
Industrial Grading of Quality Requirements for Automotive Software
Component Technologies

Anders Möller1,2, Mikael Åkerholm1,2, Joakim Fröberg1,3, Mikael Nolin1,2 Robert Larsson3
1Mälardalen Real-Time Research Centre (MRTC), Västerås

2CC Systems, www.cc-systems.com
3Volvo Construction Equipment, www.volvoce.com

E-mail:anders.moller@mdh.se

Abstract

Software component technologies for automotive appli-
cations are desired due to the envisioned benefits in reuse,
variant handling, and porting; thus, facilitating both effi-
cient development and increased quality of software prod-
ucts. Component based software development has had suc-
cess in the PC application domain, but requirements are
different in the embedded domain and existing technologies
does not match.

One challenge in devising a specially tailored com-
ponent technology for the automotive embedded domain
is that industrial requirements on such a technology are
poorly understood. In this paper we present a set of graded
industrial requirements on such a component technology.

The results can be used to guide modifications and/or
extensions to existing component technologies in order to
make them better suited for industrial deployment in the au-
tomotive domain. The results can also serve to guide other
software engineering research by showing the most desired
areas within component-based software engineering.

1 Introduction

During the last decade, Component-Based Software En-
gineering (CBSE) for embedded systems has received large
attention, due to the envisioned benefits, e.g., improved
quality and lowered development cost [1]. In the PC appli-
cation area CBSE has already had large impact, supported
by component technologies software development is today
faster and products have higher quality. In the embedded
system industry however, the component technologies for
PC software are not viable and CBSE is still seen as an im-
mature, but promising technique.

The reason for not adopting the component technologies
from the PC domain is that requirements are often very dif-

ferent for embedded automotive applications. One chal-
lenge in devising a specially tailored component technol-
ogy for the automotive domain is that the requirements on
such a technology are poorly understood. Industry is fac-
ing significant risks and costs associated with the adoption
of a new technology. Although benefits include reuse with
shorter time-to-market and potential quality improvements,
there are both technical concerns for increased complexity,
but also concerns for development process changes. In or-
der to device a new component technology the requirements
from industry should be elicited and risks should be evalu-
ated.

We have focused our industrial research project on find-
ing the most important requirements - both technical and
development process related - in order to find the critical is-
sues to focus on when moving onto component-based tech-
niques.

In [5] we describe requirements on a component technol-
ogy as elicited from two companies in the business segment
of heavy vehicles (e.g. construction, forestry and combat
vehicles). The case-study focused on the question: What do
you consider are the most important aspects on component-
based development for vehicular control systems? The
question was answered by senior technical specialists at two
Swedish companies within the business segment of heavy
vehicles. The main contribution from the initial study was
that it straightened out some of the question-marks regard-
ing actual industrial requirements. Another interesting note
from this work was that a major part of the requirements
was non-technical.

In this paper we extend our previous work by present-
ing the results from a second industrial study focusing on
grading the requirements described in [5]. The motivation
of grading requirements is that the results can be used to
guide researchers and tool vendors to put focus on the most
relevant industrial requirements, and to resolve conflictsbe-
tween requirements.



This paper is outlined as follows: Section 2 introduces
heavy vehicle systems, and in section 3 we describe the re-
search method used when assembling and grading the re-
quirements. In section 4 we describe the requirements, and
in section 5 we present the requirements grading and dis-
cuss the results. In Section 6 we conclude the paper and
discuss openings for future work.

2 Heavy Vehicles

What distinguishes the segment of heavy vehicles from
the rest of the automotive industry (e.g., trucks and cars) is
that the product volumes are typically lower. Also the cus-
tomers tend to be more demanding with respect to techni-
cal specifications such as engine torque and payload, while
they are less demanding with respect to style. This causes
a lower emphasis on product cost and optimisation of hard-
ware than in the automotive industry in general. The lower
volumes also make the manufacturers more willing to de-
sign variants to meet the requests of a small number of cus-
tomers.

However, the segment of heavy vehicles is not homoge-
neous with respect to software and electronics development
practices. For instance, the industrial partners in this pa-
per face quite different market situations and hence employ
different development techniques:

• CC Systems (CCS) is developing and supplying ad-
vanced distributed embedded real-time control sys-
tems with focus on mobile applications. CCS develops
both hardware and software for forest harvesters, rock
drilling equipment and combat vehicles. The systems
are built to endure rough environments and are char-
acterised by safety criticality, high functionality, and
high requirements on robustness and availability.

