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Abstract

This paper presents a novel method to determine the
maximum stack memory used in preemptive, shared stack,
real-time systems. We provide a general and exact problem
formulation applicable for any preemptive system model
based on dynamic (run-time) properties. We also show how
to safely approximate the exact stack usage by using static
(compile time) information about the system model and the
underlying run-time system on a relevant and commercially
available system model: A hybrid, statically and dynami-
cally, scheduled system.

Comprehensive evaluations show that our technique sig-
nificantly reduces the amount of stack memory needed com-
pared to existing analysis techniques. For typical task sets
a decrease in the order of 70% is typical.

1 Introduction

In conventional multitasking systems, each thread of ex-
ecution (task) has its own allocated execution stack. In sys-
tems with a large number of tasks, a large number of stacks
are required, hence the total amount of RAM needed for the
stacks can grow exceedingly large.

Stack sharing is a memory model in which several tasks
share one common run-time stack. It has been shown
that stack sharing can result in memory savings [5, 14]
compared to the conventional stack model. The shared
stack model is applicable to both non-preemptive as well
as preemptive systems and it is especially suitable in re-
source constrained embedded real-time systems with lim-
ited amount of memory. Stack sharing is currently sup-
ported by many commercial real-time kernels e.g. [6, 9, 24,
25].

The traditional method to calculate the memory require-
ments for a shared run-time stack in preemptive systems,
is to sum the maximum stack usage of tasks in each pre-
emption level (priority level in fixed priority systems) and
possibly considering additional overheads such as memory
used by interrupts and context switches. A major drawback
with the traditional calculation method is that it often re-
sults in over allocation of stack memory, by presuming that
all tasks with maximum stack usage in each priority level
can preempt each other in a nested fashion during run-time.
However, there may in many cases be no actual possibility
for these tasks to preempt each other (e.g. due to explicit
or implicit separation in time). Moreover, the possible pre-
emptions may not be able to occur in a nested fashion.

Taking advantage of the fact that many real-time sys-
tem exhibit a predictable temporal behavior it is possible
to identify feasible preemption scenarios, i.e., which pre-
emptions can in fact occur, and whether they can occur in a
nested fashion or not. Hence, a more accurate stack anal-
ysis can be made. One example of a system that lends
itself to such analysis is a hybrid, statically and dynam-
ically, scheduled system with an off-line scheduler pro-
ducing the static schedule and a fixed priority scheduler
(FPS) dispatching tasks at run-time. The commercial op-
erating system Rubus OS by Arcticus Systems AB [24],
supports such a system model. The Rubus OS is mainly
used in resource-constrained embedded real-time systems.
For instance, in the vehicular industry, Volvo Construction
Equipment (VCE) [28], BAE Systems Hägglunds [13], and
Haldex Traction Systems [11] all use the Rubus OS in their
vehicles and components.

In this paper we present the general problem of analyzing
a shared system stack for resource constrained preemptive
real-time systems. We provide a general and exact problem
formulation applicable for preemptive systems based on dy-
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namic run-time properties. We also present an approximate
stack analysis method to derive a safe upper bound on stack
usage in offset based (static offsets), fixed priority, preemp-
tive systems that use a shared stack. We evaluate and show
that the proposed method gives significantly lower upper
bounds on stack memory requirements than existing stack
dimensioning methods for fixed priority systems.

Paper outline. Section 2 describes related work and sets
the context for the contributions of this paper. In sections 3,
4, and 5 we present the exact formulation of determining
the maximum stack usage and our safe approximation of
the stack usage for our target system model. Section 6
presents a simulation evaluation of our approximative anal-
ysis method, and Section 7 concludes the paper.

2 Related work

The notion of shared stack has been used in several pub-
lications to describe the ability to utilize either a common
run-time stack or a pool of run-time stacks. For example, in
[17] stack sharing is performed by having a pool of avail-
able stack areas. When a task starts executing, it fetches a
stack from the pool, returning it at termination. In [18] Mid-
dhaet al. address stack sharing in the sense that the stack
of a task can grow into the stack area of another task.

