
Mälardalen University Press Dissertations
No.21

Data Management in Vehicle
Control-Systems

Dag Nyström

October 2005

Department of Computer Science and Electronics
Mälardalen University

Västerås, Sweden



Copyright c© Dag Nyström, 2005
E-mail: dag.nystrom@mdh.se
ISSN 1651-4238
ISBN 91-88834-97-2
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press



Abstract
As the complexity of vehicle control-systems increases, the amount of infor-
mation that these systems are intended to handle also increases. This thesis
provides concepts relating to real-time database management systems to be
used in such control-systems. By integrating a real-time database management
system into a vehicle control-system, data management on a higher level of
abstraction can be achieved.

Current database management concepts are not sufficient for use in ve-
hicles, and new concepts are necessary. A case-study at Volvo Construction
Equipment Components AB in Eskilstuna, Sweden presented in this thesis,
together with a survey of existing database platforms confirms this. The the-
sis specifically addresses data access issues by introducing; (i) a data access
method, denoted database pointers, which enables data in a real-time data-
base management system to be accessed efficiently. Database pointers, wh-
ich resemble regular pointers variables, permit individual data elements in the
database to be directly pointed out, without risking a violation of the database
integrity. (ii) two concurrency-control algorithms, denoted 2V-DBP and 2V-
DBP-SNAP which enable critical (hard real-time) and non-critical (soft real-
time) data accesses to co-exist, without blocking of the hard real-time data
accesses or risking unnecessary abortions of soft real-time data accesses. The
thesis shows that 2V-DBP significantly outperforms a standard real-time co-
ncurrency control algorithm both with respect to lower response-times and
minimized abortions. (iii) two concepts, denoted substitution and subscrip-
tion queries that enable service- and diagnostics-tools to stimulate and monitor
a control-system during run-time.

The concepts presented in this thesis form a basis on which a data ma-
nagement concept suitable for embedded real-time systems, such as vehicle
control-systems, can be built.





Swedish summary - Svensk sammanfattning
Ett modernt fordon är idag i princip helt styrt av inbyggda datorer. I takt
med att funktionaliteten i fordonen ökar, blir programvaran i dessa datorer
mer och mer komplex. Komplex programvara är svår och kostsam att kon-
struera. För att hantera denna komplexitet och underlätta konstruktion, sat-
sar nu industrin på att finna metoder för att konstruera dessa system på en
högre abstraktionsnivå. Dessa metoder syftar till att strukturera programvaran i
dess olika funktionella beståndsdelar, till exempel genom att använda så kallad
komponentbaserad programvaruutveckling. Men, dessa metoder är inte effek-
tiva vad gäller att hantera den ökande mängden information som följer med
den ökande funktionaliteten i systemen. Exempel på information som skall
hanteras är data från sensorer utspridda i bilen (temperaturer, tryck, varvtal
osv.), styrdata från föraren (t.ex. rattutslag och gaspådrag), parameterdata, och
loggdata som används för servicediagnostik. Denna information kan klassas
som säkerhetskritisk eftersom den används för att styra beteendet av fordonet.
På senare tid har dock mängden icke säkerhetskritisk information ökat, exem-
pelvis i bekvämlighetssystem som multimedia-, navigations- och passagerar-
ergonomisystem.

Denna avhandling syftar till att visa hur ett datahanteringssystem för inbyg-
gda system, till exempel fordonssystem, kan konstrueras. Genom att använda
ett realtidsdatabashanteringssystem för att lyfta upp datahanteringen på en hög-
re abstraktionsnivå kan fordonssystem tillåtas att hantera stora mängder infor-
mation på ett mycket enklare sätt än i nuvarande system. Ett sådant data-
hanteringssystem ger systemarkitekterna möjlighet att strukturera och mod-
ellera informationen på ett logiskt och överblickbart sätt. Informationen kan
sedan läsas och uppdateras genom standardiserade gränssnitt anpassade för
olika typer av funktionalitet. Avhandlingen behandlar specifikt problemet hur
information i databasen, med hjälp av en concurrency-control algoritm, skall
kunna delas av både säkerhetskritiska och icke säkerhetskritiska systemfunk-
tioner i fordonet. Vidare avhandlas hur information kan distribueras både mel-
lan olika datorsystem i fordonet, men också till diagnostik- och serviceverktyg
som kan kopplas in i fordonet.





TO INFINITY AND BEYOND.

Buzz Lightyear - Space ranger





Acknowledgements
Finishing a journey like this requires the support and inspiration of many people. In
my case I have been blessed with a whole bunch of great friends who deserves, at
least, many warm thanks. Above all, I sincerely would like to thank my supervisors
at the department, Professor Christer Norström and Associate Professor Mikael Nolin.
Christer has always been a great source of inspiration, both on a technical and a personal
level. I owe you big time! Mikael, which joined the research group sometime after my
licentiate degree, has an astonishing ability to detect weaknesses in otherwise ”perfect”
solutions. It’s a pleasure writing papers with you.

I would also like to thank the Linköping part of the COMET-project, Dr. Jörgen
Hansson whose long experience in real-time database management has been a good
source of knowledge. Last, but not least, Aleksandra Tesanovic, co-researcher and
good friend. We have had many interesting discussions over the years. In the end, our
research partnership has really shown that sometimes one plus one indeed is three.

My gratitude goes to the Swedish foundation for strategic research (both through
the ARTES programme and the SAVE project) for funding this work. A special thanks
to Professor Hans Hansson who, apart from being a good friend, is and has been highly
devoted to these projects.

The cooperation of industry has been a vital part of this project and I would like
to thank the staff at Volvo Construction Equipment Components AB, in Eskilstuna,
Sweden, for the two successful weeks that we spent there. A special thanks to Nils-
Erik Bånkestad for his support during the entire project. Furthermore, many thanks to
Bengt Gunne at Upright Database Technology, Uppsala Sweden, for sharing his deep
knowledge of embedded databases with us.

Life at the department would not be the same without my dear colleagues at the
department, many thanks to you all. I would specially want to mention a few persons:
Thanks to Jukka Mäki-Turja who, apart from being my personal ”Salubrin-style” golf-
teacher1, is a really good friend of mine. We sure have had a few high moments through
the years, not to mention a few good beers. Many thanks go to Thomas Nolte who has
been a good friend and companion for many years now. After a few years of working
in separate areas during our research, it sure felt great finishing up with a joint paper. I
wish you the best of luck. Thanks also to Daniel Sundmark, Anders Pettersson, Jonas
Neander, Ewa Hansen, Prof. Ivica Crnkovic, Harriet Ekwall, Monica Wasell and Malin
Ekholm for many good laughs. I must also mention Kristian Sandström and Anders
Wall (the old guard of Ph.D. students at the department) which were good inspirations
when I started as a Ph.D. student.

Finally, tons of love goes to my wife Jenny and my daughter Liv for putting up with
me for all these years. Your love and support is invaluable.

Dag Nyström, Västerås in October 2005

1Salubrin - a solution that relieve minor skin irritations such as sunburn and insect bites, and
whose slogan is ”It smells, it stings, but it helps”





Contents

I Thesis 1

1 Introduction 3
1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . 4
1.2 The research work and method . . . . . . . . . . . . . . . . . 5
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background and related work 7
2.1 Vehicle control-systems . . . . . . . . . . . . . . . . . . . . . 7
2.2 Database management systems . . . . . . . . . . . . . . . . . 11

2.2.1 Database transactions . . . . . . . . . . . . . . . . . . 12
2.3 Real-time database management systems . . . . . . . . . . . . 16

2.3.1 Real-time data . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Database transaction processing . . . . . . . . . . . . 18

2.4 Embedded database management systems . . . . . . . . . . . 24
2.5 Real-time and embedded databases in practice . . . . . . . . . 25
2.6 Commercial embedded platforms: a survey . . . . . . . . . . 26

2.6.1 Databases investigated . . . . . . . . . . . . . . . . . 26
2.6.2 Survey criteria . . . . . . . . . . . . . . . . . . . . . 26
2.6.3 DBMS model and memory requirements . . . . . . . 28
2.6.4 Data model . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.5 Concurrency-control . . . . . . . . . . . . . . . . . . 30

2.7 Real-time research platforms: a survey . . . . . . . . . . . . . 31
2.7.1 Platforms investigated . . . . . . . . . . . . . . . . . 32
2.7.2 DeeDS . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7.3 RODAIN . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7.4 ARTS-RTDB . . . . . . . . . . . . . . . . . . . . . . 35

2.8 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xi



xii CONTENTS

3 Thesis contributions 37
3.1 Research contributions . . . . . . . . . . . . . . . . . . . . . 37
3.2 Paper A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Paper B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Paper C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Paper D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 Paper E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Conclusions and future work 43
4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

II Included papers 55

5 Paper A: Data Management Issues in Vehicle Control Systems: a
Case Study 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 The Case Study . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Rubus . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.2 VECU . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.3 IECU . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.4 Data Management Requirements . . . . . . . . . . . . 66

5.3 Modeling the System to Support a RTDB . . . . . . . . . . . 69
5.3.1 Data Management Implications . . . . . . . . . . . . 71
5.3.2 DBMS Design Implications . . . . . . . . . . . . . . 73
5.3.3 Mapping Data Requirements to Existing Database

Platforms . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Paper B: COMET: A Component-Based Real-Time Database for
Automotive Systems 79
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 The COMET development suit . . . . . . . . . . . . . . . . . 83
6.3 The COMET key concepts . . . . . . . . . . . . . . . . . . . 84

6.3.1 Aspects and components in RTDBMSs . . . . . . . . 85
6.3.2 The COMET RTDBMS platform . . . . . . . . . . . 86
6.3.3 A configuration example . . . . . . . . . . . . . . . . 90

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



CONTENTS xiii

7 Paper C: Database Pointers: Efficient and Predictable Data Access
in Real-Time Control-Systems 99
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . 104
7.2.2 System Model . . . . . . . . . . . . . . . . . . . . . 105
7.2.3 Application and task model . . . . . . . . . . . . . . 105
7.2.4 Relational Query Processing . . . . . . . . . . . . . . 106
7.2.5 Transaction models . . . . . . . . . . . . . . . . . . . 107

7.3 Database pointers with pessimistic concurrency control . . . . 108
7.3.1 The Database Pointer Interface . . . . . . . . . . . . . 110
7.3.2 The DBPointer Data Type . . . . . . . . . . . . . . 110
7.3.3 The Data Pointer Entry . . . . . . . . . . . . . . . . . 111
7.3.4 The Database Pointer Flag . . . . . . . . . . . . . . . 112

7.4 The 2-version database pointer algorithm (2V-DBP) . . . . . . 112
7.4.1 Soft transactions . . . . . . . . . . . . . . . . . . . . 113
7.4.2 Hard transactions . . . . . . . . . . . . . . . . . . . . 114
7.4.3 Transaction conflicts . . . . . . . . . . . . . . . . . . 114
7.4.4 Transaction serialization and relaxation . . . . . . . . 115
7.4.5 Realizing 2V-DBP using versioning . . . . . . . . . . 116
7.4.6 Formal verification of the versioning algorithm . . . . 119

7.5 Performance evaluation . . . . . . . . . . . . . . . . . . . . . 125
7.5.1 Memory overhead of 2V-DBP . . . . . . . . . . . . . 127

7.6 Conclusions and future work . . . . . . . . . . . . . . . . . . 128

8 Paper D: Snapshots in Real-Time Databases using Database Pointer
Transactions 135
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.2.1 Snapshots . . . . . . . . . . . . . . . . . . . . . . . . 138
8.2.2 Task and transaction models . . . . . . . . . . . . . . 138

8.3 Database pointers with versioning . . . . . . . . . . . . . . . 139
8.3.1 Database pointers . . . . . . . . . . . . . . . . . . . . 140
8.3.2 The 2-version database pointer algorithm . . . . . . . 140
8.3.3 Soft transactions . . . . . . . . . . . . . . . . . . . . 141
8.3.4 Hard transactions . . . . . . . . . . . . . . . . . . . . 141
8.3.5 Transaction serialization and relaxation . . . . . . . . 142

8.4 The 2-version database pointer snapshot algorithm . . . . . . 143
8.4.1 Snapshot sets . . . . . . . . . . . . . . . . . . . . . . 145



xiv CONTENTS

8.4.2 The 2V-DBP-SNAP data structures . . . . . . . . . . 146
8.4.3 Introducing snapshot transactions . . . . . . . . . . . 147
8.4.4 Hard transactions under 2V-DBP-SNAP . . . . . . . . 148
8.4.5 Extending soft transactions . . . . . . . . . . . . . . . 148
8.4.6 Serialization in 2V-DBP-SNAP . . . . . . . . . . . . 149
8.4.7 Evaluation of 2V-DBP-SNAP . . . . . . . . . . . . . 150

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9 Paper E: Introducing Substitution-Queries in Distributed Real-Time
Database Management Systems 157
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.2.1 Automotive control-systems . . . . . . . . . . . . . . 160
9.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . 161
9.2.3 CAN . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.2.4 Data distribution in automotive control-systems . . . . 162
9.2.5 The COMET real-time database management system . 163
9.2.6 Service tools for automotive systems . . . . . . . . . . 167

9.3 Extending the COMET data distribution . . . . . . . . . . . . 168
9.3.1 Ad hoc queries . . . . . . . . . . . . . . . . . . . . . 169
9.3.2 Subscription queries . . . . . . . . . . . . . . . . . . 170
9.3.3 Substitution queries . . . . . . . . . . . . . . . . . . . 172

9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



List of publications

Publications included in the thesis
Dag Nyström, Aleksandra Tešanović, Christer Norström, Jörgen Hansson & Nils-Erik
Bånkestad Data Management Issues in Vehicle Control Systems: a Case Study In
proceedings of the 14th Euromicro Conference on Real-Time Systems, IEEE, Vienna,
Austria, June 2002.

Dag Nyström, Aleksandra Tešanović, Mikael Nolin, Christer Norström & Jörgen Hans-
son COMET: A Component-Based Real-Time Database for Automotive Systems
In proceedings of the Workshop on Software Engineering for Automotive Systems, Ed-
inburgh, Scotland, May 2004.

Dag Nyström, Mikael Nolin, Aleksandra Tešanović, Christer Norström & Jörgen Hans-
son Database Pointers: Efficient and Predictable Data Access in Real-Time Control-
Systems Article submitted for journal publication. Based upon two conference papers:
(i)Database Pointers: a Predictable Way of Manipulating Hot Data in Hard Real-Time
Systems In proceedings of the 9th International Conference on Real-Time and Embed-
ded Computing systems and Applications, pages: 623 -634, Tainan, Taiwan, February
2003. (ii) Pessimistic Concurrency Control and Versioning to Support Database Po-
inters in Real-Time Databases In proceedings of the 16th Euromicro Conference on
Real-Time Systems, Catania, Sicily, June 2004.

Dag Nyström, Mikael Nolin & Christer Norström Snapshots in Real-Time Database
using Database Pointer Transactions In proceedings of the 11th IEEE International
Conference on Real-Time and Embedded Computing Systems and Applications, Hong
Kong, China, August 2005

Thomas Nolte & Dag Nyström Introducing Substitution-Queries in Distributed Real-
Time Database Management Systems In Proceedings of the 10th IEEE International
Conference on Emerging Technologies and Factory Automation, Catania, Sicily, Septem-
ber 2005



xvi LIST OF PUBLICATIONS

Publications by the author, not included in the thesis
Journal publications

Aleksandra Tešanović, Dag Nyström, Jörgen Hansson & Christer Norström Aspects
and Components in Real-Time System Development: Towards Reconfigurable and
Reusable Software In Journal of Embedded Computing, Cambridge International Sci-
ence Publishing, October. 2004

Conference publications

Aleksandra Tešanović, Dag Nyström, Jörgen Hansson & Christer Norström Towards
Aspectual Component-Based Development of Real-Time Systems In proceedings of
the 9th International Conference on Real-Time and Embedded Computing systems and
Applications, pages: 279 -298, Tainan, Taiwan, February 2003.

Dag Nyström, Aleksandra Tešanović, Christer Norström & Jörgen Hansson Database
Pointers: a Predictable Way of Manipulating Hot Data in Hard Real-Time Sys-
tems In proceedings of the 9th International Conference on Real-Time and Embedded
Computing systems and Applications, pages: 279 -298, Tainan, Taiwan, February 2003.

Dag Nyström, Mikael Nolin, Aleksandra Tešanović, Christer Norström & Jörgen Hans-
son Pessimistic Concurrency Control and Versioning to Support Database Pointers
in Real-Time Databases In proceedings of the 16th Euromicro Conference on Real-
Time Systems, Catania, Sicily, June 2004.

Workshop publications

Aleksandra Tešanović, Jörgen Hansson, Dag Nyström & Christer Norström Aspect-
Level WCET Analyzer: a Tool for Automated WCET Analysis of a Real-Time
Software Composed using Aspects and Components In proceedings of 3rd Interna-
tional Workshop on Worst-Case Execution Time Analysis, Porto, Portugal, July 2003.

Aleksandra Tešanović, Dag Nyström, Jörgen Hansson & Christer Norström Integrating
Symbolic Worst-Case Execution Time Analysis with Aspect-Oriented System De-
velopment In proceedings of OOPSLA 2002 Workshop on Tools for Aspect-Oriented
Software Development, Seattle, USA, November 2002.

Aleksandra Tešanović, Dag Nyström, Jörgen Hansson & Christer Norström Aspect-
Level Worst-Case Execution Time Analysis of Real-Time Systems Compositioned
Using Aspects and Components Proceedings of the 27th IFAC/IFIP/IEEE Workshop
on Real-Time Programming, Poland, Elsevier, May 2003.



LIST OF PUBLICATIONS xvii

Technical reports

Aleksandra Tešanović, Dag Nyström, Jörgen Hansson & Christer Norström Embed-
ded Databases for Embedded Real-Time Systems: A Component-based Approach
MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-43/2002-1-SE Mälardalen Real-
Time Research Centre, Mälardalen University, January 2002.

Dag Nyström, Aleksandra Tešanović, Christer Norström & Jörgen Hansson The CO-
MET BaseLine Database Management System MRTC Report 98/2003, ISSN 1404-
3041 ISRN MDH-MRTC-98/2003-1-SE Mälardalen Real-Time Research Centre, Mälar-
dalen University, April 2003.

Theses

Dag Nyström COMET: A Component-Based Real-Time Database for Vehicle Cont-
rol-Systems Licentiate Thesis, Department of Computer Science and Engineering, Mäl-
ardalen University, May 2003





Part I

Thesis

1





Chapter 1

Introduction

Most functionality in modern vehicles, such as cars, is in one way or another
controlled by computers. Mechanical systems are increasingly replaced by
software residing in the vehicle control-system. As these control-systems grow
larger and larger, they become increasingly more complex to develop and main-
tain. To handle this growing complexity, high-level software paradigms are
introduced, e.g., Autosar [1], a joint project within the automotive industry.

Hand in hand with the increasing amount of control functionality demanded
comes the increasing amount of information, or data, that these systems must
manage and thereby the increasing complexity of the software required. In
today’s systems, this data is handled in an ad hoc fashion, using internal data
structures, i.e., shared variables.

The current data management approach is becoming increasingly inade-
quate as systems become more complex and a need for data management on a
higher level of abstraction has emerged. This problem is not unique to vehicu-
lar systems but is, and has been, apparent in many types of computer systems
which involves managing information, such as banking and airline reservation
systems, word-processors, and e-mail/calendar applications. The solution to
data management for many of these systems has been to adopt a high-level
data management approach through the use of a database management system
(DBMS). DBMSs are used to structure data into databases, and can provide a
powerful means of access to data in a controlled fashion. This thesis investi-
gates how a DBMS could be introduced into vehicle control-systems.

Performing this integration is not possible without taking into considera-
tion the specific requirements of such a control-system. As this thesis will

3



4 Introduction

show, using a general-purpose off the shelf DBMS is not feasible. Reasons
why general purpose DBMSs are not applicable in such systems include; (i)
Traditional DBMSs are not suitable, since the onboard computers (or electronic
control units - ECUs) are too resource-constrained with respect to memory ca-
pacity. (ii) A traditional DBMS is intended to maximize the average throughput
of data queries, while a DBMS for use in a vehicle control-system must fa-
vor guaranteeing predictability of data accesses, such as worst case-response.
A DBMS used in a vehicle control-system must both be small enough to fit
in a small environment, and have real-time capabilities in order to provide
a time-deterministic behavior, i.e., a real-time database management system
(RTDBMS) must be used.

1.1 Problem formulation
As current DBMSs and RTDBMSs do not suit the particular requirements of
a vehicle control-system, new concepts for data management are needed. Th-
ese concepts must take the two most important aspects of embedded real-time
systems into consideration, namely; (i) Predictability with respect to timing.
The RTDBMS must guarantee that data in the database can always be ac-
cessed within a given time. (ii) Resource efficiency with respect to memory
and CPU utilization. Since embedded systems most often have limited hard-
ware resources this issue has a high priority.

This thesis investigates how a data management concept for embedded real-
time systems, such as vehicle control-systems, could be designed and imple-
mented. In particular it will investigate the following questions:

• What are the specific data management requirements for vehicle control-
systems, and how do these influence the characteristics of a suitable data
management concept? These requirements are used as a basis for the
development of the data management concepts performed in this work.

• How can information in an RTDBMS be accessed in a resource-efficient
and deterministic way? Introducing an RTDBMS generally increases the
computational overhead compared with using internal data structures,
therefore resource efficiency and determinism are crucial.

• How can critical and non-critical data accesses be mixed without in-
troducing unpredictable blocking and transaction abortions? More and
more non-critical functionality, such as multimedia services, passenger-
comfort, and navigation systems, are introduced in vehicles. Accessing



1.2 The research work and method 5

non-critical data must not affect the accessing of critical data, i.e., have
a negative effect on the determinism of the system.

• How does the integration of an RTDBMS affect the data distribution in
distributed embedded real-time systems? This question is a consequence
of that most modern vehicle-control-systems are distributed among mul-
tiple hardware nodes. For data management to be useful, it must thus
also involve data distribution.

1.2 The research work and method

The research presented in this thesis has been performed within a joint project
between Mälardalen University, Sweden (Ph.D. student Dag Nyström, Profes-
sor Christer Norström and Associate Professor Mikael Nolin) and Linköping
University, Sweden (Ph.D. student Aleksandra Tesanovic and Doctor Jörgen
Hansson). The research has been centered around a jointly developed experi-
mental real-time database management platform, denoted COMET RTDBMS.

The research work within the project has been divided into two separate
sections, namely, (i) data management issues for embedded real-time control-
systems (Mälardalen University), and (ii) reconfigurability and real-time sys-
tem development (Linköping University). The work and contributions pre-
sented in this thesis describe the data management issues and concepts devel-
oped within the COMET project.

One central aspect of the research performed within the project has been
close interaction with industry. This has enabled us to work on the solution of
research problems relevant to industrial systems in practice.

The research performed on data management for embedded real-time sys-
tems has been conducted in three phases:

1. Investigation of the current state of the art and practices. In partic-
ular, the current state of arts and practices in the area of embedded and
real-time database management systems has been studied [2]. An exten-
sive survey of commercially available embedded DBMSs was performed
and a handful of systems were investigated on the basis of a number of
criteria. In addition to this survey, a second survey was performed, this
time, of experimental RTDBMSs, developed in academia. The latter sur-
vey also provided documentation of basic database management systems
theory.



6 Introduction

Furthermore, industrial data management requirements, assessed in a
case study performed at Volvo Construction Equipment Components
AB [3] (Paper A), provided a good foundation for continued research.

2. Formulation of initial data management concepts. Initial ideas of how
a RTDBMS could be integrated into a control-system were formulated
(Partly presented in [3] (Paper A) and further developed and concretized
in [4] (Paper B)).

3. Development and evaluation of data management concepts. In order
to make an RTDBMS suitable for use in an embedded real-time control-
system, several new data management concepts were needed, by; (i)
developing a number of data management concepts involving efficient
data access (Paper C), concurrency-control algorithms (Paper C & D),
and data distribution mechanisms (Paper E). In some cases, proof-of-
concept using model-checking was performed to validate the behavior
of the proposed algorithms. (ii) implementation of the concepts, some
in our experimental platform, denoted COMET RTDBMS, and some as
test implementations. (iii) evaluation of the concepts implemented by
means of simulation

1.3 Thesis outline
The thesis is outlined as follows:

Part I:

Chapter 2 presents the areas of general purpose, real-time, and embedded
database management systems and puts these into perspective with re-
spect to vehicle control-systems. Related work in relevant areas is also
presented.

Chapter 3 discusses the research contributions of this work, and presents a
brief overview of the papers included.

Chapter 4 concludes the thesis and proposes some possible future directions
for continued work.

Part II:

Chapter 5-9 presents Papers A to E, which in detail discuss the different con-
tributions of this work.



Chapter 2

Background and related
work

This chapter aims at giving a background to the work performed in this thesis,
as well as an account of some related work both in academia and in practice.
The chapter gives a brief overview of the areas of database management sys-
tems and real-time database management systems and describes these areas
from the view point of vehicle control-systems.

2.1 Vehicle control-systems
The functionality of modern cars is to a large extent controlled by computer-
based control-systems, so called vehicle control-systems. Vehicle control-sys-
tems handle a wide range of different functionality ranging from safety-critical
control such as engine control, transmission control, chassis and brake control
(anti-lock brake control and anti spin control) to diagnostics (warning and er-
rors detected during run-time), driver comfort control such as climate control,
and multimedia services.

A vehicle control-system typically consists of a number of onboard com-
puter nodes, designated electronic control units (ECUs), which are intercon-
nected via a network, e.g., the controller area network (CAN) [5].

Each ECU contains a number of tasks, which are executables used to man-
age some functionality. Examples of typical tasks in vehicle control-systems
are (i) I/O-tasks which are used to communicate with the system under con-

7



8 Background and related work

trol (e.g., reading sensor-values or updating actuators), (ii) control-tasks which
are used to take control decisions, and (iii) management-tasks which are used
to perform more administrative activities such as the system diagnostics and
logging of system events.

Figure 2.1 shows a set of tasks that together manage a control-functionality.
To the left, two I/O-tasks sense the environment (i.e., read hardware sensors)
to determine the current state of the vehicle, such as the current vehicle speed
and the position of the accelerator pedal. These values are then passed to the
control-task which contains the control algorithms. In this case, the control-
task might use the current speed, and the position of the gas pedal to calculate
the amount of fuel to be injected into the engine. To the right in Figure 2.1,
another I/O-task is responsible for feeding this value to the fuel injector.

Figure 2.2 shows as an example, an I/O-task that is responsible for reading
a temperature-sensor and writing it to a shared variable. The shared variable is
protected by a semaphore to ensure its integrity, i.e., so that it cannot be read
while being updated.

Since vehicle control-systems (and most other control-systems ) control
constantly changing environments, the control-system must support real-time
properties, i.e., it must be a real-time system.

A real-time system is a system in which the time at which the output is
produced is significant. This is usually because the input corresponds to some
event in the physical world, and the output must relate to this event. The lag
(delay) from the input time to output time must be sufficiently small for ac-
ceptable timeliness1.

One means of enforcing timeliness in a system is to introduce the notion
of deadlines. In Figure 2.1 an end-to-end deadline is given, that is; the result
must be produced within a given time. Real-time systems can be divided into,
at least, two categories, namely:

• Hard real-time systems in which a missed deadline result in a system
failure, potentially involving the loss of human lives. These systems
are often referred to as safety-critical systems. Many vehicle control
functions have hard real-time requirements.

• Soft real-time systems in which the missing of deadlines merely de-
grades the quality of service of the system. For vehicle control-systems,
management tasks could be viewed as soft real-time (even though not
always treated as such in practice).

1Definition partly taken from the Oxford Dictionary of Computing.



2.1 Vehicle control-systems 9

I/O-task

I/O-task

Control-task I/O-task

time

End-to -end deadline

Sensing the 
environment

Take 
control-decision

Control the
environment

Figure 2.1: A set of tasks executing a functionality

Many real-time systems, including many vehicle control-systems, are off-
line-scheduled and periodic. In an offline-scheduled system, all tasks and their
timing properties are known at design time. A scheduling-tool is used to create
a schedule consisting of the start times of all tasks, such that all timing require-
ments are satisfied. This schedule is then executed cyclically, hence the sys-
tem is periodic. For some safety-critical domains, such as the automotive and
avionic domains, offline-scheduled systems are considered safer than on-line
scheduled systems since a proof-of-concept can be established beforehand.

A central requirement of real-time systems is predictability (or determin-
ism), i.e., that the system must be constructed so that its behavior is always
predictable. This implies that it must always (at least for hard real-time sys-
tems) be possible to calculate the system’s worst case timing behavior. If all
timing requirements are fulfilled under worst-case conditions, the system meets
the real-time requirements.

Vehicle control-systems, apart from being real-time systems, are also em-
bedded systems, which means that the computerized control-system resides in a
larger system (in this case a vehicle). Characteristic of most (not all) embedded
systems is that they are resource-constrained which means that hardware re-
sources are limited, often with respect to both memory capacity and processor
performance. The reasons for using resource-constrained systems in vehicles
are many, but the main motivation is to reduce hardware costs.

Based on this, we can conclude that data management for vehicle control-



10 Background and related work

//Global data
struct {

int oilPressure;
int oilTemperature;
int waterPressure;
int waterTemperature;

} engine_t;

struct engine_t engine;
semaphore engine_semaphore;
...
//End global data

1 TASK OilTempReader(void){
2 int s;
3 while(1){
4 s=read_sensor();
5 wait(engine_semaphore);
6 engine.oilTemperature=s;
7 signal(engine_semaphore);
8 waitForNextPeriod();

}
}

Figure 2.2: I/O-task using a shared variable



2.2 Database management systems 11

systems must adhere to at least;

• Predictability with respect to timing. It should always be possible to
access and manipulate data within a certain time.

• Minimizing resource overhead. The data management mechanisms
used in a vehicle control-system must be sufficiently efficient, with re-
spect to both memory requirement and CPU usage to be suitable in a
resource-constrained environment.

2.2 Database management systems
Database systems have been developed to be a fundamental part of most larger
computer applications and systems which involve the management of infor-
mation. Database systems are used in software systems that handle massive
amounts of data, such as hotel and ticket reservation systems, libraries, and
e-commerce applications. Such database systems are referred to as enterprise
databases. Database systems are also used as an integrated part of smaller ap-
plications, i.e., application-embedded database systems, such as word proces-
sors, e-mail clients, and personal organizers. Finally, device-embedded data-
base systems which are normally simply referred to as embedded databases,
are databases embedded in hardware products, such as mobile phones, toys,
and vehicles

Even though the requirements these database systems must satisfy might
differ greatly, as we will elaborate on in this chapter, database systems have
some basic functionality and requirements in common.

As can be seen in Figure 2.3, users and user applications use database
queries to retrieve information from a database. Database queries are questions
presented to the database using some query language. One common database
query language is the structured query language (SQL) [6], which provides
a powerful high-level language that allows relevant information to be easily
extracted from large quantities of data.

Figure 2.3 shows the architecture of a database system. From the figure it
can be seen that a database system is divided into two subsystems, namely:

1. the database which is the collection of data that is stored in the database
system, and

2. the database management system (DBMS) which is the software compo-
nent responsible for handling the integrity of and access to the database.



12 Background and related work

Figure 2.3 shows that the DBMS is further divided into three levels, which
each provides a specific service. The three levels are:

The external level which provides services to the user of the database sys-
tem. The external level transforms requests formulated using a query
language into execution plans that are understandable by the conceptual
level.

The conceptual level which provides services to the external level. The main
service provided is the processing of execution plans, in which the ex-
ecution plan is transformed into individual read and write requests for
data records (tuples) in the database. The conceptual level also ensures
that the concurrency of multiple database transactions is monitored.

The physical (internal) level is responsible for organizing the physical stor-
age of data elements in the database. The physical level provides service
to the conceptual level by enabling it to perform index-lookups to locate
data in the database, and by giving it access to data elements.

2.2.1 Database transactions
A database transaction is a set of database queries and operations bundled into
one atomic unit of work. This implies that a database transaction is either ex-
ecuted entirely or not all. To clearly identify the start and completion of a
database transaction, the following execution sequence is often used for trans-
actions:

Begin of transaction This marks the beginning of a database transaction.

Reads and writes The execution of the database transaction could ul-
timately be broken down to a number of reads and
writes to the database.

Commit|Rollback This marks the end of a transaction, a Commit or a
Rollback indicating its successful or unsuccessful
completion.

It is only in the last step (the commit or rollback step) that any updates
performed by the transaction are made visible to other transactions (in case of
a commit).



2.2 Database management systems 13

Database
System

DBMS
User

Interface

Index
Manager

Transaction
Engine

Transaction
Scheduler

Memory
Manager

Lock
Manager

Recovery
Manager

External
Level

Conceptual
Level

Physical
Level

Applications and Users

Database

Process

Q
ueries Q

ue
ri

es

Data
Requests

Tuples

Terminal

ProcessProcesses

Figure 2.3: The architecture of a database system



14 Background and related work

To ensure the integrity of a database transaction it must have four proper-
ties. These properties, which are referred to as the ACID properties, are the
following:

• Atomicity: A database transaction is indivisible, either it is run to com-
pletion or it is not run at all.

• Consistency: It must not violate logical constraints enforced by the sys-
tem. For example, a bank transaction must follow the law of conser-
vation of money. This means that after a money transfer between two
accounts, the sum of the money in the accounts must be unchanged.

• Isolation: A database transaction must not interfere with any other con-
currently executing database transaction. This is also referred to as se-
rialization of database transactions, i.e., it should always be possible to
establish a logical order of transaction execution of any set of database
transactions.

• Durability: A database transaction is, once committed, written perma-
nently into the database.

Given that a transaction is formulated such that it does not violate any
consistency criteria in the database, database transactions executed in a non-
concurrent system automatically have the ACID properties2. Since no other
transactions can concurrently access the database, atomicity and isolation and
durability are maintained.

The real difficulty in maintaining the ACID properties arises when mul-
tiple transactions are allowed to execute concurrently. Consider for example
that transaction Ta updates a value x in the database and before it commits,
transaction Tb reads x, the isolation property is violated since tb was able to
read uncommitted, i.e., not yet committed, data. Circumstances such as this are
usually referred to as database transaction conflicts .

To be able to avoid or handle transaction conflicts, some form of concur-
rency-control is normally used. Concurrency-control mechanisms restrict the
way transactions access and update the database. In general, concurrency-
control can be obtained using four different approaches, namely pessimistic
concurrency-control, optimistic concurrency-control, multiversion concurren-
cy-control, and concurrency-control with timestamps. The following sections

2This assuming that a recovery system handles any abnormal terminations of database transac-
tions



2.2 Database management systems 15

Read-lock Write-lock
Read-lock Compatible Incompatible
Write-lock Incompatible Incompatible

Table 2.1: Compatibility matrix for database locks

will briefly cover the first three of these approaches. Concurrency-control with
timestamps will not be discussed further in this thesis.