• Volvo Construction Equipment (VCE) is one of the
world’s major manufacturers of construction equip-
ment with a product range encompassing wheel load-
ers, excavators, motor graders, and more. What these
products have in common is that they demand high re-
liability control systems that are maintainable and still
cheap to produce. The systems are classified as distrib-
uted embedded real-time systems which must perform
in an environment with limited hardware resources.

3 Research Method

The purpose of this study is to find out what heavy vehi-
cle developers require from a component technology. This
includes what is required in terms of a component technol-
ogy to improve quality, cost or function.

Our approach has been to cooperate with our industrial
partners very closely, both by performing interviews and by
participating in projects. In doing so, we have extracted the
most important requirements on a component-based tech-
nique from the developers of heavy vehicles point of view.

3.1 Case-Study 1: Requirements Capturing

The goal of this study was to extract all challenges of rel-
evance when introducing a component technology, and find
important requirements. It seems natural to seek answers
where the requirements are defined, at the automotive soft-
ware developing organisations. Secondly, the answers are
likely qualitative with a context full of details from devel-
opment setting, products, organisation etc. These two facts
led us to perform a case study [9] for the two cases repre-
sented by two developing organizations.

According to [9] a case study is an empirical inquiry that
investigates a contemporary phenomenon in its real life con-
text and copes with situations where there are more vari-
ables of interest than data points. In this study the phenom-
enon is the reluctance to adopt a component technology in
automotive development and thereby the requirements put
on such a technology. It is clearly a contemporary phenom-
enon and the situation in a development organisation com-
prises many variables with no hope of sampling enough data
points to map relations.

The case-study was performed at Volvo Construction
Equipment and at CC Systems. The respondents were se-
nior technical staff from different parts of the organisation
like project managers, development process specialists, pro-
grammers, and testing specialists. The case-study protocol
questions were open ended to encourage respondents to re-
port on any issues they might attribute to component tech-
nologies.

We base most of our results on interviews with senior
technical staff at the two companies involved in this paper,
but we have also conducted interviews with technical staff
at other companies. Furthermore, since the embedded sys-
tems market is so diversified we have limited our study to
applications for distributed embedded real-time control in
safety-critical environments, specifically studying compa-
nies within the heavy vehicles market segment.

3.2 Study 2: Requirements Grading

The first case study identified many areas of interests
and many were closely related to the development process.
Open ended discussions gave us the elicitation of the most
important requirements but no notion of relative importance
can be analysed based on these results. In order to grade re-
quirements according to importance we performed a second
study.



The requirement grading was performed in a workshop
with a short presentation, definition of terms, questions and
a numerical grading of requirements where the average sum
was bounded. Thus, respondents could not grade all re-
quirements high in order to get a sum average in the pre-
defined range. The procedure were the following:

1. The workshop started with a short presentation of
the study and of component technologies basics. A
very brief background was presented with PC soft-
ware benefits while automotive software engineers are
still reluctant. Furthermore the development process
of working with components in a component reposi-
tory rather than developing in a normal V model was
described. The terms; Tool, Components, Platform,
Component Framework and Repository was explained.
Finally the results from the earlier study were pre-
sented.

2. Secondly, the definitions of all the requirements that
were to be graded were presented and respondents
were given handouts with the definitions. Respondents
were allowed to ask questions on the definitions.

3. The data collection was made by the respondents fill-
ing in a spreadsheet form on a laptop computer where
all the twelve listed requirements were to be graded
with a number 1-4 indicating from "interesting" to "ab-
solutely decisive". The respondents were to make sure
that the sum average of all their grades was in the range
2.4 - 2.6. The sum, average of grades, was shown and
recalculated throughout the grading.

4 Requirements

The requirements presented in this section are the result
from the first case-study. The requirements are divided in
two main groups, the technical requirements (Section 4.1)
and the development process related requirements (Section
4.2). Also, in Section 4.3 we present some implied (or de-
rived) requirements, i.e. requirements that we have synthe-
sised from the requirements in sections 4.1 and 4.2, but that
are not explicit requirements from industry.

4.1 Technical Requirements

The technical requirements describe the needs and de-
sires that our industrial partners have regarding the techni-
cally related aspects and properties of a component technol-
ogy.

4.1.1 Analysable

The vehicular industry strives for better analyses of com-
puter system behaviour in general. This striving naturally

affects requirements placed on a component model. Sys-
tem analysis is considered important with respect to extra-
functional system properties, such as the timing behaviour
and the memory consumption.

