graphics accelerator core.

The 3D graphics accelerator core will also need to read
from a bucket sorted head of triangles from the main mem-
ory. The bandwidth required for this depends on the num-
ber of triangles in the scene, the size of a triangle descrip-
tion node, the triangle tile overlap factor and the frame
rate.

Any remaining bandwidth can be used for other pur-
poses such as a future implementation of texture mapping,
or having a global depth (Z) buffer in main memory. Note
that the tile-rendering algorithm does not require a global

Local SRAM
32x32 pixels

color  &
depth

Setup
Tr iangle

Draw
Tr iangle /

Setup
Span

Draw
Span /
Draw
Pixel

Triangle

P
ix

el

P
ix

el

F
IF

O

F
IF

O

2x2 crossbar switch

Triangle Triangle Span Span

Local SRAM
32x32 pixels

color  &
depth

P
ix

el

P
ix

el

P
ix

el

P
ix

el

P
ix

el

P
ix

el

switch

hand-
shake

hand-
shake

hand-
shake

hand-
shake

hand-
shake

hand-
shakeInput

Tr iangle
control ler

Output
Ti le

control ler

Figure 5. Architectural overview of the
tile rendering engine back-end pipeline.
FIFO buffers are placed between iterating
pipeline stages to help average out load im-
balances. The double buffered tile buffer al-
lows the tile engine to render one tile while
the previously rendered tile is being copied
to the global framebuffer.

a) Setup Tr iangle b)  Draw Tr iangle
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e) Final  resul t

Figure 6. Processes in the tile rendering en-
gine back-end pipeline. a) Setup Triangle
adjusts y-parameters to fit tile. b) Draw
Triangle iterates over the active scanlines,
generating spans. c) Setup Span adjusts x-
parameters to fit tile. d) Draw Span iterates
over the active pixels in the span, perform-
ing per-pixel shading and depth testing. e)
Final result for drawing one triangle.

depth buffer. However if the number of triangles in a scene
exceeds the memory allocated for the bucket sorted trian-
gle heap, a multipass algorithm could be used to save the
depth-buffer tiles to main-memory between the passes.

5.1. Rendering core performance
The 3D graphics core in figure 5 was implemented as a

core for the FPGA. Figure 6 shows how a triangle is raster-
ized by the tile rendering engine. The small FIFO buffers
provide dynamic load balancing between the stages. The
last pixel drawing stage is able to render a pixel on every
clock cycle, provided that the previous stages can sup-
ply data fast enough. For this reason the previous stages
should be designed so that the per-triangle cycle count
matches the per-scanline (times the number of scanlines)
cycle count and also the per-pixel cost (times the trian-
gle area). If we only render relatively large triangles it
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Figure 7. Graphical testbench window used
for verification of the tile rendering engine.
The testbench was written in C using FLTK
for graphics and connects to ModelSim us-
ing FLI (Foreign Language Interface). Each
pixel in the 32x32 tile has been magnified
to a 4x4 pixel block and the shaded back-
ground makes it easier to see both dark and
bright pixels.

is sufficient to have a fast pixel drawing stage. Some ap-
plications require a large number of small triangles (this is
the trend today for increasing detail), one example is med-
ical visualization where we usually end up with millions
of triangles in a reconstructed 3D surface. For such ap-
plications, we anticipate a large number of small triangles
which places significant demands on per-triangle process-
ing as well. As a result our final implementation is dimen-
sioned so it is able to handle very small triangles without
slowing the pixel drawing rate, i.e. the per-triangle and
per-scanline processing time is also one clock cycle, i.e.
we have single cycle triangle setup and scanline setup. If
the triangle area is larger than a few pixels the tile render-
ing engine can be balanced to improve the pixel through-
put relative to the per-triangle throughput, this can be done
by reducing the hardware resources in the triangle and
scanline stages by using a multicycle machine for com-
puting the initial setup. For performance reasons another
approach is to speed up the pixel processing speed instead,
which can be done by using parallel pixel pipelines [6].

The rendering core has been tested in simulation using
ModelSim and also synthesized and tested on the FPGA
itself. A 32x32 pixel tile engine capable of rendering one
one pixel triangle per clock cycle occupies 2107 slices and
3 RAMB16 in a Virtex4 LX25, and can operate at 70 MHz
with single cycle triangle processing. The critical path
here is in the triangle setup stage, providing fast perfor-
mance for small triangles. If faster per-triangle process-
ing speed is needed we can pipeline the triangle setup and
the scanline setup stages. The design is well suited for au-

tomatic pipelining by adding several registers to the out-
put of each stage and then synthesizing it with register
balancing turned on in a synthesis tool which supports it.
Depending on the triangle size distribution in the appli-
cation we can also allow the triangle setup to take multi-
ple cycles, either using a FSM controller/datapath or use a
simpler setup with a multicycle combinational path.

Note that the above results are for 8 bits per pixel + 32
bit per pixel for the Z (depth) buffer used in the tile render-
ing algorithm, which is mapped to the 3 block rams (sin-
gle buffered, 6 are needed in the double buffered version
shown in figure 5). Note that the tile size can be adjusted
to match the number of block rams available for the tile
rendering engine, the desired number of bits per pixel and
whether we need single or double buffering. The tile size
also affects the overlap factor during bucket sorting of the
triangles prior to rendering; larger tiles give lower overlap,
but use more memory and makes load balancing worse in
a parallel implementation. In [6] we show that a tile size
of ca. 32x32 pixels is a good compromise. This has also
been shown recently in [1].

