
Increasing Accuracy of Property Predictions for Embedded Real-Time
Components

Johan Fredriksson
Mälardalen University, Mälardalen Real-Time Research Centre

Västerås, Sweden, johan.fredriksson@mdh.se

Abstract

Many embedded systems for vehicles and consumer
electronics critically depend on efficient, reliable con-
trol software, and practical methods for their production.
Component-based software engineering for embedded sys-
tems is currently gaining ground since variability, reusabil-
ity, and maintainability are supported. However, existing
tools and methods do not guarantee efficient resource usage
in these systems. We present methods that increases the ac-
curacy in extra-functional property predictions, by consid-
ering context without restricting reusability; thus, enabling
less pessimistic extra-functional component properties and,
hence, improving resource utilisation.

1 Introduction

As the complexity and the amount of functionality im-
plemented by software in embedded systems increase, so
does the cost for software development. Also, since prod-
uct lines are common within the embedded domain, issues
of commonality and reuse are central for reducing cost.
Component-Based Development (CBD) has shown to be an
efficient and promising approach for software development,
enabling well defined software architectures as well as low-
ering development-costs and time-to-market by increasing
reusability [6, 1].

Embedded Real-Time Systems are soon integrated in all
everyday appliances. Already systems like cars, TV-sets
and DVD players are controlled by embedded systems[7].
The software must conform to often very limited resources
in terms of calculation power and memory. Due to the
nature of such systems they must also often conform to
their physical environment they control, i.e., they must
strictly conform to stipulated timing requirements. There-
fore, extra-functional requirements (EFRs) are becoming
more and more commonly used in software today. Real-
time systems and safety-critical systems have been using
EFRs for a long time. Today even entertainment systems
and small embedded systems have many EFRs that have to

be modelled and verified with analysis and testing. To per-
form analysis on EFRs, the software must be augmented
with extra-functional properties (EFPs), describing how the
software behaves. Examples of such properties areexecu-
tion time, memory consumption, reliability etc.

Because of the intrinsically non-linear behaviour of soft-
ware, it is often hard to make accurate predictions of EFPs.
The problem is worsened in component-based development
where components are kept free of context to facilitate
reuse. EFPs consider all possible configurations in which
a component can be used, which lower the accuracy of each
specific configuration. To make analysis more accurate,
and thereby systems more predictable, it is desired to have
higher accuracy of the EFPs. This can be achieved by con-
sidering the context of the software.

The extra effort required for identifying, designing, an-
alyzing and maintaining the context-information must not
be greater than the benefits acquired from higher accuracy.
Effort can be measured in many different ways; one natural
way is to measure it in terms of economic benefit.

For many resource constrained systems, especially em-
bedded systems, it is important to not use over dimensioned
hardware due to high costs. Correct analysis and predictable
systems are equally important.

The contribution of this paper is the discussion and pro-
posal of techniques for increasing the accuracy of extra-
functional properties in component-based development for
embedded systems, while maintaining reusability of com-
ponents. Thus within this context we mainly focus on two
concerns:
• Methods for determining accuracy of EFPs.
• Designing components for increased accuracy and

reuse.
The work in this paper is a continuation of ideas in [4].

The outline of the rest of this paper is as follows; in sec-
tion 2 we discuss contexts in CBD. Different approaches for
identifying contexts are discussed in section 3. In section4
assumptions and research questions for future work is pre-
sented. Section 5 concludes the paper and future work is
discussed.

1

2 Accuracy of Property Prediction

Components are elements of reuse, and should therefore
be context independent. Hence, they must conform to a
worst-case scenario for all possible contexts. By consid-
ering the context of a component it is possible to make the
predictions more accurate.

2.1 Contexts and reuse

All software is executed within a context, i.e., CPU, col-
laborating software, run-time system, etc. By making as-
sumptions about the context, prediction of EFPs is made
more accurate.

Some of the main driving forces for component-based
software engineering are reuse and third party composition.
Both these artefacts significantly speed up development by
using already developed and pre-tested components. To fa-
cilitate reuse and third party composition components are
deployable on different platforms. Hence, we make a dis-
tinction betweendeployment contextandusage context.The
concepts and rationale for separating deployment and usage
contexts are as follows:

Deployment context: By making assumptions about
properties like hardware, composition and run-time system,
components become hard to reuse, especially by third party.
A component should be oblivious considering the deploy-
ment to not have a strong connection to one specific config-
uration. All components have an infinite number of deploy-
ment contexts since it includes, e.g., composition, stimuli
from connected components and hardware. A deployment
context consists of:

• Composition; how components depend on each other.

• Usage profiles; part of the composition, more specif-
ically input values and probabilities of input values,
depending on connected components see section 2.3

• Configurational assumptions; assumptions about prop-
erties like hardware, run-time system, scheduling and
resource availability.

Usage context: is a parameterizable model of an EFP
and each component hasoneusage context for every EFP.
At deployment, a usage context is parameterized with val-
ues from its current deployment context. The usage context
aims at increasing the accuracy of EFPs by considering de-
ployment context, without reducing reusability. A compo-
nent can be used in any deployment context regardless of
usage context, because the usage context makes no assump-
tions about the deployment.