Pessimistic concurrency-control

One of the most common approaches to the handling of database transaction
conflicts is pessimistic concurrency-control (PCC). PCC uses the concept of
database locks to lock data elements in the database to enforce serialization.

The most common pessimistic algorithm is the two-phase-locking (2PL)
algorithm proposed in 1976 by Eswaran et al. [7]. This algorithm consists, as
the name indicates, of two phases. In the first phase all locks are collected, no
reading or writing to data can be performed before a lock has been obtained.
When all locks are collected and the updates have been performed, the locks
are released in the second phase.

Most pessimistic algorithms use, at least, two kinds of locks, read- and
write-locks. The former permit data to be accessed in a read-only fashion, and
the latter permit the manipulation of data. Table 2.1 shows the compatibility of
these locks.

One problem with PCC is that it can cause deadlocks, in the same way as
the uncontrolled use of semaphores. This problem can be overcome by either
using a deadlock detection mechanism or by further restricting the concurrency-
control algorithm. Conservative 2PL, for example, requires the transaction to
obtain all its locks before the transaction can be executed by pre-declaring the
locks needed [8].

Optimistic concurrency-control

Optimistic concurrency-control (OCC) was first proposed by Kung and Robin-
son [9] in 1981. This strategy takes advantage of the fact that conflicts in
general are rather rare. The basic idea is to read and update data disregarding
possible conflicts. All updates are, however, performed on temporary data. At



16 Background and related work

Read-lock Write-lock Certify-lock
Read-lock Compatible Compatible Incompatible
Write-lock Compatible Incompatible Incompatible

Certify-lock Incompatible Incompatible Incompatible

Table 2.2: Compatibility matrix for database locks used in 2V-2PL

commit-time a conflict detection is performed and the data is only written per-
manently to the database if no conflict has been detected. The conflict detection
(verification phase) and the update phase must however be atomic, implying
some form of locking mechanism. Since these two phases take much less time
than a complete database transaction, locks that involve multiple data, or the
whole database, can be used. Since it is an optimistic approach, performance
degrades when congestion in the system increases.

Multiversion concurrency-control

Multiversion concurrency-control handles the serialization by maintaining mul-
tiple versions of data. Multiversioning permits transactions, that otherwise
should have been aborted or blocked, to read old versions of data elements.

An obvious disadvantage with multiversioning algorithms is the added me-
mory overhead. In a worst-case scenario, an unbounded amount of memory
would have to be used to store all versions. However, one common solution to
this is to restrict the number of versions of data elements. This of course limits
the concurrency of the transactions.

A well known multiversion algorithm is the two-version two-phase locking
(2V2PL) algorithm proposed by Lai and Wilkinson in 1984 [10]. This algo-
rithm eliminates read-write conflicts by permitting read- and write-locks to be
compatible with each other (see Table 2.2). This is achieved by maintaining 2
versions of each data element. Prior to commit, all write-locks must be con-
verted to certify-locks. Certify-locks are locks that are incompatible with all
other locks, and are only used during the commit-phase of a transaction.

2.3 Real-time database management systems
A real-time database management system (RTDBMS) is by definition a data-
base system, since it has queries, transactions, concurrency-control and com-



2.3 Real-time database management systems 17

mit-protocols. However, the correctness of a transaction in an RTDBMS is not
only determined by logical correctness, but also by temporal correctness. Tem-
poral properties for real-time transactions might be completion deadlines, start
times, and periodic invocations [11].

In this section, an overview of the different issues that must be considered
for real-time database management systems is presented. A recent paper by
Ramamritham, Son and Dipippo provides an excellent categorization of these
issues [12]. These categories are presented here with vehicle control-systems
in mind. The categories pointed out in [12] are the following:

1. Data, database transactions and system characteristics

2. Scheduling and database transaction processing

3. Distribution

4. Quality of service and quality of data3

2.3.1 Real-time data

Just as for most software requirements, real-time requirements originate from
the surrounding environment. For real-time systems, we recall from Section 2.1,
that these requirements mostly include timing, such as meeting deadlines. For
real-time database management systems, real-time requirements are extended
to also include factors such as data freshness and temporal consistency.

By data freshness we mean the degree to which data to be read has been
produced as recently as possible. For data derived from other data, the fresh-
ness of all the data used in the derivation is also important. For control-systems
in general, thus also vehicle control-systems, data freshness is of the utmost im-
portance. This is true since control-systems often reside in environments that
are rapidly changing. To achieve a high degree of data freshness in RTDBMSs
it sometimes must be required, in a controlled fashion, to relax the ACID prop-
erties of real-time database transactions [14].

Temporal consistency and data freshness are closely related. There are two
types of temporal consistencies [15], namely absolute consistency and relative
consistency. Absolute consistency is more stringent than data freshness, since

3Even though quality of service including feedback control are important issues for RTDBMS,
it is beyond the scope of this thesis and will therefore be omitted. However, work on implementing
feedback control in the COMET RTDBMS has been performed [13].



18 Background and related work

it specifies the maximum acceptable age of a data element by using an abso-
lute validity interval. Data elements older than their absolute validity interval
are as incorrect as a logically incorrect data element in any DBMS. Relative
consistency is important when deriving new data from existing data elements
Relative consistency stipulates the maximum permitted difference in age of the
data elements used to derive the new data. Real-time database management
systems might explicitly incorporate temporal consistency by integrating va-
lidity intervals and current ages of temporal data in the database schema. On
the other hand, for offline-scheduled or periodic real-time systems, temporal
properties can be analyzed pre run-time by making sure that the schedule is
constructed such that all temporal validity intervals are maintained.

For real-time systems, and especially resource-constrained embedded sys-
tems, finding a good balance between temporal consistency (thus also data
freshness) and computational resource usage is important. A higher degree of
freshness requires more frequently executed database transactions. The general
rule of thumb, also used in control-theory, is that updating database transac-
tions should have half (or less) the periodicity of the absolute validity interval
(the sampling theorem) [15].

2.3.2 Database transaction processing
Just as for general purpose database management systems, access to the data-
base is obtained through database transactions. However, the main difference
between database transactions and real-time database transactions is that the
main goal of a DBMS is to generate as high average throughput of database
transactions, while for an RTDBMS all database transactions must be executed
as predictably as possible in order to keep as many deadlines as possible. Just
as for real-time systems, real-time database transactions can be divided into
soft- and hard real-time. For RTDBMS’s these two classes impose fundamen-
tal differences.

Hard database transactions

Hard database transactions must meet their timing constraints at all costs, in
particular their deadline. To enforce an absolutely predictable execution of a
database transaction most often implies limiting its behavior. Typical limita-
tions used for hard database transactions are:

Only allow precompiled queries Database transactions can be either formu-
lated and compiled pre run-time (precompiled) or be freely formulated



2.3 Real-time database management systems 19

during run-time (ad hoc queries). This limitation defines a set of the data
elements in the database that possibly could be accessed by the database
transaction. Thus, an upper bound of the number of accessible data ele-
ments is also set. The result of this is that the worst case response time
for hard database transactions can be analyzed off-line [3].

Only allow periodic and sporadic transactions Similarly, as for hard real-
time tasks, an upper bound on the rate of invocations of the database
transactions must be established to permit calculation of the system uti-
lization.

However, even for precompiled queries, calculating accurate worst case ex-
ecution times is difficult since so many factors such as database size (locating
a particular data element generally takes more time in a large database), and
blocking caused by other database transactions accessing common data, see
Section 2.3.2 influence their execution. This means that a database transaction,
predicted to meet its deadline, might in fact miss it. To cope with such situa-
tions, milestone monitoring and contingency plans might be used. A milestone
can be seen as a deadline for a part of the database transaction. If a milestone
is passed and it is clear that the database transaction will not make its deadline,
a contingency plan can be activated and the database transaction is aborted.
Milestones and contingency plans are discussed further in [16]. The contin-
gency plan might in its turn activate a database transaction that uses imprecise
computing [17] to return a fairly good result based on a faster algorithm. Take
for example, a query that calculates the average value of hundreds of values.
If an adequate amount of values has been calculated at the time of the dead-
line, the result could be considered imprecise but meaningful and it is therefore
returned to the client in any case.

For vehicle-control systems that utilize a real-time database, hard database
transactions would be used primarily in critical I/O and vehicle control-tasks.
Figure 2.4 shows the I/O task from Figure 2.2 now extended to use a data-
base query to access its data element (located in the relation engine). It
is worth noting that the calls to the semaphore used in Figure 2.2 have been
removed since data accesses are now handled by the RTDBMS through its
concurrency-control mechanisms. The following steps are needed to execute
the query (apart from query parsing since the query is precompiled):

• Execution of relational operations, i.e., the update and the restrict
(to locate the correct tuple) operations.



20 Background and related work

• Obtaining and releasing the appropriate database locks (if pessimistic
concurrency-control is used).

• Copying of data to the database transaction’s local working buffer.

• Committing the changes in the database.

It is easy to see that all these activities together make up a larger over-
head as compared with obtaining a semaphore and directly writing the data to
the shared variable. Given the needs of, and requirements on, hard I/O- and
control-tasks in a vehicular system, the means of accessing the database as ef-
ficiently and predictably as using a shared variable is needed to successfully
integrate a RTDBMS into such a system. However, some databases, especially
commercially available embedded databases have mechanisms to shortcut pre-
compiled queries, by keeping direct pointers to data elements in the database,
see Section 2.6. These mechanisms share one weakness though, they limit the
way a database can be reorganized during run-time.

Soft database transactions

Soft real-time database transactions may miss their deadlines. However, the
general goal is to keep a quality level as high as possible. The quality of soft
database transactions can be classified in two categories, namely quality of
timeliness and quality of DBMS service. Quality of timeliness can be defined
in a number of ways, such as keeping as many deadlines as possible and com-
pleting as many highly prioritized database transactions as possible. It is not
crucial that all timing requirements are met, but the system suffers from de-
graded performance for each missed deadline. Considerable research has been
performed in the area of soft real-time database transaction management and
an extensive overview is available in [12].

However, equally important as timeliness is the quality of the DBMS ser-
vice provided by soft database transactions. Since keeping deadlines is not a
non-negotiable factor, the level of expressiveness can be raised. Strict period-
icity or sporadicity are no longer required, and, above all, ad hoc queries can
be permitted.

For vehicle control-systems using an RTDBMS, quite a number of activi-
ties can be assigned to soft management tasks and thus to soft real-time data-
base transactions. Some of these activities include [3]:

• Logging of system states and faults



2.3 Real-time database management systems 21

engine
subsystem temperature pressure

hydraulics 42 27
oil 103 10

cooling water 82 3

1 TASK OilTempReader(void){
2 int s;
3 DB_transaction t;
4 while(1){
5 s=read_sensor();
6 t=beginOfTransaction(...)
7 query(t,"UPDATE engine SET temperature=%d

WHERE subsystem=oil;",s);
8 commit(t);
9 waitForNextPeriod();

}
}

Note: For readability reasons the query is formulated as an ad hoc query, in reality it would prob-
ably be precompiled.

Figure 2.4: I/O-task using a relational query



22 Background and related work

• Parts of the instrument-board not displaying critical information

• Interactive menu-systems

In current vehicle control-systems which do not utilize an RTDBMS, these
activities are often implemented as hard real-time tasks. However, by using an
RTDBMS to handle a clean and predictable separation of hard and soft data
accesses, these activities can be moved to soft real-time. A study performed at
Volvo Construction Equipment Components AB showed that significant sav-
ings in CPU utilization can be achieved by moving non-critical activities from
hard tasks to soft tasks [18, 19].

Mixing hard and soft database transactions

One problematic issue which must be addressed is how to mix hard and soft
database transactions in the same system. Unfortunately, this problem cannot
be solved in the same way as when scheduling real-time systems, for example
by executing soft tasks as background service or by using some server algo-
rithm, such as the constant bandwidth server [20]. For database transactions,
the problem mainly involves the sharing of resources, i.e., the data elements
that are common to both soft and hard database transactions.

Consider a vehicle control-system in which a large number of critical hard
real-time tasks containing hard database transactions are executing at high fre-
quencies together with soft sporadic tasks which consist of soft database trans-
actions with execution-times long in comparison with those of hard database
transactions. Furthermore, soft and hard database transactions share common
data elements. If no special considerations are given to the mixing of these two
types of database transactions, the following two possible scenarios are to be
expected:

Unacceptable blocking of hard database transactions. This might be the ca-
se if a standard pessimistic lock-based concurrency-control is used. As
soon as a soft database transaction obtains a database lock for a data el-
ement, it efficiently blocks any hard database transaction that attempts
to access that particular data element. Given that the life-span of a soft
database transaction might be arbitrarily long, this blocking might jeop-
ardize the safety of the vehicle.

Unacceptable abortion of soft database transactions. This scenario is prob-
able if an optimistic concurrency-control approach is used. During the
life-span of a soft database transaction it might access a great number



2.3 Real-time database management systems 23

of data elements. The longer the life-span of the soft database transac-
tion, the more likely hard database transactions will, successfully, access
and update data elements used by the soft database transaction. Thus,
when the soft database transaction reaches its validation phase, it will be
aborted due to data conflicts. It is a well-known fact that database trans-
actions with a long life-span are affected negatively by shorter transac-
tions [21]

One approach to increasing the throughput of database transactions with a
long life-span is the concept of SAGAs [22] which divides a database transac-
tion into a number of sub-transactions. If the database transaction is divided so
that the individual sub-transactions could be interleaved arbitrarily with other
database transactions, a logical consistency could still be maintained. How-
ever, SAGAs are not atomic but should be executed as a unit.

Real-time concurrency-control

To achieve a deterministic execution of database transactions in RTDBMSs,
specialized real-time concurrency-control algorithms must be used. These al-
gorithms attempt to establish a good balance between missed deadlines and
temporally inconsistent database transactions. Much effort has been invested
in finding algorithms suited to real-time systems. However, typically, no single
real-time concurrency-control approach seems to suit the needs of all types of
real-time systems. Real-time concurrency-control algorithms must therefore
be specialized to suit the particular requirements of the real-time system for
which they are intended.

Real-time concurrency-control algorithms are often based on some general
concurrency-control strategy, i.e., the pessimistic, optimistic, or multiversion
strategy.

One of the best known pessimistic real-time concurrency-control approach-
es is the two phase locking with high priority abort (2PL-HP) [23]. 2PL-HP
is, as the name suggests, a prioritized variant of the two phase locking ap-
proaches. (see Section 2.2.1). In 2PL-HP, transactions with lower priority are
always aborted in favor of those with a higher priority in case of a transaction
conflict. One potential problem with this approach to vehicle control-systems
is the potential starvation of lower prioritized transactions [24].

A different pessimistic real-time concurrency-control algorithm is the read/-
write priority ceiling protocol (RWPCP) [25] in which 2PL is combined with
the priority ceiling protocol (PCP) [26]. RWPCP supplements the exclusive



24 Background and related work

locks used in PCP with shared locks. RWPCP is intended for hard periodic
real-time transactions.

A well known optimistic real-time concurrency-control is the optimistic
concurrency-control with broadcast channel (OCC-BC) [27] in which a val-
idating transaction informs all conflicting transactions so that they can abort
immediately. The advantage of this enhancement of the classic optimistic
concurrency-control algorithm [9] is that the commitment of all transactions
that reach the validation phase is guaranteed. OCC-BC does not, however, take
priorities into consideration and can therefore cause the abortion of critical ac-
tivities.

Priorities are taken into consideration in the optimistic concurrency-control
with priority wait (OPT-WAIT) algorithm [28] by incorporating a priority wait
mechanism that forces transactions to wait for the completion of transactions
with higher priority if they are in conflict with each other. A further improve-
ment of OPT-WAIT is the WAIT-50 algorithm [28] which works in exactly the
same way as OPT WAIT except that it must wait only if at least 50% of the
conflicting transactions have higher priority than the transaction itself. The
WAIT-50 algorithm has been shown to have excellent performance [12].

For real-time databases, a number of variants of these algorithms that suit
such databases better have been proposed [29, 30]. Song and Liu showed that
OCC algorithms performed poorly with respect to temporal consistency in real-
time systems that consist of periodic activities [31], while they performed very
well in systems in which database transactions had random parameters, e.g.,
event-driven systems. However, it has been shown that the strategies and the
actual implementation of the locking and abortion algorithms significantly de-
termine the performance of OCC [21]. Furthermore, it has been established
that due to the conservative approach taken in pessimistic concurrency-control,
it is more suited for resource constrained real-time systems (such as vehicle
control-systems) than optimistic approaches [32].

2.4 Embedded database management systems

Embedded databases are becoming more and more common in embedded sys-
tems, especially in the telecommunication area and in PDAs. A number of
commercial products have been available for a number of years, and the mar-
ket is growing. For traditional enterprise database systems, the main objectives
are throughput, flexibility, scalability, functionality etc. Physical size, resource
usage, and processor usage are not of equal importance since hardware is now



2.5 Real-time and embedded databases in practice 25

relatively inexpensive. In embedded systems these issues are much more im-
portant, therefore the main issues for embedded database systems are quite
different and can be summarized as [33, 34, 35]:

• Minimizing the memory footprint. The memory demands of an em-
bedded system are most often, mainly for economical reasons, kept as
low as possible. A typical footprint for an embedded database is within
the range of some kilobytes to a 2 megabytes.

• Minimizing the CPU usage. In an embedded system, the database ma-
nagement system and the application are most often run on the same
processor. This requires the database process to allocate strictly, mini-
mum CPU bandwidth to leave as much CPU capacity as possible for the
application.

• Support for multiple operating systems. In an enterprise database sys-
tem, the DBMS is typically run on a dedicated server using a normal
operating system. The clients, desktop computers, other servers, or even
embedded systems, connect to the server using a network connection.
Because a database most often runs on the same hardware as the appli-
cation in an embedded system, and because embedded systems often use
specialized operating systems, the database system must support these
operating systems.

• High availability. In contrast to a traditional database system, most
embedded database systems do not have a system administrator present
during run-time. Therefore, an embedded database must be able to run
independently.

2.5 Real-time and embedded databases in prac-
tice

This section aims at providing an overview of the major existing real-time and
embedded database platforms, both those developed as research platforms and
those commercially available. For a more detailed survey on this subject, see
[2]



26 Background and related work

2.6 Commercial embedded platforms: a survey

2.6.1 Databases investigated
In this survey we have selected a handful of systems that together give a general
picture of the types of products on the market. This list of systems is not
to be considered complete in any way, but represents a cross-section of the
commercially available platforms.

• Pervasive.SQL by Pervasive Software Inc. This database has three dif-
ferent versions for embedded systems: Pervasive.SQL for smart-card,
Pervasive.SQL for mobile systems, and Pervasive.SQL for embedded
systems. All three versions integrate well with each other and also with
their non-embedded versions of Pervasive.SQL. Their classification of
systems and the fact that they have, compared with most embedded data-
bases, very small memory requirements were reasons for investigating
this database [36]4.

• Polyhedra by Enea AB. This database was selected for three reasons, (i)
it is claimed to be a real-time database, (ii) it is a main memory database,
and (iii) it is an active DBMS [37].

• RDM by Birdstep Technology, Inc. In the same way as Polyhedra, RDM
claims to be a real-time database. It is however fundamentally different
from the Polyhedra system, by, for example, being an embedded library
and, thus, does not incorporate the client/server model [38].

• Berkeley DB by Sleepycat Software Inc. This database, which also is
implemented as a library, was selected for the survey because it is dis-
tributed as open source and therefore interesting from a research point of
view [39].

• TimesTen by TimesTen Performance Software. This relational database
is, like the Polyhedra system, a main memory real-time database system
[40].

2.6.2 Survey criteria
There are a number of criteria that could be used to evaluate and classify an
embedded database management system. In this survey, a set of criteria have

4Unfortunately, the DBMS suite for embedded, mobile and smart-card systems is no longer
commercially available.



2.6 Commercial embedded platforms: a survey 27

been selected that can be related to the system’s feasibility as a data manager
for a vehicle control-system. The selected criteria are:

DBMS model There are basically two different DBMS models supported. The
first model is the client/server model, in which the database server can
be considered to be an application running separately from the real-time
application. The server is typically accessed either using inter-process
communication (IPC) or some network. The second model is to com-
pile a DBMS-library together with the application into one executable
system. When a task wants to access the database it only needs a func-
tion call to make the request. Both approaches have advantages and
disadvantages. A client/server model can be more easily used in a dis-
tributed environment, using standardized interfaces. However, perform-
ing all database requests using IPC is expensive due to frequent context-
switches between application and database server. For embedded DBMS
libraries, database requests are much more efficient for requests from
the local application. Distributed access needs to be handled by the
control-application since embedded libraries usually lack standardized
interfaces [34].

Data model The data model concerns the logical structuring of data. The most
common model is the relational model in which data is organized in ta-
bles consisting of columns and rows. Databases implementing relational
data model are referred to as relational databases (RDBMS). One ad-
vantage with the relational model is its ability to handle complex logical
queries that can be used to extract a specific selection of data, i.e. a
view. However, one disadvantage with the relational model is a fairly
high computational overhead, even when few data are to be retrieved.
This can be a serious problem for databases used in time-critical appli-
cations such as vehicle control-systems. The object-oriented data model
is a different kind of data model, which can be viewed as an exten-
sion of the semantics of an object-oriented language. This model al-
lows class instances to be created and then stored in the database. A
third data model, which has evolved from both the relational and the
object-oriented model, incorporates objects in relations, and these are
thus designated object-relational databases (ORDBMS).

Memory requirements The memory requirement of the database is an impor-
tant issue in the case of embedded databases residing in environments
with small memory resources. For mass-produced embedded computer



28 Background and related work

systems, e.g., such as ECU’s, minimizing hardware is usually a signifi-
cant factor in reducing product costs. There are two interesting proper-
ties to consider for embedded databases, first of all the memory footprint
size, which is the size of the database with no data content. Secondly,
data overhead, i.e., the number of bytes required to store a data element
apart from the size of the data element itself, is of interest.

Concurrency-control Depending on which concurrency-control approach us-
ed, different systems might be more or less suitable for use in a vehicle
control-system, see Section 2.3.2.

2.6.3 DBMS model and memory requirements

As can be seen from Table 2.4, the client/server platforms are typically larger
than the platforms implemented as an embedded library, with the Pervasive-
.SQL suite as an exception. This discrepancy in size might be the result of
the amount of included functionality rather than a direct consequence of the
client/server arhictecture. Adding standardized interfaces, such as ODBC,
OLE-DB and JDBC directly in the DBMS kernel increases the memory re-
quirements. A difference in the focus of target applications might instead ex-
plain this. Typically, Client/Server applications target larger embedded appli-
cations, such as traffic light control, and mobile-phone base-stations, while
embedded libraries focus more on smaller embedded (control-) systems.

In the case of the Pervasive.SQL systems, these more specifically target
smaller applications, such as mobile devices and smart-card applications. It
might seem odd that a smart-card application uses a client/server architecture
for the DBMS, but this has natural causes. When a smart-card, incorporating
Pervasive.SQL for smart-cards, is inserted into its host, e.g., an automatic teller
machine, a java applet containing the application is downloaded from the card
to the host. The host then executes the applet, which calls the DBMS executing
on the smart-card. This approach, along with appropriate encryption, ensures
the security of the data, since it cannot be accessed directly by the host.

2.6.4 Data model

As shown in Table 2.4, all systems in the survey except Berkeley DB are re-
lational. For a vehicle control-system, a relational model might be useful for



2.6 Commercial embedded platforms: a survey 29

D
B

M
S

pl
at

fo
rm

s

C
ri

te
ri

a

P.SQLforMobileSys.

P.SQLforEmbeddedSys.
P.SQLforSmart-Cards

Polyhedra

RDM

Berkeley

TimesTen

D
B

M
S

M
od

el
C

lie
nt

/S
er

ve
r

x
x

x
x

x
L

ib
ra

ry
x

x
D

at
a

M
od

el
R

el
at

io
na

l
x

x
x

x
x

x
O

bj
ec

t-
R

el
at

io
na

l
(x

)
O

th
er

x
M

em
or

y
R

eq
.a

Fo
ot

pr
in

t
50

-4
00

k
50

kb
8k

b
1.

5-
2M

b
40

0-
50

0k
b

17
5k

b
5M

b
C

on
cu

rr
en

cy
-

Pe
ss

im
is

tic
x

x
x

x
x

x
C

on
tr

ol
O

pt
im

is
tic

x
N

on
e

x

Ta
bl

e
2.

4:
C

ha
ra

ct
er

is
tic

s
of

th
e

su
rv

ey
ed

co
m

m
er

ci
al

em
be

dd
ed

da
ta

ba
se

m
an

ag
em

en
ts

ys
te

m
s

a T
he

va
lu

es
gi

ve
n

in
th

e
ta

bl
e

ar
e

th
e

”f
oo

tp
ri

nt
”-

va
lu

es
m

ad
e

av
ai

la
bl

e
by

th
e

ve
nd

or
s

w
he

n
th

e
su

rv
ey

[2
]w

as
w

ri
tte

n



30 Background and related work

dynamic management tasks used for diagnostics and driver information. How-
ever, due to its computational overhead, it might be considered too slow for
time-critical vehicle-control.

Most systems have ways to “shortcut” access to data and therefore bypass
the index lookup routine. Pervasive.SQL, for example, can access data us-
ing the Btrieve transactional engine that bypasses the relational engine. The
Btrieve engine accepts commands such as getNextTuple and getFirst-
Tuple etc. The RDM system uses a different approach; In many real-time
systems data items are accessed in a predefined order (for example in a control-
system in which some sensor values are read from the database and the result
is written back to the database). Fast accesses can be achieved by inserting
shortcuts between data elements so that they are directly linked in the order
they are accessed,

However, one problem with pointing directly to data elements from the ap-
plication is that reorganizing the database becomes much more complex since
a large number of pointers will become stale during the reorganization.

The Polyhedra DBMS system is fundamentally different from the other re-
lational systems in this survey, because of its active behavior. This is achieved
through active queries. An active query is formulated and launched in the same
way as a normal query, but the query remains in the database until explicitly
aborted. If a change in the database would alter the result of the query, the
query is automatically executed again. For overload and predictability reasons,
a minimum interarrival time between executions can be specified for active
queries.

As mentioned above, Berkeley DB is the only non-relational system in this
survey. It uses a key-data relationship instead. A data element is associated
with a key. There are three ways to search for data, from a key, from a part of
a key or as a sequential search. The data can be of any volume and of virtually
any structure. Since the keys are plain ASCII strings, the data can contain other
keys so that complex relations can be built up. In fact it would be possible to
implement a relational engine on top of the Berkeley DB database.

2.6.5 Concurrency-control
All databases except the Polyhedra DBMS use pessimistic concurrency-control
(see Table 2.4). For a vehicle-control system, this might introduce problems
with respect to blocking and possibly the abortion of database transactions.
This is because of the mix of hard high-frequency control-tasks executing on
high priorities, and soft low-frequency (or event-driven) management tasks.



2.7 Real-time research platforms: a survey 31

Using plain pessimistic concurrency-control in such a system might introduce
unacceptable blocking of database transactions in hard tasks, or a high degree
of abortions (and possible starvation) of database transactions executing in the
soft tasks.

Pervasive.SQL has two kinds of database transactions: exclusive and con-
current. An exclusive database transaction locks a complete database file for
the entire duration of the database transaction, allowing only concurrent non-
transactional clients to perform read-only operations on the file. A concurrent
database transaction, however, uses read and write locks with much finer gran-
ularity, e.g., page or single data locks.

The Berkeley DB has three configurations: (i) The non-concurrent con-
figuration allows only one thread at a time to access the database, removing
the need for concurrency-control. (ii) The concurrent version allows con-
current readers and writers to access the database simultaneously. (iii) The
concurrent transactional version allows for full transactional functionality with
concurrency-control, such as fine-grain locking and database atomicity.

TimesTen also has a “no concurrency” option, in which only a single pro-
cess can access the database. This option is suitable for non-preemptive sys-
tems. In addition, TimesTen supports two lock sizes: data-store level and
record level locking.

2.7 Real-time research platforms: a survey

A number of databases can be classified as pure real-time databases. However
these databases are the results of research projects and are not yet on the com-
mercial market. We have selected a number of real-time database systems and
compared them with respect to the following criteria:

• Real-time properties. This criterion enables us to discuss real-time
aspects of the systems and how they are implemented.

• Distribution. The criterion enables us to consider different aspects with
respect to distributing the database.

• Database transaction workload characteristics. The criterion enables
us to discuss how the database transaction system is implemented.



32 Background and related work

2.7.1 Platforms investigated
The systems selected in this survey are representative of the more recent real-
time database platforms developed. The systems surveyed all have some sup-
port for hard (or in one case firm) real-time database transactions, there are
other systems intended primarily for soft real-time systems [41, 42, 43]. For a
more detailed survey which includes these systems also, the reader is referred
to [2].

• The Distributed active, real-time Database System (DeeDS) [44] sup-
ports both hard and soft real-time database transactions. DeeDS is devel-
oped at the University of Skövde, Sweden. It uses extended ECA [16]
rules to achieve an active behavior with real-time properties. It is de-
signed to take advantage of a multiprocessor environment.

• The RODAIN system [45] developed at the University of Helsinki, Fin-
land, is a firm real-time database system primarily intended for telecom-
munication. It is designed for high degree of availability and fault-toler-
ance. It is tailored to fit the characteristics of telecommunication transac-
tions identified as short queries and updates, and long massive updates.

• The ARTS-RTDB system [46] developed at the University of Virginia,
Charlottesville, US, supports both soft and hard real-time database trans-
actions. It uses imprecise computing to ensure timeliness of database
transactions. It is built on top of the ARTS real-time operating system
[47].

2.7.2 DeeDS
DeeDS [44] is a main-memory database intended for both hard and soft real-
time systems. It is built for the OSE delta real-time operating system, de-
veloped by ENEA DATA [48], a distributed hard real-time operating system
designed for both uniprocessor and multiprocessor systems. The DeeDS sys-
tem consists of two parts, one part that handles non-critical system services
and one that handles critical system services. All critical system services are
executed on a dedicated processor to simplify overhead cost and increase the
concurrency in the system.

DeeDS supports sporadic (event-triggered) and periodic database transac-
tions. There are two classes of database transactions: critical (hard database
transactions) and non-critical (soft database transactions). Milestone moni-
toring and contingency plans are used to ensure that a deadline for a critical



2.7 Real-time research platforms: a survey 33

database transaction is kept. The timing requirements for a database transac-
tion are passed to the system as a parameterized value function, reducing the
computational cost and the storage requirements of the system.

Database transactions are scheduled online in two steps. First, a sufficient
schedule is produced. This schedule meets the minimum requirements, for ex-
ample all hard deadlines and 90 percent of the soft deadlines are met. Secondly,
the event monitor’s worst-case execution time is subtracted from the remaining
allowed time for the scheduler during this time slot, and this time is used to
refine and optimize the database transaction schedule [49].

The DeeDS [44] system has less strict criteria for global consistency (i.e.,
consistency among the nodes in a distributed system), in order to enforce time-
liness. They guarantee that each node has a local consistency, while the dis-
tributed database might be inconsistent due to different views of the system at
the different nodes. This approach might be suitable for systems that mostly
rely on data gathered locally, but occasionally use data imported from other
subsystems. Consider an engine that has all engine data, e.g., ignition control,
engine speed and fuel injection, stored in a local node of a distributed data-
base. The timeliness of these local data items is essential in order to run the
engine. To further increase the efficiency of the engine, remotely gathered data,
such as data from the transmission with less critical timing requirements can
be distributed to the local node.

2.7.3 RODAIN
The RODAIN system is a firm real-time database system intended for telecom-
munication applications. A firm database transaction has a level of criticality
between the criticality levels of hard and soft database transactions. When a
firm database transaction misses its deadline, its result is rendered useless, and
the database transaction must be discarded. The telecommunication environ-
ment is a dynamic and complex environment that deals with both temporal data
and non-temporal data. Thus, RODAIN supports both soft and firm real-time
database transactions [45] The developers believe, however, that hard real-time
databases will not be used in telecommunication in the near future because
generally, they are too expensive to develop or use to suit the market [45].

One of the key issues for RODAIN is availability. Therefore a fault-tolerant
system is necessary. The RODAIN system is designed to have two nodes, thus
giving full database replication. This is especially important since the database,
as the DeeDS platform, is a main-memory system. It uses a primary and a
mirror node. The primary database sends logs to the mirror database which in



34 Background and related work

turn acknowledges all calls. The communication between the nodes is assumed
to be reliable and have a bounded message transfer delay. A watchdog monitor
detects any failing subsystem or database transaction and can instantly take
actions to handle the situation, e.g., swap the primary node and the mirror
node in case of a failure or restart a database transaction. The failed node
always recovers as a mirror node and loads the database image from permanent
storage.

Five different areas for databases in telecommunication can be identified
[50]:

1. Retrieval of persistent customer data.

2. Modifications of persistent customer data.

3. Authorization of customers, e.g., PIN codes.

4. Sequential log writing.

5. Mass-calling and tele-voting. This can be performed in large blocks.

From these five areas, three different types of database transactions can be
derived [51]: short simple queries, simple updates, and long massive updates.
Short simple queries are used when retrieving customer data and authorizing
customers. Simple updates are used when modifying customer data and writing
logs. Long massive updates are used when tele-voting and mass-calling is
performed.

The concurrency-control in RODAIN supports different kinds of serializa-
tion protocols. One protocol is the τ -serialization in which a database trans-
action may be allowed to read old data provided the update is not older than a
predefined age [45].

Apart from the deadline, an isolation level can also be assigned to a data-
base transaction. A database transaction executing on a low isolation level ac-
cepts that database transactions running on a higher isolation level are access-
ing locked objects. However, it cannot access objects belonging to a database
transaction with a higher degree of isolation.

The RODAIN system supports data distribution. The database on the nodes
can be anything between fully replicated and completely dispersed. The as-
sumption is that only a few requests in telecommunications need access to
more than one database node and that the request distribution of requests to the
databases in the system can be arranged to be almost uniform [45].



2.8 Observations 35

2.7.4 ARTS-RTDB

The relational database ARTS-RTDB [46] incorporates imprecise computing.
ARTS-RTDB is superimposed on top of the distributed real-time operating sys-
tem ARTS, developed by Carnegie Mellon University [47]. ARTS schedules
tasks according to a value function varying with time, which specifies their
criticality. It supports both soft and hard real-time tasks.

In ARTS-RTDB, the INSERT, DELETE, UPDATE and SELECT opera-
tions have been identified as the most critical data operations. Efforts have
therefore been made to optimize the system to increase the efficiency of th-
ese four operations. According to [46] many real-time applications use these
operations during run-time almost exclusively.

ARTS-RTDB uses 2PL-HP and to avoid the costly process of rolling back
the aborted database transaction, all data writing is performed on copies. At the
point of commit, the database transaction asks the lock-manager if a commit
can be allowed. If this is the case, the database transaction invokes a subsystem
that writes all the data into the database.