For verification we used a specialized graphical test-
bench written in C, which interfaces to ModelSim SE
through its FLI interface. This graphical testbench pro-
vides a quick visual overview of what is written to the tile
pixel- and depth-buffers cycle by cycle. In practice this is
done by writing a VHDL entity which has the relevant
signals as input ports which then connects to the com-
piled testbench which was written in C and uses FLTK
to display a graphics window. Figure 7 shows an example
of the graphical testbench window. The synthesized tile
rendering engine has also been verified to work in hard-
ware using a VGA monitor to display data being read di-
rectly from the tile buffer, showing the same images as
the graphical testbench. Figure 8 shows an example of the
type of graphics that can be rendered with the graphics
core.

6. Summary and future work

The presented graphics system can be tuned for per-
formance depending on the target application. As a start-
ing point we are able to rasterize small triangles at a high
rate. Rendering one one pixel triangle per cycle at 70
MHz gives a peak triangle processing rate of 70 million
triangles per second. This assumes a memory system fast
enough to supply data to the tile engine. Internally each
triangle is sent to the tile rendering engine on a 333 bit
wide bus in a single cycle. This translates to a peak band-
width of roughly 3 Gbytes/sec for reading the input data.
The total bandwidth is only 800 MBytes/sec on the FPGA
evaluation board, so we cannot stream data fast enough
from the main memory. One way to solve this data mem-
ory bandwidth problem could be to store a small dataset
in the FPGA block rams, although that would limit the
usefulness of the system.

Note that the above bandwidth is a worst case calcula-
tion, if the graphics system is used to render more typical
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Figure 8. Example of an object rendered
with the FPGA-based 3D graphics core.
This is the Standford Dragon laserscan with
870000 triangles. The image was rendered
in 2 seconds on the Virtex 1000 FPGA board
running at 25 MHz.

scenes with larger triangles with an average area of about
64 pixels, the bandwidth requirement for the external tri-
angle buffer will also drop by a factor 64, in the case of a
tile rendering engine rendering one pixel per cycle. Trian-
gles with an average area of 64 pixels also provide a good
match for the 32x32 pixel tile size, giving an overlap fac-
tor of 2.

To fully utilize the speed potential in this graphics sys-
tem, we need faster off-chip memory similar to the wide
and fast DDR2 SDRAM used in modern graphics cards.
Alternatively we can suggest that an evaluation board such
as the ML401 is more suited for processing intensive
rather than memory intensive applications. A Spartan 3E
FPGA with wider and faster external RAM might be bet-
ter suited for a low-cost implementation.

A complete System-on-Chip for an embedded graph-
ics system will also need to do transformation, lighting
and triangle setup before sending the triangles to the tile
rendering engine for rasterization. While this can be han-
dled in software on the MicroBlaze CPU version 4.0 with
a hardware floating point unit, a dedicated transformation
and lighting module can be implemented using e.g. the
new Xilinx core-generator floating point cores. A dedi-
cated vector processing unit will make it possible create
a balanced graphics system that can both generate trans-
formed and lit triangles, and also render them at the same
rate. In the future is will be interesting to investigate
the use of the PowerPC hard-core CPU found in the new
Virtex-4 FX FPGAs, as it provides an Auxiliary Processor
Unit interface to accelerator cores similar to the FSL links
found in the MicroBlaze. However we must be careful not
to build a system that requires an FPGA which is too ex-
pensive, which would make it difficult to compete against
systems using dedicated ASICs.
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Abstract 

The paper describes design and application of a 
VHDL RTL code frame generator which is the first step 
in a more advanced project that shall support the RTL-
design process with an always up-to-date ("live") block 
diagram of the system architecture. Our approach uses 
Microsoft Visio based schematic entry because it enables 
a cheap and flexible code generator implementation with 
large flexibility for different HDL's including SystemC. 
In order to demonstrate practical application of this tool 
we will show the VHDL design of a PCM31 framer core 
FPGA for telecommunication applications. 

 

1. Introduction 

The design of complex digital systems 
normally requires a large number of modules or 
components many of those having much more 
than one process. In fact on RT level all those 
processes represent functional blocks which 
can be synthesised to either synchronous or 
combinational hardware elements. While 
nowadays HDL's are widely used for the RTL-
design of the components [5] it is very helpful 
for the design process to use a graphical 
representation of the block diagram which 
describes the partitioning into components and 
processes and their communication using 
signals. 
A "live" documentation supports and eases the 
design process as follows: 
• The initial design is captured 

graphically and the HDL code frame 
is generated automatically. 

• Desired hardware functionality of 
processes is added to the code frame 
using a text editor. Eventually also 
architectural changes are made by 
adding / deleting components, 
processes or signals. 

• Any code which changed the initial 
architecture requires a reverse 
operation which generates a block 
diagram from a HDL description. 

 
The advantages of this approach are: 
• A graphical description of the 

architecture is more comprehensive than 
a textual (HDL) description. 

• The graphical description must be always 
consistent with the HDL code. 

• Writing of HDL code is reduced to 
describing the real functionality. No 
redundant code writing is required. In 
VHDL for example all component 
declarations and -instantiations are added 
automatically. 

• Consistent signal names and data types 
are forced. 

• Errors due to semantic differences in 
simulation and synthesis are suppressed 
by the automatic generation of process 
sensitivity lists. 

 
In this paper we describe the first step of this 
project, i.e. the code frame generator. In 
contrast to other commercial approaches we 
used MS Visio 2003 for schematic entry due to 
the following reasons: 
• A graphical representation of the RTL-

objects can be easily defined. 
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• The RTL-objects can carry attributes 
which describe their interfaces and 
behaviour. 