When analysing a system, built from well-tested com-
ponents the main issue is associated with composability. It
must be possible to reason about the systems functionality
and extra-functional properties such as reliability and tim-
ing characteristics with a compositional strategy, i.e., pre-
dict the system properties based on component properties
and the components connection logics [1].

4.1.2 Testable and Debuggable

Testing and debugging is by far the most commonly used
technique to verify software systems functionality. Testing
is a very important complement to analysis and it should
not be compromised when introducing a component tech-
nology.

In fact, the ability to test embedded-system software
at component level can be improved when using CBSE.
This is possible because the component functionality can
be tested in isolation and this property is a desired function-
ality according to our industrial partners. Component test
should be used before the system tests, and this approach
can help finding functional errors and source code bugs at
the earliest possible opportunity.

4.1.3 Portable

The components and the infrastructure surrounding them
should be platform independent to the highest degree pos-
sible. In this context platform independent means hardware
independent, OS independent and communication technol-
ogy independent.

Components are kept portable by minimising the num-
ber of dependencies to system specific resources and design
decisions. Such dependencies are off course necessary to
construct an executable system; however the dependencies
should be kept to a minimum.

4.1.4 Resource Constrained

The components should be small and light-weighted, the
components infrastructure and framework should be min-
imised. Ideally there should be no run-time overhead com-
pared to not using a CBSE approach.

Systems are resource constrained to lower the production
cost and thereby increased profit. When companies design
new ECUs future profit is the main concern. Therefore the
hardware is dimensioned for anticipated use but not more.



4.1.5 Component Modelling

A component technology should be based on a standard
modelling language like UML [7] or UML 2.0 [6]. The
main reason for choosing UML is that it is a well known
and thoroughly tested modelling technique with tools and
formats supported by third-party developers.

The reason for our industrial partners to have specific
demands in these details is that it is believed that the busi-
ness segment of heavy vehicles does not have the possibility
do develop their own standards and practices. Instead they
preferably relay on the use of simple and mature techniques
supported by a wealth of third party suppliers.

4.1.6 Computational Model

Components should preferably be passive, i.e. they should
not contain their own threads of execution. A view where
components are allocated to threads during component as-
sembly is preferred. This is believed to enhance reusabil-
ity and to limit resource consumption. The computational
model should be focused on a pipe-and-filter model, partly
due to the well known ability to schedule and analyse this
model off-line. Also, the pipes-and-filters model is a good
conceptual model for control applications.

4.2 Development Requirements

When discussing CBSE requirements the research com-
munity often overlooks requirements related to the devel-
opment process. For software developing companies these
requirements are at least as important as the technical re-
quirements. When talking to industry earning money is the
main focus. This cannot be done without having an effi-
cient development processes deployed. Hence, to obtain in-
dustrial reliance, the development requirements need to be
considered and addressed by the component technology.

4.2.1 Introducible

It should be possible for companies to gradually migrate
into a new development technology. It is important to make
the change in technology as safe and inexpensive as possi-
ble.

Revolutionary changes in the development technique
used at a company are associated with high risks and costs.
Therefore a new technology should be possible to divide
into smaller parts, which can be introduced separately. For
instance, if a layered software architecture (e.g. as de-
scribed in [5]) is used, the components can be used for ap-
plication development only and independently of the real-
time operating system. Or, the infrastructure can be devel-
oped using components, while the application is still mono-
lithic.

4.2.2 Reusable

Components should be reusable for use in new applications
or environments than those for which they where originally
designed [2]. The requirement of reusability can be con-
sidered both a technical and a development process related
requirement. Development process related since it has to
deal with aspects like version and variant management, ini-
tial risks and cost when building up a component repository,
etc. Technical since it is related to aspects such as, how to
design the components with respect to the RTOS and HW
communication, etc.

Experiences from trying to reuse software components
show that reuse is very hard and initially related with high
risks and large overheads, and even more complex to build
reusable real-time components for embedded systems [1].

4.2.3 Maintainable

The components should be easy to change and maintain,
meaning that developers that are about to change a com-
ponent need to understand the full impact of the proposed
change. Thus, not only knowledge about component inter-
faces and their expected behaviour is needed but also infor-
mation about current deployment contexts may be needed
in order not to break existing systems where the component
is used.

In essence, this requirement is a product of the previ-
ous requirement on reusability. The flip-side of reusability
is that the ability to reuse and reconfigure the components
using parameters leads to an abundance of different config-
urations used in different vehicles. The same type of vehicle
may use different software settings and even different com-
ponent or software versions. So, by introducing reuse we
introduce more administrative work and configuration man-
agement.

