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Extended Abstract

Real time kernels are implemented today in software or in a separate processor. One of
the disadvantages of current implementation approaches is that the execution times for
the Service Calls have a minimum and a maximum value. The time gap can be large, and
in real time systems the worst case time is one of the factors which determine the
utilisation factor of the system. The execution time variations are dependent on the
longest and shortest execution paths in the source code, the execution time for the
assembler instructions and load variations such as number of tasks, interrupts, time-
out queues etc.
The real time Kernel in hardware is designated Real Time Unit (RTU). The RTU is
designed to reduce the time gap between best and worst cases for the kernel's service
calls and administration to zero. Real time administration such as scheduling of tasks
and time queue handling is performed outside the CPU and therefore no clock tick
administration routine interrupts executes in the CPU. The CPU task is to perform
program execution and context switches, in today’s implementation.
As distinct from other methods of implementing real time systems (for example
[Roos89], [Stancovic95]), the entire real time kernel is implemented in a number of
separate real ”executing” hardware units. This means that there are no microcode
[NEC92] or ROM-based operating system instructions such as TRON [Sakamura89].

The left hands part of figure 1 shows a conventional real-time system with the
operating system in software. It consists of three parts; Application software,
Operating system and Processors. When using the RTU, some part of the real-time
operating system is moved from software into hardware, as shown in the right hand
part of figure 1.
Predictability [Stankovic90] of the underlying real-time operating system is necessary
to achieve predictability of software (application tasks) running on top of this
operating system. One approach to improving predictability is to use a separate real-
time coprocessor.

The validation system includes an RTU chip, VME bus [VME] and three CPU cards
from FORCE [FORCE] (see section architecture). The RTU-project has designed 10
different FPGA and three ASIC RTU prototypes the last years [Lindh95].
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Figure 1: Overview of software and hardware implemented Real-Time Kernels

The RTU prototype can handle 256 tasks and 32 priority levels. The RTU is designed
as a framework, for the convenient implementation of "new" concurrent service calls.
The following real time functions are implemented in the RTU: Interrupt handler,
periodic starts of tasks with deadline control, relative delay of tasks, scheduler
(priority based, pre-emptive), IPC, semaphores, flags, watchdogs, analyse and debug
functions, on/off task switch and VME bus interface.
The RTU implementation is technology independent [Lindh93] and it can be
implemented as a megacell, one Integrated circuit (100 000 gates) or in FPGA:s (Field
Programmable Gate Array).

What is the difference between a system with an RTU and the real-time kernel in
software?
A "true" definition of the advantages of the RTU is not possible in a general way,
because the requirements and constraints are very different for different applications.
For example, a robot requires a real time system with a response time in milliseconds
whereas the real time system of a water supply plant needs only a response time of the
order of one second.
Given the qualification concerning applications, we observe that the use of a separate
hardware-based real time kernel yields the following advantages:

PERFORMANCE AND DETERMINISM
• Possible to get a more deterministic multitasking real time kernel, since RTU service

calls min. max. time is zero.
• The speed with which real time service calls are executed is increased by several

orders of magnitude compared with a conventional CPU based solution.
• The response time has been decreased by several orders of magnitude in

comparison with a CPU solution,
• No clock tick interrupt to the CPU is needed.
• ”Execution” of expansive software based function can be implemented in hardware.
 
 
 PORTABILITY



• No memory requirements,
• No special instruction format,
• No special CPU, only one interrupt and an external data bus for each CPU.
 
 SOFTWARE DESIGN
• Simpler software system, since the program code for the real time kernel does not

occupy CPU memory,
• Simpler timing analysis of the system,
• Improved understandability when the system is divided into parts (complexity

reduction),
• All RTK service calls are isolated in the RTU (no problem with interference

between different service call codes),
• No interrupt handler in the software (except the context switch routine) since

interrupts are mapped to tasks, which are scheduled by the RTU.
In principle, the motivation for using an RTU is the same as that for using a
coprocessor in a computer system, i.e. to improve the performance of the application.
A math-coprocessor is specialised in performing fast calculations and an RTU is
specialised in high performing and predictable time behaviour for the real time kernel.

 System Architecture and Interface to RTU
The figure below shows our validation environment. The number of application
processors controlled by the RTU is scaleable from one to three. Each CPU board has
I/O circuits and RAM (Random Access Memory). The global RAM module can be
replaced with a reflective memory thereby reducing bus traffic. The bus arbitrator
controls accesses to the bus. The CPUs as well as the bus, memory, arbitrator, and
I/Os are standard off-the-shelf components.

The interface to the RTU consist of a number of registers, some shared by all the
CPUs, and some CPU specific. The common registers are used to define system
specific behaviour. Each CPU communicates with the RTU through a set of control,
status, and service request registers. Refer to [rtu96fnc] for further details.
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Figure 2: System Architecture

The ability to migrate task between the CPUs requires that some part of the memory is
assessable by all CPUs. This reflective, or global, memory stores common data
structures such as stacks and task control blocks. The task code and data structures
fixed to one CPU are stored in the local memory.



The RTU operates synchronously with the CPUs, and therefore an acknowledge-
based protocol is required. The communication protocol is supervised by an optional
time-out, enabling fast detection of errors in the handshake protocol.

The RTU uses an interrupt to notify the CPU that a task switch is to take place. The
task switch request is acknowledged by the CPU, and the currently running task
status is stored in the TCB (Task Control Block). The next running task is then fetched
from the RTU, and its status is loaded from the TCB into the CPU registers.
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