• Object attributes which are embedded in  
Visio files can be easily processed to 
generate a netlist. This is supported by 
Visio Basic for Applications (VBA) 
programs. 

• MS-Visio 2003 is widely used and 
requires no special knowledge if object 
modifications are required. 

 
The netlist which has been generated by a VBA 
program can be converted to the HDL code 
frame by using a HDL-specific application 
program. Fig. 1 shows the workflow with the 
Visio2003 based code frame generator. 
 

 

Figure 1. Workflow with the HDL code 
frame generator: Symbols are taken from 
the MS-Visio HDL-stencil library (1). They 
are placed and connected on a diagram 
sheet (2). Finally the code frame is being 
generated automatically (3). 

2. Tools in the design process 

A ShapeSheet is a textual spreadsheet behind 
the graphical view of every Visio drawing [3]. 
This sheet contains all drawing information 
that each shape comprises. The ShapeSheet 
consists of sections and each section includes 
multiple rows. Each row of every section can 
contain formulas or absolute values just like 
the cells of a spreadsheet. ShapeSheet 
programming is used for the realisation of the 
context menus for most of the RTL symbols[4]. 
The hardware designer can select and modify 
one or more attributes while creating his RTL 
block diagram. 
These features of Visio 2003 enable the initial 
design flow which is shown in Fig.2.: 
Partitioning of the hardware structure down to 

individual processes is not done with a HDL 
editor but graphically. A HDL code frame is 
generated automatically. As also shown in Fig. 
2. the functionality of the digital hardware is 
implemented later using a HDL text editor. 
If the design process requires architecture 
modifications they are most probably done by a 
modification of the HDL code. So there is 
demand for additional tools which perform 
HDL-code parsing, graphical object generation 
and intelligent placement and wiring of 
graphical objects (see Fig. 3). 
 

RTL-
stencil

RTL block 
diagram

VHDL
code

VHDL
code frame

Simply drag and drop 
RTL symbols onto the 

RTL block diagram

I have to describe the 
hardware functionality 

using a standard HDL text 
editor

*.vss *.vsd *.vhd *.vhd

VHDL code
frame generation

initial partitioning

functionality 
implementation

RTL symbol 
placement

 

Figure 2. The initial partitioning of 
architectural elements uses the code frame 
generator on the basis of Visio 2003. 

 

code
parsing

VHDL synthesis

architecture
modification?

graphical
placement

functionality 
implementation

RTL symbol 
placement

VHDL code
frame generation

 

Figure 3. Architecture modifications in the 
HDL code require additional code parsing 
and graphical placement tools. 

In our approach a complete RTL design can be 
described in a single Visio 2003 design file 
(*.vsd). In this design each drawing page 
corresponds to an individual module / entity. 
The RTL block diagram is generated by 
dragging shapes from an RTL-stencil library 
(*.vss) onto the drawing page. The stencil 
contains a set of MasterShapes that can be 
simply dragged and dropped into the RTL 
block diagram. Those shapes are called 
SmartShapes because for example they can 
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carry information where to connect with each 
other [3]. They may have different data types 
and contain other smarts. All SmartShapes 
which are defined in the RTL-library consist of 
simplified graphical elements to guarantee easy 
recognition. Their attributes are programmed 
with user friendly behavior which eases the 
RTL design process. 
The netlist module which is shown in Fig. 2 
uses the automation interface of the Microsoft 
Visio object model. This module represents the 
objects and methods that the Visio engine 
initialises via automation and describes how 
the objects are related to each other. The 
Microsoft Visual Basic for Applications (VBA) 
code of the netlist module runs within an 
instance of Visio and accesses the objects it 
requires. The netlist module analyses the entire 
block diagram of an entity. This analysis 
includes mapping of connected signals and 
components into a textual netlist file (*.txt). 
The mapping embeds also the attributes of the 
ShapeSheet. 
The generic netlist is used as an internal 
interface to transfer connection information 
between the netlist generator module and the 
VHDL code frame generator module. The 
structure of the netlist allows easy extension of 
the code frame generator to other HDL 
languages. 

3. The code frame generator 

Although the concept allows support of more 
advanced HDLs like SystemC the actual 
version only generates VHDL code. The 
VHDL code frame generator module is 
implemented as a Win32 console application in 
object oriented C++ [8]. It imports the netlist 
information via program arguments and 
generates the VHDL code frame as output. 
Each RTL symbol group belongs to C++ 
methods in agreement with the VHDL syntax 
generation. The code frame generator uses 
standard C/C++ libraries only in order to be 
flexible with future requirements and to be able 
to implement the code with different C/C++ 
compilers. 

The VHDL code frame generator module will 
be invoked for individual components after 
simply selecting the corresponding RTL-sheet 
in the design and pressing a predefined hotkey 
in Visio. The VHDL file will be named 
automatically with the entity name of the sheet. 
Presently the VHDL generator produces a code 
frame with the following information: 
 
• Entity declaration with I/O port 

information and inheritance of port-
names to internal signals. 

• Local signal and bus declarations with 
data type assignment. 

• Component declarations and 
instantiations with port map assignments. 

• Clocked processes with appropriate 
sensitivity list. 

• Combinational processes with 
appropriate sensitivity list. 

• Concurrent VHDL signal assignments. 
• Automatic wiring of a predefined clock- 

and reset signal within a single 
component. 

