
Towards Efficient Development of
Embedded Real-Time Systems,

 the Component Based Approach

Jukka Mäki-Turja , Mikael Nolin, Kaj Hänninen
Mälardalen Real-Time research Centre, Västerås Sweden

E-mail: jukka.maki-turja@mdh.se

Abstract
We present our joint view for efficient development of
efficient and dependable ERTS (Embedded Real-Time
Systems). This view is based on the three main viewpoints
of (1) the software designer, (2) the analysis tools, and (3)
the code synthesis tools/run-time environment.

Our position is that any approach that is to achieve (i)
decreased development effort, (ii) increased software
quality, and (iii) efficient resource utilization, needs to
take all three viewpoints into consideration.

We exemplify how our work with execution-model
independent software components fits into this joint view
and outline some research directions.

1. Introduction
Historically, the developers of embedded real-time

systems (ERTS) have used low level programming
languages to guarantee full control of the system behavior
[25]. A common view on ERTS has been a, once
developed, monolithic, platform dependent view, not
constructed for evolution. Hence, many ERTS has
become legacy systems that are hard to incorporate into
functionality and/or technology shifts [9]. In fact, ERTS
tends to have very long life-times, decades in some cases.
The development effort placed in them can not be
ignored.

Today’s embedded systems are typically characterized
by having a mix of functionality with requirements
ranging from hard real-time, soft or even non real-time.
Many of these systems operate in resource constrained
environments and need to satisfy requirements on
dependability [6][12]. For example, reliability of the
systems is paramount [10], software flaws can have
disastrous impact and upgrading is often difficult.

In addition, there is a clear trend towards more
diverging type of functionality in embedded system [10].
The wide range of functionality in future embedded
systems (ranging from predictable safety critical
functionality to more resource efficient and flexible soft

or non-real-time functionality) requires a shift to a more
heterogeneous development methodology with tools and
techniques to support efficient development with respect
to: (i) development effort, (ii) achieved software quality,
and (iii) resource utilization.

In the office-/Internet-area Component-Based Software
Engineering (CBSE) has had a tremendous impact. CBSE
offers an opportunity to increase productivity by
providing natural units of reuse (components and
architectures), by raising the level of abstraction for
system construction, and by separating services from their
configuration to facilitate evolution [5]. Today, there
exists several commercial component technologies for the
desktop- and Internet-market, e.g., COM/DCOM [13],
Corba [19][20], Java Beans/EJB [29][30], .NET [14] are
readily available and used by developers on a day-to-day
basis. However, these technologies are typically not
suitable for embedded control systems [15].

In the embedded systems domain, CBSE is still only
perceived as a promising future technology. Several, non-
standard, proprietary component technologies for
embedded systems have been proposed (e.g. Koala [32],
PECOS [16], MetaH [31], VEST [28], the control server
[6], ReFlex [33], etc.). EU Projects such a Space4U [27],
its predecessor Robocop [22], and DECOS [8] are
targeting CBSE for embedded systems. The EU Network
of Excellence ARTIST [3] has a track "Component-based
Design and Development". The SAVE [24] project, a
collaboration between research groups and industrial
partners, studied safety of component-based systems.

Ever still, there is an apprehension that current tools
and methods for embedded CBSE are lacking one or more
key-properties such as:
• Giving the software developer suitable level of

expressiveness and/or abstraction
• Enabling development of flexible systems,

supporting code and architecture reuse
• Enabling development of resource efficient systems
• Enabling development of predictable systems

mailto:jukka.maki-turja@mdh.se

2. Joint view of development of ERTS
In order to support efficient component-based

development with respect to: (i) development effort, (ii)
achieved software quality, and (iii) resource utilization,
we believe that development of systems should be done
taking three main viewpoints into consideration. These
viewpoints need to be jointly approached, by any
development methodology, to find a suitable trade-off
between conflicting requirements. The viewpoints are:

• The designers/developers viewpoint
• The viewpoint of the analysis framework
• The viewpoint run-time system

Figure 1: Three main views in ERTS development

These viewpoints typically emphasize different and
sometimes conflicting requirements in the development.
In reality however, the viewpoints are dependent and
should not be considered in isolation (which is
traditionally done in the software engineering and real-
time communities).