In this paper we use the notion of stack sharing when
several tasks use one common, statically allocated, run-time
stack. This type of stack sharing can be efficiently imple-
mented in systems where tasks has a run-to-completion se-
mantics and do not self-suspend themselves. This type of
stack sharing is supported by several commercial real-time
operating systems e.g. [9, 24, 25]

2.1 Stack analysis

In [2] Baker presents the Stack Resource Protocol (SRP)
that permits stack sharing among processes in static and
some dynamic priority preemptive systems. The basic
method to determine the maximum amount of stack usage
in SRP is to identify the maximum stack usage for tasks at
each priority level and then to sum up these maximums for
each priority level. A safe upper bound (SPL) on the to-
tal stack usage using information about priority levels can
formally be expressed as:

SPL =
∑

l∈prio-levels

max
i∈tasks with priol

(Si) (1)

whereSi is the maximum stack usage of taski.
Gai et al. [8] present the Stack Resource Protocol with

Thresholds (SRPT) that allows stack sharing under earliest
deadline scheduling. They also present an algorithm to op-
timize shared stack usage by use of non-preemption groups
for tasks using SRPT. They extend the work of Saksena and

Wang [22] by taking the stack usage of tasks into account
when establishing non-preemption groups.

In [5] Davis et al. address stack memory requirements
by using non-preemption groups to reduce the amount of
memory needed for a shared stack. They show that the
number of preemption levels required for typical system can
be relatively small, whilst maintaining schedulability. They
also state that the reduction of preemption levels are depen-
dent on the spread of the tasks deadlines.

Although non-preemption groups can reduce the amount
of RAM needed for a shared stack, the use of non-
preemption groups affects a system by restricting the oc-
currences of preemptions, which can have a negative affect
on schedulability. The method we present in this paper can
further reduce the system stack by performing our analysis
after preemption groups have been assigned.

2.2 Preemption analysis

In [7] Dobrin and Fohler presents a method to reduce
the number of preemptions in fixed priority based systems.
They define three fundamental conditions that have to be
satisfied in order for a preemption to occur. The same con-
ditions form the basis of our upper bound method described
in Section 5. Note that even though the conditions are sat-
isfied, it does not necessarily mean that a preemption will
occur, only that there is a possibility for a preemption to
occur. Furthermore, even though a set of preemptions are
possible, it may be impossible for all of them to occur in a
nested fashion, i.e., they cannot all contribute to the worst
case stack usage.

Lee et al. [15] present a technique to bound cache-
related preemption delays in fixed-priority preemptive sys-
tems. They account for task phasing and nested preemp-
tion patterns among tasks to establish an upper bound on
the cache timing delay introduced by preemptions. Their
work relates to ours in the sense that we investigate occur-
rences of nested preemption patterns. However, our objec-
tives differ in that Leeet al. are mainly interested in timing
delays caused by cache reloading and preemption patterns
whereas we address shared memory requirements as an ef-
fect of nested preemption patterns.

3 Stack analysis of preemptive systems

The primary purpose of an execution stack is to store
local data (variables and state registers), parameters to sub-
routines and return addresses. In a real-time system there
is typically a separate, statically allocated stack for each
task, but under certain conditions, tasks can share stack to
achieve a lower overall memory footprint of the system.

We consider systems where several tasks use a common,
statically allocated, run-time stack. For this to be possible,
we assume that a task only uses the stack between the start
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time of an instance and the finishing time of that instance,
i.e., no data remains on the stack from one instance of a
task to the next. Furthermore, we require non-interleaving
task execution, see for example [2, 5]. Ifυj starts between
the start and finish ofυi, thenυi is not allowed to resume
execution untilυj has finished. In practice, this is ensured
by not allowing tasks to suspend themselves voluntarily, or
to be suspended by blocking once they have started their
execution. In practice this means that OS-primitives like
sleep() andwait_for_event() cannot be used, and
that any blocking on shared resources must be handled be-
fore execution start, e.g., with a semaphore protocol like
immediate inheritance protocol [3].

We formally define the start and finishing time of a task
instanceυi, as follows:

st i The absolute time whenυi actually begins executing.

ft i The absolute time whenυi terminates its execution.