 

4. The demonstrator: A PCM31 framer core 

A Framer is a device used to align or 
synchronise to an embedded framing pattern in 
a serial bit stream. Once synchronised and data 
fields are properly aligned, overhead bits for 
alarms, performance monitoring or embedded 
signalling may be extracted and processed. The 
designed PCM31 framer core is used as a 
demonstrator for the code frame approach. It 
implements ITU recommendations G.703 [1] 
and G.704 [2]: A flexible framer core can be 
used for multiplexing a PCM stream at 2048 
kHz for n x 64 Kbps applications where n is a 
scaling parameter which is set according to the 
user defined application (see Fig. 4). 
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Figure 4. Description of the PCM31 
standard according to G.704 [2] 

From Fig 5 it can be seen that the FPGA 
implementation of the PCM31 core uses three 
clock domains. They use a common DPLL to 
provide a synchronous transmit clock (TX 
clock). The external system clock must be 
32.768 MHz to ensure proper operation of the 
DPLL. Internal FIFO interfaces run at different 
speed (with independent read and write clocks) 
and they are used to transfer data between the 
three different clock domains. 
 

system clock
(32.768 MHz)

RX clock
(64 kHz to 1984 kHz)

TX clock
(2048 kHz) 

RX data TX data

DPLL

FIFO PCM31 
module FIFO

backplane
interface

line
interface

 

Figure 5. Clock domains of the PCM31 
framer. 

Fig. 6. shows the top-level architecture of the 
design as defined by the RTL-stencil library. It 
specifically shows the component instantiation 
of a 3-State Phase Frequency Detector (PFD) 
in the RTL block diagram of the DPLL. The 
task of the PFD is the detection of differences 
in phase and frequency between the reference 
and DCO (Digital Controlled Oscillator) clock. 
The output of this component / module are the 
PFD_UP and PFD_DN signals. Fig. 6 also 
shows a screenshot of the automatically 
generated VHDL code frame in the background. 

5. Conclusions 

As the first step towards a "live" graphical 
documentation of RTL-architectures we have 
developed a code frame generator using Visio 
2003. This approach has been chosen in order 
to support a cheap solution which is easy to use, 
has simple interfaces and can be easily 
modified. We have shown that the use of the 
code frame generator is less error prone than a 
purely HDL approach because it not only 
relieves the designer from writing numerous 
redundant VHDL code lines but also forces the 
designers to use consistent names and data 
types. Finally the design was inherently free 
from any errors due to different simulation and 
synthesis semantics because the sensitivity list 
of processes were created automatically in 
agreement with the VHDL RTL synthesis 
standard [13].  
 

Component instantiation of the 
3-State Phase Frequency Detector in the 

RTL block diagram of the DPLL

RTL block diagram of the 
3-State Phase Frequency Detector

VHDL code frame 
of the 

3-State Phase 
Frequency Detector

 

Figure 6. Top level architecture diagram of 
the PCM31 framer as drawn in Visio 2003 
(lower right). Component instantiation of 
the Phase Frequency Detector (upper 
right) and automatically generated VHDL 
code frame which shows the PFD entity 
definition (background). 
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The underlying concept can be easily extended 
to more advanced HDLs like SystemC which 
have large similarities with VHDL on RT level 
[11] [12]. 
The promising results of this first project 
milestone gives large motivation for the second 
part of the project which we will start in the 
near future: I.e. the design of a program which 
reads and interprets the VHDL code and 
automatically generates corresponding 
ShapeSheets for Visio 2003. 
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Abstract

This article presents the “DSPuva16” processor,
specifically developed for Power Electronics
applications. As its name indicates, this is a Digital
Signal Processor oriented to calculation: it operates
using fixed-point 16-bit numbers extending its precision
up to 24 bits. The MAC operations (rD = rD ± rS * rT)
are made regularly using only one instruction cycle, that
requires four clock cycles. The processor has been
physically tested on FPGA working at 40 MHz.

The application of this processor in Power
Electronics (distributed generation systems, AC motor
control, active filters) is quite natural, because all
working magnitudes are limited in range. The use of
several processors is also possible: each one would
execute a different regulation loop, with working cycles
between 5 and 100 microseconds.

1. Introduction

The first devices used to control electronic power
converters (rectifiers, inverters) were analog circuits
based on op-amps [7]. When first microprocessors
appeared, they were immediately implemented in the
control circuits [5] replacing their equivalent analog ones
because of their inherent advantages of stability, noise
immunity and facility of adjustment. Later we saw the
rise of digital signal processors, with greater calculation
capacity, which allowed a more precise control and to
reach remarkably superior performances [2].

At the moment we are in a point in which, clearly, a
processor alone does not suffices for controlling all the
system: lots of regulation loops must be controlled, some
of them working at high frequency (near the
microsecond) [6]. In addition, other tasks such as remote
communication or user interface must be attended with
increasing behavior demands.

The obvious solution is to use several processors to
take care of these diverse tasks. It is not only cheaper
and easier to control them that way instead of using only

one high performance processor, but also that is the only
way to guarantee control in real time.

What happens if the possibility of connecting several
processors in a printed circuit board is evaluated?
Immediately we get involved in new problems: a high
number of nets are required for the high data flow
between processors, because the standard serial channels
are not usually enough. So additional intermediate
elements must be added to accommodate the different
data flows. Besides, in general, all used components
quickly become obsolete, which forces to redesign all
systems once and again. All of these topics lead
inevitably to elevated NRE costs.

The panorama is completely different if soft
processors are used. Possibly their performance is not as
good as their counterpart hard ones, but when they
become all integrated in a chip (FPGA or ASIC) all the
previous problems disappear immediately.
Communication between processors is flexible and
immediate using dual-port synchronous memories [4],
whose use absolutely does not affect the cost of the
equipment [1]. Obsolescence is null since previous
designs can be synthesized again, targeting new devices,
which will be able to work at higher frequencies.

