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Abstract

Many distributed applications require a clock synchro-
nization service. We have previously proposed a clock
synchronization service for the Controller Area Network
(CAN), which we have claimed to provide highly synchro-
nized clocks even in the occurrence of faults in the system.
In this paper we substantiate this claim by providing a for-
mal model and verification of our fault tolerant clock syn-
chronization mechanism. We base our modeling and ver-
ification on timed automata theory as implemented by the
model checking tool UPPAAL. In the modeling we intro-
duce a novel technique for modeling drifting clocks. The
verification shows that a precision in the order of 2 µs
is guaranteed despite node’s faults as well as consistent
channel faults. It also shows that inconsistent channel
faults may significantly worsen the achievable precision,
but that this effect can be reduced by choosing a suitable
resynchronization period.

1. Introduction

One reported liability of the Controller Area Network
(CAN) is its lack of a clock synchronization service [1, 2].
Due to this, whenever a CAN-based distributed embed-
ded system requires a synchronized clock, such service
has to be provided at the application level, usually by
means of a software-implemented clock synchronization
algorithm [3, 4, 5].

We have proposed a particular solution for clock syn-
chronization over CAN networks [6], which we claimed is
able to provide a clock of high precision despite the occur-
rence of a wide variety of faults in the system. This paper
is intended to substantiate this claim. More specifically,
the aim of this work is to formally verify what precision
can be achieved and to find out how certain faults affect
the best achievable precision.

In our verification we use timed automata theory as im-
plemented by the UPPAAL model checker [7]. Timed au-
tomata are very suitable for verifying real-time systems
as they incorporate the notion of time. However, all re-

quired elements for our modeling are not directly sup-
ported. In particular, drifting clocks –which are essential
in our modeling- are not supported. Modeling such clocks
is one important contribution of this work.

The first steps towards the formal verification of our
clock synchronization were described recently in [8]. In
that work, the first version of our verification model was
described and a few preliminary properties were verified.
In this paper we present the complete formal verification
of the clock synchronization service. Furthermore, as an
important contribution, we provide quantitative results un-
der diverse fault scenarios, which therefore allow us to as-
sess the impact of certain fault hypothesis on the precision
of the clock. Thus, we show how model checking can be
used in order to make suitable trade-off decisions on cer-
tain parameters of the clock synchronization service.

The rest of the paper is organized as follows. In Sec-
tion 2 the context of this research is discussed in order to
further motivate our work. Section 3 describes the main
features of our solution for clock synchronization over
CAN, as required for the understanding of the work. Sec-
tion 4 is devoted to describing the main features of our
verification model, whereas the results of the formal veri-
fication are presented and discussed in Section 5. Finally,
Section 6 summarizes the paper and gives some insight for
further research.

2. Motivation

CAN is a fieldbus technology that can be considered a
de facto standard for low-cost distributed embedded sys-
tems. It is nowadays used not only in the automotive
industry, but also in many other fields such as factory
automation, medical equipment and building automation,
among others [9].

The enormous popularity of CAN makes it a very cost-
competitive technology. Due to this, substantial efforts
have been made to overcome the limitations that pre-
vent its adoption in other application fields. In particular,
there have been several proposals that aim at improving
the properties of CAN from a dependability perspective,
for instance by reducing the response time indetermin-



ism [4, 10, 11] or by providing tolerance to babbling idiot
failures [12, 13].

Many of these mechanisms rely on the assumption that
the nodes share a common time base. However, only
one of them, the Time Triggered CAN (TTCAN) proto-
col [4], describes how this clock synchronization should
be achieved, though it has not been formally verified. On
the other hand, even though generic solutions for clock
synchronization over CAN exist [3, 5], and can therefore
be adopted, none of them has been formally verified.

This clearly contradicts what has been done with other
technologies for dependable distributed embedded sys-
tems. For instance, the development team of the Time
Triggered Architecture (TTA) claims that the clock syn-
chronization service is one of their basic mechanisms [14]
and thus they start the formal verification of their architec-
ture by verifying this service [15]. Once they have verified
this, they assume that a common time base exists in order
to verify the rest of mechanisms.

In this paper, we use model checking to formally verify
that our clock synchronization mechanism behaves as in-
tended in assumed fault scenarios. Model checking is one
of the most commonly used techniques for formal veri-
fication, which is capable of automatically determining
whether an operational model (in our case a network of
timed automata) satisfies properties expressed in a prop-
erty language (typically some form of modal logic).