ARTS-RTDB has been extended to support distribution. The database
nodes use a shared file which contains information that binds all relations to
the server responsible for a particular relation. Since the file is shared between
the nodes, it is to be treated as a shared resource and must therefore be accessed
using a semaphore. It is believed that if relations are uniformly distributed be-
tween the nodes and if no hot-spot relations exist, there will be an increase in
performance. A hot-spot relation is a relation used by many database transac-
tions and such a relation can lead to a performance bottleneck in the system.

2.8 Observations

This chapter has presented work performed within a number of different re-
search areas related to data management for vehicle systems. Furthermore,
two surveys have been presented, covering database platforms, both research-
oriented and commercially available.

One problem when investigating commercial products as well as research
platforms, is to obtain unbiased and detailed technical information. With re-
spect to commercial platforms, the information has been collected mainly from
so called, ”white-papers” and correspondence with technical staff at the re-
spective company. This material is not acceptable as convincing from a re-
search point of view. Information regarding the research platforms investigated



36 Background and related work

has mainly been collected from scientific publications which have been peer-
reviewed and therefore can be said to have scientific validity. Unfortunately,
most of these publications cover individual aspects and concepts developed
within the research group behind the research platform. Only a few ”position-
style” papers specifically describing the research platform are available5.

Nevertheless, two conclusions relevant to data management for vehicle sys-
tems can be drawn:

• The commercial products do not have real-time properties strict en-
ough to be used in vehicle control-systems. No real-time guarantees
are given for any of the products. Even though some of the products
offer means of directly accessing data (Similar to the concept proposed
in Paper C), the use of general purpose concurrency-control algorithms
still adds unpredictability.

• The research platforms are not intended to be used in embedded
environments. The aim of these platforms has not been to be resource
efficient, the DeeDS platform requires two processors, one for hard and
one for soft real-time transactions. Similarly, the RODAIN platform uses
a mirror-node for replication. In the case of ARTS-RTDB, the use of a
centralized database-file, protected by a distributed semaphore is not a
satisfactory solution.

5In retrospect, this also applies to the papers produced within the COMET project.



Chapter 3

Thesis contributions

3.1 Research contributions
In the problem formulation (Section 1.1), a number of research questions was
formulated (Restated below for convenience).

• What are the specific data management requirements for vehicle control-
systems, and how do these influence the characteristics of a suitable data
management concept?

• How can information in an RTDBMS be accessed in a resource-efficient
and deterministic way?

• How can critical and non-critical data accesses be mixed without intro-
ducing unpredictable blocking and transaction abortions?

• How does the integration of an RTDBMS affect the data distribution in
distributed embedded real-time systems?

The work presented in this thesis proposes data management concepts that
identify and target these problems. The specific research contributions of this
thesis are:

• A case-study investigating data management requirements for an indus-
trial vehicle control-system. Knowledge of true data management re-
quirements is necessary when developing concepts and algorithms to be
used in such systems.

37



38 Thesis contributions

• A high-level data management concept, denoted COMET, intended for
embedded real-time systems, such as vehicle control-systems. COMET
consists of a reconfigurable RTDBMS and a number of analysis and con-
figuration tools.

• A resource-efficient and predictable data access method for RTDBMSs,
denoted database pointers. This access method, which points out indi-
vidual data elements, is needed since limited computational power in
the hardware requires that accessing critical data must be performed as
efficient as possible.

• Two concurrency-control algorithms, denoted 2V-DBP and 2V-DBP-SN-
AP, which enables data in the database to be shared between critical
hard real-time tasks and non-critical soft real-time tasks. As more and
more non-critical functionality is introduced in the systems, longer and
more dynamic non-critical queries are being introduced. Even though
these queries in themselves are not critical they will influence the critical
queries, since they might access common data. Maintaining determin-
ism for hard real-time queries, while still allowing soft real-time queries
to be executed without being aborted or starved is important.

• A data distribution mechanism for distributed embedded real-time sys-
tems, such as vehicle control-systems. The concept introduces the notion
of subscription- and substitution-queries which can be used by service-
and diagnostics-tools to stimulate and monitor a system during run-time.

These contributions are presented in the papers appended to the thesis
(Chapter 5 to Chapter 9). A short summary of each of the main ideas of the
papers are presented below.

3.2 Paper A
Dag Nyström, Aleksandra Tešanović, Christer Norström, Jörgen Hansson &
Nils-Erik Bånkestad Data Management Issues in Vehicle Control Systems:
a Case Study In proceedings of the 14th Euromicro Conference on Real-Time
Systems, IEEE, Vienna, Austria, June 2002.

Paper A presents a case-study performed at Volvo Construction Equipment
Components AB (Volvo CE), at Eskilstuna, Sweden. This case-study assesses
the requirements of the data in their vehicle control-system during 2002, and



3.3 Paper B 39

their practice of data management. The paper suggests how the system could
be redesigned to incorporate an RTDBMS. Suggestions on how this RTDBMS
could be designed are also presented.

The paper concludes that for the two ECUs investigated, one instrumental
ECU for an articulated hauler and one vehicle ECU for a wheel loader, data
currently is scattered in the system in different data storages. These data stor-
ages are implemented using internal data structures. Some of these structures
are so complex that index mechanisms are used to locate data elements.

A common property of these systems is that they have an offline scheduled
non-preemptive task model so that all data conflicts are avoided, i.e., no critical
sections or semaphores are used since mutual exclusion is upheld by the non-
preemptive task model. The paper generalizes the problem by sketching how
the RTDBMS could be extended to support a preemptive task model.

Dag Nyström’s contributions: The data management issues (jointly with Al-
eksandra Tešanović), database requirements, and database integration is-
sues.

3.3 Paper B

Dag Nyström, Aleksandra Tešanović, Mikael Nolin, Christer Norström & Jör-
gen Hansson COMET: A Component-Based Real-Time Database for Au-
tomotive Systems In proceedings of the Workshop on Software Engineering
for Automotive Systems, Edinburgh, Scotland, May 2004.

Paper B presents a data management concept, denoted the COMET de-
velopment suit suitable for embedded real-time systems. The paper describes
how COMET could be used to model the data, configure the RTDBMS, and
analyze its behavior. The paper furthermore sketches how the COMET devel-
opment suit is used to configure the RTDBMS based on the requirements of the
system. Finally, the paper presents the highly configurable architecture of the
COMET RTDBMS. The aim of the paper is to place the concepts developed
and implemented within the COMET project in a context to demonstrate how
they could be used together.

Dag Nyström’s contributions: The basic architecture of the COMET RTDB-
MS, the database pointer concept, and the concurrency-control algo-
rithm.



40 Thesis contributions

3.4 Paper C
Dag Nyström, Mikael Nolin, Aleksandra Tešanović, Christer Norström & Jör-
gen Hansson Database Pointers: Efficient and Predictable Data Access in
Real-Time Control-Systems Article submitted for journal publication. Based
upon two conference papers: (i) ”Database Pointers: a Predictable Way of
Manipulating Hot Data in Hard Real-Time Systems” In proceedings of the
9th International Conference on Real-Time and Embedded Computing systems
and Applications, pages: 623 -634, Tainan, Taiwan, February 2003. (ii) ”Pes-
simistic Concurrency Control and Versioning to Support Database Pointers in
Real-Time Databases” In proceedings of the 16th Euromicro Conference on
Real-Time Systems, Catania, Sicily, June 2004.

Paper C introduces the concept of database pointers, an efficient and pre-
dictable way of accessing data in real-time database management systems. The
concept, which is designed to be used in conjunction with a traditional rela-
tional database model, permits the creation of variables that point directly to
individual data elements in the database. This enables the application to access
data within the database in much the same way as by using shared variables
while still retaining all the benefits of using a database (such as allowing ad-
vanced concurrency-control and allowing reorganization of the database during
run-time). In Figure 3.1, the example I/O-task from Figure 2.2 and Figure 2.4
is augmented with database pointer access. From the figure, it can be seen that
the database pointer ptr is bound to the oil temperature in the initialization
part of the task (line 4) using a high level SQL query, while data access in
the control-loop is performed directly to the data element (line 7). By using
a database pointer, the overhead resulting from traditional database queries is
removed while still allowing data to be published in the database.

Paper C further presents a concurrency-control algorithm, denoted 2-Ver-
sion Database Pointer Concurrency Control (2V-DBP). The concurrency algo-
rithm allows hard database pointer transactions and soft relational transactions
to be executed without blocking (or aborting) each other. 2V-DBP is suited to
resource-constrained, safety critical, real-time systems that have a mix of hard
real-time control applications and soft real-time management, maintenance,
or user-interface applications. The correctness of 2V-DBP is shown by using
model checking, and its performance is compared with a standard real-time
concurrency-control algorithm.

Dag Nyström’s contributions: Main contributor of the technical ideas. Main
author of paper.



3.5 Paper D 41

1 TASK OilTempReader(void){
2 int s;
3 DBPointer *ptr;
4 bind(&ptr,"SELECT temperature

FROM engine WHERE
subsystem=oil;");

5 while(1){
6 s=read_sensor();
7 write(ptr,s);
8 waitForNextPeriod();

}
}

Figure 3.1: I/O-task using a database pointer

3.5 Paper D

Dag Nyström, Mikael Nolin & Christer Norström Snapshots in Real-Time
Database using Database Pointer Transactions In proceedings of the 11th
IEEE International Conference on Real-Time and Embedded Computing Sys-
tems and Applications, Hong Kong, China, August 2005

Paper D presents an extension to the 2V-DBP algorithm from paper C. The
new algorithm, denoted 2-version database concurrency-control with snapshots
(2V-DBP-SNAP), enables hard tasks to access the database using transactions
semantics, i.e., to access multiple data elements in an atomic fashion. 2V-
DBP-SNAP introduces the concept of snapshot sets which permit sets of data
elements to be accessed atomically, both by hard and soft tasks, using snapshot
and soft transaction respectively.

This approach is useful for hard control-activities requiring a set of data
elements to be viewed and controlled in one atomic operation.

Dag Nyström’s contributions: Main contributor of the technical ideas. Main
author of paper.



42 Thesis contributions

3.6 Paper E
Thomas Nolte & Dag Nyström Introducing Substitution-Queries in Dis-
tributed Real-Time Database Management Systems In Proceedings of the
10th IEEE International Conference on Emerging Technologies and Factory
Automation, Catania, Sicily, September 2005

Paper E proposes a data distribution mechanism suitable for embedded
real-time control-systems. The mechanism uses a high level communication
protocol to implement (i) distributed ad hoc queries, (ii) subscription queries,
and (iii) substitution queries. These three mechanisms are developed with
diagnostic- and service-tools in mind. These tools are connected to the ve-
hicle through the network bus, and can be used to calibrate the system (e.g.
engine calibration) or diagnose the current state of the system. Current com-
mercially available systems used for calibration are limited in the sense that
they only permit predefined sets of data to be read or updated. Using a RT-
DBMS equipped with database pointers, any data elements in the database can
be queried, subscribed upon, or substituted during run-time.

Dag Nyström’s contributions: Joint contributor of the technical ideas, mainly
database and data management contributions. Joint author of paper.



Chapter 4

Conclusions and future work

4.1 Conclusions
Integrating database technologies in vehicle control-systems is considered con-
troversial by many. The general conception of database systems is that they
are highly resource demanding both with respect to memory consumption and
computational overhead. Furthermore, database systems are considered too
non-deterministic to be used in vehicle control-systems. This is true for many
general purpose database management systems. However, commercially em-
bedded solutions exist today, with database engines as small as a few kilo-
bytes. Furthermore, many years of research in real-time database management
systems shows that these systems can be made deterministic.

This thesis has presented real-time database concepts developed specially
with embedded hard real-time control-systems in mind. The focal point of
this work has been the requirements of the system in which the database is
intended to be integrated, and not primarily the database technology itself. In-
stead of asking the question ”How predictable can we make a real-time data-
base system?”, this work was conducted asking the question ”Given the sys-
tem requirements, how can we find the most suitable DBMS model?”. One
concrete example of this is blocking. While most concurrency-control algo-
rithms aim at minimizing blocking (or transaction abortions for that matter) in
the system, the 2V-DBP concurrency-control algorithm presented in this thesis
limits instead the permitted behavior of transactions so that blocking for hard
transactions is eliminated, or in the case of 2V-DBP-SNAP, limited.

It is my belief that, due to the gradually increasing volume of information

43



44 Conclusions and future work

managed by vehicle control-systems, they will evolve to become information-
centric, just as so many other types of software systems. This will become even
clearer when comfort electronics, telematics, navigation systems, and vehicle
networking is introduced as integrated parts of vehicles.

4.2 Future work

The work in this thesis consists of a number of run-time concepts intended for
application in vehicle control-systems. These concepts enable the introduction
of a higher level data management. The COMET RTDBMS in its current form
consists of a fairly mature library of run-time components that implements
an RTDBMS that can be configured to suit the particular needs of different
control-systems, as well as tools for its configuration and analysis. However,
methods and theories on how to integrate and use COMET in a development
setting are not yet available. By obtaining these, an information-centric ap-
proach, in which information itself is elevated to become a design entity, could
be achieved.

One possible approach to achieving an information-centric approach is to
integrate the RTDBMS as an integrated part of a component-framework, to in-
troduce data management naturally in the design and development process. An
argument for this approach is that the automotive industry is currently targeting
component-based software engineering as a means of reducing complexity in
their software systems. Creating this information-centric view, together with
adequate tools, would ensure:

• means of obtaining a logical, rather than a physical, view of the data
in the system. This logical view is made possible with the tools used
to organize the data according to some data modeling paradigm, e.g.,
entity/relation-modeling [8]. This information-centric view enables data
modeling and management to be detached from the modeling and ma-
nagement of the software architecture of the control-system. The advan-
tage of this is that developers and architects of the control-system are
given data management at a higher level of abstraction, but need no in-
depth knowledge of database management. Even though logic modeling
of data in itself is not new, the special requirements and characteristics
of embedded real-time systems, such as temporal consistency [15] pre-
dictability [34] and resource management, must be considered in this
information-centric view.



4.2 Future work 45

• that data can be made available where needed in a predictable, transpar-
ent, and efficient manner. By explicitly defining what data is required
and provided by each component, mechanisms in the component frame-
work obtain the necessary data before the execution of the component,
and write back data produced by the component to the database.

• that data is transparently distributed between the electronic control units
(ECUs) in a distributed control-system. We have already shown in this
thesis that an RTDBMS can provide valuable support in this distribution
(Paper E).

• that the data management requirements and characteristics of the dif-
ferent nodes are already captured at design-time, so that the RTDBMSs
supporting the needed functionality and requirements can be configured.

Apart from the above, somewhat ambitious, goal, certain more threads re-
main loose after this thesis. Work worth consideration could be:

• Incremental updates. The 2V-DBP and the 2V-DBP-SNAP algorithms
slightly relax the serialization criteria (see Paper C). This relaxation can,
under some circumstances, cause what is called lost updates, i.e., up-
dates not becoming visible since other ”later” updates have already been
performed. This approach is feasible for updates that are not dependent
on each other, e.g., sensor values that are periodically updated. However
problems are encountered with data with incremental transactions, i.e.,
transactions that increase or decrease the value instead of writing abso-
lute values. To ensure integrity, 2V-DBP(-SNAP) does not permit these
data to be updated by both hard and soft transactions.

• Verification of the serialization. The formal verification performed on
2V-DBP in Paper C verifies some important properties of the versioning
algorithm used in the algorithm. However, there has been no full formal
verification of the properties of the relaxed serialization. It is my opinion
that model checking is not an adequate approach for this verification,
instead a more analytical approach might be needed.

• Integration of concepts in an industrial setting. To test fully the con-
cepts presented in this thesis, a case study in which the COMET RT-
DBMS is integrated in an existing control-systems should be performed.
Such a case-study would show the impact, in practice, of the proposed
concepts.



Bibliography

[1] H. Heinecke, K.P. Schelle, H. Fennel, J. Bortolazzi, L. Lundh, J. Leflour,
J.L. Mat, K. Nishikawa, and T. Scharnhorst. Automotive open system
architecture - and industry-wide initiative to manage the complexity of
emerging automotive e/e-architectures. Technical report, AUTOSAR
Partnership, http://www.autosar.org/, 2004.

[2] Aleksandra Tešanović, Dag Nyström, Jörgen Hansson, and Christer
Norström. Embedded Databases for Embedded Real-Time Systems: A
Component-Based Approach. Technical Report MRTC Report ISSN
1404-3041 ISRN MDH-MRTC-43/2002-1-SE, Dept. of Computer Engi-
neering, Mälardalen University, January 2002.

[3] Dag Nyström, Aleksandra Tešanović, Christer Norström, Jörgen Hans-
son, and Nils-Erik Bånkestad. Data Management Issues in Vehicle Con-
trol Systems: a Case Study. In Proceedings of the 14th Euromicro Con-
ference on Real-Time Systems, pages 249–256. IEEE Computer Society,
June 2002.

[4] Dag Nyström, Aleksandra Tešanović, Mikael Nolin, Christer Norström,
and Jörgen Hansson. COMET: A Component-Based Real-Time Database
for Automotive Systems. In Proceedings of the Workshop on Software
Engineering for Automotive Systems, pages 1–8. The IEE, June 2004.

[5] Robert Bosch GmbH. BOSCH’s Controller Area Network. http://-
www.can.bosch.com/.

[6] Stephen Cannan and Gerhard Otten. SQL - The Standard Handbook.
MacGraw-Hill International, 1993.

46



BIBLIOGRAPHY 47

[7] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The Notions of
Consistency and Predicate Locks in a Database System. The communica-
tions of the ACM, 19(11):624–633, November 1976.

[8] C. J. Date. An Introduction to Database Systems. Addison-Wesley Long-
man Publishing Co., 2000.

[9] H. T. Kung and J. T. Robinsson. On Optimistic Methods for Concurrency
Control. ACM Transactions on Database Systems, 6(2):213–226, June
1981.

[10] Ming-Yee Lai and W. Kevin Wilkinson. Distributed transaction manage-
ment in jasmin. In Umeshwar Dayal, Gunter Schlageter, and Lim Huat
Seng, editors, Tenth International Conference on Very Large Data Bases,
August 27-31, 1984, Singapore, Proceedings, pages 466–470. Morgan
Kaufmann, 1984.

[11] J. Stankovic, S. Son, and J. Hansson. Misconceptions About Real-Time
Databases. IEEE Computer, 32(6):29–36, June 1999.

[12] Krithi Ramamritham, Sang H. Son, and Lisa Cingiser Dipippo. Real-
Time Databases and Data Services. Journal of Real-Time Systems,
28(2/3):179–215, November/December 2004.

[13] A. Tešanović, M. Amirijoo, M. Björk, and J. Hansson. Empowering con-
figurable qos management in real-time systems. In Proceedings of the
Fourth ACM SIG International Conference on Aspect-Oriented Software
Development (AOSD’05), Chicago, USA, March 2005. ACM Press.

[14] Tei-Wei Kuo and Aloysius K. Mok. SSP: a Semantics-Based Protocol for
Real-Time Data Access. In Proceedings of 14th IEEE Real-Time Systems
Symposium, pages 76–86. IEEE Computer Society, December 1993.

[15] K. Ramamritham. Real-Time Databases. International Journal of dis-
tributed and Parallel Databases, 1(2):199–226, 1993.

[16] J. Eriksson. Real-Time and Active Databases: A Survey. In Proceedings
of the Second International Workshop on Active, Real-Time and Temporal
Databases, nr. 1553 in Lecture note series., pages 1–23. Springer-Verlag,
December 1998.



48 BIBLIOGRAPHY

[17] K.J. Lin, S. Natarajan, and J. W. S. Liu. Imprecise Results: utilizing par-
tial results in real-time systems. In Proceedings of the Real-Time Systems
Symposium. IEEE, 1987.

[18] Jukka Mäki-Turja, Kaj Hnninen, and Mikael Nolin. Efficient develop-
ment of real-time systems using hybrid scheduling. In International con-
ference on Embedded Systems and Applications (ESA), 6 2005.

[19] Kaj Hänninen and Toni Riutta. Optimal Design. Master’s thesis,
Mälardalens Högskola, Dept of Computer Science and Engineering,
2003.

[20] Abeni and Buttazzo. Integrating multimedia applications in hard real-
time systems. In 19th IEEE Real-Time Systems Symposium, 1998.

[21] J. Huang, J.A. Stankovic, K. Ramamritham, and D.F. Towsley. Ex-
perimental Evaluation of Real-Time Optimistic Concurrency Control
Schemes. In Guy M. Lohman, Amı́lcar Sernadas, and Rafael Camps,
editors, Proceedings of the 17th International Conference on Very Large
Data Bases, pages 35–46. Morgan Kaufmann, September 1991.

[22] H. Garcia-Molina and K. Salem. SAGAS. In Proceedings of the 1987
ACM SIGMOD Conference on Management of Data, pages 249–259.
ACM Press, 1987.

[23] R.K Abbott and H. Garcia-Molina. Scheduling real-time transactions: A
performance evaluation. ACM Transactions on Database Systems, 17,
September 1992.

[24] Dag Nyström, Mikael Nolin, Aleksandra Tešanović, Christer Norström,
and Jörgen Hansson. Pessimistic Concurrency Control and Versioning to
Support Database Pointers in Real-Time Databases. In Proceedings of
the 16th Euromicro Conference on Real-Time Systems, pages 261–270.
IEEE Computer Society, June 2004.

[25] L. Sha, R. Rajkumar, S. H. Son, and C.-H. Chang. A real-time locking
protocol. IEEE Transactions on Computers, 40(7):793–800, September
1991.

[26] L. Sha, R. Rajkumar, and J.P Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. IEEE Transactions on Com-
puters, 39(9), September 1990.



BIBLIOGRAPHY 49

[27] D. Menasce and T. Nakanishi. Optimistic versus pessimistic concurre-
ncy control mechanisms in database management systems. Information
Systems, 7(1):13–27, 1982.

[28] J.R. Haritsa, M. Carey, and M. Livney. Dynamic real-time optimistic
concurrency-control. In Prooceedings of the 11th Real-Time Systems
Symposium. IEEE Computer Society Press, December 1990.

[29] P. S. Yu, K. Wu, K. Lin, and S. H. Son. On Real-Time Databases: Concu-
rrency Control and Scheduling. Proceedings of the IEEE, 82(1):140–157,
January 1994.

[30] F. Baothman, A. K. Sarje, and R. C. Joshi. On Optimistic Concurre-
ncy Control for RTDBS. In Proceedings IEEE Region 10 International
Conference on Global Connectivity in Energy, Computer, Communica-
tion and Control, volume 2, pages 615–618. IEEE Computer Society,
December 1998.

[31] X. Song and J. Liu. Maintaining Temporal Consistency: Pessimistic vs.
Optimistic Concurrency control. IEEE Transactions on Knowledge and
Data Engineering, 7(5):786–796, October 1995.

[32] R. Agrawal, M. Carey, and M. Livney. Concurrency-control performance
modeling: Alternatives and implications. ACM Transactions on Database
Systems, 12(4):609–654, December 1987.

[33] S. Ortiz. Embedded Databases Come Out of Hiding. IEEE Computer,
33(3):16–19, March 2000.

[34] M. A. Olson. Selecting and implementing an embedded database system.
IEEE Computers, 33(9):27–34, Sept. 2000.

[35] Raima Corporation. Databases in Real-time and Embedded Systems.
http://www.raimabenelux.com/, February 2001.

[36] Pervasive Software Inc. http://www.pervasive.com.

[37] Enea AB. http://www.enea.se.

[38] Birdstep Technology ASA. http://www.birdstep.com.

[39] Sleepycat Software Inc. http://www.sleepycat.com.

[40] TimesTen Performance Software. http://www.timesten.com.



50 BIBLIOGRAPHY

[41] J. A. Stankovic, S. H. Son, and J. Liebeherr. Real-Time Databases and In-
formation Systems, chapter BeeHive: Global Multimedia Database Sup-
port for Dependable, Real-Time Applications, pages 409–422. Kluwer
Academic Publishers, 1997.

[42] B. Adelberg, B. Kao, and H. Garcia-Molina. Overview of the STanford
Real-time Information Processor (STRIP). SIGMOD Record, 25(1):34–
37, 1996.

[43] J. Zimmermann and A. P. Buchmann. REACH. In N. Paton (ed): Active
Rules in Database Systems, Springer-Verlag, 1998.

[44] S. F. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndtsson, and
B. Eftring. DeeDS Towards a Distributed and Active Real-Time Data-
base System. ACM SIGMOD Record, 25(1):38–40, 1996.

[45] J. Taina and K. Raatikainen. RODAIN: A Real-Time Object-Oriented
Database System for Telecommunications. In Proceedings of the work-
shop on Databases: active and real-time, pages 10–14. ACM Press,
November 1996.

[46] Y-K. Kim, M. R. Lehr, D. W. George, and S. H. Song. A Database Server
for Distributed Real-Time Systems: Issues and Experiences. In Proceed-
ings of the Second IEEE Workshop on Parallel and Distributed Real-Time
Systems, pages 66–75. IEEE Computer Society, April 1994.

[47] H. Tokuda and C. Mercer. ARTS: A Distributed Real-Time Kernel. ACM
SIGOPS Operating Systems Review, 23(3):29–53, July 1989.

[48] ENEA Data. OSE Real-time system. http://www.enea.se.

[49] J. Mellin, J. Hansson, and S. Andler, editors. Real-Time Database Sys-
tems: Issues and Applications, volume 396 of The Kluwer International
Series in Engineering And Computer Science, chapter Refining Timing
Constraints of Application in DeeDS. Kluwer Academic Publishers,
1997.

[50] K. Raatikainen and J. Taina. Design Issues in Database Systems for Tele-
communication Services. In Proceedings of IFIP-TC6 Working confer-
ence on Intelligent Networks, pages 71–81. Kluwer Academic Publishers,
August 1995.



BIBLIOGRAPHY 51

[51] T. Niklander and K. Raatikainen. RODAIN: A Highly Available Real-
Time Main-Memory Database System. In Proceedings of the IEEE In-
ternational Computer Performance and Dependability Symposium, pages
271–278, September 1998.





Index

ACID property, 14, 17
Active query, 30
Ad hoc query, 18, 20
Application-embedded database system,

11
Availability, 25, 33

Conceptional level, 12
Concurrency-control, 14, 23, 28, 30

τ serialization, 34
Multiversion, 16
Optimistic, 15, 22
Pessimistic, 15, 22, 30, 35

Consistency, 33
Contingency plan, 19

Data freshness, 17
Data model, 27, 28

Object-oriented, 27
Object-relational, 27
Relational, 27, 28

Database, 11
Database management system, 3, 11,

11
Database query, 11
Database system, 11
Database transaction, 12
database transaction conflicts, 14
DBMS model, 27, 28

Client/server, 28

Embedded library, 28
Device-embedded database system, 11
Distribution, 31, 35

Embedded database, 24
Berkeley DB, 26
Issues, 25
Pervasive.SQL, 26
Polyhedra, 26
RDM, 26
TimesTen, 26

Embedded system, 9
Execution plan, 12
External level, 12

Firm database transaction, 33

Hard database transaction, 18, 22, 32
Hard real-time system, 8

Imprecise computing, 19, 35
Internal level, 12

Main-memory database, 32, 33
Memory footprint, 25
Milestone monitoring, 19

Periodic database transaction, 19, 20,
32

Physical level, 12
Precompiled queries, 18

53



54 INDEX

Real-time data, 17
Real-time database, 16

ARTS-RTDB, 32, 35
Concurrency-control, 23
Deadline, 17, 18, 33, 34
DeeDS, 32
Issues, 17
Real-time property, 31
RODAIN, 32, 33

Real-Time property, 31
Real-time system, 8

SAGA, 23
Serialization, 14, 23

Relaxing, 17, 23
Soft database transaction, 20, 22, 32,

33
Soft real-time system, 8
Space ranger

Buzz Lightyear, vii
Sporadic database transaction, 19, 20,

32
SQL (structured query language), 11

task (real-time), 7
Temporal consistency, 17

Absolute consistency, 17
Relative consistency, 17

Vehicle control-system, 7, 19, 20



Part II

Included papers

55





Chapter 5

Paper A: Data Management
Issues in Vehicle Control
Systems: a Case Study

Dag Nyström, Aleksandra Tešanović, Christer Norström, Jörgen Hansson, and
Nils-Erik Bånkestad

In Proceedings of 14th EUROMICRO Conference on Real-Time Systems, Vi-
enna, Austria, June 2002

57



Abstract

In this paper we present a case study of a class of embedded hard real-time
control applications in the vehicular industry that, in addition to meeting trans-
action and task deadlines, emphasize data validity requirements. We elaborate
on how a database could be integrated into the studied application and how the
database management system (DBMS) could be designed to suit this particular
class of systems.



5.1 Introduction 59

5.1 Introduction

In the last ten years, control systems in vehicles have evolved from simple
single processor systems to complex distributed systems. At the same time,
the amount of information in these systems has increased dramatically and is
predicted to increase further with 7-10% per year [1]. In a modern car there
can be several hundreds of sensor values to keep track of. Ad hoc techniques
that are normally used for storing and manipulating data objects as internal
data structures in the application result in costly development with respect to
design, implementation and verification of the system. Further, the system
becomes hard to maintain and extend. Since the data is handled ad hoc, it is
also difficult to maintain its temporal properties. Thus, the need for a uniform
and efficient way to store and manipulate data is obvious. An embedded real-
time database providing support for storage and manipulation of data would
satisfy this need.

In this paper we study two different hard real-time systems developed at
Volvo Construction Equipment Components AB, Sweden, with respect to data
management. These systems are embedded into two different vehicles, an ar-
ticulated hauler and a wheel loader. These are typical representative systems
for this class of vehicular systems. Both systems consist of a number of nodes
distributed over a control area network (CAN).

The system in the articulated hauler is responsible for I/O management
and controlling of the vehicle. The system in the wheel loader is, in addi-
tion to controlling the vehicle, responsible for updating the driver display. We
study structures of the systems and their data management requirements to find
that today data management is implemented as multiple data storages scattered
throughout the system. The systems are constructed out of a finite number of
tasks. Each task in the system is equipped with a finite amount of input and
output ports, through which inter-task communication is performed. Due to
intense communication in both systems, several hundred ports are used. These
ports are implemented as shared memory locations in main memory, scattering
the data even more.

We study temporal properties of the data in the systems and conclude that
the they could benefit from a real-time database (RTDB). Furthermore, we dis-
cuss how the current architecture could be redesigned to include a RTDB. The
important feature of a RTDB in these systems is to guarantee temporal consis-
tency and validity [2] rather than advanced transaction handling. In a typical
vehicular system, nodes vary both in memory size and computation and, hence,
there is a need for a scalable RTDB that can be tailored to suit different kinds



60 Paper A

VECU TECU EECUIECU

CAN

Diagnostic link

CECU
Service

tool

Figure 5.1: The overall architecture of the vehicle controlling system.

of systems. In this paper transactions refer to a number of reads and/or updates
of data in a database. Thus, tasks can contain transactions.

The contribution of this paper is a detailed case-study of the two Volvo
applications. Furthermore, we elaborate on how the existing hard real-time
system could be transformed to incorporate a RTDB. This architectural tran-
sition would allow data in the system to be handled in a structured way. In
this architecture, the database is placed between the application and the I/O
management. We elaborate on why concurrency control, for this transformed
system, is not necessarily needed for retaining the integrity of transactions.
Moreover, we argue that a hard real-time database that would suit this system
could be implemented using passive components only, i.e., a transaction is exe-
cuted on the calling task’s thread of execution. This implies that the worst-case
transaction execution time is added to the worst-case execution time of the task,
retaining a bounded execution time for all tasks.

In section 2 we study the existing vehicle systems and their data manage-
ment requirements in detail. In section 3 we discuss: how the systems could be
redesigned to use a RTDB, the implications for the application and the RTDB,
and how existing real-time database platforms would suit the studied applica-
tion. We conclude our work and present future challenges in section 4.

5.2 The Case Study
The vehicle control system consists of several subsystems called electronic
control units (ECU), connected through two serial communication links: the
fast CAN link and the slow diagnostic link, as shown in the figure 5.1. Both the
CAN link and the diagnostic link are used for data exchange between different
ECUs. Additionally, the diagnostic link is used by diagnostic (service) tools.
The number of ECUs can vary depending on the way functionality is divided
between ECUs for a particular type of vehicle. For example, the articulated
hauler consists of five ECUs: instrumental, cabin, vehicle, transmission and



5.2 The Case Study 61

Rubus OSCommunication

Hardware layer 

ECU software system

Run-
time 

system

I/O
Application layer

Figure 5.2: The structure of an ECU.

engine ECU, denoted IECU, CECU, VECU, TECU, and EECU, respectively.
In contrast, the wheel loader control system consists of three ECUs, namely
IECU, VECU, and EECU.

We have studied the architecture and data management of the VECU in
the articulated hauler, and the IECU in the wheel loader. The VECU and the
IECU are implemented on hardware platforms supporting three different stor-
age types: EEPROM, Flash, and RAM. The memory in an ECU is limited,
normally 64Kb RAM, 512Kb Flash, and 32Kb EEPROM. Processors are cho-
sen such that power consumption and cost of the ECU are minimized. Thus,
processors run at 20MHz (VECU) and 16MHz (IECU) depending on the work-
load.

Both VECU and IECU software systems consist of two layers: a run-time
system layer and an application layer (see figure 5.2). The run-time system
layer on the lower level contains all hardware-related functionality. The higher
level of the run-time system layer contains an operating system, a communi-
cation system, and an I/O manager. Every ECU uses the real-time operating
system Rubus. The communication system handles transfer and reception of
messages on different networks, e.g., CAN. The application is implemented
on top of the run-time system layer. The focus of our case study is data ma-
nagement in the application layer. In the following section we briefly discuss
the Rubus operating system. This is followed by sections where functionality
and a structure of the application layer of both VECU and IECU, are discussed
in more detail (in following sections we refer to the application layer of the
VECU and IECU as the VECU (software) system and the IECU (software)
system).



62 Paper A

5.2.1 Rubus

Rubus is a real-time operating system designed to be used in systems with
limited resources [3]. Rubus supports both off-line and on-line scheduling, and
consists of two parts: (i) red part, which deals with hard real-time; and (ii) blue
part, which deals with soft real-time.

The red part of Rubus executes tasks scheduled off-line. The tasks in the
red part, also referred to as red tasks, are periodic and have higher priority than
the tasks in the blue part (referred to as blue tasks). The blue part supports
tasks that can be invoked in an event-driven manner. The blue part of Rubus
supports functionality that can be found in many standard commercial real-
time operating system, e.g., priority-based scheduling, message handling, and
synchronization via semaphores. Each task has a set of input and output ports
that are used for communication with other red tasks. Rubus is used in all
ECUs.