The main limitation we have, specially in the FPGA
domain, is the impossibility of using floating-point units,
because their use is absolutely prohibitive if they are not
hard-wired on the chip. Nevertheless, it is also possible
and it is not excessively complex the use of fixed-point
arithmetic. All magnitudes (voltages, currents, gains of
regulators, etc.) are naturally or artificially limited by
working restrictions [6].

Therefore, in this applications field it would be
normal the use of several fixed-point digital signal
processors and one or two general purpose processors to
take care of communications and user attention. Their
communication inside FPGA or ASIC devices is not
expensive: there are no restrictions in the amount of
communication lines, because they are all internal. The
bandwidth  is not a problem either, because dual-port
memories may work at system frequency and use very
low space.
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This article presents a fixed-point DSP with enough
performance and small size, prepared to handle a
reduced set of variables. It has been designed thinking
that it could be better to use several small and connected
processors solving different loosely coupled tasks, than a
huge processor doing all the work. The latter would
force designers to use a considerably greater clock
frequency and a complicated interruption scheme to
attend all the real time demands. On the other hand,
several processors may execute different regulation
loops employing different working periods, but they are
easily coupled as seen on section 7 and demonstrated in
[1].

2. Main features of the DSPuva16

The DSPuva16 is a 16-bit fixed-point digital signal
processor that extends its precision up to 24 bits. It uses
what is called Harvard architecture, because it gets
instructions using dedicated buses to its program
memory (whose size varies between 256x16 and 4Kx16,
according to the processor model) and exchanges data
(up to 256 synchronous 16-bits ports) using other buses.

Figure 1. External connections of the DSP.

Its basic operation is the multiplication with
accumulation, either positive or negative (rD = rD ± rS *
rT), that it regularly executes in an instruction cycle.
This one is always made using four clock cycles, as it
corresponds to its RISC architecture.

It has 16 registers of 24 bits, denominated from ‘r0’ to
‘r15’, that can be used in any operation except for ‘r0’,
which cannot be used as operand. Indeed this
characteristic allows us to considerably extend the
possibilities of the processor without adding excessive
complexity to the internal design. When the ‘r0’
codification is found in the location of ‘rS’, its value is
immediately annulled, and when it is found in the
position of ‘rT’, its value is replaced by a 16-bit constant
that is taken from the program memory. No additional
delay is introduced when a constant is called.

This scheme extends, for example, a basic processor
instruction as it is the sum (rD = rS + rT). It allows

operating with an immediate constant (rD = rS + K) and
making direct assignments to any register (rD = 0 + rT;
rD = 0 + K). This property is widely used in the
programming of digital filters, whose general structure
is:

...)2(·)(·...)(·)(·)( 2110 +−+−++−+= TtydTtydTtxctxcty

where all coefficients are constant.
External accesses are made through 256 synchronous

ports (each access is completed in only one clock cycle)
with direct addressing: pN = rS; rD = pM; where N and
M are any value between 0 and 255. It could be thought
that this addressing mode is less flexible than the indirect
one, but in the application field of this processor this
does not mean any limitation: it is usual that ports
correspond with memory positions used to extend the
processor spartan storage capacity, or they may connect
with physical devices that allow reading or generating
analog measures. Anyway, indirect addressing is always
possible using an external pointer, integrated in the same
chip; we must remember that we are designing within an
FPGA or ASIC.

The control of subroutines is similar to other
processors, but the user must dedicate a register (usually
‘r0’) to keep safe the returning address; later on, the
same register can be used to return to the calling point. If
nested subroutines are desired, either another register or
an external LIFO stack should be used.

3. The instruction set

The instruction set of the DSPuva16, as shown in the
table 1, is very simple. It consists only of 17 different
instructions, but it reaches a remarkable flexibility
thanks to how it uses the codification corresponding to
‘r0’, as it has been explained in the previous section.

Table 1. DSPuva16 instruction set.

Opcode Mnemonic Operation

0000 aaaa aaaa dddd call (rD) addr Absolute jump

0001 0xxx xxxx ssss ret (rS) Return (pc = rS)

0001 1fff aaaa aaaa jpFlag addr Relative jump

0010 dddd nnnn nnnn rD = pN Read from port

0011 ssss nnnn nnnn pN = rS Write to port

0100 dddd ssss tttt rD = rS * rT Normal product

0101 dddd ssss tttt rD = rS x rT Shifter product

0110 dddd ssss tttt rD = rD + rS * rT Positive MAC

0111 dddd ssss tttt rD = rD – rS * rT Negative MAC

1000 xfff dddd tttt ifFlag rD =  rT Cond. assignment

1001 xfff dddd tttt ifFlag rD = –rT Cond. assignment

1010 dddd ssss tttt rD = rS + rT Addition

1011 dddd ssss tttt rD = rS – rT Subtraction
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1100 dddd ssss tttt rD = rS and rT Logic AND

1101 dddd ssss tttt rD = rS  or  rT Logic OR

1110 dddd ssss tttt rD = rS nor rT Logic NOR

1111 dddd ssss tttt rD = rS xor rT Logic XOR
Whenever a subroutine is called the returning address

is kept in a register, usually ‘r0’. The instruction code
dedicates only eight bits to the destination address, so it
seems that program length must be limited to only 256
instructions. This is more than enough for many cases,
because it is preferred to use several processors
executing different regulation loop, so programs are
usually short. Anyway, the available program length has
been extended using a simple and powerful mechanism:
there are up to five different models for this processor
(named ‘A’, ‘B’, ‘C’, ‘D’ and ‘E’), with programs of up
to 256, 512, 1K, 2K and 4K instructions. When an
absolute jump takes place (with the instruction ‘call’), it
is only possible to jump to even positions when the ‘B’
model is used, only to one of each four if the model is
‘C’, and so on. That means that all subroutines must be
correctly aligned in the program memory, using the
“#align” assembler directive. The processor model may
be specified using the “#model” directive.