The advantages of model checking are that it explores
the complete state space and that it is fully automatic
(once the model and properties are specified). This is in
contrast with simulation and testing, which typically only
explore a small fraction of the state space, thereby only
being useful for showing the presence of faults (not their
absence).

3. Our solution for clock synchronization
over CAN

This section is devoted to describing the main char-
acteristics of our solution for clock synchronization over
CAN. Due to space limitations, only those characteristics
that are relevant for the formal verification are discussed.
Further information can be found in [6].

3.1. System architecture
A CAN network is composed by a number of so-called

CAN nodes, which execute a coordinated function and use
a broadcast network to exchange messages. The structure
of a CAN node is depicted in Figure 1. It is made up of
two basic elements: a processor, which executes both the
application software and the clock synchronization algo-
rithm, and a CAN controller, which provides the processor
with the CAN communication capabilities.

Note that the processor is clocked by a quartz local os-
cillator. This local oscillator is used to measure time, by
means of a software counter which simply acts as fre-
quency divider. This software-implemented counter is
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Local

oscillator
Processor

Virtual clock

CAN controller

Clock synch’n

algorithm
Application

CAN interface

Tx medium

Figure 1. Structure of a CAN node executing
a clock synchronization algorithm

called the virtual clock. We hereafter refer to the virtual
clock of node i as V Ci(t).

Due to fabrication imperfections, aging, and other en-
vironmental parameters, the local oscillators of a network
cannot tick at exactly the same frequency. Thus, as long
as no correction action is performed, virtual clocks tend to
drift apart.

In order to guarantee that the virtual clocks of the var-
ious CAN nodes do not drift apart too much, each node
executes a clock synchronization algorithm. The function
of this algorithm is to compare the value of the local vir-
tual clock with a valid reference and, if needed, to make
the appropriate corrections to the virtual clock. The valid
reference is obtained by exchanging synchronization mes-
sages through the CAN network.

3.2. Protocol rationale
Our clock service addresses the problem of internal

clock synchronization. Thus, it is intended to guarantee
the following property:

P1 (Precision): For every pair of nodes i, j

|V Ci(t) − V Cj(t)| ≤ Π ∀t (1)

Our protocol adopts a master/slave approach to fulfill
this goal as there is one node (the master) that imposes
its time view to the rest of the nodes of the system (the
slaves). The master is assumed to be synchronized to an
external time source which supplies the desired accuracy.

The master’s time view is spread throughout the net-
work by means of a specific message, the Time Mes-
sage (TM), which the master periodically broadcasts. The
aim of the Time Message is twofold. On the one hand,
the master uses it to indicate the resynchronization event,
which is the sample point of the Start of Frame bit of this
particular message [6]. Every slave takes a sample of its
own virtual clock at this instant and keeps it in a local
variable called lt ref . On the other hand, the TM’s data



field conveys the timestamp that the master took precisely
at that instant, so once the TM is received, each slave ex-
tracts the master’s timestamp and saves it in a local vari-
able called rt ref .

After that, every slave corrects its clock with respect to
the master. In particular, two corrections are performed.
One aims at correcting the offset error, which is calcu-
lated according to Equation 2, whereas the other aims at
correcting the drift error, which is caused by the rate dif-
ference between the local virtual clock and the remote vir-
tual clock, as shown in Equation 3.

offset error = rt ref − lt ref (2)

drift error =
local rate

remote rate
=

lt ref − rt refprev

rt ref − rt refprev
(3)

These corrections are not performed instantly, but they
are progressively carried out [6]. This is often called clock
amortization and is more advisable than instant correc-
tions because it does not cause time leaps.

Both offset correction and drift correction are never
perfectly performed, since there is always some residual
error caused by small system latencies or by the impreci-
sion of the arithmetical operations. However, in our sys-
tem the residual error of the offset correction is small,
mainly because message timestamp is implemented in
hardware, and can thus be neglected. In contrast, the drift
error (though being small) may have greater effect on the
clock precision because it makes clocks drift apart as time
goes by, and therefore it cannot be neglected. The residual
drift error is denoted γmin hereafter. The maximum drift
error between any pair of slaves that have synchronized to
the same master is 2 × γmin.

3.3. Fault model
The system may suffer from three types of faults: faults

in the software design, physical faults of the nodes and
physical faults of the channel. Due to the simplicity of
our clock synchronization protocol, faults of the software
design are not included in our fault model.