5.2.2 VECU

The vehicle system is used to control and observe the state of the vehicle. The
system can identify anomalies, e.g., an unnormal temperature. Depending on
the criticality of the anomaly, different actions, such as warning the driver,
system shutdown etc., can be taken. Furthermore, some of the vehicle’s func-
tionality is controlled by this system via sensors and actuators. Finally, logging
and maintenance via the diagnostics link can also be performed using a service
tool that can be connected to the vehicle.

All tasks in the system, except the communication task, are non-preemptive
tasks scheduled off-line. The communication task uses its own data structures,
e.g., message queues, thus no resources are shared with other tasks. Since non-
preemptive tasks run until completion and cannot be preempted, mutual exclu-
sion is not necessary. The reason for using non-preemptive off-line scheduled
tasks is to minimize the runtime overhead and to simplify the verification of
the system.

The data in the system can be divided into five different categories: (1) sen-
sor/actuator raw data, (2) sensor/actuator parameter data, (3) sensor/actuator
engineering data, (4) logging data, and (5) parameter data.

The sensor/actuator raw data is a set of data elements that are either read
from sensors or written to actuators. The data is stored in the same format
as they are read/written. This data, together with the sensor/actuator parame-
ter data, is used to derive the sensor/actuator engineering data, which can be



5.2 The Case Study 63

Vehicle ECU

EEPROM

Backup/
restoration

Task

Logging
Task

Logs
(RAM)

Para-
meters

CAN
Diagnostics

link

Service tool

Communication
Task

 Subsystems

I/O
Task

I/O
Task

I/O
Task

.

.

.

Sig in

Sig in

Sig in

.

.

.

HWDb

Application
Task 1

Data
derivation

Task
Sig out

I/O
Task

Figure 5.3: The original architecture of the VECU.

used by the application. The sensor/actuator parameter data contains reference
information about how to convert raw data received from the sensors into en-
gineering data. For example, consider a temperature sensor, which outputs the
measured temperature as a voltage Tvolt. This voltage needs to be converted to
a temperature T using a reference value Tref , e.g., T = Tvolt · Tref .

In the current system, the sensor/actuator (raw and parameter) data are
stored in a vector of data called a hardware database (HW Db), see figure 5.3.
The HW Db is, despite its name, not a database but merely a memory structure.
The engineering data is not stored at all in the system but is derived “on the fly”
by the data derivation tasks. Apart from data collected from local sensors and
the application, sensor and actuator data derived in other ECUs is stored in the
HW Db. The distributed data is sent periodically over the CAN bus. From the
application’s point of view the locality of the data is transparent in the sense
that it does not matter if the data is gathered locally or remotely.

Some of the data derived in the applications is of interest for statistical and
maintenance purposes and therefore the data is logged (referred to as logging
data) on permanent storage media, e.g., EEPROM. Most of the logging data



64 Paper A

is cumulative, e.g., the vehicle’s total running time. These logs are copied
from EEPROM to RAM in the startup phase of the vehicle and are then kept
in RAM during runtime, to finally be written back to EEPROM memory be-
fore shutdown. However, logs that are considered critical are copied to EEP-
ROM memory immediately at an update, e.g., warnings. The parameter data
is stored in a parameter area. There are two different types of parameters, per-
manent and changeable. The permanent parameters can never be changed and
are set to fulfill certain regulations, e.g., pollution and environment regulations.
The changeable parameters can be changed using a service tool.

Most controlling applications in the VECU follow a common structure re-
siding in one precedence-graph. The sensors (Sig In) are periodically polled by
I/O tasks (typically every 10 ms) and the values are stored in their respective
slot in the HW Db. The data derivation task then reads the raw data from the
HW Db, converts it, and sends it to the application task. The application task
then derives a result that is passed to the I/O task that both writes it back to the
HW Db and to the actuator I/O port.

5.2.3 IECU
The IECU is a display electronic control unit that controls and monitors all
instrumental functions, such as displaying warnings, errors, and driver infor-
mation on the driver display. The IECU also controls displaying service infor-
mation on the service display (a unit for servicing the vehicle). It furthermore
controls the I/O in the driver cabin, e.g., accelerator pedal, and communicates
with other ECUs via CAN and the diagnostic link.

The IECU differs from the VECU in several ways. Firstly, the data volume
in the system is significantly higher since the IECU controls displays and, thus,
works with a large amount of images and text information. Moreover, the data
is scattered in the system and depending on its nature, stored in a number of
different data structures as shown in figure 5.4. Similarly to the HW Db, data
structures in the IECU are referred to as databases, e.g., image databases, menu
databases and language databases. Since every text and image information in
the system can be displayed in thirteen different languages, the interrelation-
ships of data in different data storages are significant.

A dominating task in the system is the task updating the driver display.
This is a red task, but it differs from other red tasks in the system since it can
be preempted by other red tasks in the IECU. However, scheduling of all tasks
is performed such that all possible data conflicts are avoided.

Data from the HW Db in the IECU is periodically pushed on to the CAN



5.2 The Case Study 65

Flash

Other systems

.

.

.

Instrumental ECU
HWDb

Image
buffer

Driver display

WarningDriver display
Task

I/O
Task

Sig out

CAN

Communication task

VECU

Driver warning
Task

I/O
Task

I/O
Task

I/O
Task

.

.

.

Sig in

Sig in

Sig in

Application
Task 1

Data
derivation

Task
Sig out

I/O
Task

WoE Db

RAM

Service display

Test-calibraton Db

Serivce display
Task

I/O
Task

Diagnostic
link

Service menu Service
image Db

Language

Driver image DbDriver menu

Language

Text
buffer

RAM

EEPROM

Flash

Figure 5.4: The original architecture of the IECU.



66 Paper A

link and copied to the VECU’s HW Db. Warnings or errors (WoE) are peri-
odically sent through the CAN link from/to the VECU and are stored in the
dedicated part of RAM, referred to as the WoE database (WoE Db). Hence,
the WoE Db contains information of active warnings and errors in the overall
wheel loader control system. While WoE Db and HW Db allow both read and
write operations, the image and menu databases are read-only databases.

The driver display is updated as follows (see figure 5.4). The driver dis-
play task periodically scans the databases (HW Db, WoE Db, menu Db) to
determine the information that needs to be displayed on the driver display. If
any active WoE exists in the system, the driver display task reads the corre-
sponding image, in the specified language, from the image database located in
a persistent storage and then writes the retrieved image to the image buffer. The
image is then read by the blue I/O task, which then updates the driver display
with an image as many times as defined in the WoE Db. Similarly, the driver
display task scans the HW Db and menu database. If the hardware database
has been updated and this needs to be visualized on the driver display, or if
data in the menu organization has been changed, the driver display task reads
the corresponding image and writes it to the driver display as described previ-
ously. In case the service tool is plugged into the system, the service display
task updates the service display in the same way as described for the driver
display, but using its own menu organization and image database, buffer, and
the corresponding blue I/O task.

5.2.4 Data Management Requirements
The table 5.1 gives an overview of data management characteristics in the
VECU and IECU systems. The following symbols are used in the table:
As can be seen from the table 5.1, all the data in both systems are scattered in
groups of different flat data structures referred to as databases, e.g., HW Db,
image Db, WoE Db and language Db. These databases are flat because data
is structured mostly in vectors, and the databases only contain data with no
support for DBMS functionality.

The nature of the systems put special requirements on data management
(see table 5.1): (i) static memory allocation only, since dynamic memory al-
location is not allowed due to the safety-critical aspect of the systems; (ii)
small memory consumption, since production costs should be kept as low as
possible; and (iii) diverse data accesses, since data can be stored in different
storages, e.g., EEPROM, Flash, and RAM.

1The feature is true only for some engineering data in the VECU.



5.2 The Case Study 67

v — feature is true for the data type in the VECU,
i — feature is true for the data type in the IECU, and
x — feature is true for the data type in both

VECU and IECU.

Data types

Management characteristics Se
ns

or

A
ct

ua
to

r

En
gi

ne
er

in
g

Pa
ra

m
et

er
s

W
oE

Im
ag

e&
Te

xt
Lo

gs

HW Db x x i
Data Parameter Db x
source WoE Db i

Image Db i
Language Db i
Menu Db i
Log Db v

Memory RAM x x x x x v
type Flash i

EEPROM x v
Memory Static x x x x x i v
allocation Dynamic
Interrelated with other data x x x x x i v
Temporal validity x x x x v
Logging Startup v

Shutdown v
Immediately v1

Persistence x x v1 x x
Logically consistent x x x x
Indexing i
Transaction Update x x x x x v
type Write-only x x

Read-only x x x i
Complex update x x x v
Complex queries x x x x x i v

Table 5.1: Data management characteristics for the systems.



68 Paper A

Most data, from different databases and even within the same database, is
logically related. These relations are not intuitive, which makes the data hard to
maintain for the designer and programmer as the software of the current system
evolves. Raw values of sensor readings and actuator writings in the HW Db are
transformed into engineering values by the data derivation task, as explained
in section 5.2.2. The engineering values are not stored in any of the databases,
rather they are placed in ports (shared memory) and given to application tasks
when needed.

The period times of updating tasks ensure that data in both systems (VECU
and IECU) are correct at all times with respect to absolute consistency. Fur-
thermore, task scheduling, which is done off-line, enforces relative consistency
of data by using an off-line scheduling tool. Thus, data in the system is tempo-
rally consistent (we denote this data property in the table as temporal validity).
Exceptions are permanent data, e.g., images and text, which is not temporally
constrained (see table 5.1).

One implication of the systems’ demand on reliability, i.e., the requirement
that a vehicle must be movable at all times, is that data must always be tempo-
rally consistent. Violation of temporal consistency is viewed as a system error,
in which case three possible actions can be taken by the system: use a prede-
fined default data value (most often), use an old data value, or shutdown of the
functions involved (system exposes degraded functionality).

Some data is associated with a range of valid values, and is kept logically
consistent by tasks in the application (see table 5.1). The negative effect of
enforcing logical consistency by the tasks is that programmers must ensure
consistency of the task set with respect to logical constraints.

Persistence in the systems is maintained by storing data on stable storage,
but there are some exceptions to the rule, e.g., RPM data is never copied to
stable storage. Also, some of the data is only stored in stable storage, e.g.,
internal system parameters. In contrast, data imperative to systems’ function-
ing is immediately copied to stable storage, e.g., WoE logs are copied to/from
stable storage at startup/shutdown.

Several transactions exist in the VECU and IECU systems: (i) update trans-
actions, which are application tasks reading data from the HW Db; (ii) write-
only transactions, which are sensor value update tasks; (iii) read-only transac-
tions, which are actuator reading tasks; and (iv) complex update transactions,
which originate from other ECUs. In addition, complex queries are performed
periodically to distribute data from the HW Db to other ECUs.

Data in the VECU is organized in two major data storages, RAM and Flash.
Logs are stored in EEPROM and RAM (one vector of records), while 251



5.3 Modeling the System to Support a RTDB 69

items structured in vectors are stored in the HW Db. Data in the IECU is
scattered and interrelated throughout the system even more in comparison to
the VECU (see table 5.1). For example, the menu database is related to the
image database, which in turn is related to the language Db and the HW Db.
Additionally, data structures in the IECU are fairly large. HW Db and WoE
Db resides in RAM. HW Db contains 64 data items in one vector, while WoE
Db consists of 425 data items structured as 106 records with four items each.
The image Db and the language Db reside in Flash. All images can be found
in 13 different languages, each occupying 10Kb of memory. The large volume
of data in the image and language databases requires indexing. Indexing is
today implemented separately in every database, and even every language in
the language Db has separate indexing on data.

The main problems we have identified in existing data management can be
summarized as follows:

• all data is scattered in the system in a variety of databases, each repre-
senting a specialized data store for a specific type of data;

• engineering values are not stored in any of the data stores, but are placed
in ports, which enlarges maintenance complexity and makes adding of
functionality in the system a difficult task;

• application tasks must communicate with different data stores to get the
data they require, i.e., the application does not have a uniform access or
view of the data;

• temporal and logical consistency of data is maintained by the tasks, in-
creasing the level of complexity for programmers when maintaining a
task set; and

• data from different databases exposes different properties and constr-
aints, which complicates maintenance and modification of the systems.

5.3 Modeling the System to Support a RTDB
To be able to implement a database in the real-time system, the system needs
to be redesigned to support a database. For the studied application, this could
be done by separating I/O management from the application.

As mentioned in section 5.2.2 and shown in figure 5.3, the data flow goes
from the I/O tasks, via the HW Db and application tasks to the I/O tasks to the



70 Paper A

VECU with a database

I/O
Task

I/O
Task

Sig in

Sig in

Flash/EEPROM

Backup/restoration service

Service tool  Subsystems

I/O
Task

Sig out

Logging
Task

Sensor and
actuator raw data

Sensor, and
actuator

engineering values

Logging
 data

Application
Task 1

Application
Task n

.

.

.

I/O MGNT

Parameters

CANDiagnostics link

Communication
Task

DBMS

Figure 5.5: The new architecture of the VECU.

right, sending the values to the actuators. The transition of such a system could,
at a high level, be performed in three steps. The first step is to separate all I/O
tasks from the application. This can be viewed as “folding the architecture”.
By doing this an I/O management is formed that is separated from the control
application. The second step is to place the real-time database between the I/O
management and the control application as shown in figure 5.5. In the Volvo
case, the HW Db is replaced by a RTDB which is designed using a passive
library. The desired properties of this RTDB are described more in detail in
section 5.3.1. The I/O tasks are modified to communicate with the database
instead of the data derivation tasks. The application is, analogue to the I/O
tasks, also modified to communicate with the database only. At this stage the
database splits two domains, the I/O domain and the application domain. The
last step is to collect additional data that might be scattered in the system into
the database, e.g., parameter and logging data. The tasks that communicate
with these data stores are, similar to the I/O and application tasks, modified
to communicate with the database only. With this architecture we have sepa-
rated the application from the I/O management and the I/O ports. The database
could be viewed as a layer between the application and the operating system,



5.3 Modeling the System to Support a RTDB 71

Rubus OSCommunication

Hardware layer 

ECU software system

Run-
time 

system

I/O
Database layer

Application layer

Figure 5.6: The structure of an ECU with an embedded database.

extending the real-time operating system functionality to embrace data mana-
gement, see figure 5.6. All data in the system is furthermore collected in one
database, satisfying the need for a uniform and efficient way to store data. An-
other important issue, shown in figure 5.5, is that both the raw sensor data and
the engineering data, previously derived by the data derivation task, are now
included in the database. The actual process of deriving the engineering val-
ues could be performed in multiple ways. The I/O tasks could be modified to
embrace this functionality, so that they write both the raw value and the engi-
neering value to the database. Another, perhaps more elegant, way of solving
this is to use database rules, where a rule is triggered inside the database as
soon as a data item is updated. This rule would execute the code that derive the
engineering value.

5.3.1 Data Management Implications

When designing a system running on the described hardware, one of the main
goals is to make it run with as small processor and memory footprint as possi-
ble. Traditionally, for data, this is achieved by using as small data structures as
possible. A common misconception is that a database is a very large and com-
plex application that will not fit into a system such as this [4]. However, there
are, even commercial DBMSs that are as small as 8Kb, e.g., Pervasive.SQL. It
should be added, though, that even if the size of the DBMS is very small, the
total memory used for data storage can increase because of the added overhead
for each data element stored in the database. This is because memory is used
to store the database indexing system, data element locks, etc. Clearly, there
is a trade-off between functionality and memory requirements. The most im-
portant issue in this application is timeliness. The system cannot be allowed to
miss deadlines and behave unpredictable in any way. It is off-line scheduled



72 Paper A

with non-preemptable tasks. This fact provides some interesting implications.
No task, except the driver display task (see section 5.2.3), can preempt an-
other task. Thus, database conflicts are automatically avoided since the tasks
themselves are mutually exclusive. This makes database concurrency control
and locking mechanisms unnecessary because only one transaction can be ac-
tive in such a system at any given time, thus serialization of transactions are
handled “manually”. This is similar to why semaphores are not needed for
non-preemptive real-time systems [5].

Implementing a database into the existing system will have benefits. All
data, regardless of on which media it is stored, can be viewed as one consistent
database. The relations between the data elements can be made clearer than
today. For example, currently an image retrieval in the IECU is performed by
first looking in the image Db, then in the language Db, and finally in the HW
Db. A database query asking for an image, using the current language and the
correct value from the HW Db, can be done in one operation. Furthermore,
constraints on data can be enforced centrally by the database. If a data element
has a maximum and a minimum value, the database can be aware of this and
raise an exception if an erroneous value is inserted. Today, this is performed in
the application, implying a responsibility that constraints are made consistent
between all tasks that use the data.

In this system the transaction dispatching delay is removed since a database
scheduler is not needed. Also, conflict resolution is removed since no conflicts
will occur because only one transaction is running at any given time. Regarding
the data access time, it will increase as the database grows larger. However,
this can be tolerated since the increase can be controlled in two ways. First
of all, as the database is a main-memory database, any access to data will be
significantly shorter than the execution times of the transactions. To decrease
the transaction response times various indexing strategies especially suited for
main-memory databases can be used, e.g., t-tree [6] and hashing algorithms
[7].

The application investigated in this paper consists of, as previously men-
tioned, primarily non-preemptable tasks, hence no concurrency control is nee-
ded. One interesting question is how this approach would fit into a preemptable
off-line scheduled system. This would call for some kind of concurrency con-
trol in the database, thus possibly resulting in unpredictable response times for
transactions due to serialization conflicts. However, this could be avoided by
solving all conflicts off-line. Since all transactions in the system are known a
priori, we know all data elements that each transaction touches. This allows us
to feed the off-line scheduler with information about which transactions might



5.3 Modeling the System to Support a RTDB 73

cause conflicts if preempted by each other. The scheduler can then generate a
schedule where tasks containing possibly conflicting transactions do not pre-
empt each other.

5.3.2 DBMS Design Implications
If we can bound the worst case response time for a specific transaction, we can
add this time to the calling tasks worst-case execution time (WCET) without
violating the hard real-time properties of the system.1 Execution of the trans-
action on its task’s thread instead of having separate database tasks, decreases
the number of tasks in the schedule, making it easier for the off-line scheduling
tool to find a feasible schedule. However a question one should ask is: How do
we find the worst case response time for a transaction? There are basically four
different circumstances that define the response time of a transaction, namely:
(i) the time it takes from the instant a transaction is released until the instant
it is dispatched; (ii) the actual execution time of the code that needs to be ex-
ecuted; (iii) the time it takes to access the data elements through the indexing
system; and (iv) the time it takes to resolve any serialization conflicts between
transactions. For an optimistic concurrency control this would imply the time
it takes to run the transaction again, and for a pessimistic concurrency control
it would be the time waiting for locks.

In this system the transaction dispatching delay is removed since a database
scheduler is not needed in this system. Also, conflict resolution is removed
since no conflicts will occur because only one transaction is running at any
given time. Regarding the data access time, it will increase as the database
grows larger. However this can be tolerated since the increase is bounded if
a suitable indexing structure is used, such as the T-tree [6] or the hashing [7]
algorithms.

In future versions of this application, it is expected that some of the func-
tionality is moved to the blue part, thus requiring concurrency control and
transaction scheduling since we cannot predict the arrival times of blue tasks.
Moving parts of the application to the blue part could imply restructuring the
data model if a database is not used. If new functionality from the database
will be needed in the future, the database schema can be reused. Still, this
would not allow non-periodic transactions. Furthermore, it would not allow
tasks scheduled online, e.g., blue tasks. However, an extension that would al-
low this is shown in figure 5.7. A non-preemptable scheduler task is placed in

1The response time is defined as the time from transaction initiation to the completion of the
transaction.



74 Paper A

Red Rubus part Blue Rubus part

DB

Appl. task

Appl. task

Appl. task

DB scheduler

Transaction
queue

Result
queue

Blue task

Blue task

Figure 5.7: A database that supports non-periodic transactions via an external
scheduler.

the red part of Rubus. Since this task is non-preemptable it is mutually exclu-
sive towards all other tasks and can therefore have access to the entire database.
If this task is scheduled as a periodic task, it acts like a server for transaction
scheduling. Thus, the server reads all transactions submitted to the transaction
queue, process them and return the results in the result queue (blue tasks are
preemptable and, hence, their execution can be interleaved).

From the blue tasks’ perspective, they can submit queries, and since we
know the periodicity of the scheduler task we can determine the worst-case
execution time for these transactions. From the red tasks’ perspective, noth-
ing has changed, they are still, either as in the current system, non-preemptive
resulting in no conflicts, or they are scheduled so that no conflicts can occur.
It is important to emphasize that this method is feasible only if any transac-
tion processed by the scheduler task can be finished during one instance of
the scheduling task. If this requirement cannot be met an online concurrency
control is needed.

5.3.3 Mapping Data Requirements to Existing Database
Platforms

Today there are database platforms, both research and commercial platforms,
which fulfill a subset of the system requirements. The DeeDS [8] platform, for
example, is a hard real-time research database system that support hard peri-
odic transactions. It also has a soft and a hard part. Furthermore, the DeeDS
system uses milestones and contingency plans. These hard periodic transac-
tions would suit the red Rubus tasks and would, if used with milestones and
contingency plans, suit the Volvo application. The milestones would check
that no deadlines are about to be missed, and the contingency plans would ex-



5.4 Conclusions 75

ecute alternate actions if that is the case. DeeDS is, as the STRIP system [9]
a main memory database that would suit this application. The Beehive [10]
system implements the concept of temporal validity, that would ensure that
temporal consistency always exists in the database. These platforms are de-
signed as monolithic databases with the primary intent to meet multiple appli-
cation requirements with respect to real-time properties, and on a lesser extent
the embedded requirements. As such, they are considered to provide more
functionality than needed, and as a consequence, they are not optimal for this
application given the need to minimize resource usage as well as overall system
complexity.

On the commercial side, embedded databases exist that are small enough
to fit into the current system, e.g., the Berkeley DB by Sleepycat Software Inc.
and the Pervasive.SQL database for embedded systems. There are also pure
main-memory databases on the market, e.g., Polyhedra and TimesTen. Poly-
hedra, DeeDS, STRIP, and REACH [11] are active database systems, which
can enforce consistency between the raw values and the engineering values,
and thereby removing the need for the data derivation task. However, integrat-
ing active behavior in a database makes timing analysis of the system more
difficult. The Berkeley DB system allows the user to select between no concu-
rrency control and an pessimistic concurrency control [12]. If Volvo should de-
cide upon moving part of the functionality to the blue part, concurrency in the
database would be necessary. The option of choosing whether or not to use co-
ncurrency control would enable the use of the same DBMS, database scheme,
and database interface regardless of the strategy being used. Unfortunately,
none of the commercial systems mentioned have any real-time guarantees and
are therefore not suitable for this type of application.

5.4 Conclusions

We have studied two different hard real-time systems from the vehicular indus-
try with respect to data management, and we have found that data is scattered
throughout the system. This implies that getting a full picture of all existing
data and its interrelations in the system is difficult.

Further, we have redesigned the architecture of the system to support a
real-time database. In this new architecture all tasks communicate through the
database instead of using ports, and the database provides a uniform access to
data. This application does not need all the functionality provided by existing
real-time database research platforms, and issues like concurrency and schedul-



76 Paper A

ing have been solved in an easy way. Currently the application is designed so
that all tasks are off-line scheduled. All tasks, except the driver display task,
are non-preemptive. However, future versions of the application are expected
to embrace preemption as well as online scheduled tasks.

Finally, we have discussed mapping the data management requirements to
existing databases. Some of the database platforms, both research and com-
mercial, offer functionality that is needed by the system, but at the same time
they introduce a number of unnecessary features.

Our future work will focus on the design and implementation of a tailorable
real-time embedded database [13]. This includes: (i) developing a set of real-
time components and aspects, (ii) defining rules for composing these compo-
nents into a real-time database system, and (iii) developing a set of tools to
support the designer when composing and analyzing the database system. A
continuation of this case study where we will implement our database in the
Volvo system is planned.



Bibliography

[1] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Volcano - a
Revolution in On-Board Communications. Technical report, Volvo Tech-
nology Report, 1998.

[2] K. Ramamritham. Real-Time Databases. International Journal of dis-
tributed and Parallel Databases, 1(2):199–226, 1993.

[3] Rubus OS - reference manual. Articus Systems, 1996.

[4] J. Stankovic, S. Son, and J. Hansson. Misconceptions About Real-Time
Databases. IEEE Computer, 32(6):29–36, June 1999.

[5] J. Xu and D. L. Parnas. Scheduling Processes with Release Times, Dead-
lines, Precedence, and Exclusion Relations. IEEE Transactions on Soft-
ware Engineering, 16(3):360–369, 1990.

[6] H. Lu, Y. Ng, and Z. Tian. T-Tree or B-Tree: Main Memory Database
Index Structure Revisited. In Proceedings of the 11th Australasian Data-
base Conference, pages 65–73. IEEE Computer Society, January 2000.

[7] W. Litwin. Linear Hashing: A New Tool for File and Table Address-
ing. In Proceedings of the 6th International Conference on Very Large
Databases, pages 212–223. Springer, October 1980.

[8] S. F. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndtsson, and
B. Eftring. DeeDS Towards a Distributed and Active Real-Time Data-
base System. ACM SIGMOD Record, 25(1):38–40, 1996.

[9] B. Adelberg, B. Kao, and H. Garcia-Molina. Overview of the STanford
Real-time Information Processor (STRIP). SIGMOD Record, 25(1):34–
37, 1996.

77



78 BIBLIOGRAPHY

[10] J. A. Stankovic, S. H. Son, and J. Liebeherr. Real-Time Databases and In-
formation Systems, chapter BeeHive: Global Multimedia Database Sup-
port for Dependable, Real-Time Applications, pages 409–422. Kluwer
Academic Publishers, 1997.

[11] A. P. Buchmann, A. Deutsch, J. Zimmermann, and M. Higa. The REACH
active OODBMS. In Proceedings of the 1995 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 476–476. ACM Press,
May 1995.

[12] X. Song and J. Liu. Maintaining Temporal Consistency: Pessimistic vs.
Optimistic Concurrency control. IEEE Transactions on Knowledge and
Data Engineering, 7(5):786–796, October 1995.

[13] Aleksandra Tešanović, Dag Nyström, Jörgen Hansson, and Christer
Norström. Embedded Databases for Embedded Real-Time Systems: A
Component-Based Approach. Technical Report MRTC Report ISSN
1404-3041 ISRN MDH-MRTC-43/2002-1-SE, Dept. of Computer Engi-
neering, Mälardalen University, January 2002.



Chapter 6

Paper B: COMET: A
Component-Based
Real-Time Database for
Automotive Systems

Dag Nyström, Aleksandra Tešanović, Mikael Nolin, Christer Norström,
and Jörgen Hansson

In Proceedings of the Workshop on Software Engineering for Automotive Sys-
tems (SEAS04), Edinburgh, Scotland, May 2004
In conjunction with the International Conference on Software Engineering
2004 (ICSE04)

79



Abstract

With the increase of complexity in automotive control systems, the amount of
data that needs to be managed is also increasing. Using a real-time database
management system (RTDBMS) as a tightly integrated part of the software
development process can give significant benefits with respect to data manage-
ment. However, the variability of data management requirements in different
systems, and the heterogeneousness of the nodes within a system may require
a distinct database configuration for each node. In this paper we introduce
a software engineering approach for generating RTDBMS configurations suit-
able for resource-constrained automotive control systems, denoted the COMET
development suit. Using software engineering tools to assist developers with
design and analysis of the system under development, different database con-
figurations can be generated from pre-fabricated components. Each generated
COMET database contains only functionality required by the node it is execut-
ing on.



6.1 Introduction 81

6.1 Introduction

In recent years, automotive control systems have evolved from simple sin-
gle processor systems to complex distributed systems. At the same time, the
amount of data that needs to be managed by these systems is increasing dra-
matically; data volume managed by automotive systems is predicted to increase
7-10% per year [1]. Current techniques for storing and manipulating data ob-
jects in automotive systems are ad hoc in the sense that they normally manipu-
late data objects as internal data structures. This lack of a structured approach
to data management results in a costly development process with respect to
design, implementation, and verification of the system [2]. It also makes the
system difficult to maintain and develop while preserving consistency with the
environment, e.g., maintaining temporal properties of data. As data complex-
ity is growing the need for a uniform, efficient, and persistent way to store data
is becoming increasingly important. Using a real-time database management
system (RTDBMS) as a tightly integrated part of an automotive control sys-
tem has the potential to solve many of the problems that application designers
have to consider with respect to data management, e.g., locking of the data,
persistency and deadlock situations. More importantly, incorporating an RT-
DBMS into an automotive control system can reduce development costs, result
in higher quality of the design of the systems, and consequently yield higher
reliability [3].

The variability of data management requirements in different automotive
control systems requires distinct RTDBMS configurations specially suited for
the particular system [4]. Since an automotive control system is heterogeneous,
consisting of several nodes (called electronic control units, ECUs), see fig-
ure 6.1, the ability to configure the RTDBMS to suit the requirements of an
individual node is crucial. For instance, an automotive system could consist
of a small number of resource adequate ECUs responsible for the overall per-
formance of the vehicle, e.g., 32bit CPUs with a few Mb of RAM, and a large
number of ECUs responsible for controlling specific subsystems in the vehicle,
which are significantly resource-constrained, e.g., an 8bit micro-controller and
a few kb of RAM [2]. ECUs with greater amount of resources usually have
real-time operating systems support, which is not affordable in small resource-
constrained ECUs. Although different in their characteristics and available
resources, all nodes in an automotive control system are exchanging, sharing
and manipulating data, thereby requiring a uniform way of data management,
e.g., via a RTDBMS.

The heterogeneous characteristics of nodes in an automotive control system



82 Paper B

result in a need to have distinct RTDBMS configurations suited for a particular
node [2]. In safety-critical nodes, tasks are often non-preemptive and scheduled
off-line, implying that a RTDBMS configuration for that node could be made
small in size and provided functionality, since the majority of the RTDBMS’s
functionality, such as synchronization and concurrency-control, could be han-
dled off-line. Less critical and larger nodes have preemptable tasks, requiring
a RTDBMS configuration with run-time concurrency control mechanisms, and
support for database queries formulated during run-time (ad-hock queries). A
configurable RTDBMS supporting different types of nodes would, from the ap-
plication’s point of view, provide uniform access to the data regardless of the
size and characteristics of an ECU.

Today, there exists a number of commercial databases suitable for embed-
ded systems, e.g., Pervasive.SQL [5], Polyhedra [6], Berkeley DB [7], and
TimesTen [8]. Although small in size and therefore suitable for resource-
constrained automotive control systems, these databases do not incorporate
real-time behavior. This in turn implies that their behavior cannot be ana-
lyzed, which makes them unsuitable for deployment in an automotive sys-
tem. Research projects that are building real-time database platforms, such
as DeeDS [9], RODAIN [10], STRIP [11], and BeeHIVE [12], mainly ad-
dress real-time requirements, are monolithic, and targeted towards a larger-
scale real-time application, which makes them unsuitable for use in embedded
resource-constrained environments.

In this paper we propose a software engineering approach for generating
RTDBMS configurations suitable for resource-constrained automotive control
systems. This approach is supported by the COMET development suit. The
suit consists of a set of data management, analysis and configuration tools,
as well as a library of pre-defined software artifacts providing specific RT-
DBMS functionality. The library of artifacts and the possible configurations
of the RTDBMS are referred to as the COMET RTDBMS platform. With the
COMET development suit we aim at providing software developers an auto-
mated way of tailoring and analyzing the data management for a particular
automotive control system, or a node in the system. The COMET RTDBMS
platform, a part of the COMET development suit, is developed using an ap-
proach to aspectual component-based software development (ACCORD) [13].
ACCORD enables us to utilize the benefits of component-based software de-
velopment (CBSD) [14] by developing components that encapsulate specific
real-time database functionalities. ACCORD also enables us to exploit the
benefits of aspect-oriented software development (AOSD) [15] by providing
a way of encapsulating, managing, and implementing crosscutting concerns



6.2 The COMET development suit 83

Engine
Control
ECU

Vehicle
Control
ECU

Transmission
Control ECU

CAN

Service tool

ECU

ECU

ECU ECU

ECU ECU

CAN

Figure 6.1: An heterogeneous automotive control system

in a RTDBMS in a predictable manner; crosscutting concerns include concu-
rrency control, logging, and recovery. In AOSD, a crosscutting concern is a
functionality or non-functional feature that cannot cleanly be encapsulated in a
procedure, function, object or a class [15].

The paper is organized as follows. In section 6.2 we present the COMET
development suit. We present the key concepts used in the COMET develop-
ment suit in section 6.3, including COMET aspects and components and possi-
ble COMET RTDBMS configurations. We conclude the paper and discuss our
future work in section 6.4.

6.2 The COMET development suit

To successfully and efficiently generate systems from a library of pre-defined
artifacts, the development process should be supported by appropriate tools. In
this section we present our view of the overall development process to obtain
system-specific RTDBMS configurations. Figure 6.2 shows the constituents of
this process.

As shown in figure 6.2, the development of a RTDBMS configuration starts
with specifying the requirements of an automotive control system, which are
then used as input for making a model of the system. This model consists of
the nodes, their interconnections and the individual run-time properties, e.g.,
the scheduling policy of the node, if the tasks are preemptive or not, available
memory, and CPU resources. The goal of making the model of the underly-



84 Paper B

ing system is to derive required database functionality for each of the node in
the system. Examples of functionality are support for ad-hoc queries (queries
dynamically created during run-time), and to enable the data organization to
be changed during run-time (i.e., provide a dynamic database schema). Next,
a model of the database, i.e., the actual data, and any precompiled queries are
derived with the help of the data engineering tool. This step also involves spec-
ifying which parts of the database should be available on which node, and the
temporal properties of the data, such as temporal consistency [16]. This in-
formation, i.e., desired database functionality for each node, data model, and
database schema, is then used by the configuration tool to select a set of aspects
and components from the library to form a database configuration suitable for
each of the nodes (see figure 6.2). The overall decomposition of the database
functionality into aspects and components, and the development of components
and aspects, is done according to the ACCORD design principle (see section
6.3.1). The obtained COMET configurations can then be analyzed with respect
to run-time properties, e.g., worst case execution time, memory requirements,
and response time analysis, by the analysis tools. If the analysis indicates that
the configuration is unfeasible, the configuration step and analysis step could
be further iterated until an acceptable solution is found.

The resulting RTDBMSs are configured to contain no more than the needed
functionality, thus reducing both computational costs and memory require-
ments.

6.3 The COMET key concepts

As mentioned, different nodes in the automotive control system may require
distinct RTDBMS configurations. Component-based databases [17, 18, 19, 20,
21, 22, 7] using the component-based software development paradigm [14]
can be partially or completely assembled from a pre-defined set of components
with well-defined interfaces. Therefore, these are suited for tailoring a data-
base system towards an application. However, there are aspects of database
systems that are difficult to encapsulate into components with well-defined in-
terfaces; typical examples include synchronization, transaction models, and
database policies such as concurrency control [23]. These aspects are crosscut-
ting concerns that permeate the whole system and affect multiple components.
Hence, using traditional component-based approach is necessary but not suffi-
cient to enable efficient development of configurable RTDBMSs. Therefore, in
COMET we use an approach to aspectual component-based real-time system



6.3 The COMET key concepts 85

Requirements

Data engineering tool Configuration tool

ECU 1 ECU 3

ECU 2
Analysis tools
- WCET
- Schedulability analysis
- Resource utilization
  analysis
...