For example, an abstraction mechanism that cannot be
analyzed or resource efficiently mapped to a run-time
system is of little use for a dependable or resource
constrained systems. The other way around, analysis
techniques that place a too heavy burden on the
developer, such as manually specifying execution time
distributions, will not help to bring down development
costs or increase software quality since they will not be
used.

2.1. Developers viewpoint
The developers view should comprise of sufficient

tools to handle the increasing complexity in ERTS, e.g.
providing appropriate level of expressiveness and
abstraction mechanisms. The developer (or designer) of a
system should have a component model, architectural
rules and constraints at his disposal to develop a high
level (abstract away from pure source code) architecture
of the application (system).

The main goal during construction should be to relive
the designers from the burden of low level details, so that
they can focus on the problem at hand. This facilitates the
construction of a component architecture that is
understandable, maintainable and formal enough for
automated analysis and synthesis.

2.2. Analysis viewpoint
From the analysis viewpoint, the design/architecture

must be formal enough so that automated analysis
techniques, such as response time and memory utilization
analysis, can be performed.

The diverging type of functionality in today’s ERTS
requires flexible scheduling techniques or several
execution models to be analyzed. Hence, a component-
based architecture for an application should be analyzed
whether it satisfies certain properties or not with an
automated analysis framework. The objective is to deal
with as intricate problems as possible (to hide complexity
from developers) with automated tool support, i.e., the
analysis framework must have knowledge of the
component architecture (design) as well as the constraints
and services provided by the component framework (run-
time system).

An important task for an analysis framework is to
provide information of assumptions (artifacts) it had to
make in order make a property feasible. Such artifacts can
typically consist of task model attributes that cannot
directly be derived from a high-level design (for example
task priorities). This information together with the
component architecture that is both syntactically and
semantically correct, should be output to a synthesis tool
(analogous to a back-end generator of a compiler) when
generating code for the run-time environment.

2.3. Synthesis viewpoint
A synthesis should take (as input) the architecture

design and possibly some artifacts (such as priorities for a
task model) produced by the analysis framework, and
map it to the run-time system (generate component glue
code etc.). The aim is to provide a run-time system that
has a small footprint, but still providing sufficient run-
time services to the components of the application. Note
that this is a degree of freedom; if the application makes
use of lot of run-time services these must be provided by
the run-time system. However, at one extreme, if the
application is purely static, all connections between
components can be resolved off-line which result in a
static schedule yielding little run-time overhead.

With this view, the entire component framework is
provided at development time (as opposed to run-time for
component technologies such as e.g. .NET), but only the
part that are used are mapped down to the actual run-time
system.

3. Execution-model independent SW
Using this joint view of ERTS development, we will

focus on providing methods and tools to enable execution
model independent software development.

3.1. State of practice
A typical, execution model dependent, development

process today is illustrated in Figure 2.

Figure 2: Current practice in development. Requirements are

force fitted to a particular execution model.

In the first phase, (1), product requirements are
established. Next, some crucial and strategic over-all
decisions about the final system are made. One of these
decisions include, (2), which execution model (EM) to
use (in Figure 2 we choose the time triggered EM as an
example). Finally, (3), development takes place, and each
requirement is mapped onto the chosen EM.

This force-fitting of requirement to one particular EM
has three major drawbacks:

• It increases software complexity, since functionality
better implemented in other EMs still needs to be fitted
to the chosen EM.
• It reduces software reuse, since the software is
tailored to one specific EM.
• It hinders the designer from reaping benefits
provided by other EMs [17].