Concerning physical faults of the nodes, our fault
model includes arbitrary faults that can be either transient
or permanent. However, an important assumption is that
there is at least one non-faulty node in the system which
can provide a clock of good quality, so there is always one
eligible master.

Permanent physical faults of the channel, such as bus
partition or stuck-at-dominant, are not included in the
fault model. These faults can be addressed independently,
for instance as proposed in [16].

Regarding transient channel faults, our fault model
only includes those channel faults that lead to frame errors
detectable by the error-detection mechanisms of CAN,
since the probability of having a channel fault which is
not detected by the CAN controllers is very low and can

be neglected [17]. It is also assumed that the number of
channel faults within a given time interval is bounded. In
this way, it is possible to assume a bounded response time
for every CAN message [18].

It is important to remark that our fault model considers
transient channel faults that can lead to inconsistent frame
receptions (both inconsistent omissions and inconsistent
duplicates). Fault scenarios that may cause such inconsis-
tencies have been reported in [19, 20]. Nevertheless, the
probability of such faults is low enough so as to assume
that only a bounded number of consecutive resynchroniza-
tion rounds can be affected by these faults.

3.4. Fault tolerance aspects
The main drawback of adopting a master/slave scheme

is that the master represents a single point of failure. In
our proposal, this single point of failure is eliminated by
means of master replication. Basically, a number of mas-
ter replicas or backup masters are defined, which super-
vise the so-called active master so one of them can take
over in case this master is faulty.

The instant at which each master attempts to transmit
the TM is called its release time (Trlsi). The distribu-
tion of the release times as well as the complete structure
of the resynchronization round is depicted in Figure 2.
Notice that the resynchronization period is R, and that
each resynchronization round can be divided into two seg-
ments. TMs are exchanged only within the first half of the
resynchronization round.

In order to simplify the management of the master
replication, the failure semantics of the masters (either ac-
tive or backup) has been restricted to crash failure seman-
tics, which means that upon a physical fault the node be-
comes silent [6]. Thanks to this, the faulty master detec-
tion and replacement mechanism is implemented by just
defining the release time of the backup masters a short
time after the release time of the active master.

Even though the release time is periodical, the instant at
which the TM is actually broadcast may vary depending
on the network conditions. For instance, channel errors
may cause frame retransmissions and therefore a signif-
icant delay. Nevertheless, since the worst case response
time of the TM is bounded, TMs are exchanged only for a
limited amount of time, which we call TMdelay.

As it was stated in Section 3.3, certain channel faults
may cause inconsistent omissions or inconsistent dupli-
cates of the TM. Inconsistent TM duplicates do not have
any negative impact on the clock precision because they
do not cause inconsistent resynchronizations. In contrast,
inconsistent omissions of the TM can make some nodes
resynchronize to different masters, and hence increase
their respective clock error. These potential inconsistency
scenarios and their effect on the clock parameters are ex-
plained next:

A backup master or a slave may not receive the TM
sent by the active master. In such a case, the node would
not correct its offset error with respect to the active mas-
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Figure 2. Structure of the resynchronization
round

ter’s clock. If the drift error of this node’s clock after the
last successful resynchronization was γ then the accumu-
lated offset error would be at most equal to γ times the
elapsed time since that resynchronization. The drift error
would be neither corrected, but the effect would not be
too important since clock drift tend to change smoothly
and therefore, for a time short enough, the drift error can
be considered as being constant.

A node (either backup master or slave) may not receive
the TM sent by the active master but do receive a subse-
quent TM from a backup master. In such a case, these
nodes correct their clock according to that backup master,
and not according to the active master. Due to this, they
actually ”inherit” both the offset error and the drift error of
this backup master, which might be even greater than the
errors these nodes had before resynchronization. More-
over, the drift error of these nodes may increase due to
the residual drift error. For instance, if γ is the drift error
(w.r.t. the active master) of the backup master that trans-
mitted the second TM, then after resynchronization the
drift error of the resynchronizing nodes may be γ + γmin.

3.5. Master’s and slave’s finite state machine

Figure 3 describes the behavior of the masters. This
finite state machine is the basis for the verification model
presented in Section 4.

Note that the master i requests transmission of its TM
(TM.req!) only if Trlsi is reached, and that even if the
TM transmission has been requested, the master may still
receive the TM from a higher priority master (TM.ind?).
In such a case, it aborts the transmission of the TM pre-
viously requested (Abort.req!) and corrects its clock ac-
cording to the TM just received. If the master succeeds in
transmitting its own TM (TM.conf?) then it does not per-
form any clock correction as it considers itself the current
active master.