At any given point in time, the worst case total stack usage
of the system equals the sum of the stack usage for each in-
dividual task instance. Thus, withsi(t) denoting the actual
stack usage ofυi at timet, the maximum stack usage of the
system can be expressed as follows:

max
t∈time instant

∑

υi∈task instances

si(t). (2)

This corresponds to the amount of memory that must be
statically allocated for the shared stack, to ensure the ab-
sence of stack overflow errors. For some systems, e.g., non-
preemptive, statically scheduled systems with simple task
code, it might be possible to directly compute or estimate
si(t). In general, however, they are not directly computable
before the system is executed.

We note that the total stack usage depends on three basic
properties:

(i) the stack memory usage of each task instance;

(ii) the possible preemptions that may occur between any
two instances; and

(iii) the ways in which preemptions can be nested.

Determining the stack memory usage of a single task
instance requires knowledge of the possible control-flow
paths within the task code [12]. However, due to the diffi-
culties in determining the exact stack usage at every point in
time for a given task instance, shared-stack analysis meth-
ods often assume that whenever a task is preempted, it is
preempted when it uses its maximum stack depth. We make
the same assumption, and useSi to denote the maximum
stack usage for task instanceυi (thus, whenυi andυj are
instances of the same task, we haveSi = Sj). Bounds on
maximum stack usage for a given task can be derived by

abstract interpretation, using tools such as AbsInt [1] and
Bound-T [26].

In order to calculate the maximum stack usage of the
full system, we need to account for all possible preemption
patterns. A task instanceυi is preempted by another task
instanceυj if (and only if) the following holds:

st i < stj < ft i. (3)

In particular, we are interested in chains of nested pre-
emptions. We define apreemption chainto be a set
{υ1, υ2, . . . , υk} of task instances such that

st1 < st2 < · · · < stk < ftk < ftk−1 < · · · < ft1. (4)

Under the assumption that the worst case stack usage of
a task can occur at any time during its execution, the worst
case stack usageSWC for a shared stack preemptive system
can be expressed as follows:

SWC = max
PC∈preemption chains

∑

υi∈PC

Si. (5)

This formulation, however, cannot be directly used for
analyzing and dimensioning the shared system stack since
it is based on the dynamic (only available at run-time) prop-
ertiesst i andft i. To be able to statically analyze the system,
one has to relate the static (compile-time) properties to these
dynamic properties, by establishing how the system model,
scheduling policy, and run-time mechanism constrain the
values of the actual start and finishing times. The problem
can be viewed as an scheduling problem with the objective
of maximizing the total stack usage of the schedule, sub-
ject to system constraints on how tasks are ordered in the
schedule.

4 System model for hybrid scheduled systems

The system model we adopt is based on a commercial
operating system Rubus OS, by Arcticus Systems AB [24],
which supports the execution of both time triggered and
event triggered tasks. The Rubus OS is mainly intended
for and used in dependable resource-constrained embedded
real-time systems.

The system model is a hybrid, static and dynamic, sched-
uled system where a subset of the tasks are dispatched by
a static cyclic scheduler (time triggered tasks) and the rest
of the tasks are dispatched by events in the system (event
triggered tasks). The static schedule is constructed off-line
and a fixed priority scheduler (FPS) dispatches tasks at run-
time. The event triggered tasks can be categorized in two
different classes: (i) interrupts which have higher priority
than the time-triggered tasks, and (ii) event-triggered tasks
which have lower priority than the time-triggered tasks.
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The time triggered tasks share a common system stack
and it is the objective of this paper to analyze, and ulti-
mately dimension, this shared system stack efficiently. The
time-triggered subsystem is used to host safety critical ap-
plications. Hence, to isolate it from any erroneous event-
triggered tasks it uses its own stack.

In essence, this system model is an offset based task
model with static offsets introduced by [10, 27]. In [19]
we showed how tight response times can be calculated (in
polynomial time [20]) for such a hybrid system.

4.1 Formal system model

The system model used is an offset based model with
static offsets [10, 19, 20, 27] and is defined as follows: The
system,Γ, consists of a set ofk transactionsΓ1, . . . , Γk.
Each transactionΓi is activated by a periodic sequence of
events with periodTi (for non-periodic eventsTi denotes
the minimum inter-arrival time between two consecutive
events). The activating events are mutually independent,
i.e., phasing between them is arbitrary.