COMET
Configuration

3
COMET

Configura
tion 2

COMET
Configuration

1

COMET
Components

COMET
Aspects

Figure 6.2: The COMET development suit

development (ACCORD) [13, 24] (discussed in section 6.3.1) that provides a
notion of a reconfigurable component, and thereby enables both encapsulation
of RTDBMS functionality into components and efficient handling and imple-
mentation of crosscutting concerns via aspects.

Using the ACCORD approach, different COMET components and aspects
can be developed, and then used for assembling COMET configurations suit-
able for a specific automotive control system. Existing COMET components
and aspects are discussed in section 6.3.2. We illustrate the COMET concepts
introduced in this section with an example of the COMET configuration suit-
able for a particular node in the automotive control system in section 6.3.3.

6.3.1 Aspects and components in RTDBMSs

ACCORD utilizes notions from both component-based and aspect-oriented
software development, integrating them into real-time system development.
While CBSD traditionally use black box as an abstraction metaphor for the
components, AOSD utilizes the white box metaphor to emphasize that all de-
tails of the implementation should be revealed. ACCORD supports the notion



86 Paper B

of a reconfigurable real-time component model (RTCOM) [25, 13, 24]. Com-
ponents built using RTCOM are grey boxes as they are encapsulated in inter-
faces but changes to their behavior can be performed in a predictable way using
aspects. Aspects are allowed to modify the code of the components in pre-
defined, explicitly declared, reconfiguration points. In this section we briefly
review RTCOM and its configurability via aspects, while detailed descriptions
of ACCORD and RTCOM can be found in [25, 13, 24].

Aspects are programming-language level constructs encapsulating cross-
cutting concerns that invasively change the code of the component and corre-
spond to the traditional aspects in existing aspect languages. The main con-
stituents of aspects are: (i) components, written in a component language, e.g.,
C, C++, and Java; (ii) aspects, written in a corresponding aspect language, e.g.,
AspectC [26], AspectC++ [27], and AspectJ [28]; and (iii) an aspect weaver,
which is a preprocessor that inserts code from the aspects into the reconfigura-
tion points of the components.

An aspect in an aspect language consists of pointcuts and advices. Next
we give a brief review of a typical syntax and semantics used in an aspect
language; figure 6.5 shows a concrete example of an aspect woven into a com-
ponent. A pointcut in an aspect language consists of one or more join points,
and it is described by a pointcut expression. A join point refers to a point in the
component code where aspects should be woven, e.g., a method, a type (struct
or union). In RTCOM join points are explicitly declared in the component in-
terfaces as reconfiguration points, and these are declared such that temporally
predictable weaving in the component code can be done. An advice is a decla-
ration used to specify the code that should run when the join points, specified
by a pointcut expression, are reached. Different kinds of advices can be de-
clared, such as: (i) before advice code is executed before the join point, (ii)
after advice code is executed immediately after the join point, and (iii) around
advice code is executed in place of the join point.

6.3.2 The COMET RTDBMS platform

A central goal with COMET is to enable configurability so that it can handle
a variety of different application requirements; COMET has an architecture
that allows this [29]. Following the ACCORD design method described in
section 6.3.1, the architecture of COMET consists of a number of components
and a number of aspects. Each component provides a well-defined service
through operations that are defined in a component’s interface. Aspects and
components that together provide a specific functionality are denoted as aspect



6.3 The COMET key concepts 87

User
Interface

Component

Index
Management
Component

Transaction
Management
Component

Memory
Management
Component

Legend:

Provided
Interface

Required
Interface

Component
connection

Figure 6.3: The basic architecture of COMET

packages.
The foundation of COMET consists of a basic architecture in which com-

ponents can be instantiated (see figure 6.3). A fully instantiated basic archi-
tecture is referred to as a basic configuration. The basic configuration builds a
fully functional RTDBMS capable of storing, manipulating and querying data
using some high level database query language. Even though a basic config-
uration is considered to be a RTDBMS, it has limited functionality, e.g., it
cannot handle concurrent transactions, and it has no database crash recovery
mechanisms. A basic COMET configuration consists of the following four
components:

1. The user interface component (UIC) provides a database interface to
the application. This interface consists of a data manipulation language,
in which the user (application) can query and manipulate data elements.
Furthermore, the interface consists, if configured so, of a data definition
language which enables the user to manipulate the database schema, e.g.,
creating and dropping relations (tables). Application requests are parsed
by the UIC, and are then converted into an execution-plan.

2. The transaction management component (TMC) is responsible for ex-



88 Paper B

ecuting incoming execution-plans, thereby performing the actual manip-
ulation of the data in the database.

3. The index management component (IMC) is responsible for maintain-
ing an index of all tuples in the database. This is normally done through
hash-tables or index-trees. The IMC is capable of transforming a data-
base key into the memory address of the tuple correspondent to the data-
base key. Furthermore, the IMC maintains the database schema in its
index of meta-data.

4. The memory management component (MMC) is responsible for mem-
ory allocation of tuples, metadata, and database indexes.

By selecting versions of these components, different basic COMET config-
urations can be derived.

In addition to these, mandatory, components, it is possible to add optional
components to the architecture, such as the scheduling management compo-
nent (SMC), which is responsible for scheduling transactions. This is useful
when the application is preemptive and multiple transactions can be issued si-
multaneously. However, noteworthy is that a basic configuration of COMET
cannot execute multiple transactions concurrently. In this case the SMC main-
tains the list of transactions in a ready queue and releases the next transaction
when the previous is completed.

The services described above are all well defined and their activities are to
a high degree isolated, i.e., it would be possible to exchange each one of these
services with a different implementation, as long as they interact with other
services in the same way. This makes these services suitable for encapsulation
into components.

However in a RTDBMS there are concerns which cannot be divided into
isolated activities, but rather crosscut multiple components in the system. Th-
ese crosscutting concerns are, in COMET, encapsulated into aspect packages,
which can contain both aspects and components. In figure 6.4, three such as-
pect packages can be seen, namely:

1. The concurrency control aspect package (CCA) allows multiple trans-
actions to be executed concurrently. Managing concurrent transactions
requires some form of concurrency control. The CCA consists of a lock-
ing management component (LMC) and a concurrency control aspect.
The LMC allows transactions to obtain read- and write-locks on data
elements. The concurrency control aspect contains the code for obtain-
ing and releasing the locks, as well as a transaction conflict resolution



6.3 The COMET key concepts 89

User
Interface

Component

Index
Management
Component

Concurency-
Control Aspect

Logging and
Recovery

Aspect

Transaction
Management
Component

Scheduler
Management
Component

Memory
Management
Component

Legend:

Provided
Interface

Required
Interface

Lock
Management
Component

Checkpointing
and Recovery
Component

Concurrency-Control aspect package

Logging and Recovery aspect package

Component
connection
Optional

Component
connection

DbP User
Interface

Component

DbP Trans.
Management
Component

Database
Pointer Aspect

Database Pointer aspect package

Figure 6.4: The architecture of COMET with aspect packages

method. The code of the concurrency control aspect is woven into (i)
the TMC to force transactions to obtain locks before accessing data el-
ements, and to release them when finished, (ii) the SMC to enable it to
handle graceful termination of aborted transactions, and (iii) the LMC to
adapt its behavior according to the conflict resolution policy used.

2. The database pointer aspect package (DBPA) enables the application
to access individual data elements within the database in an efficient and
predictable way. A database pointer [30] is a pointer that is first bound
to a specific data element, which then can be read and written with a
minimum overhead. Database pointers are used together with the rela-
tional data model, and they do not place limitations on the RTDBMS
with respect to reorganizing the database schema during run-time. The
database pointer concept is developed with automotive control in mind
and is a fundamental part when integrating a RTDBMS into an auto-
motive control system. The DBPA consists of two components, namely
the database pointer user interface component that provides the appli-
cation with the database pointer user interface, and the database pointer
transaction management component that executes the database pointer
operations. Furthermore, the DBPA consists of a database pointer aspect



90 Paper B

which is woven into the TMC and the IMC, adapting them to co-exist
with database pointers.

3. The logging and recovery aspect package (LRA) ensures that the data-
base is consistent after a system crash. Logging and recovery is per-
formed through periodic checkpoints, where an image of the database
is saved to a persistent storage and all intermediate changes to the data-
base are logged. The aspect package consists of one component, the
checkpointing and recovery component (CRC), which contains methods
defining how to checkpoint and log changes to the database, and one as-
pect, the logging and recovery aspect (LRA). The LRA is woven into the
MMC, the TMC, and the CRC.

Hence, the COMET RTDBMS platform contains a set of components and
aspect packages that are suitable for automotive control systems.

COMET components discussed in this section are suitable for configuring
RTDBMSs for use in ECUs requiring the relational data model that can be ma-
nipulated using ad-hoc queries. Currently these components support the most
common database query commands, namely the select, insert, update,
delete, create table and drop table. However, there are also CO-
MET components that only allow static database schemas and precompiled
queries, which are suitable for nodes that cannot afford, or do not require, ad-
hoc queries. In a configuration generated from such components most of the
functionality is handled off-line using the COMET tools.

6.3.3 A configuration example
To illustrate how the COMET RTDBMS can be configured to suit a particular
ECU we present the following example in which we create a suitable COMET
configuration based on a number of requirements. Note that the given require-
ments are typical data management requirements that can be found in an engine
ECU of a modern car [3, 2]. Consider the engine ECU with the following data
management requirements:

R1: The application performs computations using data obtained from sensors.
Sensor data should reflect the state of the controlled environment and,
hence, are associated with hard real-time temporal requirements and data
freshness requirements.

R2: The application performs diagnostics on the system in order to analyze
the system behavior. The diagnostics should be performed both in the



6.3 The COMET key concepts 91

steady state of the vehicle and in the transient states, in order to get
the full spectrum of data and be able to analyze the vehicle behavior
under all situations. Diagnostic operations performed on the system are
not critical to the operational safety of the vehicle and, therefore, are
associated with soft real-time temporal requirements.

R3: The set of data in the system is fixed at compile time and is never changed
during run-time.

R4: The ECU uses preemptive fixed-priority scheduling, implying that mul-
tiple tasks can execute concurrently. This in turn implies that the same
data items can be read and written by different tasks (which could result
in inconsistent data values in the system).

R5: It should be possible to connect a service tool to retrieve system data.

When configuring a RTDBMS for such a system, we begin by modeling the
ECU based on the requirements. The configuration tool is then used to provide
a suitable basic COMET configuration.

In this case, the basic configuration could be based on the components pro-
viding a relational data model, since creating views and complex queries is a
required feature of the RTDBMS configuration for this ECU (requirement R2).
Furthermore, the relational data model provides support for ad-hoc queries (re-
quirement R5). However, since a dynamic database schema is not necessary
(requirement R3), the MMC from the basic COMET configuration in figure
6.3 can be replaced with components providing static data management and
database indexing.

When a suitable basic configuration has been selected, the configuration
tool proceeds by adding suitable aspect packages. First, the database pointer
aspect package is selected to provide fast access of individual data elements
in the ECU (requirement R1). Then, in order to fulfill requirement R4 and
enable concurrent execution of transactions such that data values in the data-
base are kept consistent, the concurrency control aspect package is selected.
In this case, a concurrency control algorithm 2V-DBP [31] could be selected.
2V-DBP combines locking with two-versions of selected parts of the database
to enable hard database pointer transactions to execute without being blocked
by soft relational transactions. Using 2V-DBP enables the application to sup-
port both hard control tasks and soft diagnostics task in the ECU. Now, all the
requirements are fulfilled and the RTDBMS configuration is complete.

The next step is to enter the database schema into the data engineering tool.
Since we have chosen a static database schema, the necessary data structures



92 Paper B

Transaction Manager Component
...
readDataFromDB(data);
...
------
...
commit(transaction);
...

Reconfiguration
points

+
advice before "readDataFromDB(data)"{
   //Aspect code
   getReadLock(data,transaction);
}
advice after "commit(transaction)"{
   //Aspect code
   releaseAllLocks(transaction);
}

Concurrency-Control Aspect

Transaction Manager Component
...
//Aspect code
getReadLock(data,transaction);
readDataFromDB(data);
...
------
...
commit(transaction);
//Aspect code
releaseAllLocks(transaction);
...

Figure 6.5: A simplified example of the weaving process

for the database are created. In this step, precompiled queries can also be
created and optimized.

Finally, the analysis tools are used to check if the generated configuration
of the RTDBMS is feasible. The analysis tool is used to determine the worst
case execution time of the RTDBMS so that schedulability analysis can be per-
formed. Furthermore, the memory requirements of the RTDBMS and physical
storage needed for storing data in the system are analyzed.

Given that the configuration and analysis can be done on the models of the
components, aspects, and the RTDBMS configuration, the actual weaving and
component composition process can be performed after the database configu-



6.3 The COMET key concepts 93

ration is found feasible by the tools. Figure 6.5 illustrates the weaving process
and its constituents for the TMC and the concurrency control aspect. The co-
ncurrency control aspect contains two advices: (1) an advice of type before
that defines the code that should be inserted into TMC reconfiguration point
readDataFromDB() to ensure that a transaction obtains the lock on a data
item, and (2) an advice of type after that defines the code to be inserted im-
mediately after the transaction commits to ensure that the transaction releases
all the locks it has obtained while executing in the database. The result of the
weaving is the TMC modified at the reconfiguration points, such that every
read of the data item is now preceded by locking, while every commit of the
transaction is followed by unlocking (see figure 6.5). Note that this example
is simplified to show main constituents of the aspects, components, and their
possible interaction. However, in the actual implementation, the concurrency
control aspect is more complex and contains advices that crosscut the behavior
of the SMC and LMC components as well. Moreover, the concurrency control
aspect code provides an efficient way of handling possible deadlocks in the
database. The overall benefit of having aspects for tailoring database compo-
nents is the ability to use reconfiguration points in the syntax of the pointcuts
of advices. This in turn enables us to identify not only the places in the code
of the program that have the same signature as the reconfiguration points (used
in the presented example), but also define pointcuts that refer to the execution
of the reconfiguration points (i.e., after the call has been made and a func-
tion started to execute), and to match any reconfiguration point that has values
of a specified type. Also, operators &&, ||, and ! can be used to logically
combine or negate pointcuts. Furthermore, separation of concerns into aspects
enables us to have both components without aspects, and reconfigured com-
ponents with aspects as aspect weaving results in a new component weaved
with aspect code, but leaving the code of the original component unchanged
and available for future reuse, i.e., now we can also reuse already reconfigured
components or use original components with different aspects in other reuse
contexts. For extensive discussion on benefits of having aspects for tailoring
components in the RTDBMSs we refer interested readers to [25, 24].

Finally, if the obtained final configuration of the RTDBMS is found to meet
the original requirements, as well as the timing requirements, the RTDBMS is
compiled and made ready for deployment into the application.

By this simple example we have shown how a set of requirements can be
used when configuring a COMET RTDBMS in order to get a RTDBMS spe-
cially suited for a particular ECU in an automotive control system.



94 Paper B

6.4 Conclusions
In this paper we have presented a configurable real-time database platform,
called COMET, which provides support for efficient data management in het-
erogeneous automotive systems. The COMET platform consists of a library of
components and aspects, and is supported by a tool suite. The COMET tool
suit assists system designers in configuring and analyzing different COMET
configurations based on the specific requirements of the targeting automotive
system and its nodes. While components encapsulate distinct functionalities of
a database system, aspects allow efficient tailoring of the components and the
database system based on the requirements of the underlying automotive sys-
tem or its node. Our approach in providing different COMET configurations
by using components in the library together with aspects can also be viewed
as efficient product-line architectures of real-time database systems in the au-
tomotive domain.

We have showed the differences of the provided properties of the commer-
cially available embedded databases, as well as real-time databases, compared
with the needs of automotive control systems. To the best of our knowledge,
no previous work exists that takes a holistic approach to data management in
automotive systems. Given the increase of data complexity in automotive sys-
tems it is our experience that a more structured form of data management will
be necessary in a near future, in order to keep time to market as well as devel-
opment and maintenance costs down.

Although we have presented and discussed distinct configurations of CO-
MET suitable for different nodes in the automotive systems, these were not
developed using the full automated support of the tool suite. Rather, the au-
tomation done in the development process of COMET configurations so far
has been focused on the analysis tools, where we developed the tool for ana-
lyzing different configurations of aspects and components with respect to their
temporal properties [32, 33]. The remaining part of the COMET tool suit is
currently under development. Further work on integrating the database into
the component framework, to allow components to be easily distributed over
multiple nodes is also planned.



Bibliography

[1] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Volcano - a
Revolution in On-Board Communications. Technical report, Volvo Tech-
nology Report, 1998.

[2] Dag Nyström, Aleksandra Tešanović, Christer Norström, Jörgen Hans-
son, and Nils-Erik Bånkestad. Data Management Issues in Vehicle Con-
trol Systems: a Case Study. In Proceedings of the 14th Euromicro Con-
ference on Real-Time Systems, pages 249–256. IEEE Computer Society,
June 2002.

[3] T. Gustafsson and J. Hansson. Data management in real-time systems:
a case of on-demand updates in vehicle control systems. In Proceedings
of the Real-Time Application Symposium (RTAS 2004). IEEE Computer
Society Press, May 2004.

[4] Aleksandra Tešanović, Dag Nyström, Jörgen Hansson, and Christer
Norström. Embedded Databases for Embedded Real-Time Systems: A
Component-Based Approach. Technical Report MRTC Report ISSN
1404-3041 ISRN MDH-MRTC-43/2002-1-SE, Dept. of Computer Engi-
neering, Mälardalen University, January 2002.

[5] Pervasive Software Inc. http://www.pervasive.com.

[6] Enea AB. http://www.enea.se.

[7] Sleepycat Software Inc. http://www.sleepycat.com.

[8] TimesTen Performance Software. http://www.timesten.com.

[9] S. F. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndtsson, and
B. Eftring. DeeDS Towards a Distributed and Active Real-Time Data-
base System. ACM SIGMOD Record, 25(1):38–40, 1996.

95



96 BIBLIOGRAPHY

[10] J. Lindstrom, T. Niklander, P. Porkka, and K. Raatikainen. A Distributed
Real-Time Main-Memory Database for Telecommunication. In Proceed-
ings of the Workshop on Databases in Telecommunications, pages 158–
173. Springer, September 1999.

[11] B. Adelberg, B. Kao, and H. Garcia-Molina. Overview of the STanford
Real-time Information Processor (STRIP). SIGMOD Record, 25(1):34–
37, 1996.

[12] J. A. Stankovic, S. H. Son, and J. Liebeherr. Real-Time Databases and In-
formation Systems, chapter BeeHive: Global Multimedia Database Sup-
port for Dependable, Real-Time Applications, pages 409–422. Kluwer
Academic Publishers, 1997.

[13] A. Tešanović, D. Nyström, J. Hansson, and C. Norström. Towards aspec-
tual component-based real-time systems development. In Proceedings of
the 9th International Conference on Real-Time and Embedded Comput-
ing Systems and Applications (RTCSA’03), February 2003.

[14] C. Szyperski. Component Software - Beyond Object-Oriented Program-
ming. Addison-Wesley, 1999.

[15] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J-M Lo-
ingtier, and J. Irwin. Aspect-oriented programming. In Proceedings of
the ECOOP, volume 1241 of Lecture Notes in Computer Science, pages
220–242. Springer-Verlag, 1997.

[16] K. Ramamritham. Real-Time Databases. International Journal of dis-
tributed and Parallel Databases, 1(2):199–226, 1993.

[17] M. J. Carey, L. M. Haas, J. Kleewein, and B. Reinwald. Data access
interoperability in the IBM database family. IEEE Quarterly Bulletin on
Data Engineering; Special Issue on Interoperability, 21(3):4–11, 1998.

[18] K. R. Dittrich and A. Geppert. Component Database Systems, chapter
Component Database Systems: Introduction, Foundations, and Overview.
Morgan Kaufmann Publishers, 2000.

[19] A. Geppert, S. Scherrer, and K. R. Dittrich. KIDS: Construction of data-
base management systems based on reuse. Technical Report ifi-97.01,
Department of Computer Science, University of Zurich, September 1997.



BIBLIOGRAPHY 97

[20] Developing DataBlade modules for Informix-Universal Server. Informix
DataBlade Technology. Informix Corporation, 22 March 2001. Available
at http://www.informix.com/datablades/.

[21] Universal data access through OLE DB. OLE DB Technical Ma-
terials. OLE DB White Papers, 12 April 2001. Available at
http://www.microsoft.com/data/techmat.htm.

[22] All your data: The Oracle extensibility architecture. Oracle Technical
White Paper. Oracle Corporation. Redwood Shores, CA, February 1999.

[23] D. Batory and S. O’Malley. The design and implementation of hierarchi-
cal software systems with reusable components. ACM Transactions on
Software Engineering and Methodology (TOSEM), 1(4):355–398, 1992.

[24] A. Tešanović, D. Nyström, J. Hansson, and C. Norström. Aspects and
components in real-time system development: Towards reconfigurable
and reusable software. Journal of Embedded Computing, February 2004.

[25] A. Tešanović. Towards aspectual component-based real-time system de-
velopment. Technical report, Department of Computer Science, Linkping
University, June 2003. Licentiate Thesis, ISBN 91-7373-681-3.

[26] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to im-
prove the modularity of path-specific customization in operating system
code. In Proceedings of the Joint European Software Engineering Con-
ference (ESEC) and 9th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE-9), 2002.

[27] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++: an aspect-
oriented extension to C++. In Proceedings of the 40th International
Conference on Technology of Object-Oriented Languages and Systems
(TOOLS Pacific 2002), Sydney, Australia, February 2002. Australian
Computer Society.

[28] Xerox Corporation. The AspectJ Programming Guide, September 2002.
Available at: http://aspectj.org/doc/dist/progguide/index.html.

[29] Dag Nyström. COMET: A Component-Based Real-Time Database for
Vehicle Control-Systems. Licentiate Thesis ISBN 91-88834-46-8, De-
partment of Computer Science and Engineering, Mälardalen University,
Sweden, May 2003.



98 BIBLIOGRAPHY

[30] Dag Nyström, Aleksandra Tešanović, Christer Norström, and Jörgen
Hansson. Database Pointers: a Predictable Way of Manipulating Hot
Data in Hard Real-Time Systems. In Proceedings of the 9th International
Conference on Real-Time and Embedded Computing Systems and Appli-
cations, pages 623–634, February 2003.

[31] Dag Nyström, Mikael Nolin, Aleksandra Tešanović, Christer Norström,
and Jörgen Hansson. Pessimistic Concurrency Control and Versioning to
Support Database Pointers in Real-Time Databases. In Proceedings of
the 16th Euromicro Conference on Real-Time Systems, pages 261–270.
IEEE Computer Society, June 2004.

[32] A. Tešanović, D. Nyström, J. Hansson, and C. Norström. Integrating sym-
bolic worst-case execution time analysis into aspect-oriented software
development. OOPSLA 2002 Workshop on Tools for Aspect-Oriented
Software Development, November 2002.

[33] A. Tešanović, D. Nyström, J. Hansson, and C. Norström. Aspect-level
WCET analyzer: a tool for automated WCET analysis of a real-time soft-
ware composed using aspects and components. In Proceedings of the 3rd
International Workshop on Worst-Case Execution Time Analysis (WCET
2003), Porto, Portugal, July 2003.



Chapter 7

Paper C: Database Pointers:
Efficient and Predictable
Data Access in Real-Time
Control-Systems
Dag Nyström, Mikael Nolin, Aleksandra Tešanović, Christer Norström, and
Jörgen Hansson

Article submitted for journal publication. Based upon the following two con-
ference paper:
Database Pointers: a Predictable Way of Manipulating Hot Data in Hard
Real-Time Systems
Dag Nyström, Aleksandra Tešanović, Christer Norström, and Jörgen Hansson
In Proceedings of the 9th International Conference on Real-Time and Embed-
ded Computing Systems and Applications (RTCSA03), Tainan, Taiwan, Febru-
ary 2003
Pessimistic Concurrency Control and Versioning to Support Database Po-
inters in Real-Time Databases
Dag Nyström, Mikael Nolin, Aleksandra Tešanović, Christer Norström ,
and Jörgen Hansson
In Proceedings of 16th EUROMICRO Conference on Real-Time Systems, Cat-
ania, Sicily, June 2004

99



100 Paper C



Abstract

This paper introduces the concept of database pointers, an efficient and pre-
dictable way of accessing data in real-time database management systems.
The concept, which is designed to be used in conjunction with a traditional
relational database model, allows the creation of variables that point directly
to individual data elements in the database. This enable the application to ac-
cess data within the database in a similar fashion as using shared variables,
while still retaining all the benefits of using a database (such as allowing ad-
vanced concurrency-control and allowing reorganization of the database during
run-time). Furthermore, the paper presents a concurrency-control algorithm,
denoted 2-Version Database Pointer Concurrency Control (2V-DBP). The con-
currency algorithm allow hard database pointer transactions and soft relational
transactions to be executed without blocking (or aborting) each other. 2V-DBP
is suited for resource-constrained, safety critical, real-time systems that have
a mix of hard real-time control applications and soft real-time management,
maintenance, or user-interface applications. The concept presented in this pa-
per is validated, both by formal verification and performance evaluation. The
evaluation show that the concept clearly outperforms 2-phase locking with high
priority abort (2PL-HP) with respect to minimizing transaction abortions and
response times.



102 Paper C

7.1 Introduction

The complexity of embedded real-time control-systems is ever increasing in
many product domains, this is especially true for automotive systems [1]. Th-
ese systems have evolved from simple electro-mechanical systems, through
single processor systems, to complex distributed systems. At the same time,
the amount of data that needs to be managed is increasing dramatically; data
volume managed by automotive systems is predicted to increase 7-10% per
year[1]. Current techniques for storing and manipulating data objects in au-
tomotive systems are ad hoc in the sense that they normally manipulate data
objects as internal data structures. This lack of a structured approach to data
management results in a costly development process with respect to design, im-
plementation, and verification of systems [2]. It also makes the system difficult
to maintain or extend while preserving key properties, e.g., maintaining tem-
poral properties of data. As data complexity is growing the need for a uniform,
efficient, and persistent way to store data is becoming increasingly important.
Using a Real-Time DataBase Management System (RTDBMS) as a tightly in-
tegrated part of an automotive control system has the potential to solve many
of the problems that application designers have to consider with respect to data
management, e.g., locking of the data, deadlock situations and persistency [3].
More importantly, incorporating an RTDBMS into an automotive control sys-
tem reduces development costs, result in higher quality of the design of the
systems, and consequently yield higher reliability [4].

However, integrating an RTDBMS into a real-time control-system also
have potential drawbacks, in terms of increased unpredictability and added ex-
ecution overhead. Executions of traditional relational (e.g. SQL [5]) transac-
tions are costly operations, both with respect to execution times and memory
consumption. Relational transaction processing include, parsing of queries, lo-
cating and fetching data tuples using the RTDBMS index structure, as well as
the execution of relational operators (such as products, joins etc). There exists
a trade-off between flexibility and performance. However, a large part of the
software controlling the vehicle does not need this flexibility, nor can it afford
the overhead costs.

To resolve this problem, we propose the concept of database pointers [6] to
complement the relational query processing in a RTDBMS. Database pointers
have the efficiency of a shared variable and can be combined with the rela-
tional data model. They allow a fast and predictable way of accessing data in
a database without the need of going through the expensive relational query
processing. Furthermore database pointers provide an interface that uses a



7.1 Introduction 103

“pointer-like” syntax. The concept of database pointers is straightforward to
apply by an engineer as it resembles current techniques (shared variables) used
to access individual sensor data. Database pointers allow fast and predictable
accesses of data without violating temporal, logical data-consistency or trans-
action serialization. It can be used together with the relational data model
without violating the database integrity.

Furthermore, we propose a concurrency control algorithm, called 2-Version
DataBase Pointer concurrency control (2V-DBP) [7] that allow efficient co-
existence of soft real-time database transactions (denoted soft transactions)
and hard real-time database transactions (denoted hard transactions) in a RT-
DBMS. To support both types of transactions while avoiding long delays for
hard transactions and eliminating soft transaction abortions caused by hard
transactions, we propose the use of a versioning algorithm that uses traditional
pessimistic concurrency control [8] for soft, relational, transactions but allow
hard, database pointer, transactions to execute regardless of any locks held by
soft transactions.

2V-DBP is suited for resource-constrained safety-critical, real-time sys-
tems that have a mix of hard real-time control applications and soft real-time
management, maintenance, or user-interface applications. The algorithm, wh-
ich combines the concept of database pointers and relational transaction ma-
nagement, satisfies the need for predictable and time-efficient hard real-time
control-applications, while allowing relational soft management transactions
access to the database without being starved by the hard transactions. The al-
gorithm uses a versioning technique for the hard transactions and two-phase
locking high priority (2PL-HP) [8] for the soft transactions. In order to sup-
port these two concurrency control methods we introduce a simplified form of
versioning, i.e., we maintain two versions of selected data elements. Our al-
gorithm overcomes the widely recognized problem that transactions with low
priority and long execution times are penalized due to the likeliness of data
conflicts [9].

The contributions of this paper include a database access concept which: (i)
allow data to be efficiently accessed without having to involve costly transac-
tion management, (ii) provides efficient, and time-deterministic, execution of
hard transactions, regardless of any database locks held by other transactions;
(iii) bounds the maximum memory overhead caused by adding versions of data
elements; (iv) allows soft transactions to be executed even though the database
is read and updated by hard transactions.

We also present an evaluation of the concept; showing significant benefits
for both hard and soft transactions.



104 Paper C

The costs of using our proposed concept is an added (although predictable)
memory overhead, since all data used by the hard transactions is stored in
two versions, and a relaxation of the serialization criteria for soft management
transactions.

In section 7.2, our system model and transaction models are presented, as
well as some related work. We present the database pointer concept, assuming
a pessimistic concurrency-control approach in section 7.3. We improve the
performance of the database pointer concept in section 7.4 where we present
our proposed concurrency control algorithm 2V-DBP. Furthermore, we provide
a formal verification of the algorithm. In section 7.5, we show an evaluation of
our proposed concept. We conclude the paper in section 7.6.

7.2 Background

7.2.1 Related Work

Today, there exists a number of commercial databases in the embedded sys-
tems market, e.g., Pervasive.SQL [10], Polyhedra [11], Berkeley DB [12], and
TimesTen [13]. Although small in size and therefore suitable for resource-
constrained automotive control systems, these databases do not incorporate
real-time behavior. This in turn implies that their behavior cannot be analyzed,
which makes them unsuitable for deployment in an automotive system. Re-
search projects that are building real-time database platforms, such as DeeDS
[14], RODAIN [15], STRIP [16], and BeeHIVE [17], mainly address real-
time requirements, are monolithic, and targeted towards a larger-scale real-
time application, which makes them unsuitable for use in embedded resource-
constrained environments.

To the best of our knowledge our experimental RTDBMS, denoted CO-
MET [3], is the only RTDBMS addressing modular configurability, resource
conservation, and real-time predictability.

Other approaches regarding concurrency-control for real-time systems ex-
ists [18, 19, 20, 21, 22]. However, none of these approaches are focussed
towards the specific difficulties concerning vehicle-control systems. Either
they address, bounding blocking times and abortions, or they consume vast
amount of memory (typically versioning algorithms). Our proposed algorithm,
2V-DBP, eliminates blocking and abortions for hard transactions, while still
consuming a fairly small (and predictable) of memory.



7.2 Background 105

7.2.2 System Model

This paper focuses on real-time applications used to control a process, e.g.,
critical control-functions in a vehicle such as engine or brake control. The ba-
sic flow of execution in such a system is [2]: (i) periodic scanning of sensors,
(ii) execution of control algorithms, such as PID-regulators, and (iii) propa-
gation of the result to the actuators. Typically, the application is structured
into multiple tasks executed by a preemptive real-time operating system. The
tasks can use a RTDBMS to access and manipulate shared data. Hence, the
RTDBMS needs some form of concurrency control to maintain consistency
given multiple concurrent accesses. In traditional relational databases, data
manipulation is performed using queries formulated in a special purpose lan-
guage such as SQL. Such queries can either be created dynamically (during
run-time), so called ad-hoc queries, or be created before run-time and stored
in a precompiled format. The latter is the common case in real-time systems,
since precompiling a query saves both time and memory during run-time.

7.2.3 Application and task model

We classify the tasks in the system into three categories, namely, I/O-tasks,
control-tasks, and management-tasks [2]. The I/O-tasks are typically executed
periodically, often at high frequencies. There are two types of I/O-tasks; (i)
tasks that read a sensor, and write the value to the database using a write only
transaction , and (ii) tasks that read a value from the database, using a read only
transaction, and then write it to an actuator. Table 7.2 summarizes the proper-
ties of the three types of tasks. I/O-tasks touch very few, in most cases only one,
data element in the database, and their transactions are always precompiled.

Control tasks take a set of data values and derive new actuator values, thus
performing update transactions on the database, i.e., performing a number of
read operations followed by a number of write operations. For most control
tasks in a real-time control system, reading the freshest data values available is
sufficient (and preferable). Note that this desire to read fresh data is not always
adhered to by traditional RTDBMSs, since they focus on preserving transaction
ordering rather than providing data freshness.

Management tasks are the only tasks running soft transactions. An example
of a management task might be a task presenting statistical information about
the current state of the vehicle to the user. A management transaction might
also be constructed during run-time, for example by a service technician using
a service tool connected to the vehicle.



106 Paper C

Transaction property

Task type H
ar

d
RT

So
ft

RT
Fr

eq
ue

nc
y

Tr
an

s.
ty

pe

Pr
ec

om
pi

le
d

A
d

ho
c

Control tasks x H U x
I/O tasks x H RW x
Management tasks x L RWU (x) (x)

Legend:
x - the property is true for the task type
(x) - the property is true for some tasks of the task type
H/L - indicates high, or low frequency
RWU - indicates read only, write only, or update transaction type

Table 7.2: Transaction properties for the system’s task types.

7.2.4 Relational Query Processing
Relational queries provide a flexible way of viewing and manipulating data.
The backside of this flexibility is performance loss.

Figure 7.1 shows a typical architecture of a RTDBMS. A query, requesting
value x, passed to a relational RTDBMS typically will go through the following
steps:

1. The query is passed from the application to the SQL interface.

2. The SQL interface requests that the query should be scheduled by the
transaction scheduler.

3. The relational query processor parses the query and creates an execution
plan.

4. All tuples possibly containing x are located by the index manager.

5. The locks needed to gain access to these tuples are obtained by the con-
currency controller.

6. The tuples are then fetched from the database, and are then processed by
the relational engine.



7.2 Background 107

Tuples

Index

Relational Query processor

SQL
interface

Queries

Transaction
scheduler

Lock table

Concurrency
controller

x

Figure 7.1: Architecture of a typical Database Management System.