A usage context can be modelled with different models,
fromdependent finite state machines(DFSMs) [5] to simple
lookup tables. The accuracy of the model determines the
accuracy of the analysis. A usage context consists of:

• Parameterizable models of every EFP, consideringus-
age profile, compositionand configuration(deploy-
ment context).

2.2 Usage contexts

The accuracy of EFPs is crucial for the accuracy of the
analysis. For instance, when performing real-time analysis,
the accuracy of the EFPs worst-case and best-case execution
times is determining hardware requirements. In this paper
we will exemplify with the EFPworst-case execution time
(WCET).

Example 1: Consider a case with a simple component,
with one single input variable of the type integer. Lets as-
sume whenever the integer value is lower or equal to 10,
a part ”A” of a component is executed, and when the in-
put is higher than 10, a part ”B” is executed (figure 2.[2]).
Lets assume that part A has an execution time of 5 ms and
part B has an execution time of 500 ms. By not consider-
ing contexts, the component will be assigned a worst-case
execution time of 500ms and a best-case execution time of
5ms. The worst-case execution time, without consider con-
text, will be 500ms.

In a static configuration, considering example 1, where
path B will never be executed due to the usage of the com-
ponent, the actual WCET will be 5ms; the predicted 500ms
is thus very inaccurate. Context information is required to
get accurate predictions and can be acquired by analyzing
the usage context of the component.

In a dynamically scheduled system, considering example
1, where a few timing errors are acceptable, i.e.,soft real-
time systems, probabilities related to the execution of the
paths A and B can be used for opportunistic scheduling,
and effectively lower the WCET.

One priority requirement in resource constrained embed-
ded systems is to use as little resources as possible while
maintaining a predictable system. Most resource predic-
tions assume worst and best-case scenarios; hence it is de-
sired that the predicted properties are as close to the real-
case as possible, as depicted in figure 1.

As described in example 1, we can see that a component
that is only augmented with EFPs, without considering a us-
age context, has the possibility of being very inaccurate. We
do not aim at lowering the WCET of a component, but we
want the BCET and WCET to reflect the actual execution
time as accurately as possible.

Real behaviour Allowed predicted
best case

Allowed predicted
worst case

Inaccuracy of
prediction

False best case
prediction Pessemistic

predictions
Optimistic
predictions

False
predictions

Accurate
prediction

Best-case
prediction

Figure 1. Accuracy of predicted best and
worst case execution times

2

2.3 Probability of contexts

Since usage contexts depend on usage profiles, i.e., in-
puts, we determine all possible values for each usage con-
text. Consider a very simple case with a usage context only
depending on a usage profile with two booleans, b1 and b2.
By building a lattice of all possible values, and augment-
ing each leaf with timing properties we can see interesting
patterns. Each leaf is augmented with a WCET. Each node
above the leafs are augmented with a WCET equal to the
max of each connected leaf (see Fig. 2.[1]).

M(b1,b2)
 550ms

b1=true
550ms

b1=false
400ms

b2=true
20ms

b2=false
550ms

b1=true
b2=true
5ms

b1=true
b2=false
550ms

b1=false
b2=true
20ms

b1=false
b2=false
400ms

A
(5ms)

B
(500ms)

pr=0.2 pr=0.8

[1] [2]

Figure 2. [1] Compositional context and [2]
execution paths A and B, with WCET and
probabilities

In figure 2.[1] we see that when b2 is true, the WCET is
lower than any0 other case. This show that if pre-run time
analysis can determine that b2 is true for certain situations,
a lower WCET is used in a static schedule or similarly in
dynamic scheduling. The lattice can be transformed to a
table where lookups are made during run-time for assessing
scheduling decisions.

An example of a trade-off can be seen in relation to table
1. There is a trade-off between minimizing the size of a
table and keeping as much accuracy as possible. A small
table will give us fast lookup and fast analysis, but lower
accuracy, and vice versa.

Obviously, with a higher number of inputs, e.g., two 32-
bit integers, there will be a state space explosion. However,
often embedded systems are designed with a small number
of modes in mind, and the inputs that control these modes
are an example of suitable inputs to be modelled. The de-
signer have to determine the impact an input has on the EFP,
and decide which inputs should be modelled. Hence, it is up
to the designer of the model to trade-off between effort and
accuracy. Concretely, a usage profile is a naming conven-
tion of a variable that can be used for automatic analysis.

A usage profile consists of:

• A type, e.g.,{range, enum or boolean}

• A natural ordering, e.g.,≤, =, 6=

b1=false b1=true b1=n/a
b2=true 20 5 20
b2=false 400 550 550
b2=n/a 400 550 n/a

Table 1. WCET in usage contexts

• A probability distribution P

We return toexample 1and augment the paths A and B with
probabilities of execution by modelling describing proba-
bilities of inputs.

Each input is modelled with a probability distribution
which is derived from the deployment context. The purpose
of the distribution is to augment the model (figure 2.[2])
with probabilities that are used for calculating a probability
distribution P of a usage profile.