Recent results in real-time scheduling theory

[1][2][4][17][18][21][26] make it possible to combine
several EMs in one system (and still achieve predictable
timing). However, the cited techniques by themselves, do
not remove any problems. Instead a change in the
software development process, and tools supporting such
a new process, is needed.

3.2. Our vision
Figure 3 illustrates an envisioned process where

software development to a large extent is done in an EM-
independent way (2).

During this phase general and reusable (EM
independent) software components are developed or
reused. At a later stage, once the bulk of the system has

been developed, different parts of the system are mapped
to different EMs (3). This mapping is done in such a way
that the application specific system requirements are best
fulfilled (optimizing e.g. predictability, throughput,
reliability, memory footprint, or a mix of these).

Software development with multiple EMs, using a
development process as depicted in Figure 3, will have
the following main benefits:

Figure 3: A Vision of a future development process. The
choice of execution models is postponed to a later stage.

• Developers can postpone the choice, or rely on
automated choice of EM, to later stages of the
development process. This enables them to focus on
the problem at hand instead of focusing on lower-level
details early in the design process.
• Developers can choose different EMs for different
subsystems. This will give the developer more
expressive power as well as providing the right level of
abstraction. With these two points, software
complexity will be reduced. This, in turn, will result in
lower software development costs and increased
software quality.
• The possibility to use static scheduling for critical
core functionality (which is often desired and
sometimes even mandated by safety standards and
certification agencies [11]) while allowing less critical
functions to be executed using a less resource
demanding and flexible model. This, in turn, will result
in a cheaper validation/certification process for critical
functions, and in lower production costs (more
functions can be fitted onto cheaper hardware).
• Component reuse will be facilitated, since
components can be developed independent of the EM.
This, in turn, will decrease the software development
costs. Also, for companies that sustain a product line,
software reuse is crucial and is an important factor in
decreasing the time-to-market for new products.

4. Open issues - research questions
A development strategy with execution independent

software components, where the designer, the analysis

framework, and synthesis tools are seen from a joint
viewpoint collaborating to fulfill common requirements,
oblige addressing of some concrete research issues as
described in the following:

• What is considered an appropriate level of
expressiveness and abstraction in development tools
for the embedded domains? What type of execution
models are actually needed in future embedded
systems?
• Should a future component model be general
enough to be used in different domains or should it be
pin-pointed towards a single domain (such as
automotive) or on one extreme, should the model be
application specific?
• Since, the role of an analysis framework is to
examine a system for feasibility of certain properties,
relevant properties need to be identified in future
systems. The analysis framework needs behavior-
models for the architectural elements. However,
manually specifying such models add burdens to the
developer and increases both effort and complexity in
the development process. Hence techniques for
automatic model construction are needed with focus on
techniques for model extraction from running systems.
• Techniques for resource efficient run-time
monitoring of component-based systems should be
derived. Also, based on run-time observations
stochastic behavior-models need to be derived.
Furthermore, since components can be expected to be
reused in various contexts, and each context can result
in quite different behavior, the models should allow for
context dependent information to be represented.
• This new type of observation-based, stochastic, and
context dependent models do not allow commodity
analysis techniques to be used. Hence, new, or
modified existing, techniques is needed to analyze
these models.
• In addition, little is known about the relation
between component models and the underlying EMs.
Specifically, no component model has been explicitly
designed to support multiple EMs, rather existing
component models (implicitly or explicitly) assume
some form of EM. What changes of existing
methodologies are required to support multiple EMs?
How does one develop software that is independent of,
and can be mapped to, any EM? A methodology for
software development using multiple EMs needs to
give the engineers means to postpone decisions about
what EM to use until late project phases. Also,
guidelines and heuristics for how to map EM-
independent software to the available EMs need to be
derived.
• How can/should software engineering tools support
a methodology for multiple EMs? Combining multiple
EMs in a single system adds significant complexity to

system integration, the integration should, to a large
extent, be automatically performed by tools. The tools
need to account for system requirements, such as end-
to-end deadline, memory usage, communication
protocol requirements (e.g. following standards like
J1939 [23]).
• These system-integration and configuration tools
should be able to synthesize optimized
implementations where components are mapped to
EMs and hardware resource in an efficient way.