7. All locks are released by the concurrency controller.

8. The result is returned to the application.

According to the relational data model a database query on a set of relations
in itself always returns a relation. In this case it might be a relation with a
cardinality and degree of one (one row and one column), containing only x.
In order for the application to read the value of x, it must extract it from the
resulting relation using some API call, e.g. getXY(1,1).

In this example we assume a pessimistic concurrency control policy. How-
ever, the flow of execution is analogous if a different policy is used.

7.2.5 Transaction models

All tasks in the system that interact with the RTDBMS do this through database
transactions. A database transaction consists of a set of database operations,
e.g., read and write operations.

In this paper, we consider two different transactions types, namely: (i) Soft
transactions which use the relational data model. These transactions provide
flexible and dynamic access to data in the database. (ii) Hard transactions wh-
ich use the database pointer model. Database pointers allow only one operation
on one data element per transaction. This operation can either be a read or a
write operation. Hard transactions cannot be aborted and will always complete
successfully. All transaction has atomic semantics, i.e., either they are fully
executed or not executed at all.



108 Paper C

7.3 Database pointers with pessimistic concurre-
ncy control

The concept of database pointers consists of four different components:

• The DBPointer data type, used by the application to access data ele-
ments in the database.

• The data pointer entry table, which contains all information needed by
the pointers.

• The database pointer interface, which provides a number of operations
on the database pointer.

• The database pointer flag, which is used to ensure consistency in the
database.

Using the concept of database pointers, the architecture of the DBMS given
in figure 7.1, is modified to include database pointer components, as shown in
figure 7.2. To illustrate the way database pointers work, and its benefits, we
use the example presented in section 7.2.4, i.e., the request for retrieving the
data x from the database.

Using the database pointer interface, the request could be made signifi-
cantly faster and more predictable:

1. A read operation, specifying which database pointer to read is passed
from the application to the database pointer interface.

2. The data pointer entry shown in figure 7.3, which is directly pointed out
be the database pointer, consists of three fields: the physical address of
data element x, information about the data type of x, and eventual lock-
ing information that shows which lock x belongs to. Since a pessimistic
concurrency is used, the lock for x would be obtained.

3. The value of x is obtained from the database using the direct pointer in
the data pointer entry.

4. The lock is released by the concurrency controller.

5. The result is returned to the application.

The four components of the database pointer and its operations are de-
scribed in detail in sections 7.3.1 to 7.3.4.



7.3 Database pointers with pessimistic concurrency control 109

 Tuples

Index

Lock
mgr

Relational Query processor

Data
pointer
entries

ptr
type
lockInfo

Sched-
uler

CC-
control

RTDBMS

Db pointer
interface

x

SQL
interface

bot()
query()
commit()

DBPointer
bind()
read()
write()
remove()

ptr
type
lockInfo

ptr
type
lockInfo

Trans-
action
mgr

Memory
mgr

Figure 7.2: Architecture of a DBMS with database pointers.

ptr
...

ptr
...

ptr
...

ptr
...

dataPtr
type
lock

Database

Database pointer
entries

Data pointers

Figure 7.3: The data structures used by the database pointer



110 Paper C

7.3.1 The Database Pointer Interface
The database pointer interface consists of four operations:

1. bind(ptr,q) This operation initializes the database pointer ptr by
binding it to a data pointer entry, which in turn points to the physical
address of the data. The physical binding is done via the execution of
the query q, which is written using a logical data manipulation language,
e.g., SQL. The query should be formulated in such a way that it always
returns the address of a single data element. By using the bind operation,
the binding of the data element to the database pointer is done using a
logical query, even though the result of the binding is physical, i.e., the
physical address is bound to the database pointer entry. This implies
that no knowledge of the internal physical structures of the database is
required by the application programmer.

2. remove(ptr) This operation deletes a data pointer entry.

3. read(ptr)This operation returns the value of the data element pointed
by ptr. It uses locking if necessary.

4. write(ptr,v) This operation writes the value v to the data element
pointed by ptr. It also uses locking if necessary. Furthermore, the type
information in the database pointer entry is compared with the type of v
so that a correct type is written.

The pseudo codes for the write and read operations are shown in figure
7.4. The write operation first checks that the types of the new value matches
the type of the data element (line 2), and then obtains a write lock for the
corresponding lock (line 4), i.e., locks the relation that the data element resides
in. The data element is then updated (line 5), and finally the lock is released
(line 6). The read operation obtains the corresponding read lock (line 10),
reads the data element (line 11), releases the lock (line 12), and then returns
the value to the application (line 13).

7.3.2 The DBPointer Data Type
The DBPointer data type is a pointer declared in the application task. When
the pointer is initialized using the bind(ptr,q) operation, it points to its
corresponding data pointer entry, which in its turn points to the actual data
element, see figure 7.3.



7.3 Database pointers with pessimistic concurrency control 111

1 write(DBPointer dbp, Data value){
2 if(DataTypeOf(value) != dbp->type)
3 return DATA_TYPE_MISMATCH;
4 DbGetWriteLock(dbp->lockInfo);
5 *(dbp->ptr) = value;
6 DbReleaseLock(dbp->lockInfo);
7 return TRUE;

}

8 read(DBPointer dbp){
9 Data value;
10 DbGetReadLock(dbp->lockInfo);
11 value = *(dbp->ptr);
12 DbReleaseLock(dbp->lockInfo);
13 return value;

}

Figure 7.4: The pseudo codes for the write and read operations

7.3.3 The Data Pointer Entry

The data pointer entry contains information needed by the database pointer,
namely:

1. A pointer to the physical memory location of the data element inside
the tuple. Typically, the information stored is the data block the tuple
resides in, an offset to the tuple, and an offset to the data element within
the tuple.

2. The data type of the data element pointed by the database pointer. This
is necessary in order to ensure that any write to the data element matches
its type, e.g., it is not feasible to write a floating point value to an integer.

3. Lock information describing the lock that corresponds to the tuple, i.e.,
if locking is done on relation granules, the name of the relation should be
stored in as lock information. Note, if locks are not used in the DBMS,
i.e., if optimistic concurrency control is used, some other serialization
information can be stored in the data pointer entry instead of the lock
information.



112 Paper C

7.3.4 The Database Pointer Flag

The database pointer flag enables tuples to be restructured and moved by the
RTDBMS during run time.

For example, if an additional attribute is inserted into a relation, e.g., a
column is added to a table, it would imply that all tuples belonging to the rela-
tion need to be restructured to contain the new data element (the new column).
Hence, the size of the tuples changes, relocation of the tuples to new memory
locations is most probable. Since a schema change is performed via the SQL
interface, it will use and update the index in the index manager. If one of the
affected tuples is also referenced from a database pointer entry, the entry have
to be updated with the new physical location of the tuple.

Each database pointer flag that is set in the index structure indicates that
the tuple flagged is also referenced by a database pointer. This informs the
index manager that if this tuple is altered, e.g., moved, deleted, or changed, the
corresponding data pointer entry must be updated accordingly.

7.4 The 2-version database pointer algorithm (2V-
DBP)

In section 7.3, it has been assumed that a pessimistic concurrency-control algo-
rithm is used, both for soft (relational) and hard (database pointer) transactions.
This approach, as shown in section 7.5, punishes both hard and soft transac-
tions severely. Using a pessimistic concurrency-control algorithm, will either
cause hard transactions to be blocked by the soft transactions due to lock con-
flicts, or cause excessive abortions of the soft transactions (especially under
2PL-HP).

The 2V-DBP algorithm allows hard database transactions to execute with-
out being blocked by soft database transactions. Furthermore, soft transactions,
using the relational part of the RTDBMS are allowed to execute without being
blocked or aborted by the hard database transactions. To achieve this behavior,
two versions of all data elements pointed out by database pointers must exist
in the database in a similar way as in the two-version priority ceiling protocol
proposed by Kuo, Kao, and Shu [19].

The behavior, at a high level of abstraction, of 2V-DBP is discussed in
sections 7.4.1 to 7.4.4, while the underlying versioning algorithm that ensures
the desired behavior is presented in sections 7.4.5 to 7.4.6.



7.4 The 2-version database pointer algorithm (2V-DBP) 113

7.4.1 Soft transactions
The soft transactions utilize the relational part of the RTDBMS, and use an
extended form of 2PL-HP [8]. Soft transactions pass through the following
steps throughout their executions:

1. The Begin of Transaction step (BOT) in which the transaction becomes
active.

2. The lock-obtaining step in which the transaction obtains all locks nec-
essary to complete. In 2V-DBP, the set of locks does not have to be
defined prior to the BOT of a transaction, i.e., 2V-DBP allow ad hoc
queries.

3. The committing step in which the transaction starts to write back the
updated data elements to the database. Before this step, the transaction
might be aborted due to some data conflict. However, when the transac-
tion enters the committing step it cannot be aborted any longer.

4. The End Of Transaction (EOT) step in which the transaction releases
all locks, and the transaction is completed. When the EOT step has been
executed, all changes to the database made by the transaction are made
visible to other transactions.

The following rules are applicable for soft transactions:

Rule 1. Soft transactions can read a data element from the database after
having successfully obtained either a read lock or a write lock.

Rule 2. Soft transactions can change a value of a data element in the database
after having successfully obtained a write lock.

Rule 3. All locks needed for completing a soft transaction must be obtained
prior to the transaction entering the committing step.

Rule 4. Read locks on a particular data element in the database can be held by
multiple soft transactions simultaneously, thus read locks are compatible with
other read locks for the same data element.

Rule 5. A write lock on a particular data element in the database grants a soft
transaction exclusive access to the data element, so that no other soft trans-
actions can hold, or obtain, any type of lock on the data element in question
during the time the write lock is held. Thus write locks are incompatible with
any other lock for the same data element.



114 Paper C

Rule 6. A transaction takes the database from a consistent state to a new con-
sistent state. This means that during the execution of a soft transaction no
changes to the database, caused by the transaction, are visible to other trans-
actions until it finishes EOT.

Rule 7. If two soft transactions attempt to obtain a read lock or a write lock,
which violate the lock compatibility stated in rule 4 and 5, result in that the
transactions are considered to be in conflict with one another.

7.4.2 Hard transactions
All hard transactions use database pointers. Even though hard transactions can
access the same data elements as soft transactions, hard transactions are never
blocked by database locks. However, hard transactions take database locks in
consideration and access the database differently if the data element is locked,
see section 7.4.5.

The following rules are applicable to all hard transactions:

Rule 8. A hard transaction can either read or write a data element, even if the
data element is locked by a soft transaction.

Rule 9. A hard transaction can never come in conflict with any other transac-
tion.

Rule 9 is enforced by making hard transactions non-preemptable, see sec-
tion 7.4.5.

7.4.3 Transaction conflicts
Since soft transactions might be in conflict with other soft transactions, as
stated in rule 7, a policy on how to resolve these conflicts is needed. The
following rules are applicable to solve transaction conflicts:

Rule 10. A soft transaction that has not yet entered the committing step will
be aborted by the concurrency control algorithm iff it is in conflict, according
to rule 7, with a soft transaction executing with a higher priority.

Rule 11. A soft transaction that is in conflict, according to rule 7, with a soft
transaction executing at a lower priority which has entered the committing
step, will be blocked from execution until the committing transaction has fin-
ished its execution.



7.4 The 2-version database pointer algorithm (2V-DBP) 115

Theorem 1. A database transaction can never enter a state of deadlock caused
by conflicts with any other database transaction.

Proof Since a hard database transaction can never be in conflict with any other
transaction (rule 9), conflicts can thus only occur among soft transactions.
Transaction conflicts among soft transactions are resolved in two ways; (i) If
the conflicting transaction is executing at a lower priority than any other con-
flicting transaction, and has not yet entered the committing step it is aborted
(rule 10), thus resolving the conflict. (ii) If the conflicting transaction is exe-
cuting at a lower priority than any other conflicting transaction, and has entered
the committing step, any conflicting transaction will be blocked until the trans-
action is completed (rule 11), and thus releasing all it locks. Since a transaction,
which has entered the committing step, cannot obtain any further locks (rule 3),
it cannot cause any further conflicts with any other transaction. ∴

7.4.4 Transaction serialization and relaxation

The goal of a concurrency control algorithm is to resolve data conflicts between
concurrent transactions so that it appears that they are run in sequence, hence
transactions are serialized. The traditional notion of serialization is to serialize
transactions in the order that they commit, i.e., in the order their updates are
visible to other transactions. However, it has been recognized that this notion
of serialization is not ideal for accessing real-time data [23], since freshness
of data often is more important than maintaining the traditional serialization
order.

In 2V-DBP, the following serialization rules apply to transactions:

Rule 12. A set of executing soft transactions are serialized in the order they
perform EOT, thus making their changes visible to other transactions.

Rule 13. A hard transaction, reading or writing the value of a data element
x, is serialized before all hard transactions reading or writing the value x at a
later time. Furthermore, the transaction is serialized before any soft database
transaction obtaining a lock on x at a later time.

Rule 14. A hard transaction, updating the value of a data element currently
locked by a soft transaction, is serialized after that transaction.

Intuitively, rule 14 implies that if, during the execution of a soft transaction,
a hard transaction updating the database is serialized after the soft transaction,



116 Paper C

the soft transaction must not update the data element in question. This is be-
cause the hard transaction is serialized after the soft transaction, and thus the
value produced by the soft transaction is already overwritten by the hard trans-
action, since logically it was executed after the soft transaction.

Rule 13 and 14 imply a relaxation of the serialization order. Consider the
example given in figure 7.5 where transactions T1 to T3 execute in the follow-
ing way:

Event Data State Comment
T1 BOT {x, y} T1 starts
T1 W lock(x) T1 obtains write lock on x, thus obtained

a local copy of x.
T2 Write(x) → x′ {x′, y} T2 pre-empts T1 and updates x. Since x

is write locked by T1, T2 is serialized
after T1, according to rule 14.

T3 Write(y) → y′ {x′, y′} T3 updates y. Since y is not yet write-
locked by T1, T3 is serialized before
T1, according to rule 13.

T1 W lock(y′) T1 obtains write lock in y, thus obtaining
a local copy of x′.

T1 Execute query T1 derives x′′ and y′′.
T1 committing T1 enters the committing step.
T1 ¬(Upd(x′′)) T1 does not update x− > x′′,

according to rule 14.
T1 Upd(y′) → y′′ T1 updates y, however this update is not

yet visible to other transactions.
T1 EOT {x′, y′′} T1 ends and releases its locks. y′′ is now

visible to other transactions.

From the example we see that the resulting serialization order is T3, T1, and
T2, even though the actual order of commit is T2, T3, and T1. This relaxation
of the serialization does, however, not imply that soft transactions read incon-
sistent data since all transactions, according to rule 6, take the database from
one consistent state to another, see section 7.4.6. This serialization approach
trades a relaxation of serialization for freshness of data.

7.4.5 Realizing 2V-DBP using versioning
As stated earlier, the RTDBMS maintains two versions of data items that have
data pointers to them. These versions are used to realize 2V-DBP, as described
by rules 8, 9, and 12–14. The data structures used by 2V-DBP are as follows
(depicted in figure 7.6):

• A list of the active soft transactions, where each entry contains the cur-
rent state (state) of the transaction, and a local working copy of the
data element (localVer).



7.4 The 2-version database pointer algorithm (2V-DBP) 117

TimeT1 (soft)

T2 (hard)

T3 (hard)

Time

Time

BOT
W_lock(x)

Write(x)->x'

Write(y)->y'

W_lock(y')
Execute COMMITTING

Update(x'') Update(y'')

Derive x'' & y''

EOT

Data in Db {x,y} {x',y} {x',y'} {x',y''}

Serialized after T1

Serialized before T1

Figure 7.5: An execution-trace of three transactions

ptr
...

ptr
...

ptr
...

ptr
...

dataPtr
update
trans
version

state
localVer
...

state
localVer
...

state
localVer
...

Soft transactions

Database

Database pointer
entries

Data pointers

Figure 7.6: The data structures used for versioning



118 Paper C

1 trans.state=EXECUTING; //BOT
2 For each tuple loop
3 obtainLock(tuple);
4 For each element in tuple loop
5 if (HasDbP(element) and isWriteLocked(tuple))
6 beginATOM();
7 DbP.version=Database.element;
8 DbP.trans=currentTrans();
9 DbP.update=CLEAN;
10 localVer=Database.element;
11 endATOM();
12 else
13 localVer=Database.element;
14 End if
15 End loop
16 End loop
17 //Manipulate tuples
18 trans.state=COMMITTING
19 For each manipulated tuple loop
20 For each element in tuple loop
21 if (HasDbP(element))
22 beginATOM();
23 if (DbP.update==CLEAN)
24 Database.element=localVer;
25 End if
26 endATOM();
27 else
28 Database.element=localVer;
29 End if
30 End loop
31 End loop
32 releaseAllLocks(trans); //EOT
33 trans.state=NO_TRANS; //EOT

Figure 7.7: A soft transaction using 2V-DBP

• A second version of the data element (version) as well as a flag (up-
date) are added to the data pointer. The update flag can have the
values clean and dirty, where the latter indicates that the data has
been updated by a hard transaction since it was previously write locked
by a soft transaction. Since hard transactions do not use database locks,
the lockInfo entry presented in figure 7.2 is removed.

• A pointer (trans) to any soft transaction holding a write lock on the
data element is added to the data pointer.

The implementation of a soft transaction is presented in figure 7.7. First
the BOT step is executed (line 1), by setting the state of the transaction to
executing. The next step, the lock obtaining step, is then executed (lines
2-16) by obtaining a lock for each tuple (line 3). When the lock is granted,



7.4 The 2-version database pointer algorithm (2V-DBP) 119

the data element in the tuple is fetched to the local version. If a write locked
data element is also pointed out by a database pointer, lines 6-11 are atomi-
cally executed, i.e., without being preempted. This atomicity is ensured by the
beginATOM() and endATOM() functions, e.g., by temporarily disabling all
interrupts. When fetching the data element, the version and the trans
in the data pointer are also updated. Furthermore, the update flag is set to
clean (line 9), to indicate that no hard transaction has altered the data ele-
ment since the locking of the tuple. Finally, the data element is read from the
database (line 10).

When all data elements of all tuples needed by the transactions are locked
and copied to local versions, the transaction executes the query, in which all
local versions of the write locked data elements can be manipulated.

The next step, the committing step, is entered (line 18) by changing the
state of the transaction. Now the transaction can write all manipulated data
elements back to the database (line 19-31) The data elements pointed out by
database pointers are only updated if the update flag still indicates clean.
Note that the second version (version) is not updated.

In the last step, the EOT step, the transaction releases all its obtained locks
(line 32), and changes state to no trans (line 33). The algorithm ensures that
no data produced by the transaction is visible to any other transaction prior to
this final step. We show formally, in section 7.4.6, that this property is indeed
satisfied.

Hard transactions execute entirely in one atomic operation, this implies
that BOT and EOT coincide in time. This atomicity is, again, provided by
beginATOM() and endATOM(), see lines 1 and 7 in figures 7.8 and 7.9.
Note that in this implementation does not contain any calls to the lock manager
as in the original database pointer write and read operations, see figure 7.4. A
hard transaction will read the data element in the database if the data element
is not write locked by a transaction. Otherwise, it will read the value from the
version in the data pointer. A hard transaction always writes directly to the
data element in the database. However, if it is locked by a write lock, it will also
update the version in the data pointer, as well as setting the update flag
to dirty to indicate that the data element is now updated after it was write
locked by the transaction.

7.4.6 Formal verification of the versioning algorithm
In order to formally show the correctness of the versioning algorithm used
in 2V-DBP, we have chosen to use the tool UPPAAL [24] to verify important



120 Paper C

1 beginATOM(); //BOT
2 if (DbP.trans->state!=NO_TRANS)
3 version=NEW_VALUE;
4 update=DIRTY;
5 End if
6 *(DbP.dataPtr)=NEW_VALUE;
7 endATOM(); //EOT

Figure 7.8: A hard write transaction using 2V-DBP

1 beginATOM(); //BOT
2 if (DbP.trans->state!=NO_TRANS)
3 localVer=version;
4 else
5 localVer=*(DbP.dataPtr);
6 End if
7 endATOM(); //EOT

Figure 7.9: A hard read transaction using 2V-DBP

properties of the algorithm.
One important property to verify is whether or not transactions always read

the correct version of a data element, i.e., the value produced by the last seri-
alized transaction updating that particular data element. We refer to this as the
durability of transactions. Another equally important property is to verify that
no intermediate results produced by executing transactions are visible to other
transactions, e.g., verify the consistency of transactions. Finally, we verify that
the versioning algorithm is deadlock-free.

UPPAAL is a toolbox for modeling, verification and validation of real-time
systems. It is appropriate for systems that can be modeled as a collection of
non-deterministic processes with finite control structure and real-valued clocks,
communicating through channels and (or) shared variables. UPPAAL is de-
signed mainly to check invariant and reachability properties by exploring the
state space of a system [24]. UPPAAL provides a graphical interface in which
the user graphically models the system using timed automatas. Each transi-
tion in an automaton can have guards assigned to them, preventing the system
to perform the transition if the condition stated in the guard is not fulfilled.
Guards use the same syntax as conditions in C, e.g., op == op, op < op,
and op != op. If a transition is performed, a (possibly empty) set of assign-
ments is executed, e.g., op := op. All operations, e.g., guards, assignments
and synchronization, performed during one transition are considered to be one
atomic operation which cannot be preempted by other transitions. It is also



7.4 The 2-version database pointer algorithm (2V-DBP) 121

possible to use communication channels in which two automatas can perform
synchronized transitions. When the real-time system has been modeled, the
system can be model-checked using requirement specification queries.

The automatas depicted in figures 7.10 to 7.13 show the behavior of trans-
actions (for a data element pointed out by a data pointer), as modeled in UP-
PAAL. In the modeling of the system, two states (AFTERREAD VERIFICA-
TION STATE in figure 7.10 and 7.12) and one variable (lastCommitted-
Transaction) have been added. These do not affect the behavior of the
model, but are added for verification purposes. Three of the states are marked
with the letter “C”, which, in UPPAAL, indicates that the state is committed,
i.e., the automata must immediately move to the next state.

The hard write, the hard read, and the soft read operations are a direct
translation of the pseudo programs presented in section 7.4.5. The soft write
transactions presented in figure 7.10, however, deserve further explanation:

1. The transition from BOT to EXECUTING (The AFTERREAD VERIF-
ICATION STATE is disregarded for now) corresponds to the lock ob-
taining step of the transaction.

2. The transition from EXECUTING to COMMITTING NOT WRITTEN
DATA correspond with the transaction entering the committing state.

3. In the COMMITTING NOT WRITTEN DATA the decision whether or not
to update the database is taken based upon the value of the update flag.

4. The transition from COMMITTING HAS WRITTEN DATA to EOT cor-
responds to lines 32-33 in figure 7.7.

In our verification we parallel compose the four automatons. This config-
uration is minimalistic but sufficient in order to capture all possible types of
interactions where hard and soft transactions can interfere with each other (i.e.,
soft read vs. hard write, soft write vs. hard write, soft write vs. hard read, and
all possible orderings of these pairs of interactions).

In this verification, three properties are verified, (i) the algorithm is dead-
lock-free, (ii) the value written by the last committed transaction is the value
read by other transactions, i.e., the durability of transactions, and (iii) the con-
sistency of transactions. The syntax of the queries in UPPAAL are not explained
in this paper, instead we refer to [24] for a detailed description of the UPPAAL
syntax. In the verification we denote soft read transactions as SR, and hard
read transactions as HR.



122 Paper C

data_locked==false
version:=DbValue,
localVer:=DbValue,
data_locked:=true,
transState:=STATE_EXECUTING

C
BOT

EXECUTING
AFTERREAD_VER
IFICATION_STATE

transState:=STATE_COMMITTING

COMMITTING_NOT_
WRITTEN_DATA

update==UPD_CLEAN
DbValue:=TRANS_SOFTDATA

update==UPD_DIRTYCOMMITTING_HAS_
WRITTEN_DATA

EOT

//Point of commit
transState:=TRANS_NOTRANS,
data_locked:=false,
update==UPD_CLEAN? //if
  lastCommittedTransaction:=TRANS_SOFTDATA; //then
  lastCommittedTransaction:=lastCommittedTransaction //else

Figure 7.10: Automata for a soft write transaction

BOT_EOTtransState!=STATE_NOTRANS
DbValue:=TRANS_HARDDATA,
version:=TRANS_HARDDATA,
update:=UPD_DIRTY,
lastCommittedTransaction

:=TRANS_HARDDATA

transState==STATE_NOTRANS
DbValue:=TRANS_HARDDATA,
lastCommittedTransaction

:=TRANS_HARDDATA

Figure 7.11: Automata for a hard write transaction



7.4 The 2-version database pointer algorithm (2V-DBP) 123

The versioning algorithm is deadlock-free This property is trivial to check,
since UPPAAL already has a mechanism to verify this. The result of the query
A[] not deadlock showed that the algorithm is deadlock-free.

Durability of transactions To verify this property, four queries are used,
namely:

1. A[] ((SR.AFTERREAD VERIFICATION STATE and SR.localVer==TRANS HARDDATA)

imply (lastCommittedTransaction==TRANS HARDDATA))

The query can be interpreted as “If a soft read transaction has read a
value produced by a hard transaction, then it is always the case that the
latest serialized transaction was a hard transaction?”

2. A[] ((SR.AFTERREAD VERIFICATION STATE and SR.localVer==TRANS SOFTDATA)

imply (lastCommittedTransaction==TRANS SOFTDATA))

The query can be interpreted as “If a soft read transaction has read a
value produced by a soft transaction, then it is always the case that the
latest serialized transaction was a soft transaction?”

3. A[] ((HR.EOT and SR.localVer==TRANS HARDDATA) imply

(lastCommittedTransaction==TRANS HARDDATA))

The query can be interpreted as “If a hard read transaction has read a
value produced by a hard transaction, then it is always the case that the
latest serialized transaction was a hard transaction?”

4. A[] ((HR.EOT and SR.localVer==TRANS SOFTDATA) imply

(lastCommittedTransaction==TRANS SOFTDATA))

The query can be interpreted as “If a hard read transaction has read a
value produced by a soft transaction, then it is always the case that the
latest serialized transaction was a soft transaction?”

The verification showed that all four queries were fulfilled.

Consistency of transactions This property was implicitly verified when the
durability property was verified, since if the value visible to transactions always
originate from the last committed transaction, no data can be visible from un-
committed transactions.



124 Paper C

data_locked==false
localVer:=DbValue,
data_locked:=true,

C

BOT

AFTERREAD_VER
IFICATION_STATE

EOT

EXECUTING

data_locked:=true

Figure 7.12: Automata for a soft read transaction

C

BOT

EOT

localVer:=TRANS_NODATA

transState!=STATE_NOTRANS
localVer:=version

transState==STATE_NOTRANS
localVer:=DbValue

Figure 7.13: Automata for a hard read transaction



7.5 Performance evaluation 125

7.5 Performance evaluation

We have performed a performance evaluation of database pointers. The goal of
the evaluation is to illustrate, for a synthetic but realistic scenario, the positive
impact 2V-DBP has, comparing it to traditional pessimistic concurrency con-
trol used in section 7.3. Specifically, the goal is to demonstrate that 2V-DBP
provides significant benefits for both soft and hard transactions, illustrating that
2V-DBP do not represent a tradeoff between good service for either soft or hard
transactions.

To evaluate the performance of the 2V-DBP algorithm, we compared it with
the 2PL-HP algorithm for both soft and hard transactions. 2PL-HP is a well-
known pessimistic concurrency control algorithm which can be implemented
on all priority-based operating systems. To realize this evaluation, a real-time
system executing soft relational transactions and hard database pointer transac-
tions was implemented on the Asterix real-time kernel [25]. These tests were
then executed on a standard PC with an Intel Pentium 350MHz processor.

The Asterix real-time kernel is an operating system, using fixed priority
scheduling, intended for small embedded applications. Since Asterix supports
pre-emptable scheduling, semaphores are needed to ensure task synchroniza-
tion. In Asterix, semaphores are implemented using the immediate inheritance
protocol [26]. The interrupt latency of the kernel, executing on the computer
used in these tests, is in the order of 20µs.

The RTDBMS in the test consists of 300 tuples with four data elements
each. Also 300 randomly selected data elements are pointed out by database
pointers. Every 400ms a soft transaction is launched into the system. Each soft
transaction randomly write- and/or read locks up to 200 tuples. Also, every
20ms, a hard transaction is launched. The hard transaction executes either a
read or a write operation on a randomly selected database pointer.

This transaction schedule mimics a hard real-time vehicle control system
with numerous hard I/O and control tasks, as well as a number of management
tasks executing data intensive soft transactions. It is, furthermore, fair to as-
sume that for RTDBMSs residing in vehicle control systems, a significant part
of the database is accessed by hard transactions, since most execution in these
systems would involve the controlling of the vehicle, hence the high amount of
database pointers.

In figure 7.14 the mean abortion ratios for both 2V-DBP and 2PL-HP is
presented. The system’s abortion rate is sampled with an interval of two sec-
onds, and the samples (indicated by boxes and diamonds in figure 7.14) show
the mean abortion ratio for each interval. The comparison shows that the to-



126 Paper C

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Time (s)

A
b

o
rt

io
n

 r
at

e 
(%

)

2V-DBP

2PL-HP

Figure 7.14: Abortion-ratios for soft transactions

tal mean abortion ratio for 2V-DBP is 25%, compared to approximately 75%
for 2PL-HP. It should be noted that all abortions for 2V-DBP are induced by
soft transactions aborting other soft transactions, and that no transactions are
aborted because of conflicts with hard transactions.

Figure 7.15 shows the response times for hard transactions executing un-
der 2PL-HP. Roughly, the response times can be grouped into three classes,
namely:

• Transactions executed without interference from other transactions. Mo-
re than 95% of the hard transactions falls into this class. These trans-
actions have a response time similar to the 2V-DBP case, i.e., 5-8µs.
However, a fraction of these have also suffered from the kernel timer
interrupt.

• Transactions causing soft transactions to be aborted. This implies that
the hard transaction must execute the abort transaction procedure be-
fore continuing. These transactions, which are just above 4% of all hard
transactions, have an execution time of 95µs.

• Transactions suffering from priority inversion. Due to the use of a com-
mon semaphore to administrate the 2PL-HP lock tables these transac-
tions have been blocked by soft transactions. The execution times of
these transactions range up to ∼180µs. Only a small fraction (0.1%) of
all transactions fall into this class.



7.5 Performance evaluation 127

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100

Time (s)

R
es

p
o

n
se

 ti
m

e 
(u

s)

2PL-HP

Figure 7.15: Response-times for hard transactions using 2PL-HP

Figure 7.16 shows the corresponding response times for the hard trans-
actions executing under 2V-DBP. The figure shows that all 5000 transactions
launched during the 100 second test interval, but a handful (∼20 transactions)
have constant execution time (5 µs). The remaining transactions have suffered
from latency caused by the kernel, i.e., a timer interrupt has occurred during
the execution of the transaction.

The measurements taken from these two execution cases show that 2V-
DBP outperforms 2PL-HP, both with respect to a minimized amount of aborted
transactions, as well as constant execution times for hard transactions. This
shows that 2V-DBP is a suitable approach to manage hard transactions in real-
time control systems, since it provide high throughput of soft transaction, as
well as short constant execution times for hard transactions.

7.5.1 Memory overhead of 2V-DBP

Another important issue for embedded systems is the memory overhead. In
most cases there is a clear trade-off between functionality and resource allo-
cation; 2V-DBP is no exception. An important property of 2V-DBP however,
is that the memory consumption of 2V-DBP is bounded and predictable. We
illustrate this with the example presented in section 7.5.

This database would, for an average length of each data element of 2 bytes,
add up to 2,3kb (300 tuples * 4 data elements * 2 bytes). To structure the data,



128 Paper C

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100

Time (s)

R
es

p
o

n
se

 ti
m

e 
(u

s)

2V-DBP

Figure 7.16: Response-times for hard transactions using 2V-DBP

a RTDBMS needs to use additional memory, e.g., overhead used to index data
and to store relation information. The commercial Polyhedra embedded data-
base management system [11] has an overhead of 28 bytes/tuple [27]. Using
this RTDBMS for the database would add 8,2 KB of overhead. Adding 300
database pointers that use locking would imply an extra overhead of 2,7kb (if
pointers use 4 bytes, integers use 2 bytes, and the lock information is stored in
an integer). On the other hand, if 300 database pointers use 2V-DBP instead of
locking, would imply an overhead of no more than 3,6kb.

This implies that for a system that uses 2PL-HP the total memory consump-
tion would be 13,2 KB. The memory consumption for the same system using
2V-DBP would be 14,1 KB, i.e., 2V-DBP increases the overhead by 6,8 %.

7.6 Conclusions and future work

We have presented a database access concept consisting of an data access
mechanism entitled database pointers, and a concurrency control algorithm
that allows co-existence of soft real-time, relational database transactions (soft
transactions) and hard real-time database pointer transactions (hard transac-
tions) [6] in a Real-Time Database Management System (RTDBMS). The algo-
rithm, called 2-Version DataBase Pointer concurrency control (2V-DBP) uses,
traditional, pessimistic concurrency control for soft transactions and a simpli-
fied form of versioning, i.e., we maintain multiple (in our case two) versions of



7.6 Conclusions and future work 129

data accessed by database pointers [6].
2V-DBP supports soft transactions with long execution times without risk-

ing that soft transactions are aborted by high priority hard transactions. Thus,
2V-DBP overcomes the recognized problem that transactions with low priority
and long execution times are penalized due to the likeliness of data conflicts,
resulting in frequent aborts [9].

2V-DBP supports hard transactions without risking hard transactions being
delayed by long-running soft transactions. Such delays could otherwise be the
case even if high priority abort is employed, since (i) abort of soft transactions
is itself a time-consuming procedure, and (ii) once a soft transaction reaches
the commit state it can no longer be aborted. Also, database pointers ensure
fast and deterministic access to data elements, allowing access to the database
without consulting the RTDBMS indexing system.

We have proved that 2V-DBP is free of deadlocks and formally verified
that the versioning algorithm provides consistency and durability of transac-
tions. Unlike traditional versioning algorithms for databases [20], the 2V-DBP
uses a bounded number of versions: two versions for data that are accessed by
database pointers, other data uses one single version.

We have implemented 2V-DBP and compared it to the pessimistic concur-
rency-control algorithm two-phase locking high priority (2PL-HP). Our com-
parison scenario shows that the abortion ratio was significantly decreased, from
an average of 75% using 2PL-HP to 25% using 2V-DBP. Furthermore, the
worst observed response-time for hard transactions was greatly reduced from
about 175µs to 27µs (of which 20µ is the system interrupt latency; the actual
execution times for hard transactions were always in the range 5-7µs). Thus,
we conclude that both hard and soft transactions benefit from the 2V-DBP algo-
rithm. The cost for introducing 2V-DBP is slightly increased memory overhead
for maintaining internal data structures and one extra version of the data ele-
ments used by hard transactions. For an example database, the overhead of
using 2V-DVP instead 2PL-HP was calculated to 6,8%.