3 Identifying contexts

Optimally, a usage contexts have varying execution-time
depending on the usage-profile. In figure 3 we assume a us-
age context for the EFPs WCET and BCET for a specific
deployment context. We assume that component execution
times vary with the usage-profile. The dots in figure 3 rep-
resent execution times that have been estimated from the
component instance in a specific deployment context.

The estimation of an EFP in a specific deployment con-
text can be achieved in many different ways. WCET can,
e.g., be statically analyzed from the code or observed by
monitoring the system.

W CET

 BCET
 Execution time

Input Input

E
xe

cu
tio

n
 ti

m
e

E
xe

cu
tio

n
 ti

m
e

Figure 3. Context aware vs. context free
WCET and BCET

There are two fundamentally different approaches to cre-
ate usage contexts. One approach is to identify contexts
by analyzing existing code considering execution paths and
estimating probabilities considering usage-profiles. This
method requires formal methods and code analyzers.

The other approach is tocreate usage contextsconsider-
ing a deployment context, i.e., create the model from mea-
sured EFP values. Only usage-profiles have to be specified

3

to be considered. The usage contexts are not directly as-
sociated with semantic constructs but will rather be auto-
matically analyzed with respect to the EFP values that have
been estimated. Also probability distributions can be esti-
mated from observing the system. Usage contexts can be
optimized with respect to given trade-off conditions, e.g.,
as high accuracy as possible with as few contexts as pos-
sible. The accuracy in figure 3 could, e.g., be defined as
the difference between BCET and WCET. The optimiza-
tion would then simply be to minimize the area between the
dashed and full lines in figure 3.

4 Constraining the problem

To facilitate future work we make explicit assumptions
and try to identify hypotheses to be verified. Our main the-
sis is informally: “We can increase the accuracy of EFPs
with little effort by considering usage contexts.”.

Our assumptions are:
More contexts increase the accuracy. With higher

granularity of analyzable execution paths the analysis can
be made more accurate. A high number of contexts have the
benefit of possible higher accuracy in static analysis and op-
portunistic reclaiming of resources during scheduling with
methods like [2].

More contexts increase the effort. a high number of
contexts have the drawback of higher effort design and iden-
tifying a high number of contexts. The overhead in terms of
decisions during run-time for reclaiming resources also in-
creases.

Design for reuse makes predictions more inaccurate
In order to reuse components in different products and on
different platforms, they must make as few assumptions as
possible, which makes prediction of EFPs inaccurate.

Accurate analysis requires accurate EFPs Accurate
analysis requires accurate knowledge of the system.

Furthermore, we state the hypotheses:

1. A few usage contextsis enough to getuseful accuracy.
2. Many usage contextsleads totoo high effort.

A few contexts is a finite, low number of contexts; typi-
cally greater than 2 and smaller than 100.

Useful accuracy is of course entirely dependent on the
application. Although, higher accuracy than the accuracy of
one context is always expected. It is not always required to
have maximum possible accuracy. Thus, there is a trade-off
between a low number of contexts, i.e., low effort, and a
high accuracy.

Too high effort must be related to some quantitative
property like economics. A too high effort is one that is
higher than the benefit.

5 Future Work

In future work we will try to verify our thesis with exper-
iments. The EFP we will try and verify is initially WCET.
We have started to implement a framework to generate con-
texts to verify our ideas.

Our desired results from the experiments are that we
would like to see a high (more than linear) increase in ac-
curacy in the first contexts and at the same time see a linear
(or lower) increase in effort with increasing number of con-
texts.

We will integrate the ideas in Save component technol-
ogy [3]

References

[1] I. Crnkovic and M. Larsson. Building Reliable
Component-Based Software Systems. ISBN 1-58053-
327-2. Artech House, 2002.

[2] J. Fredriksson and K. S. Mikael̊A kerholm, Radu Do-
brin. Attaining Flexible Real-Time Systems by Bring-
ing Together Component Technologies and Real-Time
Systems Theory. InProceedings of the 29th Euromi-
cro Conference, Component Based Software Engineer-
ing Track Belek, Turkey), September 2003.

[3] H. Hansson, M.Åkerholm, I. Crnkovic, and M. Törn-
gren. SaveCCM - a Component Model for Safety-
Critical Real-Time Systems. InProceedings of 30th Eu-
romicro Conference, Special Session Component Mod-
els for Dependable Systems, September 2004.

[4] A. Möller, I. Peake, M. Nolin, J. Fredriksson, and
H. Schmidt. Component-based context-dependent hy-
brid property prediction. InERCIM - Workshop on De-
pendable Software Intensive Embedded systems, Porto,
Portugal, September 2005. ERCIM.

[5] H. W. Schmidt, B. J. Krmer, I. Poernomo, and R. Reuss-
ner. Predictable component architectures using depen-
dent finite state machines. Technical report, Lecture
Notes in Computer Science, 2941:310-324, 2004.

[6] C. Szyperski. Component Software - Beyond
Object-Oriented Programming. ISBN 0-201-74572-0.
Addison-Wesley, 1998.

[7] R. van Ommering, F. van der Linden, and J. Kramer.
The koala component model for consumer electron-
ics software. InIEEE Computer, pages 78–85. IEEE,
March 2000.

4