Conditional jumps are always relative, just to avoid
the alignment problem. Like many other processors,
these jumps can be made to near positions (in a range of
±128 instructions, more or less), and the typical
conditions are the usual ones: ‘eq’, ‘ne’, ‘gt’, ‘ge’, ‘lt’,
‘le’, ‘v’ and ‘nv’. The same conditions can be used to
make conditional allocations, as happens in “rN = rN; iflt
rN = –rN”, that calculates the absolute value of a number
kept in a register.

This processor only use the direct addressing mode to
read (rD = pN) and to write (pN = rS) on external ports.
Indirect addressing is available using external pointers
but they are not usually needed in power electronics
applications, where only a reduced set of variables is
managed and algorithms are executed regularly over the
same data set. Physical accesses are synchronous and
they are executed in only one clock cycle. This does not
mean any limitation either, because external resources
are implemented with the same technology, in the same
chip, and therefore they can work at the same clock
frequency.

Instructions that make products, additions,
subtractions and logic operations, have a regular
structure that address two operands (any register except
‘r0’) and a destination register (any one). As said before,
the possibilities of the instruction set have been extended
allowing the cancellation of the first operand (‘rS’) and
the substitution of the second (‘rT’) by a 16-bit constant
(‘K’). In this way, immediate logic masks can be applied
to (rD = rS and/or K), the content of a register can be
inverted (rD = 0 nor rT) and any register can be
initialized with a constant (rD = 0 + K).

The most important operation of this processor, and
its reason of being, is the fixed-point product, with or
without accumulation. In general, two 16-bit normalized1

operands are taken and a 24-bit normalized result is
produced. All accumulations, additions and subtractions
are made with a resolution of 24 bits.

Another kind of product is also available, represented
as “rD = rS x rT”, which allows to make displacements.
The second operand is interpreted in <8.8> format, so
that any value can be multiplied by 1/128, 1/64..., 1/4,
1/2, 2, 4..., 32, 64, in addition to other intermediate
values, resulting in the desired adjustment.

Other typical instructions have been implemented
with “macros” recognized by the assembly language.
The ‘nop’ instruction, that does nothing, is replaced by
“r1 = r1 or r1” and the newly created ‘break’ instruction,
which allows setting simulator break-points, is replaced
by “r1 = r1 and r1”, doing nothing too.

4. The instruction cycle

As indicated above, the internal architecture of this
processor is RISC like. That means that it executes all of
its instructions regularly, in four clock cycles
particularly. Although, from the user’s point of view, all
instructions are executed in four cycles, certain
overlapping between instructions actually exists, and in
fact many instructions are finished when already the
following one is being executed. In any case, only one
latency effect must be considered, and it will be
explained later.

All instructions begin reading their 16-bit operation
code from the program memory, dedicating to this
function two clock cycles. After that, they use other two
cycles to read the operands, ‘rS’ first and then ‘rT’. The
latter is replaced by a constant read from the program
memory if ‘r0’ is referenced. Finally, in the first clock
cycle of the next instruction, the required operation is
made and the result is stored in ‘rD’.

1) It sends the PC to the program memory.
2) It gathers the operation code on IR.
3) The rS register is read to an ‘ACC’ register.
4) ‘RegT’ and ‘RegS’ get the rT and ACC values.
1') The processor executes rD = RegS op RegT.

The program counter ‘PC’ is increased during the
phase ‘2’ and, if a constant is read from the memory,
also during the phase ‘4’. If the operation requires a
jump (‘call’, ‘ret’, ‘jpFlag’), the program counter is
modified during the phase ‘4’.

Using this simple scheme all instruction except
products can be executed. As we’ll see in 5.2 section, the
internal multiplier of this processor requires four clock

                                                          
1 Normalized values are always in the [-1,+1) range. When 16 bits

are used to represent these values the highest value can be
0.99996948 and its format is named <1.15>: one integer bit, which
contains the sign, and fifteen fractional bits.
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cycles to complete its operation, thus requiring a much
smaller size2 and it does not deteriorate the processor
working frequency. In order to carry out the products,
with or without accumulation, four clock cycles of the
next instruction and another two ones from the following
one are used:

1) It sends the PC to the program memory.
2) It gathers the operation code on IR.
3) The rS register is read to an ‘ACC’ register.
4) ‘RegT’ and ‘RegS’ get the rT and ACC values.
1') First stage of the MAC using RegS and RegT.
2') Second stage of the MAC using RegS and RegT.
3') Third stage of the MAC using RegS and RegT.
4') Fourth stage of the MAC using RegS and RegT.
1") One cycle because of multiplier segmentation.
2") Reads ‘rD’ and accumulates the MAC result.

In this way a latency is introduced and programmers
ought to consider it: the result of a product is not
available for general use in the immediately following
instruction, but in the later one. However, when it is used
for accumulation the latency is avoided, because that
operation is carried out a cycle later too. This issue can
be understand with the following example:

r1 = 0.27 // A value is allocated on r1
r2 = r1 + 0.32 // Right done, because r1 is available
r3 = r1 * r2 // Correct product between r1 and r2
r3 = r3 + r2 * r2// This use of r3 is correct
nop // We must wait for the result of r3
p4 = r3 // Now, but not before, r3 is r1*r2+r2*r2
Therefore, when the result of a product must be used,

except when it is made to accumulate on a register, it is
necessary to add a ‘nop’ or another instruction after the
multiplication, in order to give time to the result to be
calculated. This one is the only latency that introduces
the segmented architecture of this processor.