A transaction,Γi, contains|Γi| tasks, and each task may
not be activated (released for execution) until a time, offset,
elapses after the arrival of the activating event.

We useτij to denote a task. The first subscript denotes
which transaction the task belongs to, and the second sub-
script denotes the number of the task within the transac-
tion. A task,τij , is defined by a worst case execution time
(Cij), an offset (Oij), a deadline (Dij), maximum jitter
(Jij), maximum blocking from lower priority tasks (Bij),
and a priority (Pij). Furthermore,Sij is used to denote the
maximum stack usage ofτij . The system model is formally
expressed as:

Γ :={〈Γ1, T1〉, . . . , 〈Γk, Tk〉}
Γi :={τi1, . . . , τi|Γi|}
τij :=〈Cij , Oij , Dij , Jij , Bij , Pij , Sij〉

There are no restrictions placed on offset, deadline or jit-
ter, i.e., they can each be either smaller or greater than the
period.

We assume that the system is schedulable and that the
worst case response-time, (Rij), for each task has been
calculated [20]. How a scheduler can generate a feasi-
ble schedule, with interfering interrupts, is described in
[23, 19].

Due to the non-interleaving criterion for stack sharing,
we require that tasks exhibit a run-to-completion semantics
when activated, i.e., they cannot suspend themselves. An
invocation of a task can be viewed as a function call from
the operating system, and the invocation terminates when
the function call returns.

When tasks share the same priority they are served on a
first-come first-served basis. We assume that, if access to

shared resources are not handled by the static scheduler by
time separation, a resource sharing protocol where block-
ing is done before start of execution is employed (such as
the stack resource protocol [2] or the immediate inheritance
protocol [3]).

The problem is to calculate the stack needed for the time
triggered tasks. That is, we need to calculate the stack us-
age for a single transaction, which we will denoteΓt. Task
j belonging toΓt we will denoteτtj . The tasks in the trans-
action can be preempted by other tasks in the transaction
and by higher priority event triggered tasks.

SinceΓt represents the static schedule, which is cyclicly
repeated with periodTt, offset, jitter and deadline are less
than the period, i.e.,Otj , Dtj , Jtj ≤ Tt.

5 Stack analysis of hybrid scheduled systems

In this section we describe a polynomial time method to
establish a safe upper bound on the shared stack usage for
the system model described in Section 4. The upper bound
is safe in the sense that the run-time stack can never exceed
the calculated upper bound.

A safe upper-bound estimate of the exact problem can
be found by using offsets and maximum response times as
approximations of actual start and finishing times. Gen-
eralizing the preemption criteria identified by Dobrin and
Fohler [7], we form the binary relationτti ≺ τtj with the
interpretation thatτti may be preempted byτtj . The rela-
tion holds whenever (1)τti can become ready beforeτtj , (2)
τti possibly finishes (i.e., has a response time) after the start
of τtj , and (3)τti has lower priority thanτtj . The relation
can now formally be defined as:

τti ≺ τtj ≡ Oti < Otj +Jtj +Btj∧Otj < Rti∧Pti < Ptj .
(6)

Lemma 1 The≺ relation is a safe approximation of the
possible preemptions between tasks inΓt. That is, ifτti can
under any run-time circumstance be preempted byτtj , then
τti ≺ τtj will hold.

Proof of Lemma 1 Suppose thatτti is preempted byτtj .
We show that this implies (1)Oti < Otj + Jtj + Btj , (2)
Otj < Rti, and (3)Pti < Ptj .

(3) follows directly from the preemption. Now lett be the
time instant whenτtj has finished blocking, which implies
t ≤ Otj +Jtj +Btj . Then a possibly empty interval[t, sttj ]
of execution with higher priority thanτtj follows, in which
τti cannot execute becausePti < Ptj . Sinceτti must start
beforeτtj , we can conclude thatstti < t, which together
with Oti ≤ stti and t ≤ Otj + Jtj + Btj gives usOti <
Otj+Jtj+Btj and (1). From Equation 3 we havesttj < ftti
and this together withOtj ≤ sttj and ftti ≤ Rti leads to
Otj < Rti and (2), which completes the proof. ¤
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The upper-bound problem can now be informally stated
as finding the maximum stack usage of all possible preemp-
tion chains inΓt. This equals finding the time instant in
the schedule which has a maximum stack usage, given the
approximation of actual start and finishing times with off-
sets and response times respectively, and assuming that at
all preemptions the preempted task uses its maximal stack.