The database access concept presented in this paper show that efficient in-
tegration of a real-time database is possible, even in safety-critical embedded
real-time control-system, without adding unpredictability to the system.



Bibliography

[1] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Volcano - a
Revolution in On-Board Communications. Technical report, Volvo Tech-
nology Report, 1998.

[2] Dag Nyström, Aleksandra Tešanović, Christer Norström, Jörgen Hans-
son, and Nils-Erik Bånkestad. Data Management Issues in Vehicle Con-
trol Systems: a Case Study. In Proceedings of the 14th Euromicro Con-
ference on Real-Time Systems, pages 249–256. IEEE Computer Society,
June 2002.

[3] Dag Nyström, Aleksandra Tešanović, Mikael Nolin, Christer Norström,
and Jörgen Hansson. COMET: A Component-Based Real-Time Database
for Automotive Systems. In Proceedings of the Workshop on Software
Engineering for Automotive Systems, pages 1–8. The IEE, June 2004.

[4] T. Gustafsson and J. Hansson. Data management in real-time systems:
a case of on-demand updates in vehicle control systems. In Proceedings
of the Real-Time Application Symposium (RTAS 2004). IEEE Computer
Society Press, May 2004.

[5] Stephen Cannan and Gerhard Otten. SQL - The Standard Handbook.
MacGraw-Hill International, 1993.

[6] Dag Nyström, Aleksandra Tešanović, Christer Norström, and Jörgen
Hansson. Database Pointers: a Predictable Way of Manipulating Hot
Data in Hard Real-Time Systems. In Proceedings of the 9th International
Conference on Real-Time and Embedded Computing Systems and Appli-
cations, pages 623–634, February 2003.

[7] Dag Nyström, Mikael Nolin, Aleksandra Tešanović, Christer Norström,
and Jörgen Hansson. Pessimistic Concurrency Control and Versioning to

130



BIBLIOGRAPHY 131

Support Database Pointers in Real-Time Databases. In Proceedings of
the 16th Euromicro Conference on Real-Time Systems, pages 261–270.
IEEE Computer Society, June 2004.

[8] R.K Abbott and H. Garcia-Molina. Scheduling real-time transactions: A
performance evaluation. ACM Transactions on Database Systems, 17,
September 1992.

[9] J. Huang, J.A. Stankovic, K. Ramamritham, and D.F. Towsley. Ex-
perimental Evaluation of Real-Time Optimistic Concurrency Control
Schemes. In Guy M. Lohman, Amı́lcar Sernadas, and Rafael Camps,
editors, Proceedings of the 17th International Conference on Very Large
Data Bases, pages 35–46. Morgan Kaufmann, September 1991.

[10] Pervasive Software Inc. http://www.pervasive.com.

[11] Enea AB. http://www.enea.se.

[12] Sleepycat Software Inc. http://www.sleepycat.com.

[13] TimesTen Performance Software. http://www.timesten.com.

[14] S. F. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndtsson, and
B. Eftring. DeeDS Towards a Distributed and Active Real-Time Data-
base System. ACM SIGMOD Record, 25(1):38–40, 1996.

[15] J. Lindstrom, T. Niklander, P. Porkka, and K. Raatikainen. A Distributed
Real-Time Main-Memory Database for Telecommunication. In Proceed-
ings of the Workshop on Databases in Telecommunications, pages 158–
173. Springer, September 1999.

[16] B. Adelberg, B. Kao, and H. Garcia-Molina. Overview of the STanford
Real-time Information Processor (STRIP). SIGMOD Record, 25(1):34–
37, 1996.

[17] J. A. Stankovic, S. H. Son, and J. Liebeherr. Real-Time Databases and In-
formation Systems, chapter BeeHive: Global Multimedia Database Sup-
port for Dependable, Real-Time Applications, pages 409–422. Kluwer
Academic Publishers, 1997.

[18] F. Baothman, A. K. Sarje, and R. C. Joshi. On Optimistic Concurre-
ncy Control for RTDBS. In Proceedings IEEE Region 10 International



132 BIBLIOGRAPHY

Conference on Global Connectivity in Energy, Computer, Communica-
tion and Control, volume 2, pages 615–618. IEEE Computer Society,
December 1998.

[19] Tei-Wei Kuo, Yuan-Ting Kao, and LihChyun Shu. A Two-Version Ap-
proach for Real-Time Concurrency Control and Recovery. In Proceed-
ings of the Third IEEE International High Assurance Systems Engieering
Symposium. IEEE Computer Society, November 1998.

[20] Rajeev Rastogi, S. Seshadri, Philip Bohannon, Dennis W. Leinbaugh,
Abraham Silberschatz, and S. Sudarshan. Logical and physical versioning
in main memory databases. In The VLDB Journal, pages 86–95, 1997.

[21] X. Song and J. Liu. Maintaining Temporal Consistency: Pessimistic vs.
Optimistic Concurrency control. IEEE Transactions on Knowledge and
Data Engineering, 7(5):786–796, October 1995.

[22] P. S. Yu, K. Wu, K. Lin, and S. H. Son. On Real-Time Databases: Concu-
rrency Control and Scheduling. Proceedings of the IEEE, 82(1):140–157,
January 1994.

[23] Tei-Wei Kuo and Aloysius K. Mok. SSP: a Semantics-Based Protocol for
Real-Time Data Access. In Proceedings of 14th IEEE Real-Time Systems
Symposium, pages 76–86. IEEE Computer Society, December 1993.

[24] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nut-
shell. International Journal on Software Tools for Technology Transfer,
1(1-2):134–152, 1997.

[25] Henrik Thane, Anders Pettersson, and Daniel Sundmark. The As-
terix realtime kernel. In Eduardo Tovar and Christer Norström, edi-
tors, Proceedings of the Work-in-progress and Industrial Session of the
13th Euromicro Conference on Real-Time Systems,Delft Netherlands.
http://citeseer.nj.nec.com/thane01asterix.html, June 2001.

[26] A. Burns and A. Wellings. Real-Time Systems and Programming
Languages, chapter 13.10.1 Immediate Ceiling Priority Inheritance.
Addison-Wesley, second edition, 1996. ISBN 0-201-40365-X.

[27] Aleksandra Tešanović, Dag Nyström, Jörgen Hansson, and Christer
Norström. Embedded Databases for Embedded Real-Time Systems: A
Component-Based Approach. Technical Report MRTC Report ISSN



BIBLIOGRAPHY 133

1404-3041 ISRN MDH-MRTC-43/2002-1-SE, Dept. of Computer Engi-
neering, Mälardalen University, January 2002.





Chapter 8

Paper D: Snapshots in
Real-Time Databases using
Database Pointer
Transactions

Dag Nyström, Mikael Nolin, and Christer Norström

In Proceedings of the 11th IEEE International Conference on Real-Time and
Embedded Computing Systems and Applications (RTCSA05), Hong Kong,
China, August 2005

135



Abstract

We present 2V-DBP-SNAP, an algorithm that allows hard real-time tasks in
an embedded real-time control system to read a snapshot of a number of data
elements in a real-time database. Furthermore, 2V-DBP-SNAP allows these
data elements to be shared with soft real-time tasks, which access them using a
database query language, and with other hard real-time tasks that use database
pointers. 2V-DBP-SNAP allows temporal behavior and memory consumption
to be accurately predicted. Introducing snapshot transactions is beneficial for
embedded control-systems, such as for engine control in an automotive system,
since a snapshot of the state of the environment can be collected, e.g., the state
of all cylinders in the engine. 2V-DBP-SNAP is lightweight and predictable,
both with respect to computational and memory overhead, and is therefore
highly suited for resource constrained systems.



8.1 Introduction 137

8.1 Introduction

As complexity in automotive control systems increases [1], the need for a struc-
tured way to handle and maintain data is needed [2]. One attractive solution is
to integrate the data into a real-time database management system (RTDBMS)
[3, 4, 5]. Such an RTDBMS must be able to handle concurrently executing
transactions in an efficient and predictable way.

In [6], a concurrency control algorithm, denoted 2-Version Database Point-
er Concurrency Control algorithm (2V-DBP) that allows hard and soft tasks to
access shared data, was introduced. The algorithm, which combines the con-
cept of database pointers [7] and relational transaction management satisfies
the need for predictable and time-efficient hard real-time control-applications.
However, one drawback with 2V-DBP is that it doesn’t allow hard transactions
to access more than one data element per transaction, thus tasks that need to ac-
cess multiple data elements cannot obtain atomic transaction semantics, since
each data access would have to be in a separate transaction. For a majority
of control tasks in a vehicular system, using multiple transactions is sufficient,
and preferable, since such an approach favors freshness of data over atomic
data access. However, in automotive systems, a minor part of the control-tasks
need atomic transactions. Consider an engine-controller in which you need
to have a consistent view of the state of all cylinders in the engine. To al-
low this, we extend the 2V-DBP algorithm to support snapshots [8]. We call
this algorithm 2-version database pointer concurrency-control with snapshots
(2V-DBP-SNAP).

In this paper, we present and evaluate the 2V-DBP-SNAP concurrency con-
trol algorithm, which has the following benefits: (i) It allow hard tasks to ac-
cess non-snapshot data in the database without being blocked by any database
locks. (ii) It overcomes the widely recognized problem that soft transactions
with low priority and long execution times are penalized due to the likeliness
of data conflicts [9]. (iii) It allows hard tasks to access a set of data, using snap-
shot transactions, to be read and/or written atomically. Blocking for snapshot
transactions is deterministic and bounded. (iv) It is well suited for embedded
real-time systems since it is both resource-efficient and predictable.

8.2 System model

This paper focuses on real-time applications used to control a process, e.g.,
critical control-functions in a vehicle such as engine or brake control. The



138 Paper D

tasks use database transactions to access and manipulate shared data stored in
a database.

8.2.1 Snapshots
We define snapshots and their operations as follows:

Definition 1. A snapshot requirement on a set of data elements is the require-
ment that the data elements must be able to be read as an consistent instant
(snapshot) view of the data elements.

Definition 2. We refer to a set of data elements that have a snapshot require-
ment as snapshot data.

Definition 3. We define an operation as having a snapshot property if the
operation accesses snapshot data such that the snapshot requirement for the
data is maintained.

Intuitively, Definition 1 implies that any operation that accesses data within
a snapshot must be able to retrieve a snapshot of the state of the data elements,
even if the data elements currently are updated by some other operation. Fur-
thermore, Definition 3 implies that if an operation, e.g., a database transaction,
accesses data elements within snapshot data (any combination of reads and
writes) in such a way that the snapshot requirement is maintained (for any
other operation on that particular data), the operation has a snapshot property.
Introducing concurrently executing transactions often makes it impossible to
handle snapshot data, even when well known traditional concurrency-control
algorithms, such as 2-phase locking [10] and optimistic concurrency control
[11], are used. Previous work on snapshot semantics in RTDBMSs involves
keeping multiple versions of data to achieve snapshot properties for all trans-
actions and all data in the database [12]. However, the overhead, with respect
to memory and CPU utilization, for managing these versions is often unaccept-
able in resource constrained systems. In 2V-DBP-SNAP, individual sets of data
elements with snapshot requirements are identified, and only one extra version
of each data element in the set is needed.

8.2.2 Task and transaction models
From a conceptual point of view, we divide the tasks in the system into three
categories, namely, I/O-tasks, control-tasks, and management-tasks [2].



8.3 Database pointers with versioning 139

I/O and control-tasks are hard real-time tasks, typically executed periodi-
cally, and often at high frequencies. I/O-tasks are used to either read sensor-
values or update actuators, while control tasks are used to derive new actuator
values from sensor values. These tasks normally touch very few data elements,
and their transactions are always precompiled, (i.e., formulated at compile-
time). In some cases, I/O and control tasks might use snapshot data, e.g., all
cylinders of an engine may need to be read and controlled atomically. I/O and
control tasks not using snapshot data interact with the database through hard
database transactions. These transactions utilize the database pointer inter-
face, providing an efficient and predictable access to a single data element in
the database. A majority of the transactions in a vehicle, i.e., vehicle control,
would fall into this class. Similarly, I/O and control-tasks that use snapshot
data, interact with the database through snapshot transactions. These transac-
tions also utilize the database pointer interface, but are allowed to access mul-
tiple data elements. Since snapshot transactions are more complex than hard
transactions, and the need for snapshot data only applies to a limited number
of tasks, one could expect few transactions of this class.

Management tasks are soft real-time tasks, which execute soft database
transactions. An example of a management task might be a task presenting
statistical information about the current state of the vehicle to the user. A ma-
nagement transaction might also be constructed during run-time, for example
by a service technician using a service tool connected to the vehicle. We as-
sume that all soft (i.e., management) tasks execute on lower priorities than all
hard (i.e., I/O and control) tasks. Soft transactions, either precompiled or ad
hoc (formulated and parsed at run-time), utilize the relational database query
interface, e.g., SQL-interface [13], for access. They provide a flexible access
to the data in the database to the system and are especially suited for mana-
gement tasks, e.g., logging, diagnostics, and user interface (HMI) tasks, e.g.,
tasks controlling the instrument board.

8.3 Database pointers with versioning

Before presenting our proposed concurrency control algorithm, we will recapit-
ulate the database pointer concept [7], and the concurrency control algorithm,
denoted 2V-DBP [6], which our algorithm is extending.



140 Paper D

ptr
...

ptr
...

ptr
...

ptr
...

dataPtr
update
trans
version
type

state
localVer
...

state
localVer
...

state
localVer
...

Active soft transactions

Database

Database pointer
entries

Data pointer

Figure 8.1: The data structures used by database pointers under 2V-DBP.

8.3.1 Database pointers
Database pointers allow individual data elements in a RTDBMS to be accessed
in an efficient and predictable manner and are implemented using the following
data structures (Figure 8.1):

• The database pointer entry which is a data-structure that belongs to
each individual database pointer. The address of this structure is returned
to the application when the database pointer is bound to its data element.

• The data pointer which contains a pointer to the data element in the
database, as well as information on the type of the data, e.g., an integer
or a string. The version, update, and trans entries are used by 2V-
DBP, and will be discussed in Section 8.3.2. Using a two-level pointer
indirection instead of allowing the application to directly have a pointer
to the data element ensures that the database can be reorganized during
run-time without creating stale pointers in the application.

8.3.2 The 2-version database pointer algorithm
The 2V-DBP algorithm allows hard database transactions to execute without
being blocked by soft database transactions [6]. Furthermore, soft transactions,
using the relational part of the RTDBMS, are allowed to execute without being
blocked or aborted by the hard database transactions. To achieve this behavior,



8.3 Database pointers with versioning 141

two versions of all data elements pointed out by database pointers exist in the
database in a similar way as in the two-version priority ceiling protocol [14],
and the two-version two phase locking [15]. To maintain the versions of data
elements, the following data structures are used (see Figure 8.1):

• A second version of the data element (version) and a flag (update)
which indicates if the second version is dirty (updated by a hard transac-
tion) or clean.

• A list of all active soft transactions where each entry consists of, among
other information, the current state (state, see Section 8.3.3) of the
transaction, and local working copies of the data elements used by each
transaction (localVer).

• The trans pointer, residing in the data pointer, points out any soft
transaction holding a write lock on the data element. It is used to ensure
that soft transactions commit atomically.

8.3.3 Soft transactions

The soft transactions utilize the relational part of the RTDBMS, and use an
extended form of the two-phase locking high priority 2PL-HP [16] concurrency
control policy.

A soft transaction has the following execution workflow; When the query
has been parsed, all database locks needed to complete the query is obtained.
Arbitration of any lock-conflicts are solved according to 2PL-HP, i.e., in fa-
vor of the higher prioritized transaction. When a lock is granted, the data is
immediately copied to the local working copy and the update-flag is set to
clean. When all data is retrieved, the data is manipulated according to the
query. After that the transaction commits and all manipulated data are written
back to the database according to the 2V-DBP versioning scheme [6], except
those data elements that are dirty (determined by the update-flag, see Section
8.3.4). This behavior ensures an atomic commit. When the manipulated data
is written back, the transaction returns its locks.

8.3.4 Hard transactions

All hard transactions use database pointers. Hard transactions can access the
same data elements as soft transactions, however hard transactions are never



142 Paper D

blocked by database locks. Still hard transactions take database locks in con-
sideration and access the database differently if the data element is locked.

Hard transactions that write to the database will, if the data is write locked
by a soft transaction, set the update flag to dirty to indicate that the data
element is not to be overwritten by the soft transaction. The execution-time
of a hard transaction is short and close to constant, since it only contains a
handful of sequential instructions. Hence, hard transactions are in their entirety
executed non-preemptive. Experiences from implementing 2V-DBP show that
the duration of these non-preemptive sections are significantly shorter than the
interrupt latency of typical real-time operating systems. From a schedulability
analysis perspective, the operating system itself introduces a greater blocking,
and a hard transaction do therefore not influence the maximum blocking in the
system.

8.3.5 Transaction serialization and relaxation

The goal of a concurrency control algorithm is to resolve data conflicts between
concurrent transactions so that it appears that they are run in sequence, hence
transactions are serialized. The traditional notion of serialization is to serialize
transactions in the order that they commit, i.e., in the order their updates are
visible to other transactions. However, it has been recognized that this notion
of serialization is not ideal for real-time data [17], since freshness of data often
is more important than maintaining the traditional serialization order.

In 2V-DBP, for each soft transaction, a feasible serialization of all transac-
tions can be found. However, different soft transactions can have different per-
ceptions of the actual serialization order. Thus, 2V-DBP introduces a relaxed
serialization order that favors data freshness. As an example of our serializa-
tion method, consider the execution trace depicted in Figure 8.2. In the figure
we can see that the hard transaction t2 is serialized after t1 since it updated its
data element (x) after t1 locked (and thus read) it. Note, that t1 did not write
x back to the database during the commit phase since it was dirty. Similarly,
t3 is serialized before t1 since it updated its data element (y) before t1 read it.
From the example we see that the resulting serialization order is t3, t1, and t2,
even though the actual order of commit is t2, t3, and t1.



8.4 The 2-version database pointer snapshot algorithm 143

Timet1 (soft)

t2 (hard)

t3 (hard)

Time

Time

BOT
W_lock(x)

Write(x)->x'

Write(y)->y'

W_lock(y')
Execute COMMITTING

Update(x'') Update(y'')

Derive x'' & y''

EOT

Data in Db {x,y} {x',y} {x',y'} {x',y''}

Serialized after t1

Serialized before t1

Figure 8.2: An execution-trace of three transactions

8.4 The 2-version database pointer snapshot algo-
rithm

In its current form, 2V-DBP is not sufficient to support the notion of snapshot
data just by allowing hard transactions to read or update multiple data elements.
Consider the example depicted in Figure 8.3(a) in which the hard transaction t2,
preempting the soft transaction t1, is allowed to update multiple data elements.
In this example, t1 reads x and y′, hence t1 only sees partial results of the
updates performed by t2. The two correct scenarios in this example would be
that t1 either reads x and y (t1 is serialized before t2), or that it reads x′ and y′

(t1 is serialized after t2). In this example, the snapshot requirement of {x, y}
is violated.

From the above example we see that introducing hard transactions with
snapshot properties need a more elaborate handling, therefore we introduce the
2V-DBP-SNAP algorithm, which is an extension to 2V-DBP, that introduces
a third transaction-class, namely the snapshot transaction. Snapshot transac-
tions are allowed to read and/or update several database pointers during their
execution, and are guaranteed to have a snapshot property.

The main idea of 2V-DBP-SNAP is to cluster data that have snapshot re-
quirements into snapshot sets. A snapshot set is defined as a set of data el-
ements with a common snapshot requirement, i.e., is used by one or more
snapshot transactions. In Figure 8.4, three snapshot sets (ab, x, and y) can be
seen. Note that snapshot transactions a and b have a common data element,
thus they share the same snapshot set. A snapshot transaction is only allowed



144 Paper D

Timet1 (soft)

t2 (hard) Time

W_lock(x)

Write(x)->x' Write(y)->y'

W_lock(y')

...

{x,y} have a snapshot requirement

(a) Faulty trace under 2V-DBP

Timet1 (soft)

t2 (snap) Time

W_lock(x) Caching of {x,y}

Write(x)->x' Write(y)->y'

W_lock(y)

...

{x,y} is snapshot set

(b) Correct trace under 2V-DBP-SNAP

Figure 8.3: Execution-traces for transactions using snapshot data



8.4 The 2-version database pointer snapshot algorithm 145

Database

Snap. transaction a Snap. transaction b

Snap. transaction x

Snap. transaction y

Snapshot set ab
Snapshot set x

Legend:
Transaction

 
Data element
used by trans.

Snapshot set

Snapshot set y

Figure 8.4: Snapshot sets in 2V-DBP-SNAP

to access data elements within its snapshot set. When a soft transaction locks
a data element within a snapshot set, it must cache the entire snapshot set to its
local working copy before it may continue to execute.

The result of using 2V-DBP-SNAP on the faulty example in Figure 8.3(a)
is depicted in Figure 8.3(b). In this case, the soft transaction t1 caches both x,
and y, when locking x, and then use the cached value, when locking y. In the
example we see that t1 no longer sees a partial result of t2 and the snapshot
requirement of {x, y} is now fulfilled.

8.4.1 Snapshot sets

Partitioning data into snapshot sets is a straightforward procedure, which can
be easily automated. The algorithm works as follows:

Definition 4. Let sx denote the set of data elements accessed by snapshot
transaction x.

The algorithm passes through the following two steps:

1. Let set S be the set of all data elements sets, thus S = {s1, s2, ..., sn}.



146 Paper D

2. While there exist pairs of data elements sets (sx, sy) such that sx ∈
S, sy ∈ S and sx ∩ sy 6= ∅: Remove sx and sy from S and add a new
data elements sets sxy = sx ∪ sy to S.

S now contains all snapshot sets (which are all disjoint sets of data ele-
ments) of the database.

Both steps of the algorithm are straightforward since all snapshot transac-
tions are precompiled, and thus all data elements possibly accessed are known
at compile-time. Partitioning data into snapshot sets is typically performed
off-line. The algorithm can, however, be applied during run-time. This would
allow the system to create new snapshot transactions during run-time. How-
ever, we will not elaborate further on this in this paper.

8.4.2 The 2V-DBP-SNAP data structures

The 2V-DBP data structures from Figure 8.1 must be extended to incorporate
the snapshot sets. This is done by adding a new data structure, the snapshot
pointer, which have a similar functionality as the data pointer described in
Section 8.3. In difference from the data pointer, which maintains a single
data element, a snapshot pointer handles sets of data, i.e., all data within one
snapshot set. The snapshot pointer contains the following entries, see Figure
8.5:

• The dataPtr set, version set, update set and type set
entries. These entries are equivalent to the dataPtr, version, up-
date and type entries in the data pointer, but are extended to sets with
one element per data element in the snapshot set.

• The trans entry. This entry is similar to the trans entry in the data
pointer, and contains a pointer to any soft transaction currently holding a
snapshot lock on the snapshot set. Snapshot locks are ordinary database
locks, maintained by the RTDBMS lock manager [5], that are used by
soft transactions when accessing a snapshot. The usage of snapshot locks
is further explained in Section 8.4.5.

• The snapshot semaphore entry. This entry is used to enforce mu-
tual exclusion among snapshot transactions accessing the same snapshot
set, The usage of snapshot semaphores is further discussed in Section
8.4.3.



8.4 The 2-version database pointer snapshot algorithm 147

ptr
index

ptr
...

ptr
...

ptr
...

ptr
...

dataPtr
version
update
type
trans

state
localVer
...

state
localVer
...

state
localVer
...

Active soft transactions

Database

Database pointer
entries Data pointer

dataPtr set
version set
update set
type set
trans
snapshot semaphore

Snapshot pointer Lock Manager

tuple lock
tuple lock

...
snapshot lock
snapshot lock

...

ptr
index

Snapshot database
pointer entries

Figure 8.5: The extended data structures used by 2V-DBP-SNAP.

8.4.3 Introducing snapshot transactions
A snapshot transaction operates in a similar fashion as hard transactions, with
the difference that a snapshot transaction can read and manipulate multiple
data elements. Snapshot transactions, as hard transactions, use the database
pointer interface to access data elements. In addition to this a begin of
transaction and an end of transaction are used to indicate what
part of the application code is within the transaction. The work-flow of a snap-
shot transaction is as follows:

• 1. Begin of transaction. In this step, the transaction is started. It con-
sists of two steps, namely:(i) The snapshot semaphore is obtained, in
order to ensure mutual exclusion among all snapshot transactions access-
ing the same snapshot set. (ii) Identify if a soft transaction is currently
holding a write-lock on the snapshot set, see Section 8.4.5. If this is
the case, the update-flag must be set to dirty for all data elements
manipulated by the transaction. This is similar as for hard transactions
executing under 2V-DBP.

• 2. Execute the transaction. That is, read and write to any data elements



148 Paper D

within the snapshot set. Calculations to derive the transaction results can
also be executed.

• 3. End of transaction. In this step, the transaction is ended, and the
snapshot semaphore is released.

The snapshot semaphore might introduce blocking on other, higher priori-
tized snapshot transactions executing on the same snapshot set. This blocking
is, however, deterministic if a real-time semaphore protocol, such as the im-
mediate inheritance protocol is used [18], and if the worst case execution time
is bounded for each snapshot transaction. It is noteworthy that this blocking
affects neither snapshot transactions accessing other snapshot sets, hard trans-
actions, nor soft transactions.

8.4.4 Hard transactions under 2V-DBP-SNAP

Hard transactions under 2V-DBP-SNAP can only modify data elements that are
not in any snapshot set. However, it is possible for a hard transaction to read
a data element from a snapshot set. Not allowing hard transactions to update
data in a snapshot set is not a limitation, but a consequence of the concept
of snapshots. If data elements within a snapshot set would be individually
updated by different transactions, the snapshot requirement would be violated.
However, if a behavior where individual elements of snapshots are updated
is wanted, snapshot transactions updating these data elements can instead be
used.

8.4.5 Extending soft transactions

Soft transactions executing under 2V-DBP-SNAP differ from soft transactions
executing under 2V-DBP in the following two ways:

1. In difference to snapshot transactions, soft transactions cannot read in-
dividual data elements from the snapshot at arbitrary points in time. If
a soft transaction needs to access a data element in a snapshot set, the
entire set must be cached to the local working copy. This is a non-
preemptive operation. If the transaction, later in its execution, requests a
different data element within the same snapshot set, the transaction uses
the cached copy. Even though the soft transaction reads the complete set
it might choose to only update a subset of the elements in the set.



8.4 The 2-version database pointer snapshot algorithm 149

Transaction type Soft Hard Snapshot
Soft L
Hard V M
Snapshot S & V D M or D

Legend:
L - Database locks D - Disjoint data
V - Versioning S - Snapshot set
M - Mutual exclusion

Table 8.1: Serialization policies between transaction types.

2. Prior to reading the snapshot set, the corresponding snapshot lock must
be obtained. Since the snapshot set is a shared resource it needs to be
protected, the same way as ordinary data tuples. Just as for any lock in
2V-DBP, snapshot locks are managed by the lock manager in the RT-
DBMS. Hence, they can be either read-, or write-locked, and lock con-
flicts are resolved using the 2PL-HP policy.

8.4.6 Serialization in 2V-DBP-SNAP
In 2V-DBP-SNAP, a set of different serialization techniques are used. Table 8.1
shows the different policies used between different transaction types. We refer
to [6] for a discussion about the serialization among soft and hard transactions,
and instead focus on the serialization policies used for snapshot transactions.
Table 8.1 shows three possible serialization cases, namely serialization among:

1. Two concurrent snapshot transactions. In this case, there are two pos-
sible sub-cases; (i) If the transactions access different snapshot sets, no
conflicts can occur (hence transactions are serialized in the order they
commit), and (ii) if the transactions access the same snapshot set, the
snapshot semaphore will ensure mutual exclusion (and thus no conflicts).
The transactions are serialized in the order they obtain the snapshot
semaphore.

2. A snapshot transaction concurrent with a hard transaction. In this
case, there are three possible sub-cases; (i) Since a hard transaction is
not allowed to write to data elements in a snapshot set, this case is triv-
ial, and transactions are serialized in the order they commit. (ii) If a



150 Paper D

hard transaction reads a data element after the snapshot transaction has
updated it, the hard transaction is serialized after the snapshot transac-
tion. (iii) If a hard transaction reads a data element before the snapshot
transaction has updated it, the hard transaction is serialized before the
snapshot transaction.

3. A snapshot transaction concurrent with a soft transaction. Since soft
transactions read the entire snapshot set in one non-preemptive opera-
tion, it can be viewed as one data element (from a soft transactions per-
spective). Figure 8.3(b) illustrates this. If a snapshot set is manipulated
by a snapshot transaction after being cached by a soft transaction, the
versioning algorithm will ensure that, just as for soft transactions in 2V-
DBP, only the clean data elements (determined by the dirty flag) are
updated. Thus, a snapshot transaction is serialized before a soft transac-
tion iff it is executed before the soft transaction caches the snapshot set,
otherwise the snapshot transaction is serialized after the soft transaction.

8.4.7 Evaluation of 2V-DBP-SNAP

The aim of 2V-DBP-SNAP is to allow hard control-tasks to achieve a consistent
view and control of the state of the environment. This aim must be fulfilled
without the introduction of unpredictable, or significant blocking. In fact, 2V-
DBP-SNAP introduces two forms of blocking for snapshot transactions.

First, the snapshot semaphore introduces blocking among concurrently ex-
ecuting snapshot transactions. This approach can be compared to using shared
variables which are protected by a semaphore. One benefit of managing this in
database transactions instead of in the application code is that minimal snap-
shot sets automatically can be constructed off-line, thus increasing the concu-
rrency in the system. Furthermore, deadlocks caused by erroneous semaphore
usage can be avoided since only one semaphore is used per transaction.

Second, soft transactions introduce blocking on snapshot transactions, sin-
ce soft transactions needs to read (or update) a set of data elements in a non-
preemptive operation. If, during the creation of the snapshot sets, the snapshot
transactions overlap to a large extent, the snapshot sets might get, in fact, arbi-
trarily large. Note, however, that this blocking is deterministic, and the max-
imum blocking factor can be derived and analyzed off-line. From our experi-
ence with automotive control-systems [2], only few data elements in a system
have a need for snapshot semantics, and thus the snapshot sets are not likely to
be large. An implementation of 2V-DBP-SNAP under the Asterix real-time op-



8.4 The 2-version database pointer snapshot algorithm 151

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900

Snapshot Size (# of data elements)

B
lo

ck
in

g
 (
µs

ec
) 

 

RTOS Interrupt Latency

Snapshot Blocking Time

Figure 8.6: Blocking introduced by soft transactions caching a snapshot set

erating system (rtos) [19] executing on an 133Mhz Intel 486 processor shows
that snapshots with up to 939 data elements can be used before reaching block-
ing times that exceed the interrupt latency of the rtos, see Figure 8.6. From the
figure we can see that the rtos latency is approximately 250µ sec. The snap-
shot caching in the soft transaction reaches this time at approximately 940 data
elements. The evaluation shows that, in the normal case, soft transactions that
cache a snapshot set will not affect the maximum blocking of the system, since
snapshot sizes will not reach this size.

Another limitation in 2V-DBP-SNAP is snapshots used in interrupts. Intro-
ducing blocking for interrupt handlers is not preferable, however, in its current
form, 2V-DBP-SNAP, may introduce blocking for interrupt handlers that exe-
cute snapshot transactions. One possible solution to this is to manage this data
in the application, by letting the interrupt handler write the data to a buffer,
which is then handled by a task executing a snapshot transaction.

However, these limitations do not negatively influence the system, or the
users of the system. Instead 2V-DBP-SNAP is designed with automotive sys-
tem’s requirements in mind, and its minimal overhead is to a high degree suit-



152 Paper D

able for use in such systems.

8.5 Conclusions
We have presented a concurrency control algorithm which is based on a pre-
vious algorithm, denoted 2V-DBP [6], which allows co-existence of soft real-
time, relational database transactions (soft transactions), and hard real-time
database pointer transactions (hard transactions) [7].

The presented algorithm, called 2-version database pointer concurrency-
control with snapshots (2V-DBP-SNAP), extends 2V-DBP by introducing sna-
pshot support. This allows hard real-time tasks to get a consistent instant view
of a set of data elements in the real-time database. Furthermore, this data
can be shared with soft database transactions without violating the snapshot
requirements on the data, i.e., the requirement to be able to get a snapshot of
the data elements. To be able to allow transactions to have snapshot support,
the concept of snapshot sets is introduced.

2V-DBP-SNAP is designed to be lightweight with respect to overhead and
blocking of transactions. An implementation of 2V-DBP-SNAP shows that
this is also the case. The algorithm is intended for hard real-time control ap-
plications, e.g., automotive control systems, in which hard control-tasks need
a consistent view (or a consistent control) of multiple data elements.

Future work includes further evaluation of the algorithm as well as intro-
ducing wait-free or lock-free algorithms to the snapshot sets in order to allow
concurrently executing snapshot transactions to access the same snapshot set.



Bibliography

[1] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Volcano - a
Revolution in On-Board Communications. Technical report, Volvo Tech-
nology Report, 1998.

[2] Dag Nyström, Aleksandra Tešanović, Christer Norström, Jörgen Hans-
son, and Nils-Erik Bånkestad. Data Management Issues in Vehicle Con-
trol Systems: a Case Study. In Proceedings of the 14th Euromicro Con-
ference on Real-Time Systems, pages 249–256. IEEE Computer Society,
June 2002.

[3] S. F. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndtsson, and
B. Eftring. DeeDS Towards a Distributed and Active Real-Time Data-
base System. ACM SIGMOD Record, 25(1):38–40, 1996.

[4] J. Lindstrom, T. Niklander, P. Porkka, and K. Raatikainen. A Distributed
Real-Time Main-Memory Database for Telecommunication. In Proceed-
ings of the Workshop on Databases in Telecommunications, pages 158–
173. Springer, September 1999.

[5] Dag Nyström, Aleksandra Tešanović, Mikael Nolin, Christer Norström,
and Jörgen Hansson. COMET: A Component-Based Real-Time Database
for Automotive Systems. In Proceedings of the Workshop on Software
Engineering for Automotive Systems, pages 1–8. The IEE, June 2004.

[6] Dag Nyström, Mikael Nolin, Aleksandra Tešanović, Christer Norström,
and Jörgen Hansson. Pessimistic Concurrency Control and Versioning to
Support Database Pointers in Real-Time Databases. In Proceedings of
the 16th Euromicro Conference on Real-Time Systems, pages 261–270.
IEEE Computer Society, June 2004.