5. Internal architecture

The DSPuva16 has been designed using Verilog and
its based, as schematically shown in figure 2, on a RISC
architecture that uses two 24-bit buses, one for operands
and another one for results.

Figure 2. Internal architecture of the DSPuva16.

                                                          
2 As the calculation of products is divided in four stages the circuit

can be reduced to a quarter, approximately. Even so, the multiplier
needs about 250 basic cells, that is a half of the processor.

The program counter (‘PC’) has 8~12 bits, depending
on the chosen processor model. The operation codes are
received through ‘IR’ and they always have 16 bits.
Using the registered value of IR a segmented instruction
decoder activates each part of the circuit until
completing each operation.

The bank of registers, that maintain the values of  ‘r0’
to ‘r15’, is a 16x24 memory with synchronous writings
and asynchronous reading [4]. It requires only 24 basic
cells in some FPGA devices, which is equivalent to 5%
of all the processor.

The ALU is built using three different units that
realize logic operations, arithmetic ones and products.
After each instruction, the zero (‘Z’), sign (‘S’) and
overflow (‘V’) flags are updated, which allows carrying
out the corresponding allocations and conditional jumps.
It must be pointed out that this processor does not need
the carry flag (‘C’), because it is not necessary for single
precision operations.

Two different buses are used to interchange data with
external elements, one to send data and another one to
receive them. This method avoids additional tri-state
buffers that, indeed, are not necessary within a chip.

5.1. Processor based on two internal buses
Many RISC processors have three or more buses at

the moment, which even allow to realize all the
instruction operations in only one clock cycle.

Since this processor needs four clock cycles to
complete each product, and that the use of a third bus
would lead to use dual-port memories for the bank of
registers3, it has been chosen to dedicate only one bus for
the operands. Through this bus it can be seen the values
of ‘rD’ during phases ‘1’ and ‘2’ and then it is left for
‘rS’ and ‘rT’ during the last two phases of each
instruction cycle.

The bus for results is dedicated to collect the output
of all ALUs and other sources: the input of external data
when reading from a port and the value of the program
counter when a subroutine is called, to keep the returning
address in a register.

5.2. Four step multiplier
The central operation of this processor is the

multiplication. It operates on two 16-bit values and
generates a 32-bit result. Only 24 bits are available
finally. In general the operands are in <1.15> format and
the result is in <1.23> format.

In order to build the multiplier it has been decided to
divide the operation in four stages4, multiplying in each
step a 16-bit operand by another one of only four bits,

                                                          
3 These memories allow two simultaneous asynchronous readings

and one synchronous write when the clock cycle is finishing, but
they occupy twice the space of the memories used by this
processor.

4 Not all FPGA devices do have embedded multipliers.
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emitting a 20-bit intermediate result. This operation can
be made with only four adders and an intermediate
segmentation register, as shown simplified in figure 3. If
we had tried to operate in a single clock cycle we would
have needed 15 adders and the latency would have been
greater, because of the segmentation registers.

Figure 3. Segmented structure of the multiplier.

6. Development environment

The integrated development environment (IDE) of
this processor fully covers its needs, at least while it is
applied to the control of power electronics converters.
Typical programs executed by the DSPuva16 processor
usually have between 50 and 1.000 instructions, which
correspond with typical working cycles of 5 to 100
microsecond. Therefore, programming in assembly
language is sufficient, and the syntax used by the
instructions is quite comfortable, as it has possibly been
appreciated above.

Figure 4. The IDE for the DSPuva16.

The IDEuva16 program is executed in graphics mode5

and it incorporates a simple text editor, a complete
C-like assembler with preprocessor, a simulator and a
connection to the physical processor to control it in
emulator mode using a suitable interface. Figure 4
displays the result of a small simulation in which the
processor calculates “r2 = sin(r1); r3 = cos(r1)” for “r1 =
0.4·p”. It needs 14.0 microseconds to complete this
operation using a Cordic technique and working at 40
MHz (10 MIPS).

After editing and saving the assembler source code,
where directives such as “#include”, “#define” and
“#ifdef” can be used, the source may be assembled by
pressing a button. The process takes few seconds. Then,
a step-by-step simulation or a simulation until a ‘break’
instruction can be done. Thousands or even hundreds of
thousands of instructions can be executed in a single
step, because simulation times are usually several or tens
of milliseconds. The completion of each process on a
typical DC/AC application takes few minutes using a
3 GHz computer. During simulations the state of the
processor can be seen and intermediate results can be
graphically displayed in a dynamic window.

Figure 5. Graphics output of simulations.

When algorithms and assembler codes are stable
enough, designers can use the “emulator mode”: a real
DSPuva16 is synthesized and implemented on an FPGA
that is connected to the computer through the parallel
port in SPP or EPP mode. The own IDE transfers to the
DSP’s program memory the result of the assembly, and
following its state of reset/run is controlled. When the
user stops the processor, the IDE automatically captures
the intermediate or final results emitted by the processor
through several of its ports, displaying them on the
screen of the computer, as can be seen on figure 6.

Figure 6. Graphics output of emulations.

                                                          
5 Currently English and Spanish versions on Win95/98/2K/XP are

available. A Linux version will be released very soon.
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The main difference between the simulation and the
emulation is that the former is made completely in the
computer, whereas the latter is executed in real or almost
real time6 on the physical equipment, implemented at the
moment in a Xilinx Spartan-II FPGA7.