A sequenceQ of tasks is apossible preemption chain
(PPC) if it holds thatτti ≺ τtj for all τti, τtj in Q where
τti occurs beforeτtj in the sequence. The stack usageSUQ

of a PPCQ is the sum of the stack usage of the individual
tasks in the chain, i.e.,SUQ =

∑
τti∈Q Sti.

A straightforward computation of a safe upper bound for
a set of tasks involves computing the stack usage for all
PPCs. However, for a set ofn tasks there exist2n − 1 dif-
ferent PPCs in the worst case, which yields an exponential
time complexity for an algorithm based on this idea. A more
efficient algorithm can be constructed by first finding sets of
tasks which all overlap in time, without regarding priorities.
These sets can then be investigated in turn to find a PPC
with maximal stack usage.

We let the relationτti ¹ τtj hold whenever the semi-
closed intervals[Oti, Rti) and[Otj , Rtj) intersect, or more
formally:

τti ¹ τtj ≡ Oti < Rtj ∧Otj < Rti. (7)

The relation¹ is a relaxation of the≺ relation, that is,
τti ≺ τtj → τti ¹ τtj . To see this, suppose thatτti ≺ τtj

which impliesOti < Otj+Jtj+Btj∧Otj < Rti, according
to Equation 6. SinceOtj+Jtj+Btj ≤ Rtj follows from the
notion of response time, we haveOti < Rtj ∧ Otj < Rti,
which also is the definition ofτti ¹ τtj .

We can now define anoverlap setKr as a set of tasks
where:

∀τti, τtj ∈ Kr : τti ¹ τtj .

The stack usageSUKr of an overlap setKr is defined
as the maximum stack usageSUQ of all PPCsQ where
Q ⊆ Kr:

SUKr = max
∀Q⊆Kr:PPC (Q)

(SUQ). (8)

Kr is maximalif and only if there exist no overlap setKs

such thatKr ⊂ Ks.

Lemma 2 For any PPCQ, there exists a maximal overlap
setKr such thatQ ⊆ Kr.

Proof of Lemma 2 From the definitions of a PPC and the
≺ and¹ relations, we know that for all tasksτti ≺ τtj in
Q it also holds thatτti ¹ τtj , and thusQ is an overlap
set. Then eitherQ is maximal or it can become maximal by
extending it with additional tasks. In either case, the lemma
holds. ¤

In all, the algorithm for computing the upper boundSUB
on the maximum stack usage for a set of tasksΓt can be
summarized as follows:

1. Find the maximal overlap sets inΓt:
K = {K1, K2, . . . , Kk}.

2. For each of them, computeSUKr according to Equa-
tion 8.

3. The upper bound of the stack usage forΓt can now be
computed as follows:

SUB = max
∀Kr∈K

(SUKr
). (9)

Informally, we start by finding all sets of tasks that can
overlap in time based on their offsets and worst case re-
sponse times, which safely approximates their actual start
and finishing times. For each such set (Ki) we find all pos-
sible preemption chains (PPCs) by also taking task priorities
and maximal jitter and blocking time into account, and com-
pute the stack usage for each such chain. The stack usage
of Ki is the maximum stack usage of all its PPCs, and the
maximum stack usage (SUB ) of the system is then obtained
by taking the maximum stack usage of everyKi.

5.1 Correctness

In order to claim correctness of our approximate stack
analysis method we have to show that it never underesti-
mates the actual stack usage that can occur during run-time.

Theorem 1 The value computed by theSUB algorithm is
a safe upper bound on the actual worst case stack usage for
tasks inΓt. Formally,SWC ≤ SUB .