153



154 BIBLIOGRAPHY

[7] Dag Nyström, Aleksandra Tešanović, Christer Norström, and Jörgen
Hansson. Database Pointers: a Predictable Way of Manipulating Hot
Data in Hard Real-Time Systems. In Proceedings of the 9th International
Conference on Real-Time and Embedded Computing Systems and Appli-
cations, pages 623–634, February 2003.

[8] Håkan Sundell and Philippas Tsigas. Simple Wait-Free Snapshots for
Real-Time Systems with Sporadic Tasks. In Proceedings of the 10th In-
ternational Conference on Real-Time and Embedded Computing Systems
and Applications. Springer-Verlag, August 2004.

[9] J. Huang, J.A. Stankovic, K. Ramamritham, and D.F. Towsley. Ex-
perimental Evaluation of Real-Time Optimistic Concurrency Control
Schemes. In Guy M. Lohman, Amı́lcar Sernadas, and Rafael Camps,
editors, Proceedings of the 17th International Conference on Very Large
Data Bases, pages 35–46. Morgan Kaufmann, September 1991.

[10] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The Notions of
Consistency and Predicate Locks in a Database System. The communica-
tions of the ACM, 19(11):624–633, November 1976.

[11] H. T. Kung and J. T. Robinsson. On Optimistic Methods for Concurrency
Control. ACM Transactions on Database Systems, 6(2):213–226, June
1981.

[12] Thomas Gustafsson. Maintaining data consistency in embedded data-
bases for vehicular systems. Linköping Studies in Science and Technol-
ogy Thesis No. 1138. Linköping University. ISBN 91-85297-02-X, 2004.

[13] Stephen Cannan and Gerhard Otten. SQL - The Standard Handbook.
MacGraw-Hill International, 1993.

[14] Tei-Wei Kuo, Yuan-Ting Kao, and LihChyun Shu. A Two-Version Ap-
proach for Real-Time Concurrency Control and Recovery. In Proceed-
ings of the Third IEEE International High Assurance Systems Engieering
Symposium. IEEE Computer Society, November 1998.

[15] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concu-
rrency control and recovery in database systems. Addison-Wesley Pub-
lishing Company , 1987.



BIBLIOGRAPHY 155

[16] R.K Abbott and H. Garcia-Molina. Scheduling real-time transactions: A
performance evaluation. ACM Transactions on Database Systems, 17,
September 1992.

[17] Tei-Wei Kuo and Aloysius K. Mok. SSP: a Semantics-Based Protocol for
Real-Time Data Access. In Proceedings of 14th IEEE Real-Time Systems
Symposium, pages 76–86. IEEE Computer Society, December 1993.

[18] A. Burns and A. Wellings. Real-Time Systems and Programming
Languages, chapter 13.10.1 Immediate Ceiling Priority Inheritance.
Addison-Wesley, second edition, 1996. ISBN 0-201-40365-X.

[19] Henrik Thane, Anders Pettersson, and Daniel Sundmark. The As-
terix realtime kernel. In Eduardo Tovar and Christer Norström, edi-
tors, Proceedings of the Work-in-progress and Industrial Session of the
13th Euromicro Conference on Real-Time Systems,Delft Netherlands.
http://citeseer.nj.nec.com/thane01asterix.html, June 2001.





Chapter 9

Paper E: Introducing
Substitution-Queries in
Distributed Real-Time
Database Management
Systems

Thomas Nolte and Dag Nyström

In Proceedings of the 10th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA05), Catania, Sicily, September 2005

157



Abstract

This paper introduces query mechanisms that allow automotive control-sys-
tems (using a distributed real-time database management system (RTDBMS))
to be queried, monitored and stimulated during run-time without violating its
temporal properties. The mechanisms are completely transparent to the control
application since they are handled by the RTDBMS. The COMET RTDBMS
is extended with ad hoc capabilities to support the introduction of subscription
and substitution queries, which are used for monitoring and stimulation. These
queries are intended to be used by service and calibration tools to help in the
development and maintenance of modern automotive systems. Using these
queries could reduce development costs, result in higher quality of the system
design and consequently yield higher reliability.



9.1 Introduction 159

9.1 Introduction

In recent years, automotive control-systems have evolved from simple sin-
gle processor systems to complex distributed systems. At the same time, the
amount of data that needs to be managed by these systems is increasing dramat-
ically; the data volume managed by automotive systems is predicted to increase
7-10% per year [1]. Current techniques for storing and manipulating data ob-
jects in automotive systems are ad hoc in the sense that they normally manipu-
late data objects as internal data structures. This lack of a structured approach
to data management results in a costly development process with respect to
design, implementation, and verification of the system [2]. It also makes the
system difficult to maintain and develop while preserving consistency with the
environment, e.g., maintaining temporal properties of data. As data complexity
is growing, the need for a uniform, efficient, and persistent way to store data
is becoming increasingly important. One way of handling this complexity is
to use a real-time database management system (RTDBMS) as a tightly inte-
grated part of the automotive control-system. RTDBMSs has the potential to
solve many of the problems that application designers have to consider with
respect to data management, e.g., locking of the data, persistency and deadlock
situations. More importantly, incorporating an RTDBMS into an automotive
control-system could reduce development costs, result in higher quality of the
design of the systems, and consequently yield higher reliability [3]. Moreover,
an RTDBMS enables development of advanced diagnosis tools, by providing a
uniform interface to access data.

Today, there exists a number of both commercial and research databases
suitable for embedded systems. Commercial embedded platforms include Per-
vasive.SQL [4], Polyhedra [5], Berkeley DB [6], and TimesTen [7]. Research
real-time platforms include, DeeDS [8], RODAIN [9], STRIP [10], and Bee-
HIVE [11]. The general trend among these platforms is that commercial sys-
tems focus towards the embedded systems market, i.e., focus on flexibility,
adaptability, and efficiency, while the research platforms mainly address real-
time requirements. This discrepancy makes neither type of database system
suitable for the automotive domain, where the adaptability and efficiency must
be combined with maintaining real-time requirements. However, the real-time
database management system COMET [12] aims to bridge this gap by provid-
ing both a light-weight, adaptable, and reconfigurable design paradigm [13], as
well as efficient and predictable RTDBMS mechanisms [14].

This paper shows how the COMET RTDBMS can be extended with dis-
tribution mechanisms to allow service tools to query, monitor and stimulate



160 Paper E

a control system at run-time, while still maintaining a high level of abstrac-
tion. Three types of database queries, ad hoc queries, subscription queries, and
substitution queries are introduced to obtain this behavior. These queries are
handled by the RTDBMSs on each node and are completely transparent to the
control application and are not violating the temporal properties of the control
system.

The outline of the paper is as follows; in Section 9.2, a background of auto-
motive systems, current service tools, CAN, and COMET are given. The paper
continues in Section 9.3, in which the extended data distribution is presented.
Finally, in Section 9.4 the paper is summarized and concluded.

9.2 System model
In this section, typical automotive control-systems are presented together with
how these systems distribute data. Furthermore, the COMET RTDBMS is pre-
sented in detail, including how it is distributed using CAN. Also, typical service
tools used for automotive systems are presented, motivating the contribution of
this paper, namely the database queries allowing for querying, monitoring and
stimulation of data during run-time of real-time control-systems.

9.2.1 Automotive control-systems

Typical automotive control-systems are found in chassis and vehicle safety sys-
tems, such as Vehicle Dynamics Control (VDC) systems, also known as Elec-
tronic Stability Program (ESP). VDC/ESP is designed to assist the driver in
over-steering, under-steering and roll-over situations [15]. This, and similar
safety systems, such as the Anti-lock Brake System (ABS), all require feed-
back control.

Other safety-systems are air-bag systems [16], that control the operation of
air-bags in the vehicle. Typically a vehicle contains several air-bags that are
connected to sensors that detect abnormal situations, e.g., sudden acceleration
or decelerations of the vehicle. Once an abnormal situation is detected the
correct (depending on the type of crash) air-bags are inflated in a matter of half
a millisecond.

Body and comfort electronics require both feedback and discrete control
for subsystems such as climate control, cruise control, locks, window lifts, seat
control and HMI, to mention a few. Typically body and comfort electronics
rely on driver interaction and are not safety-critical, they involve hundreds of



9.2 System model 161

system states and events, and they interface to physical components in the ve-
hicle, e.g., motors and switches.

Other automotive control-systems are powertrain systems and x-by-wire
systems. Powertrain is the assembly of gears by which power is transmitted
from the engine of the vehicle to the driving axis. Powertrain includes engine
control which involves the coordination of fuel injection, engine speed, valve
control, cam timing etc. X-by-wire is the notation for new subsystems replac-
ing hydraulic and mechanical parts with electronics and computer (feedback)
control systems. Examples of x-by-wire systems are steer-by-wire, shift-by-
wire, throttle-by-wire and break-by-wire.

During the development and maintenance of these control systems, sup-
port through hardware tools is essential. These tools are used to monitor and
diagnose both the software control-system and the mechanical systems.

9.2.2 Architecture

An automotive control-system (subsystem) consists of one or several Elec-
tronic Control Units (ECUs). An automotive system, consisting of several
subsystems with a total of up to 70 ECUs, has to distribute thousands of vari-
ables and signals (data) over several communication networks [17], e.g., CAN
networks. This makes a modern automotive system complex.

In this paper, all ECUs are assumed to be equipped with the COMET RT-
DBMS [12]. Moreover, these ECUs are assumed to be connected using the
Controller Area Network (CAN) [18].

9.2.3 CAN

CAN, or the Controller Area Network [18], is a serial bus that was developed
in the beginning of the eighties by Bosch. Today CAN is the most widely used
vehicular network in the automotive industry. Over the years several different
CAN standards have been developed and used in different applications, where
the ISO 11898 [19, 20] is the most commonly used fieldbus in the European
automotive industry.

A typical CAN application is any type of embedded system with soft real-
time requirements and loop times of 5-50 ms. CAN transmits messages in an
event-triggered fashion using frames containing 0 to 8 bytes of data and 4 to 6
bytes of header. These frames can be transmitted at speeds of 10 Kbps up to 1
Mbps.



162 Paper E

CAN handles communication faults by retransmission, and there is no error
containment or support for higher level of fault tolerance. However, it holds a
strong position and will most likely continue to be the most used communica-
tion bus in the automotive application domain for a long time.

With CAN, messages are not interrupted while in transmission. More-
over, the CAN message identifier (ID) is representing the priority of the mes-
sage. Hence, CAN is implementing non-preemptive Fixed Priority Scheduling
(FPS), and suitable analysis techniques can be used, like the FPS response-
time tests to determine the schedulability of CAN message frames, presented
by Tindell et al. [21, 22].

Using FPS, priorities are assigned to the messages before execution (of-
fline), by the allocation of message identifiers (IDs). The message with the
highest priority among all messages available for transmission is scheduled for
transmission.

9.2.4 Data distribution in automotive control-systems
OSEK/VDX [23] is an effort to standardize and increase portability of automo-
tive software. Among the OSEK/VDX specifications, OSEK/VDX COM [24]
is a uniform communication environment for automotive control unit applica-
tion software. OSEK/VDX COM provides communication services through
a well defined API. Moreover, it specifies an Interaction Layer (IL) that pro-
vides the communications interface to the application. The application can
transmit messages to other applications resident on the same ECU or on other
ECUs. If the receiving application is resident on the same ECU, the IL handles
the communications internally. If receiving applications are resident on an-
other ECU, the IL packs one or more messages (signals) into Interaction Layer
Protocol Data Units (I-PDUs). These I-PDUs are then sent to the Network
Layer (NL), either periodically or explicitly initiated by some event. However,
OSEK/VDX COM does not specify the NL other than defining some minimum
requirements.

AUTOSAR [25], which aims at providing a global standard for software in
automotive systems, proposes similar mechanisms for data distribution using a
run-time environment to route communications both inter- and intra-ECU.

Apart from OSEK/VDX and AUTOSAR, automotive systems distribute
signals over CAN in several ways, e.g., with the usage of Volcano as done by
Volvo Car. The Volcano system [1] provides tools for packaging signals into
messages, as well as assigning priorities for CAN messages to achieve a high
utilization of the bus. Moreover, it is possible to perform timing analysis of the



9.2 System model 163

Data distribution
manager

ELECTRONIC CONTROL UNIT

COMET
RTDBMS

D
B

 p
o

in
ter in

terface

R
elatio

n
al in

terface

I/O task

I/O task

Control
task

Control
task

CAN
Controller

Logging
task

HMI
task

Sensors &
Actuators

CAN Network

Soft Real-TimeHard Real-Time

Figure 9.1: The architecture of an ECU using COMET

system using the Volcano tools. An offline schedulability test is done to ensure
that all deadlines are met.

9.2.5 The COMET real-time database management system
The COMET RTDBMS [12] is a data management system intended primarily
for embedded control-systems, e.g., automotive systems. COMET contains
data management concepts that allow hard and soft application tasks to access
and share data in a predictable and efficient way [14].

Tasks in the system interact with the RTDBMS through database transac-
tions. Different types of tasks require different kinds of transactions. There-
fore, transactions are divided into the following two classes, see Figure 9.1:

1. Soft transactions, either precompiled or ad hoc (formulated and parsed
at run-time) reside in soft real-time tasks. These transactions utilize the



164 Paper E

relational database query interface, such as, SQL [26], for database ac-
cess. Soft transactions provide a flexible and dynamic access to the data
in the database to the system and are especially suited for management
tasks, e.g., logging, diagnosis, and, user interface (HMI) tasks, e.g., tasks
controlling the dash board.

2. Hard transactions, which are precompiled, reside in hard real-time
tasks. A hard transaction utilizes the database pointer interface (see Sec-
tion 9.2.5) [14], providing an efficient and predictable access to individ-
ual data elements in the database. A majority of the transactions in a
vehicle, i.e., transactions used for vehicle control, would fall into this
class.

Database pointers

Database pointers allow individual data elements in an RTDBMS to be ac-
cessed in an efficient and predictable manner [14]. They are intended as a
complement to the relational data model, without limiting the expressibility of
the relational query processing.

Figure 9.2 shows an example of an I/O task that periodically reads a sensor
and propagates the sensor value to the database using a database pointer, in
this case the oil temperature in the engine relation. The task consists of two
parts, an initialization part (lines 2–4) executed when the system is starting
up, and a periodic part (lines 5–8) scanning the sensor. The initialization of
the database pointer is first done by declaring the database pointer (line 3) and
then binding it to the data element containing the oil temperature in the engine
(line 4). When the initialization is completed, the task begins to periodically
read the value of the sensor (line 6), then propagates the value to the RTDBMS
using the database pointer (line 7), and finally awaits the next invocation of the
task (line 8).

Database pointers are implemented using the data structures shown in Fig-
ure 9.3. The binding of a database pointer to a database element is performed
in the following steps:

1. A new database pointer entry is created in the RTDBMS.

2. The SQL query is executed. It is required that the result of the query is
a single data element. If it is the first time the data element is bound to a
database pointer, a new data pointer is created in the RTDBMS. The data
pointer is initialized with the address of the data element and its type.



9.2 System model 165

1 TASK OilTempReader(void) {
2 int s;
3 DBPointer *ptr;
4 bind(&ptr, "SELECT temperature FROM engine

WHERE subsystem=oil;");
5 while(1){
6 s=read_sensor();
7 write(ptr,s);
8 waitForNextPeriod();

}
}

Figure 9.2: An I/O task that uses a database pointer

ptr
...

ptr
...

ptr
...

dataPtr
type
...

Database

Database pointer
entries

Data pointer

Figure 9.3: The data structures used by database pointers

3. The database pointer entry is set to point at the data pointer.

4. Finally, the pointer to the database pointer entry is returned as a
DBPointer*.

In addition to the bind(ptr,q) operation, the database pointer interface
consists of the remove(ptr) operation which deallocates a database pointer,
the write(ptr,data), and the read(ptr) operations which updates, re-
spectively reads the data element.

Concurrency in COMET

For applications that use multiple transactions possibly executed in parallel,
some form of concurrency control in the RTDBMS is needed to maintain the
consistency of the database. One common way of enforcing concurrency con-
trol is to introduce database locks. Before a transaction is allowed to access a
data element in the database, the appropriate lock must be obtained. Database
locks are similar to semaphores in the sense that they protect a shared resource.



166 Paper E

For real-time systems, e.g., automotive control-systems, using locks might
introduce unwanted blocking. This is especially true for systems that have
both hard tasks executing at high frequencies, and soft tasks that might execute
transactions with long execution times.

In COMET, this problem is solved by combining database locks (for soft
transactions) with a versioning algorithm (for hard transactions). The con-
currency control algorithm, denoted 2-version database pointer concurrency
control (2V-DBP) [14], allow hard and soft transactions to share common data
elements without interfering with each other.

Data distribution in COMET

To be able to support distributed automotive control-systems, COMET needs
to be equipped with a distribution manager that communicates using the Con-
troller Area Network (CAN). The distribution manager supports periodic pre-
compiled queries (sporadic queries are treated as periodic based on their min-
imum inter-arrival time). When queries are distributed between ECUs in the
system, data is mapped onto periodic CAN frames (messages) with identifiers
(IDs) assigned to fulfill timing requirements of the transactions. The map-
ping of query data onto CAN frames is done similar to what is explained in
Section 9.2.4, i.e., using a tool where signals and data are mapped onto mes-
sages. These messages are then periodically sent (multicasted/broadcasted) on
the CAN bus. For the remainder of this paper, this periodically sent traffic is
defined as the original system CAN traffic.

Both hard and soft periodic transactions are mapped between CAN frames
and the COMET database using database pointers with 2V-DBP for efficient
access. Hence, both packaging of data into messages for transmission, and
updating data in the database upon message reception, are fast and simple op-
erations. Moreover, the usage of a database simplifies data access. Using, e.g.,
the CAN Calibration Protocol (CCP) [27], lists of data elements are used to de-
scribe which data elements that are to be mapped into specific messages. In the
CCP specification, these lists represent physical memory addresses. However,
using the COMET RTDBMS with the database pointer concept, data access
is handled on a logical (relational) level. Hence, no direct access to the ECU
memory is required, protecting the ECU while providing a clear interface to
the ECU’s data elements, still allowing fast access to its data elements.

Note that the mapping of data onto a set of periodic CAN frames, together
with performing the schedulability test on the set of messages, is done offline
hence not requiring resources during runtime. During runtime mapping is done



9.2 System model 167

simply based on lookup tables, containing database pointers.

9.2.6 Service tools for automotive systems

During the development and maintenance of a modern automotive system, sup-
port through hardware tools connected to the control system is essential. These
tools are mainly used to calibrate, test and diagnose both the software control
system and the mechanical systems. For the remainder of this paper, these tools
are simply referred to as service tools.

Today, a substantial effort is put into calibrating the parameters of an auto-
motive control-system. The aim of this work is, among others, to optimize the
performance of the system, and to comply with regulations regarding emissions
etc. It is noteworthy that it is not the performance of the control system and its
real-time properties, e.g., keeping deadlines and minimizing jitter, that is cali-
brated, but the performance of the mechanical system being controlled. For an
automotive engine, typically several man-years are invested in calibration.

In order to perform the calibration, a calibration tool is used. These tools
are typically connected to the vehicle via the CAN network, and then the au-
tomotive system can be monitored or updated using the tools. Even though
commercial calibration tools that support the CCP exist, e.g., CAMEO for Ve-
hicle Use [28], and CANaph Graph [29], it is not uncommon that in-house
developed tools are used.

Service tools are also used to detect and diagnose potential system failures,
both electrical and mechanical, during service of the vehicle. By providing
service stations with powerful service tools, more efficient and accurate service
can be performed. Desirable functionalities in such systems include:

• Downloading of warning- and error-logs from the vehicle. These logs
contain information on system anomalies detected in the vehicle since
its last service. Typical logs might include sporadic failures of sensors
and abnormal sensor readings such as temperatures.

• Reading of a set of data elements in the vehicle. Such information can
be used to further localize errors. An example of such a reading might be
to obtain information on all current sensor values regarding the engine.

• Periodically subscribe to data elements to monitor fluctuations of their
values over time, e.g., RPM- or temperature readings. Such information
might be used to spot intermittent failures.



168 Paper E

• Take control of (stimulate) a subsystem or function in the vehicle. Con-
sider, for example taking over the acceleration pedal to be able to control
the RPM of the engine. This functionality is useful for automated tests
of the vehicle.

Since service tools communicate with the vehicle through its data, it is
natural that the service tools communicate directly with the RTDBMSs in the
ECUs, since they are responsible for managing the data in the automotive sys-
tem. An advantage of this is also that the automotive application itself needs
not to be aware of the existence of service tools.

So far COMET has only been discussed in the context of precompiled,
periodic (and sporadic) offline scheduled data distribution (the original system
CAN traffic). Hence, it must be extended to allow these new event driven ad-
hoc activities to be executed. To allow the above mentioned activities, three
new types of distributed database transactions are introduced:

1. Soft ad hoc queries These queries are similar to soft transactions, in the
sense that they use a query language, but can now be formulated at run-
time. Since it can not be foreseen which data elements an ad hoc query
will access, these queries must be allowed to be distributed, i.e., gather
information from different ECUs in the system.

2. Subscription queries These queries allow a data element, not currently
distributed, to be subscribed to by a task on a different ECU or by a
service tool. This query type consists of three parts, (i) a start of
subscription in which the subscriber requests that a subscription
is started, (ii) the actual subscription itself, and (iii) an end of sub-
scription.

3. Substitution queries These queries allow current producers of data (sen-
sors etc.) in the system to be overridden, in order for a service tool to take
control of a certain subsystem. A substitution query has, as subscription
queries, three parts, namely, (i) start of substitution, (ii) the
actual substitution itself, in which the substitution data is propagated
through the network, and (iii) the end of substitution.

9.3 Extending the COMET data distribution
To be able to incorporate the three query types introduced in Section 9.2.6, the
data distribution in COMET needs to be extended to support ad hoc CAN traf-



9.3 Extending the COMET data distribution 169

fic, see Figure 9.4. From the figure, it can be seen that the ad hoc CAN traffic
is added in a lower priorities segment than the original system CAN traffic. In
this segment, every node (both ECUs and service tools) are assigned a unique
CAN ID to transmit on. This implies that any message collisions among ad hoc
messages are handled by the CAN network. Furthermore, since all ad hoc CAN
messages are transmitted with lower priorities than the original system CAN
traffic, the schedulability is still valid regardless of the amount of ad hoc CAN
traffic. However, it must be checked whether the ad hoc CAN traffic, although
unlikely, introduce longer blocking times than caused by existing traffic, af-
fecting the timely delivery of messages. It is common to assume the blocking
time to be equal to the longest possible CAN-frame, in which case this check
is not needed.

9.3.1 Ad hoc queries
Ad hoc queries are distributed database queries, formulated at run-time, nor-
mally by a service tool. This type of query allows a user to view the current
state of the system using a powerful high level query language, i.e., SQL.

It is however noteworthy, that ad hoc queries provide neither transaction nor
snapshot semantics, i.e., the result of an ad hoc query cannot be viewed as the
state of the system at a single instance in time. However, ad hoc queries follow
the COMET consistency properties, namely that data consistency and transac-
tion semantics can be guaranteed locally on each ECU, but due to the fact that
freshness typically is more favored than global consistency [30], inconsisten-
cies among nodes can be tolerated. This coincides with the consistency of most
automotive systems in practice.

The execution-flow of an ad hoc query is as follows (numbers in Figure 9.4
correspond to the list below):

1. An ad hoc query is entered to the service tool. These queries follow
standard SQL syntax.

2. The query parser in the service tool parses the SQL query, and creates
an execution plan. To create and optimize the execution plan, the query
parser has access to the metadata, i.e., information such as structure and
size of the data elements and relations in the database. The metadata is
stored in the service tool.

3. The query engine in the service tool starts to process the execution plan.
Usually, the first step in the execution plan is to retrieve data from the



170 Paper E

database, so therefore the distribution manager sends out a request for
data on the CAN network, using the service tool’s assigned CAN ID.
Typically, such a request is on the form <DATA REQ, REL NAME, C-
OND>, where all tuples (rows in a relation) for the relation REL NAME
which meet the boolean condition COND are requested.

4. All distribution managers in the ECUs will then forward this message
to its local query engine, which will launch a soft transaction retrieving
the requested tuples. It is however noteworthy that only the tuples that
each ECU has ownership of (stated in each ECU’s metadata) is retrieved.
Declaring ownership for each tuple avoids several ECUs to retrieve (and
thus return) the same tuple to the service tool. When all tuples are re-
trieved, each ECU’s distribution manager packs them together in CAN
messages and transmits them on its respective CAN ID. When a distribu-
tion manager is completed (possibly after sending 0 tuples), it acknowl-
edges end of transmission.

5. Finally, the query engine in the service tool completes the execution plan
and outputs the query result.

9.3.2 Subscription queries
Subscription queries are used to monitor individual internal data elements over
a period of time. These queries utilize just as the ad hoc queries, low priority
CAN traffic to initialize and terminate subscriptions. The level of service, with
respect to frequency and Quality of Service (QoS), of the subscription can be
specified. QoS is divided into two classes, either the subscription is performed
as a background service (soft real-time), using ad hoc traffic, or it is guaranteed
(hard real-time). Guaranteed subscriptions undergo an admission control in
which a schedulability analysis (as presented in Section 9.2.3) of the original
system CAN traffic together with the added subscription traffic is performed.
This analysis determines whether or not to accept (admit) the subscription. It is
assumed that the service tool has the full knowledge of the system, in terms of
the original system’s CAN traffic. If admitted, the subscription will temporarily
be treated as a part of the original system CAN traffic. The execution-flow of
a subscription query is as follows:

1. A subscription query is entered into the service tool. The query consists
of the following:



9.3 Extending the COMET data distribution 171

ECU 1

4
Distribution
Manager

Query
Engine

ECU 2

Query
Engine

4
Distribution
Manager

CAN
Network

2

Ad hoc
query

Service tool

Query
Parser

3
Metadata Query

Engine

Distribution
Manager1 5

Query
result

3

Original system CAN traffic

Ad hoc CAN traffic
4

Database Database

Pri-
ority

Time

Figure 9.4: Execution of an ad hoc query



172 Paper E

• <NODE, REL NAME, KEY, ATTRIBUTE>, which corresponds to
the relation name, the key and attribute (row and column) of the
tuple located in the ECU pointed out by NODE in which the data
element to subscribe upon is located. This information is enough to
uniquely identify any data element in any database in the system.

• <PERIODICITY, QoS>, which corresponds to the periodicity and
the QoS level (soft or hard) of the subscription.

2. The query engine of the service tool first checks in its metadata if the
data to view already is distributed (i.e., is already in the original system
CAN traffic) with at least the same level of service. In that case the
service tool uses that distribution.

3. For queries with the QoS level set to hard, the query engine in the ser-
vice tool performs an admission control. In the admission control, the
following is determined; (i) if the subscription, given its periodicity, can
be safely inserted into the original system CAN traffic without violating
any system requirements (i.e., schedulability analysis is performed), and
(ii) at which priority (CAN id) it can be transmitted.

4. Given that the query is admitted (or if the QoS level is soft) an ad hoc
message is sent out with the following format: <SUB REC, NODE,
REL NAME, KEY, ATTRIBUTE, PERIODICITY, CANID>.

5. The ECU being addressed receives the message and acknowledges it.

6. The ECU then creates a new database pointer (if not already existent)
and periodically starts to transmit on the assigned CAN ID.

7. Eventually, the service tool transmits an end of subscription,
and the subscription is terminated.

9.3.3 Substitution queries
Substitution queries are used to stimulate the system from a service tool or sim-
ilar. When a substitution query is active for a data element, it overrides the pro-
ducer of that element. In Figure 9.5, a substitution query for data element x is
active, thus any producer in the control application is overridden. Still however,
the producers will receive a normal response (e.g., query successful or
similar) on their data updates on x. This implies that, from the control appli-
cations point of view, a substitution (or subscription) is completely transparent



9.4 Summary 173

ECU

x

Query
Engine

Control
Application

Producer of x

Distribution
Manager

Trashcan

OK

Subst.
 query

Database
pointer

Database

Figure 9.5: Execution of an substitution query

since it is handled by the RTDBMS. The workflow for a substitution query is
the same as for a subscription query, except that data packages are sent from
the service tool to the control application. Just as for subscription queries,
substitution queries can be executed on both a soft and a hard QoS-level.

9.4 Summary

During the development and maintenance of an automotive system, service
tools play an important role in calibration, testing and diagnosis. These tools
need an intimate access to system data to be able to monitor the system behav-
ior during run-time.

This paper presents how a real-time database management system can be
used to enable this behavior. The COMET RTDBMS is extended with three
new query types for querying, monitoring and stimulating data during run-
time of the system, without violating the temporal properties of existing con-
trol systems. These new queries could help in the development of modern



174 Paper E

automotive systems, reducing development costs, resulting in higher quality
of the system design and consequently yield higher reliability. Furthermore,
the approach presented in this paper enables any data residing in the database
to be monitored and stimulated during runtime, also data that is not explicitly
pre-configured for this data access.

Future work includes extending the distributed RTDBMS to also support
other networks [31], such as Local Interconnect Network (LIN) [32] and Flex-
ray [33].



Bibliography

[1] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Volcano - a
revolution in on-board communication. Volvo Technology Report 98-12-
10, 1998.

[2] Dag Nyström, Aleksandra Tešanović, Christer Norström, Jörgen Hans-
son, and Nils-Erik Bånkestad. Data Management Issues in Vehicle Con-
trol Systems: a Case Study. In Proceedings of the 14th Euromicro Con-
ference on Real-Time Systems, pages 249–256. IEEE Computer Society,
June 2002.

[3] T. Gustafsson and J. Hansson. Data management in real-time systems:
a case of on-demand updates in vehicle control systems. In Proceedings
of the Real-Time Application Symposium (RTAS 2004). IEEE Computer
Society Press, May 2004.

[4] Pervasive Software Inc. http://www.pervasive.com.

[5] Enea AB. http://www.enea.se.

[6] Sleepycat Software Inc. http://www.sleepycat.com.

[7] TimesTen Performance Software. http://www.timesten.com.

[8] S. F. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndtsson, and
B. Eftring. DeeDS Towards a Distributed and Active Real-Time Data-
base System. ACM SIGMOD Record, 25(1):38–40, 1996.

[9] J. Lindstrom, T. Niklander, P. Porkka, and K. Raatikainen. A Distributed
Real-Time Main-Memory Database for Telecommunication. In Proceed-
ings of the Workshop on Databases in Telecommunications, pages 158–
173. Springer, September 1999.

175



176 BIBLIOGRAPHY

[10] B. Adelberg, B. Kao, and H. Garcia-Molina. Overview of the STanford
Real-time Information Processor (STRIP). SIGMOD Record, 25(1):34–
37, 1996.

[11] J. A. Stankovic, S. H. Son, and J. Liebeherr. Real-Time Databases and In-
formation Systems, chapter BeeHive: Global Multimedia Database Sup-
port for Dependable, Real-Time Applications, pages 409–422. Kluwer
Academic Publishers, 1997.

[12] Dag Nyström, Aleksandra Tešanović, Mikael Nolin, Christer Norström,
and Jörgen Hansson. COMET: A Component-Based Real-Time Database
for Automotive Systems. In Proceedings of the Workshop on Software
Engineering for Automotive Systems, pages 1–8. The IEE, June 2004.

[13] Aleksandra Tešanović, Dag Nyström, Jörgen Hansson, and Christer
Norström. Aspects and Components in Real-Time System Development:
Towards Reconfigurable and Reusable Software. Journal of Embedded
Computing, February 2004.

[14] Dag Nyström, Mikael Nolin, Aleksandra Tešanović, Christer Norström,
and Jörgen Hansson. Pessimistic Concurrency Control and Versioning to
Support Database Pointers in Real-Time Databases. In Proceedings of
the 16th Euromicro Conference on Real-Time Systems, pages 261–270.
IEEE Computer Society, June 2004.

[15] A. T. van Zanten, R. Erhardt, K. Landesfeind, and G. Pfaff. VDC systems
development and perspective. In SAE World Congress. SAE, 1998.

[16] Robert Boys. Safe-by-Wire: The Leading Edge in Airbag Control. In
SAE World Congress, Detroit, MI, USA, 2003. SAE.

[17] Nicolas Navet, Yeqiong Song, Francoise Simonot-Lion, and Cedric
Wilwert. Trends in Automotive Communication Systems. Proceedings
of the IEEE, 93(6), June 2005.

[18] Robert Bosch GmbH. BOSCH’s Controller Area Network. http://-
www.can.bosch.com/.

[19] ISO 11898. Road Vehicles - Interchange of Digital Information - Con-
troller Area Network (CAN) for High-Speed Communication. Interna-
tional Standards Organisation (ISO), ISO Standard-11898, Nov 1993.



BIBLIOGRAPHY 177

[20] ISO 11898-1. Road Vehicles - Controller Area Network (CAN) - Part 1:
Data link layer and physical signalling. International Standards Organi-
sation (ISO), ISO Standard-11898-1, 2003.

[21] K. W. Tindell, A. Burns, and A. J. Wellings. Calculating Controller Area
Network (CAN) Message Response Times. Control Engineering Prac-
tice, 3(8):1163–1169, 1995.

[22] K. W. Tindell, H. Hansson, and A. J. Wellings. Analysing Real-Time
Communications: Controller Area Network (CAN). In Proceedings of
15th IEEE Real-Time Systems Symposium (RTSS’94), pages 259–263,
San Juan, Puerto Rico, December 1994. IEEE Computer Society.

[23] OSEK/VDX. Open Systems and the Corresponding Interfaces for Auto-
motive Electronics. http://www.osek-vdx.org/.

[24] OSEK/VDX-Communication. Version 3.0.3, July 2004. http://-
www.osek-vdx.org/mirror/OSEKCOM303.pdf.

[25] AUTOSAR. Homepage of Automotive Open System Architecture (AU-
TOSAR). http://www.autosar.org/.

[26] Stephen Cannan and Gerhard Otten. SQL - The Standard Handbook.
MacGraw-Hill International, 1993.

[27] ASAP Standard. CCP - Can Calibration Protocol, Version 2.1, February
1999.

[28] AVL LIST GMBH. Cameo for Vehicle Use. http://www.avl.com.

[29] Vector-CANtech, Inc. CANape Graph. http://www.vector-cantech.com.

[30] Tei-Wei Kuo and Aloysius K. Mok. SSP: a Semantics-Based Protocol for
Real-Time Data Access. In Proceedings of 14th IEEE Real-Time Systems
Symposium, pages 76–86. IEEE Computer Society, December 1993.

[31] Thomas Nolte, Hans Hansson, and Lucia Lo Bello. Automotive Commu-
nications - Past, Current and Future. In Proceedings of the 10th IEEE In-
ternational Conference on Emerging Technologies and Factory Automa-
tion (ETFA’05), Catania, Italy, September 2005.

[32] LIN Consortium. LIN - Local Interconnect Network. http://www.lin-
subbus.org/.



[33] FlexRay Communications System - Protocol Specification. Version 2.0,
June 2004.