Figure 4 shows the behavior of the slave, which is sig-
nificantly simpler than the master’s one: its clock is cor-
rected after the first TM of the round is received.

Idle1 Queue

Idle2 Abort

TM.conf?TM.ind?

Correct_clock

Wait_

delta

TM.ind?

Correct_clock

TM.ind?

Correct_clock

t == Trlsi

TM.req!
t == Tbegin

Abort.req!t == Tend

Figure 3. Master’s finite state machine

Idle1

Idle2
t == Tend

TM.ind?

Correct_clock

Figure 4. Slave’s finite state machine

4. Verification model

As indicated in Section 2, the first step in the verifica-
tion procedure consists in building a formal model of the
system under verification. In our case, the model has been
specified as a network of timed automata, and adheres to
the syntax rules of the UPPAAL model checker.

The main challenge of this work has been to specify
drifting clocks, i.e. clocks whose rate may vary through-
out the verification. In the UPPAAL literature, some
models can be found where clocks of different rate are
used [21]. These models require every clock to have a
constant rate, whereas our model allows the clock rate to
change dynamically, as a result of the resynchronization
actions that the nodes perform. To our knowledge, this
work is the first one to model such clocks.

Due to its inherent complexity, and in order to facilitate
the reader’s comprehension, the model is presented in an
incremental way. First, a global description of the model
is provided and after that, every particular automaton is
discussed in detail.

4.1. Model overview
Figure 5 shows the general structure of the model.

It is made up of a number of automata (also called
processes), which communicate through synchronization
channels and/or global variables (i.e. variables that can be
read and written by all of the processes).

In our model only master nodes have been included.
This is a slight restriction, but we expect that it will be
easy to incorporate slaves, as their finite state machine is
a subset of the master’s one. Furthermore, slaves are in
a sense already included, since backup masters behave as
a sort of slaves as long as they do not have to replace the
faulty active master. Hence, the verification carried out
in this work actually provides some indirect information
about the precision achievable by the slaves.
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Figure 6. Simplified Clk ctrl automata (with-
out temporal uncertainty)

Our model includes one automaton, named Master,
for each master in the system; this automaton models
most of the clock synchronization protocol as well as
some additional features such as master crash and TM
omissions. Notice that there is one additional automa-
ton, named Clk ctrl, associated to every master; this
automaton manages the virtual clock of each master in the
way that is explained later on in this section.

Furthermore, there is an automaton, named
Chan ctrl, which models two relevant properties
of CAN: arbitration and bounded response time. Last, the
automaton labelled Round ctrl is intended to check
the state of certain global variables (mainly flags and
counters) at the end of every resynchronization round,
and modify their values when appropriate.

4.2. Modeling the master’s virtual clock: the Clk ctrl
automaton

In the model, each master is provided with its own vir-
tual clock. In particular, the global variable vc[my id]
represents the virtual clock of master my id. Every
virtual clock is managed by one Clk ctrl automaton.
Thanks to the local variable clock id, each Clk ctrl
automaton knows which master it is related to.

Figure 6 shows two simplified versions of the
Clk ctrl automaton. The left automaton in the Figure
shows the ideal behavior, which is just to signal the in-
stants Tbegin and Tend of every resynchronization round.
Note that this behavior corresponds in fact to the clock x
that was presented in Section 3.4, when discussing the

structure of the resynchronization round (also depicted in
Figure 2).

The automaton on the right side of Figure 6 is much
closer to the final specification in UPPAAL language.
However, and for the sake of clarity, it does not model
temporal uncertainty (i.e. drifting clocks) yet. It is dis-
cussed in Section 4.4.

In Clk ctrl the following values are assigned:
Tbegin = R1 and Tend = R, where R1 = R/2. This value
was chosen to simplify calculations; any other value can
be chosen as long as it guarantees that Tend − Tbegin is
greater than TMdelay (the maximum duration of the TM
exchange at the beginning of the round).

Note that the Clk ctrl automaton uses an additional
clock, along with vc[clock id]. This clock is called
aux clk[clock id] and is used to measure Tend. The
clock aux clock[clock id] is restarted as soon as
vc[clock id] reaches Tbegin so it actually measures
the time elapsed since the beginning of the first half of the
resynchronization round (i.e. vc[clock id]−Tbegin).