7. Multi-processor systems

The main advantage of this DSP is its reduced size: it
only needs about 12% of a 200K-gates FPGA. That
means that, although a DSP alone cannot make the entire
control task, is not too expensive to add others until the
desired performance is reached. In a photovoltaic power
application that is under development, and where this
DSP is used for control, it is necessary to synchronize
the equipment with the mains and to regulate the active
and reactive powers; this tasks are covered by a first
DSP with a working cycle of 25 microseconds. It is also
necessary to control every 5 microseconds the DC/AC
output currents and the commutation frequency of the
equipment; for this task we have synthesized a second
DSP. At the moment, the behaviour of the electrical
circuit has been emulated every microsecond by a third
DSP that operates in 60 microseconds. All this digital
circuit requires about 100K gates (50%) of the FPGA.

For the communication between processors in this
applications we use dual port synchronous memories [4]:
a DSP can read and write at any time using one port,
while another DSP can read, but not write, using the
other one. For them, all accesses are as we have seen:
direct accesses to ports. Using these memories, which
occupy very little space in an FPGA, it is not necessary
to worry about conflicts when sharing resources: both
processors can use the common memory at any time. It
is not necessary to synchronize transfers or signalling
them either, because the bandwidth of involved
magnitudes is far below the working cycle of these
processors, reason why it does not matter that read
values by the destination processor correspond with
present values or previous ones, emitted by another DSP.

8. Conclusions

This article has shown how the DSPuva16 processor
is and how, in spite of its limited features, it can easily
solve complex problems of control in real time, simply

                                                          
6 Before beginning with the power tests on the real converter its

better to physically prove the control of DSPs using an emulated
electrical plant. This task can be carried out using another DSP,
which calculates how the electrical circuit would behave.
Nevertheless, its work cycle is usually much greater than the others,
which forces to add additional delays at the others so that they must
wait, loosing the pure real time characteristics. Anyway, FPGA
emulation finishes in seconds what PC simulation takes several
minutes [1].

7 The results of this article have been proven on a Xilinx XC2S200-
PQ208 working at 40 MHz.

adding as many processors as needed, but always within
a chip, usually a FPGA.

Its main limitation is that it operates with few data
and using fixed-point values, but since we have seen
these topics do not mean any problem in the control of
power electronic converters, because all physical
magnitudes are easy to normalize and it is not difficult to
keep them in a safe range, except during failure
situations that cause the shutdown of the equipment and
the stop of control.

9. Acknowledgments

Our thanks to Carmen Cascón [3] and Juan del Barrio
[1], who work hard to develop the IDE of this processor
and contribute to the first application of this DSP in the
control of a photovoltaic power generation system.
Thanks also to Le Duc Hung, from the University of
Natural Sciences of Ho Chi Minh City (Vietnam) for his
comments and improvements on this processor.

References

[1] J. del Barrio, Desarrollo sobre FPGA de un Emulador de
una Planta de Microgeneración Eléctrica, Final Project
at the ETSII, University of Valladolid, Spain, 2004.

[2] B. K. Bose, Power Electronics and AC drives, Prentice-
Hall, Englewood Cliffs, New Jersey, 1986.

[3] C. Cascón, Diseño de un entorno de desarrollo para un
DSP en coma fija de 16/24 bits integrado en FPGA,
Final Project at the ETSII, University of Valladolid,
Spain, 2003.

[4] S. K. Knapp, “XC4000 Series Edge-Triggered and Dual-
Port RAM Capability”, Xilinx XAPP065, 1996.

[5] B. Norris, Electronic Power Control and Digital
Techniques (Texas Instruments Electronics Series),
McGraw-Hill, 1976.

[6] A. B. Rey, Control digital vectorial con sliding en fuente
de corriente para convertidores CC/CA trifásicos
conectados a red, Ph.D. Thesis, University of Valladolid,
Spain, 2000.

[7] J. Schaefer, Rectifier Circuits: Theory and Design, John
Wiley & Sons, Inc., Library of Congress Catalog Card
Number 65-12703, 1965.

24



 

 

 
Call for Academic/Industrial Papers, Exhibits and Tutorials for 

FPGAworld September 2006, Stockholm, Sweden 
 

The FPGAworld Conference addresses all aspects of digital and hardware/software system 
engineering on FPGA technology. It is a discussion and network forum for researchers and 

engineers working on industrial and research projects, state-of-the-art investigations, 
development, and applications.  

 
The vision is to be the leading industrial and academic conference in FPGA technology. 

Submission of Presentations 
The submissions should be in at least one of these sessions: 

• DESIGN METHODS - models and practices  
o Project methodology.  
o Design methods as Hardware/software co-design.  
o Modeling of different abstraction.  
o IP component designs.  
o Interface design: supporting modularity.  
o Integration - models and practices.  
o Verification and validation.  
o Board layout and verification.  
o Etc.  

• TOOLS  
o News  
o Design, modeling, implementation, verification and validation.  
o Instrumentation, monitoring, testing, debugging etc.  
o Synthesis, Compilers and languages.  
o Etc.  

• ARCHITECTURES  
o Platforms design, real-time operating systems, communication etc.  
o Multiprocessor Architecture.  
o Memory architectures.  
o Reconfigurable Architectures.  
o HW/SW Architecture.  
o Low power architectures.  
o Etc.  

• APPLICATIONS  
o Case studies from users in industry, academic and students will be high prioritised!  
o HW/SW Component presentation.  
o Prototyping.  
o Etc.  

• SURVEYS, TRENDS AND EDUCATION  
o History and surveys of reconfigurable logic.  
o Tutorials.  
o Student work and projects.  
o Etc.  

 
Please contact www.fpgaworld.com/conference 

 

25