The maintainability requirement also includes sufficient
tools supporting the service of the delivered vehicles. These
tools need to be component aware and handle error diag-
nostics from components and support for updating software
components.

4.2.4 Understandable

The component technology and the systems constructed us-
ing it should be easy to understand. This should also include
making the technology easy and intuitive to use in a devel-
opment project.

The reason for this requirement is to simplify evaluation
and verification both on the system level and on the com-
ponent level. Also, focusing on an understandable model
makes the development process faster and it is likely that
there will be fewer bugs.



An
aly

sa
ble

Te
sta

ble
 an

d d
eb

ug
ga

ble

Po
rta

ble

Re
so

urc
e C

on
str

ain
ed

Co
mp

on
en

t M
od

elli
ng

Co
mp

uta
tio

na
l M

od
el

Int
rod

uc
ible

Re
us

ab
le

Ma
int

ain
ab

le

Un
de

rst
an

da
ble

So
urc

e C
od

e C
om

po
ne

nts

Sta
tic

 Co
nfi

gu
rat

ion

An
aly

sa
ble

Te
sta

ble
 an

d d
eb

ug
ga

ble

Po
rta

ble

Re
so

urc
e C

on
str

ain
ed

Co
mp

on
en

t M
od

elli
ng

Co
mp

uta
tio

na
l M

od
el

Int
rod

uc
ible

Re
us

ab
le

Ma
int

ain
ab

le

Un
de

rst
an

da
ble

So
urc

e C
od

e C
om

po
ne

nts

Sta
tic

 Co
nfi

gu
rat

ion

Figure 1. Requirements grades

4.3 Derived Requirements

Here, we present two implied requirements, i.e. require-
ments that we have synthesised from the requirements in
Section 4.1 and 4.2, but that are not explicit requirements
from the vehicular industry.

4.3.1 Source Code Components

A component should be source code, i.e., no binaries. The
reasons for this include that companies are used to have ac-
cess to the source code, to find functional errors and enable
support for white box testing (Section 4.1.2). Since source
code debugging is demanded, even if a component technol-
ogy is used, black box components is undesirable.

Using black-box components would, regarding to our in-
dustrial partners, lead to a feeling of not having control over
the system behaviour. However, the possibility to look into
the components does not necessary mean that you are al-
lowed to modify them. In that sense, a glass-box component
model is sufficient.

Source code components also leaves room for compile-
time optimisations of components, e.g., stripping away
functionality of a component that is not used in a particular
application. Hence, source code components will contribute
to lower resource consumption (Section 4.1.4).

4.3.2 Static Configuration

For a component model to better support the technical re-
quirements of analysability (Section 4.1.1), testability(Sec-
tion 4.1.2), and light-weightiness (Section 4.1.4), the com-
ponent model should be configured pre-runtime, i.e. at com-
pile time. Component technologies for use in the PC do-
main usually focus on a dynamic behaviour [4, 8]. This is

of course appropriate in this specific domain, where power-
ful computers are used. Embedded systems, however, face
another reality - with resource constrained ECU’s running
complex, dependable, and safety critical control applica-
tions. Static configuration should also improve the develop-
ment process related requirement of understandability (Sec-
tion 4.2.4), since there will be no complex run-time recon-
figurations.

5 Requirement Grades

In this section we present the results (see Figure 1) from
the second study, i.e. the industry grading of the require-
ments in section 4. We present the result by first discussing
the requirements separately, and then in section 5.1 we draw
same general conclusions from our work.

Analysable

Analysability is in general considered to be important, but
the results from our case-study expose that it is not amongst
the most important issues of component-based develop-
ment. For example, it is worth noticing that our partners
consider testability and the means to debug the application
as much more important. Reasons for this might be that the
business segment of heavy vehicles has low series (com-
pared to, e.g., trucks or passenger cars) and that is cheaper
to add extra processing power (faster CPU and more mem-
ory) in order to avoid timing or memory problems. It may
be that a common view amongst industrial developers that
analysability is complex and that it leads to a lot of manual
information managing. Perhaps timing and memory con-
sumption is not a problem in today’s applications whereas
testability gives direct feedback to the software developer



and might hence be seen as more important. Yet another
reason might be that analysability is not believed to be fea-
sible or practical for distributed and complex industrial sys-
tems.