There is an additional location, called Wait end,
where each Clk ctrl automaton waits until every
other Clk ctrl automaton has reached the end of
the resynchronization round. This is signaled through
the channel all end round. Whenever this happens,
aux clk[clock id] is restarted again, yet with the
only purpose of reducing the state space.

4.3. Modeling the master’s behavior: the Master au-
tomaton

Figure 7 shows the UPPAAL automaton that models
the master behavior. Even though the automaton may
seem rather puzzling, it can be understood easily if it is
interpreted on the light of what was explained in Section 3
about the master’s finite state machine.

In fact, it is easy to see that every location depicted in
Figure 3 does appear in the Master automaton. There-
fore, in order to explain the automaton we depart from
these known locations and use the transitions of Figure 3
as guidelines. In this way, the automaton is introduced
gradually. Nevertheless, and due to space limitations, only
those features related to modeling clocks are discussed.
The rest of features are described in [22, 8].

Condition (t == Tbegin) and condition (t == Tend)

As already explained, each clk ctrl automaton sig-
nals the beginning and the end of every resynchro-
nization round through the broadcast channels be-
gin sync[clock id] and end sync[clock id],
respectively.

The end sync[clock id] channel is moreover
used by the masters in order to correct their error with
respect to the time reference. This is explained in Sec-
tion 4.4, when discussing clock correction.
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ref_clock:= recv_id,
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ref_clock:= recv_id,
(time_ref == N)?
(new_gamma[my_id]:= min_gamma):
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crash[my_id]

Figure 7. Master automaton (UPPAAL syntax)

Condition (t == Trlsi)

As indicated in Section 3, every master i has a dif-
ferent release time, which is calculated as follows:
Trlsi = Tbegin + ∆i. Thanks to the channel be-
gin sync[my id] every master knows the beginning
of the resynchronization round. As soon as the begin-
ning of the Resynchronization round is reached, the mas-
ter steps into location Wait delta. In this location,
the clock aux clk[my id] –which was restarted by the
corresponding Clk ctrl automation– is used to measure
the interval ∆i. This is modeled in UPPAAL with the time
invariant aux clk[my id] ≤ delta together with the
guard condition aux clk[my id] ≥ delta (see loca-
tion Wait delta in Figure 7).

TM request / TM confirm / TM indication

In order to model the transmission and reception of
the TM, the Master automaton interacts with the
Chan ctrl automaton (depicted in Figure 8). This
automaton uses the clock x to restrict the maximum
transmission delay of each TM, which is in the range
[Ctm,WCRT ], being Ctm the transmission time of one
TM.

Whenever the transmission of a TM takes place, this
is signaled by the Chan ctrl automaton to the mas-
ters through the broadcast channel tx msg. However,
each Master may ignore this indication and remain in
the same location (after stepping into one of the com-

no_pending_tx

pending_tx
x <= WCRT

msg_id < N

x:= 0
tx_req!

tx_msg!
x:= 0,
recv_id:= msg_id,
msg_id:= N

x >= Ctm

Figure 8. Chan ctrl automaton (UPPAAL
syntax)

mitted locations Omissioni). In this manner, inconsis-
tent omissions of the TM are modeled. The automaton
Round ctrl, which is shown in Figure 9, is intended
to enable/disable the possibility of TM inconsistencies by
means of the global variable eomission.

TM abort

This action does not require any special mechanism so
it is modeled as a simple transition to location Idle2.
Nevertheless, since the abort operation may not be per-
formed on time, there is one unconditional transition from
location Abort to location Not aborted which mod-
els such situation.

4.4. Clock correction and temporal uncertainty
In Section 3, it was mentioned that clock correction

can actually be divided into two actions: offset correc-



Init

num_clk == N
all_end_round!
num_clk:= 0,
n_sync:=0,
(reg_omission)?
 (om_count++):(om_count:= 0),
eomission:= (om_count < OD),
reg_omission:= false,
time_ref:= N,
aux_count:= 0

Figure 9. Round ctrl automaton (UPPAAL
syntax)

tion and drift correction. We model offset correction by
forcing those masters that had synchronized to a given
master i to restart their virtual clock simultaneously with
such master. This is done in the transition from location
Idle2 to Aux3. Note that this transition is fired when the
master receives an indication through the broadcast chan-
nel end sync[ref clock]. What this condition re-
ally means is that the virtual clock of master ref clock
(which is the master from which this master received the
TM) has reached T end.