Proof of Theorem 1 Let Ψ ⊆ Γt be the sequence of
tasks instances participating in the preemption situation
which cause the worst case stack usage, that is,SWC =∑

τti∈Ψ Sti. According to Lemma 1, we must haveτti ≺ τtj

for tasksτti andτtj that occur in that order inΨ, and thusΨ
is a PPC withSUΨ = SWC . Then, Lemma 2 ensures that
there exists a maximal overlap setKr such thatΨ ⊆ Kr,
and we haveSUΨ ≤ SUKr . Thus,SWC ≤ SUKr ≤ SUB ,
which concludes the proof. ¤

5.2 Computational complexity

The relaxation of≺ into interval intersection (Equation
7) allows us to efficiently compute an upper bound on the
stack usage (Equation 9) by applying a polynomial longest
path algorithm on the linearly-bounded number of maximal
overlap sets.

To first see that the set of maximal overlap setsK =
{K1, K2, . . . , Kk} contain at mostn elements, i.e.,k ≤ n,
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consider the graph(Γt, E), where Γt is the set of ver-
tices andE = {τtiτtj | (τti ¹ τtj) ∧ τti, τtj ∈ Γt}
is the set of edges. From Equation 7 we have that edges
τtiτtj ∈ E correspond to intersection of the semi-closed in-
tervals[Oti, Rti) and[Otj , Rtj), and therefore the graph is
an interval graph[16]. Because every interval graph is also
chordal [16], all maximal complete subgraphs in(Γt, E),
which corresponds to all maximal overlap sets, can be found
in linear time [21]. Furthermore, for chordal graphs there
exists at mostn such sets, and thus we have at mostn over-
lap sets [16].

The problem of finding the worst PPC within a single
overlap setKr is significantly easier than for an arbitrary set
of tasks. Since it holds thatτti ¹ τtj for all tasksτti, τtj ∈
Kr, and therefore in particular thatOti < Rtj for all tasks
in Kr, we need only look for a maximum stack usage chain
Q where (1)Oti < Otj + Jtj + Btj , and (2)Pti < Ptj

for all tasksτti andτtj in that order inQ to find the worst
PPC. A directed graph consisting of tasks inKr and arcs
corresponding to properties (1) and (2) is acyclic, and for
such graphs a longest-path type algorithm can be used to
find the worst PPC [4]. There exist longest-path algorithms
with a time complexity ofO(n+m), wheren is the number
of tasks andm is the number of possible preemptions, of
which there are at mostn(n − 1)/2. Taking the maximum
of a maximal PPC in each setKr, of which there are at most
n, we will therefore find a maximum stack size PPC in at
mostO(n2 + nm) time.

6 Evaluation

We evaluate the efficiency of our proposed method to
establish a safe upper bound on shared stack usage, by ran-
domly generating realistic sized task sets. The size, load and
stack usage of the task sets are derived from a wheel-loader
application by Volvo Construction Equipment [28]. We use
three different methods to calculate the shared system stack
usage:

SPL The traditional method to dimension a shared system
stack by summing up the maximum stack usage in
each priority level, see e.g. [5].

SUB The safe upper bound on the shared stack usage pre-
sented in Section 5

SLB A lower bound on on the shared stack usage, for each
task set.

The lower bound is established using a simple heuristic
method that tries to maximize shared stack usage by gener-
ating only feasible preemption scenarios for the task set, and
thus represents scenarios that definitely can occur. From
all PPCs, the heuristic selects a sample set of roughly 500
chains. For each of them, the method tries to construct a

feasible arrival pattern for the ET tasks, and actual execu-
tion time values, that cause an actual preemption between
the tasks in the chain. The quality of this heuristic method
degrades as the length of the chains or the total number of
PPCs increases, which can be seen in the figures.

By establishing a safe upper bound and a feasible lower
bound, we know that the actual worst case stack usage is
bounded by SUB and SLB. The reason for including SLB is
to give an indication on the maximum amount of improve-
ment there might be for SUB.