5. Conclusions
Any development environment that claims reduce

development effort, increase software quality and
minimize resource utilization must consider the
requirement from three, sometimes conflicting,
viewpoints: (i) The developers’/designers’ viewpoint, the
viewpoint of the analysis framework, and the run-time
framework. One has to be able to find a suitable balance
between the requirements placed on the development
environment from these viewpoints.

The trend on ERTS is an ever increasing diversity on
functionality and complexity of SW. This diversity and
complexity must be handled and our approach is a more
heterogeneous development environment based on the
component based approach with a run-time system that
supports multiple execution models. In addition the
development should be aided with extensive analysis and
synthesis tool support.

In order to achieve our vision in a component based
with multiple execution models context, we have
identified some research directions:

• What is considered an appropriate level of
expressiveness and abstraction?
• What type of execution models are needed in future
embedded systems?
• Should a component model be general or specific?
• What analysis properties are of interest for the
analysis framework?
• What is the relation between component and the
underlying execution models?
• Extensive tool support is needed especially in
analysis, synthesis and system integration, how should
such tools interact?

References
[1] L. Abeni and G. Buttazzo. Integrating Multimedia

Applications in Hard Real-Time Systems. In Proceedings
of the 19th IEEE Real-Time Systems Symposium
(RTSS’98), pages 4–13, Madrid, Spain, December 1998.
IEEE Computer Society.

[2] L. Abeni. Server Mechanisms for Multimedia Applications.
Technical Report RETIS TR98-01, Scuola Superiore S.
Anna, Pisa, Italy, 1998.

[3] ARTIST (Advanced Real-Time Systems) Network of
Excellence. http://www.systemes-critiques.org/-ARTIST/.

[4] S. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dynamic
Integrated Scheduling of Hard Real-Time, Soft Real-Time,
and Non-Real-Time Processes. In Proc. 24th IEEE Real-
Time Systems Symposium (RTSS). IEEE Computer
Society, December 2003.

[5] E. Brinksma, G. Coulson, I. Crnkovic, A. Evans, S. Gérard,
S. Graf, H. Hermanns, B. Jonsson, A. Ravn, P.
Schnoebelen, F. Terrier, A. Votintseva, and J.M Jézéquel.
Component-based design and integration platforms.
Roadmap, Advanced Real-Time Systems Information
Society Technologies (ARTIST), May 2003.

[6] A. Cervin and J. Eker. The Control Server Model: A
Computational Model for Real-Time Control Tasks. In
Proc. of the 15th Euromicro Conference on Real-Time
Systems, July 2003.

[7] I. Crnkovic and M. Larsson, editors. Building Reliable
Component-Based Software Systems. Artech House
publisher, 2002. ISBN 1-58053-327-2.

[8] DECOS - Dependable Embedded Components and
Systems. https://www.decos.at.

[9] J. Fröberg, K. Sandström, C. Norström, H. Hansson, J.
Axelsson, and B. Villing. Correlating business needs and
network architectures in automotive applications - a
comparative case study. In proceedings of the 5th IFAC
International Conference on Fieldbus Systems and their
Applications (FET), Aveiro, Portugal, July 2003.

[10] K. Hänninen, J. Mäki-Turja, M. Nolin, Present and Future
Requirements in Developing Industrial Embedded Real-
Time Systems - Interviews with Designers in the Vehicle
Domain, To be published in the Proceedings of the 13th
Annual IEEE International Conference and Workshop on
the Engineering of Computer Based Systems (ECBS),
Potsdam, Germany, March 2006

[11] IEC 61508. Functional safety of
electrical/electronic/programmable electronic safety-related
systems.