To model drift correction we use an array of integers
gamma[] that keeps the drift error between every master
and the active master; so gamma[i]= 0 if master i is
the active master whereas gamma[i]> 0 for the other
masters. The drift with respect to the active master is
recalculated in every resynchronization round because it
may change as a consequence of the clock correction.
This value is always an integer multiple of γ0 (constant
gamma min in the model).

As described in Section 3, the masters correct their
clocks in the transition from location Idle1 and
Wait delta to Idle2 and from location Queue to
Abort. These transitions correspond to the first recep-
tion of a higher priority TM, so at this point the id of the
current active master is known and kept in the variable
time ref. The drift error is calculated as follows:

If master i is the current active master:

gamma[i]:= 0

If master i synchronized to the current active master:

gamma[i]:= gamma_min

If master i synchronized to a master ref clock that is
not the current active master:

gamma[i]:= gamma_min
+ gamma[ref_clock] + gamma[time_ref]

The variable gamma[i] is used in our model to model
the temporal uncertainty. This is illustrated in Figure 10.
Note that in this automaton, the first half of the resynchro-
nization round may start within a time interval of length
2× gamma[clock id] × gamma step, and centered
in R1. Where gamma step is the imprecision that a drift
error of γ0 would cause after R t.u. (the resynchronization
period).

Sync_second_half

vc[clock_id] <= R1 + gamma[clock_id]*gamma_step

Sync_first_half

aux_clk[clock_id] <= R1

Wait_end

vc[clock_id] >= R1
- gamma[clock_id]*gamma_step

aux_clk[clock_id]:= 0,
n_sync++

begin_sync[clock_id]!

end_sync[clock_id]!
aux_clk[clock_id] >= R1

all_end_round?

aux_clk[clock_id]:= 0

Figure 10. Clk ctrl automaton with temporal
uncertainty (UPPAAL syntax)

5. Formal verification

The main property we want to verify is the Precision
property. This property, as mentioned in Section 3, states
that for any pair of clocks, their difference is never greater
than a given value Π (the precision).

In this section, we describe how this property is spec-
ified and verified in our model. We also show how we
take advantage of our formal model to investigate to what
extent certain parameters affect the precision of the clock
synchronization service.

5.1. Verification procedure: the Begin observer au-
tomaton

In order to determine the precision between two clocks
we first have to identify the instant at which they exhibit
their maximum difference, and then we have to measure
the clock difference at that particular instant.

It can be shown that the instant of maximum clock dif-
ference is right before the reception of the active master’s
TM, since from that moment on the clocks start converg-
ing to the value indicated by the TM. Therefore, we should
measure the clock difference at that instant.

From what is explained in Section 3.4 about the struc-
ture of the resynchronization round, it can be observed
that the TM is always received at certain instant within the
interval [Tbegin +Ctm, Tbegin +TMdelay]. This property
allows us to determine the maximum error between two
clocks easily. First, we measure the difference between
the two clocks at the instant Tbegin and, second, we upper
bound the extra error these two clocks may accumulate
until the TM is received.

Particularly, the error that Master i and Master j may
accumulate after TMdelay is upper bounded by Ndelay ij ,
as calculated in Equation 4; where γij represents the rel-
ative drift error between Master i and Master j, and is
therefore calculated as the sum of their drift errors with
respect to the time reference (gamma[i] + gamma[j],
in the UPPAAL model).

Ndelay ij = TMdelay × γij (4)



A new automaton has been specified, which applies
this reasoning in order to check the achievable preci-
sion. This automaton, depicted in Figure 11, is called
Begin observer. It acts as an external observer of the
system: it periodically compares the clocks of the various
masters and determines whether they may exceed the de-
sired precision or not. This comparison is performed once
per round.

In this automaton, the location Initial is left as soon
as all of the masters have started the resynchronization
round (condition n sync == N). This means that the
expression (aux clk[i] - aux clk[j]) keeps the
offset of Master i and Master j at Tbegin. Additionally, in
the transition from the committed location Begin sync
to the location Wait End, the value of each Ndelay ij is
recalculated.

Once in location Wait End, this information is used
by the automaton in order to check whether the clock
difference between any pair of non-faulty masters ex-
ceeds the desired precision, which is kept in the constant
MAX PI. Note that if the difference (in fact, the absolute
value of the difference) between two clocks may exceed
this value then the transition to location Failure may
be fired.