Test and Debug

Test and debug is the most important quality attribute seen
in the requirement grades (see figure 1). This is most likely
due to the fact that testing of embedded systems is ex-
tremely time consuming today. Hence, from a company
perspective - there is a huge amount of time (and money)
to save if a component technology could decrease the time
it takes to verify software functionality.

Another important issue is the rising requirement
from Original Equipment Manufacturers (OEMs) that sub-
contractors deliver "error-free" software. Late or erroneous
deliveries are typically punished by an OEM fine. This en-
tail that testing of software (typically not complete systems
but rather components) of the system gets more and more
important.

It is also worth noticing that both CCS and VCE have
spent huge amounts of money on developing test and debug
equipment for their respective systems. Hence, the results
might be a bit biased, i.e., that these companies consider it
more important than the typical embedded software devel-
oper.

Portability

Portability is considered very important, mainly due to the
fact that it is desired to keep hardware upgrading costs to an
absolute minimum. But it is of course also important to be
flexible in the choice of software platform.

For CCS, working with many different OEMs (and many
different platforms), the requirements of portability is obvi-
ous - but it is striking to see that also VCE consider porta-
bility as being very important (see Figure 2). The reason
for this is essentially that it is very important not to be too
dependent on tool vendors and hardware platforms.

Resource Constrained

Surprisingly, and in quite contrary to what one could expect
from developers of resource constrained embedded sys-
tems, this requirements is considered to be the least impor-
tant in this study. The reason for this might be the fact that
current state-of-practise development methods used by the
vehicular industry are rather resource constrained. Hence,
there is not much focus on this requirement in the daily
work. It might be the case that developers take things they
have for granted, and see things they do not have.

Another reason is Moore’s law , it is cheaper to by more
processing power than it is to spend money on analysing

timing and memory consumption. This is also dependent
on the product volumes, for low series products it might be
worth spending some extra money on hardware in order to
facilitate the use of more advanced development methods.

Component Modelling

This requirement is not considered to be very important;
meaning that other aspects of modelling is more important
than using business standards. For example, simplicity is
more important than using a standard modelling language.
However, it is interesting to notice that the requirement on
using a standardised modelling language is more important
relative to the requirement on resource usage.

Computational Model

The requirement on the computational model, meaning that
the components should be passive (not having their own
threads of execution) and that pipe-and-filter should be used
as an architectural pattern, is the most deviating requirement
(see Figure 2). This might be because VCE is currently us-
ing the Rubus Component Model [3] using a pipe-and-filter
architecture, whilst CCS use different architectural patterns
in different applications.

Introducible

It is considered relatively important that the component
technology is easy to introduce in new and existing
projects/products. This requirement also includes the pos-
sibility to use parts of a component technology, e.g., to-
gether with various operating systems depending on cus-
tomer needs.

One would expect to see a certain difference between a
sub-contractor and an OEM - but as can be seen in Figure
2 both companies agree on the relative importance of this
requirement.

Reusable

It is very interesting to see that reusability which is one
of the fundamental reasons for moving towards CBSE is
considered to be the second most important overall require-
ment. The reason for this is likely the large potential of
software reuse in terms of development time and cost.

Reusability is typically considered to be very demand-
ing, so it is worth noticing that the companies are willing
to spend the extra money on more processing power (low
emphasis on the requirement of resource usage) in order to
facilitate reusability.



A
na

ly
sa

bl
e

Te
st

ab
le

 a
nd

de
bu

gg
ab

le

P
or

ta
bl

e

R
es

ou
rc

e
C

on
st

ra
in

ed

C
om

po
ne

nt
M

od
el

lin
g

C
om

pu
ta

tio
na

l
M

od
el

In
tro

du
ci

bl
e

R
eu

sa
bl

e

M
ai

nt
ai

na
bl

e

U
nd

er
st

an
da

bl
e

S
ou

rc
e 

C
od

e
C

om
po

ne
nt

s

S
ta

tic
C

on
fig

ur
at

io
n

CCS

VCE

A
na

ly
sa

bl
e

Te
st

ab
le

 a
nd

de
bu

gg
ab

le

P
or

ta
bl

e

R
es

ou
rc

e
C

on
st

ra
in

ed

C
om

po
ne

nt
M

od
el

lin
g

C
om

pu
ta

tio
na

l
M

od
el

In
tro

du
ci

bl
e

R
eu

sa
bl

e

M
ai

nt
ai

na
bl

e

U
nd

er
st

an
da

bl
e

S
ou

rc
e 

C
od

e
C

om
po

ne
nt

s

S
ta

tic
C

on
fig

ur
at

io
n

CCS

VCE

Figure 2. Requirements from the two companies

Maintainability

Maintainability is ranked as the third most important re-
quirement. The reason for this is most likely the high costs
that arise when upgrading or updating software. Support for
software configuration management is considered a prereq-
uisite in order to facilitate cross platform and product reuse,
and hence these requirements are tightly coupled. Also,
updating existing software by replacing erroneous software
components requires efficient tool support.