[12] A. Möller, J. Fröberg, and M. Nolin. Industrial
Requirements on Component Technologies for Embedded
Systems. In 7th International Symposium on Component-
based Software Engineering (CBSE7).

[13] Microsoft. Microsoft COM Technologies.
http://www.microsoft.com/com/.

[14] Microsoft. .NET Home Page.
http://www.microsoft.com/net/.

[15] A. Möller, M. Åkerholm, J. Fredriksson, and M. Nolin.
Evaluation of Component Technologies with Respect to
Industrial Requirements. In Euromicro Conference,
Component-Based Software Engineering Track, August
2004.

[16] P. O. Müller, C. M. Stich, and C. Zeidler. Building Reliable
Component-Based Software Systems, chapter Component
Based Embedded Systems, pages 303–323. Artech House
publisher, 2002. ISBN 1-58053-327-2.

[17] J. Mäki-Turja, K. Hänninen, and M. Nolin. Efficient
Development of Real-Time Systems Using Hybrid
Scheduling. In International conference on Embedded
Systems and Applications (ESA), June 2005.

[18] J. Mäki-Turja and M. Nolin. Fast and Tight Response-
Times for Tasks with Offsets. In 17th Euromicro
Conference on Real-Time Systems. IEEE, July 2005.

[19] OMG. CORBA Home Page. http://www.omg.org/corba/.
[20] OMG. CORBA Component Model 3.0, June 2002.

http://www.omg.org/technology/documents/formal/-
components.htm.

[21] J.C. Palencia Gutierrez and M. González Harbour.
Response Time Analysis for Tasks Scheduled under EDF
within Fixed Priorities. In Proc. 24th IEEE Real-Time
Systems Symposium (RTSS), December 2003.

[22] Robocop project home-page.
http://www.extra.research.philips.com/euprojects/robocop/i
ndex.htm.

[23] SAE Standard. SAE J1939, Joint SAE/TMC Electronic
Data Interchange Between Microcomputer Systems In
Heavy-Duty Vehicle Applications. http://www.sae.org.

[24] SAVE. SAVE Project Page.
http://www.artes.uu.se/++/SAVE/

[25] K. Sandström, J. Fredriksson, and M. Åkerholm.
Introducing a component technology for safety critical
embedded real-time systems. In International Symposium
on Component-based Software Engineering (CBSE7),
Edinburgh, Scotland, May 2004.

[26] M. Sjödin. Response-Time Analysis for Dynamically and
Statically Scheduled Systems. Technical Report MRTC
Report no. 55, Mälardalen Real-Time Research Centre
(MRTC), April 2002.
http://www.mrtc.mdh.se/showPublications.phtml.

[27] Space4u project home-page.
http://www.extra.research.philips.com/euprojects/space4u.

[28] J. A. Stankovic. VEST — A toolset for constructing and
analyzing component based embedded systems. Lecture
Notes in Computer Science, 2211:390–??, 2001.

[29] SUN Microsystems. Enterprise Javabeans Technology.
http://java.sun.com/products/ejb/.

[30] SUN Microsystems. Introducing Java Beans.
http://developer.java.sun.com/developer/onlineTraining/-
Beans/Beans1/index.html.

[31] S. Vestal. Support for Real-TimeMulti-Processor Avionics.
In Proc. 18th IEEE Real-Time Systems Symposium
(RTSS), pages 11–21, December 1997.

[32] R. van Ommering, F. van der Linden, J. Kramer, J. Magee.
The Koala Component Model for Consumer Electronics
Software. IEEE Computer, 33(3):78–85, March 2000.

[33] A. Wall. Architectural Modelling and Analysis of Complex
Real-Time Systems. PhD thesis, Mälardalen University,
Dept. of Computer Science and Engineering, September
2003.

http://www.sae.org/
http://www.artes.uu.se/++/SAVE/
http://developer.java.sun.com/developer/onlineTraining/-Beans/Beans1/index.html
http://developer.java.sun.com/developer/onlineTraining/-Beans/Beans1/index.html