This makes the formal verification turn into solving a
reachability problem: if the location Failure may be
reached then it means that the clock error may exceed the
desired precision. This property is specified in LTL as:

A[] not Begin_observer.Failure

If this property is satisfied by the model it means
that the clocks are always within the desired precision
(MAX PI). Whenever this property is not satisfied, it
means that the clocks may drift apart so much as to ex-
ceed the desired precision. The trace obtained can thus
be analyzed in order to understand what causes the error
increment.

5.2. Verification scenarios
Our model allows modification of the following param-

eters:

• Number of masters (N).

• Resynchronization period (R).

• Release time of the masters (∆i).

• Residual error after clock correction (γ0). This pa-
rameter gives a measure of the stability of the lo-
cal oscillator, and it also takes into account the er-
ror accumulated in the arithmetical operations of the
clock correction procedure. This parameter is inti-
mately related to the constant gamma step, since
gamma step= γ0 × R.

• Network load. The variable WCRT in Chan ctrl
models the delay caused by channel errors that lead
to frame retransmission as well as the delay caused
by higher priority traffic on the bus.

• Master faults. It is possible to set the maximum num-
ber of masters that may crash during the verification.
No assumption is made on the order in which the
masters crash.

• Data consistency. Inconsistent message omissions
can be enabled/disabled. When enabled, it is pos-
sible to bound the maximum number of consecutive
resynchronization rounds that can suffer from incon-
sistencies. We refer to it as the Omission Degree. No
assumption is made on the spatial distribution of the
inconsistent omissions so that every possible combi-
nation of message inconsistency is checked.

The scenarios we verify include the following situa-
tions: 1) Fault-free scenario; 2) Only master faults sce-
nario; 3) Only channel faults scenario, assuming data con-
sistency and without assuming data consistency; and 4)
Master faults and channel faults scenario, assuming data
consistency and without assuming data consistency.

5.3. Verification results
In order to check the correctness of the model, some

preliminary properties were also checked. These prop-
erties were intended to verify that the system assump-
tions hold throughout the verification. For instance, it
was checked that the maximum number of allowed mas-
ter crashes was never exceeded or that the omission de-
gree value was neither exceeded. Due to space limitations,
these properties are not discussed in this paper. As an ex-
ample, we only show the property that is verified in order
to check that there is always at least one non-faulty master
in the system:

A[] not (crash[0] and crash[1]
and crash[2] and crash[3])

Concerning the precision guaranteed by the clock syn-
chronization service, Table 1 shows the precision that was
verified under diverse fault assumptions. These results
were obtained with the following parameters: N= 4 mas-
ters, R= 1s, ∆0= 0, ∆1= 1 ms, ∆2= 2 ms, ∆3= 2 ms.
Regarding the network load, it was assumed that no other
messages where sent on the bus, so WCRT= 1.04 ms was
used in those scenarios without channel faults whereas
WCRT= 6 ms was used in those scenarios with channel
faults. Anyway, the results show that the network load is
not very relevant for the clock precision.

The first cell in Table 1 shows the precision guaranteed
in the fault-free scenario. This precision equals to 2 µs.
The first row of Table 1 corresponds to the scenarios in
which only master’s faults were assumed. Note that the
number of faulty master does not affect significantly the
precision guaranteed. Unfortunately, the limited tempo-
ral granularity of our model makes it impossible for us to
measure the difference between having one or more faulty
masters. Nevertheless, in some simplified verifications we
have reported that this difference is in the order of 10 ns.



InitialBegin_round

Wait_End

Failure

n_sync == N

n_sync:= 0
tx_req!

all_end_round?

update_N_delay_ij()

( (aux_clk[0] - aux_clk[1]) < - (MAX_PI - N_delay_01) ) and !(crash[0] or crash[1])

(aux_clk[0] - aux_clk[1]) > MAX_PI - N_delay_01 and !(crash[0] or crash[1])

(aux_clk[0] - aux_clk[2]) < - (MAX_PI - N_delay_02) and !(crash[0] or crash[2])

(aux_clk[0] - aux_clk[2]) > MAX_PI - N_delay_02 and !(crash[0] or crash[2])

(aux_clk[0] - aux_clk[3]) < - (MAX_PI - N_delay_03) and !(crash[0] or crash[3])

(aux_clk[0] - aux_clk[3]) > MAX_PI - N_delay_03 and !(crash[0] or crash[3])

(aux_clk[1] - aux_clk[2]) < - (MAX_PI - N_delay_12) and !(crash[1] or crash[2])