Understandable

Understandability is not a primary requirement. This means
that the companies are willing to spend some money on
training personnel in software development in order to reach
primary goals like reusability, portability and testability.

Source Code and Static Configuration

Not much focus is spent on the derived requirements. These
requirements should perhaps not be compared with the
other requirement since they are tightly coupled to primary
requirements. This is rather to be seen as means to reach
other requirements. For example, it is not possible to debug
the application source code if the software components are
delivered in a binary format.

This might be considered a weakness of the study, but
we include the results for consistency reasons.

5.1 Discussion

It is interesting to see that the basic properties of CBSE
(e.g. reusability, maintainability, and portability) arehighly
valued by industry. This might be biased due to the fact

that this case-study deals with component-based develop-
ment. However, the relative importances between the listed
requirements are obvious and should be seen as a driver for
component-based software.

Also, it is interesting to see that the results from the two
companies (see Figure 2) correspond with each other very
well. Bearing in mind that the two companies represent two
different types of control system developers, OEM and sub-
contractor, these similarities are even more striking.

Another interesting conclusion from this case-study is
that the development process related requirements (i.e. in-
troducible, reusable, maintainable, and understandable)is
considered to be substantially more important then the tech-
nical requirements. Hence, the research community should
not overlook these problems but rather spend more focus on
issues like, e.g., support for software configuration manage-
ment.

6 Conclusions

We conclude that using software components and
component-based development is seen as a promising to ad-
dress challenges in product development, including integra-
tion, flexible configuration as well as support for software
reuse.

The main contribution is that we show the relative impor-
tance of industrial requirements, in addition to the industrial
requirements on a component technology for use in auto-
motive applications. We describe and grade requirements
on a component technology as elicited from two Swedish
control-system developers. The requirements are divided
into two main groups, the technical requirements and the
development process related requirements. The reason for
this is to clarify that the industrial actors are not only in-



terested in technical solutions, but also in improvements re-
garding their development process.

The result can be used to guide modifications and/or
extensions to existing component technologies in order to
make them better suited for industrial deployment. The re-
sults can also serve as a platform for software engineering
research, since researchers can be guided to put focus on the
most desired areas within component-based software engi-
neering.

In future work we plan a continuation of this study with
more companies involved within the domain of heavy ve-
hicles. Another possibility would be to involve other seg-
ments within the automotive domain, e.g., car manufactur-
ers, and explore differences.

Acknowledgements

We would like to thank CC Systems and Volvo Construc-
tion Equipment for their support and interest in this case-
study.

References

[1] I. Crnkovic and M. Larsson.Building Reliable Component-
Based Software Systems. Artech House publisher, 2002.
ISBN 1-58053-327-2.

[2] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-
match or why it’s hard to build systems out of existing parts.
In Proceedings of the 17th International Conference on Soft-
ware Engineering, April 1995. Seattle, USA.

[3] K.L. Lundbäck, J. Lundbäck and M. Lindberg. Component-
Based Development of Dependable Real-Time Applications.
In Real-Time in Sweden – Presentation of Component-Based
Software Development Based on the Rubus concept, Arcti-
cus Systems: http://www.arcticus.se, August 2003. Västerås,
Sweden.

[4] Microsoft Component Technologies. COM/DCOM/.NET.
http://www.microsoft.com.

[5] A. Möller, J. Fröberg, and M. Nolin. Industrial Requirements
on Component Technologies for Embedded Systems. InPro-
ceedings of the 7th International Symposium on Component-
Based Software Engineering, May 2004. Edinburgh, Scot-
land.

[6] Object Management Group. UML 2.0 Superstructure Specifi-
cation, The OMG Final Adopted Specification, 2003. http://-
www.omg.com/uml/.

[7] B. Selic and J. Rumbaugh. Using UML for modelling com-
plex real-time systems, 1998. Rational Software Corporation.

[8] Sun Microsystems. Enterprise Java Beans Technology.
http://java.sun.com/products/ejb/.

[9] R. Yin. Case Study Research – Design and Methods. Applied
Social Research Methods Series, Volume 5, SAGE Publica-
tions, 2003. ISBN 0-7619-2553-8.