(aux_clk[1] - aux_clk[2]) > MAX_PI - N_delay_12 and !(crash[1] or crash[2])

(aux_clk[1] - aux_clk[3]) < - (MAX_PI - N_delay_13) and !(crash[1] or crash[3])

(aux_clk[1] - aux_clk[3]) > MAX_PI - N_delay_13 and !(crash[1] or crash[3])

(aux_clk[2] - aux_clk[3]) < - (MAX_PI - N_delay_23) and !(crash[2] or crash[3])

(aux_clk[2] - aux_clk[3]) > MAX_PI - N_delay_23 and !(crash[2] or crash[3])

Figure 11. Automaton Begin observer (UPPAAL syntax)

Table 1. Fault assumptions and precision
guaranteed (in µs) with R = 1 sec

# Channel faults # Faulty masters
0 1 2 3

No faults 2 2.1 2.1 2.1
OD = 0 2.1 2.1 2.1 2.1
OD = 1 6.1 6.1 6.1 6.1
OD = 2 10.1 12.1 12.1 12.1
OD = 3 14.1 16.1 16.1 16.1

Table 2. Fault assumptions and precision
guaranteed (in µs) with R = 0.5 sec

# Channel faults # Faulty masters
0 1 2 3

OD = 0 1.1 1.1 1.1 1.1
OD = 1 3.1 3.1 3.1 3.1

The first column of Table 1 corresponds to the scenar-
ios in which only channel’s faults were assumed. The pa-
rameter OD stands for Omission Degree and refers to the
number of resynchronization rounds that can suffer from
TM inconsistent omissions. Thus, OD= 0 indicates that
no inconsistent omissions can occur, which is a common
assumption in other clock synchronization protocols for
CAN.

The rest of cells in Table 1 correspond to the scenarios
where a combination of node’s and channel’s faults is as-
sumed. In particular, the right bottom cell corresponds to
the most severe fault scenario.

Table 2 shows some of the results obtained when the
resynchronization period is reduced to 0.5 s. These results
prove the intuition that the negative effect of the inconsis-
tencies may be reduced by synchronizing more frequently.

5.4. Discussion
The results obtained show that certain failures have

greater impact on the precision. Particularly, it is seen

that inconsistent message omissions affect more nega-
tively than master crashes. It is curious that even though
master crashes are usually addressed by current solutions
for clock synchronization, very little attention is paid to
the fact that message inconsistencies may occur [4].

It may be argued that message inconsistencies are very
unlikely in CAN networks, but certain authors claim that
the probability is such that it should be taken into account
when designing fault-tolerant systems for dependable ap-
plications [19, 20]. Moreover, it has been reported that
the probability of message inconsistencies in TTCAN in-
creases dramatically when compared to the so-called nat-
ural CAN [23].

6. Conclusion

In this work we have used the UPPAAL model checker
in order to verify that our solution for clock synchro-
nization over CAN achieves the desired precision even in
the presence of various node’s and channel’s faults. The
formal verification also showed that inconsistent channel
faults are a severe threat to the clock precision, but that
their negative impact can be reduced by choosing a suit-
able resynchronization period.

Thus, model checking turned out to be a useful tool
not only for checking the correctness of the system, but
also as a tool to assist the system designer. Even though
building the verification model is not a trivial task, once
it is finished then it is possible to carry out many verifica-
tions under diverse circumstances. This helps the system
designer to better understand the trade-offs of the system,
and hence make more appropriate decisions.

In order to model our system, a novel technique for
modeling drifting clocks was developed. To our knowl-
edge, this is the first work that models such clocks with
timed automata.

During the formal verification, we had to be careful to
keep the memory required for the verification bounded.
This state-space problem is a well-known problem of
model checking. We found out that time granularity was



the main difficulty since finer granularity could only be
achieved at the cost of significantly increasing the state
space. By increasing the time granularity, the number of
states to be traversed does not change, but the amount of
memory required to keep every state changes significantly.
This makes the state space blow up, and increases dramat-
ically the verification time.

In the future, we would like to link our verification
model to some kind of tool for dependability evaluation
so we could assess the likeliness of the most severe sce-
narios. Furthermore, we have realized that this work can
be included within the framework of a more general prob-
lem: the formal verification of hybrid systems [21]. Thus,
we would like to investigate whether the novel techniques
we have applied in our model can be also applied in order
to verify other kind of hybrid systems, such as distributed
embedded systems based on sensor/actuator networks.
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