6.1 Simulation setup

In our simulator we generate random task sets as input to
the stack analysis application. The task generator takes the
following input parameters:

• Total number of TT (time triggered) tasks (default =
250)

• Total load of TT tasks (default = 60%)

• Minimum and maximum priorities of TT tasks (default
= 1 and 32)

• Minimum and maximum stack usage of TT tasks (de-
fault = 128 and 2048)

• Total number of ET (event triggered) tasks (default =
8)

• Total load of ET tasks (default = 20%)

• The shortest possible minimum inter-arrival time of an
ET task (default = 1.000)

The generated schedule for TT tasks is always 10.000 time
units. All ET tasks have higher priority than TT tasks. The
default values for the input parameters represent a base con-
figuration derived from a real application [28].

Using these parameters a task set with the following
characteristics is generated:

• Each TT offset (Oti) is randomly and uniformly dis-
tributed between 0 and 10.000.

• Worst case execution times for TT tasks,Cti, are ini-
tially randomly assigned between 1 and 1000 time
units. The execution times gets adjusted, by multiply-
ing all Cti by a fraction, so that the the TT load (as
defined by the input parameter) is obtained.

• TT priorities are assigned randomly between minimum
and maximum value with a uniform distribution.
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6.2 Results

Each diagram shows three graphs corresponding to the
stack usage calculated by the three methods: SPL, SUB,
and SLB. Each point in the graphs represent the mean value
of 100 generated task sets. We also measured the 95% con-
fidence interval for the mean values, these are not shown
because of their small size (less than 7% of the y-value for
each point). We also measured the CPU time to calculate an
upper bound on shared stack usage for each generated task
set. Using the method described in Section 5, the calcula-
tions took less than 63ms on an Intel Pentium 4, 2.8GHz
with 512MB of RAM.
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Figure 1. Varying the number of priority levels
of TT tasks

In Fig. 1 we vary the maximum priority for TT tasks be-
tween 1 and 300, keeping the minimum priority at 1. This
gives a distribution of possible priorities (priority levels),
from 1 ton, wheren is indicated by the x-axis. We see, in
Fig. 2 which zooms in on Fig. 1 for maximum priorities up
to 10, that the difference in stack usage between SPL and
SUB is less noticeable with a low number of priority levels
(see Fig. 2). However, for larger number of priority levels
the difference is significant. SPL is not expected to flatten
out before all tasks actually have unique priorities, whereas
our method (SUB) flattens out significantly earlier. We con-
clude that the maximum number of tasks in any preemption
chain is increasing very slowly (or not at all) when the num-
ber of TT tasks increases above a certain value, since the
system load is constant.

In Fig. 3 we vary the maximum stack usage of each TT
tasks between 128 bytes and 4096 bytes. We do this by as-
signing an initial stack of 128 bytes for each TT task, i.e.
initially the stack size variation is zero. We then vary the
stack size between 128 and 512 bytes, 128 and 1024 bytes,
and so on. The diagram shows that SUB gives significantly
lower values on shared stack usage than the traditional SPL.
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Figure 2. Varying the number of priority levels
of TT tasks (zoom of Fig. 1)
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Figure 3. Varying stack usage of TT tasks

We also notice that an increase in stack variation scales up
(linearly) the differences between SPL and SUB. The lin-
earity is expected, since an increase in stack variation do
not affect occurrences of possible preemptions in the sys-
tem i.e. possible nested preemptions are retained.

In Fig. 4 we vary the maximum number of TT tasks be-
tween 5 and 275. We see that the shared stack usage of
the traditional SPL is dramatically increasing in the begin-
ning. This is due to the fact that when the number of TT
tasks is lower than the maximum priority of TT tasks (32),
most TT tasks have unique priorities. SUB, on the other
hand, increases much slower than SPL because the maxi-
mum number of tasks involved in any preemption chain is
slowly increasing. SUB is expected to further approach SPL
since increasing the number of tasks will increase the like-
lihood of larger number of tasks involved in the preemption
chains.
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Figure 5. Varying the load of TT tasks

In Fig. 5 we vary the total load of TT tasks between 10%
(0.1) and 70% (0.7). The figure shows that the shared stack
usage of SPL is constant whereas SUB is slowly increasing.
SPL is expected to be constant, since it is only affected by
the number of priority levels and unaffected by the actual
preemptions that can occur in a system. The increase of
SUB is due to increasing response-times of TT tasks when
the TT load increases, which will increase the likelihood of
larger number of tasks involved in nested preemptions.

7 Conclusions and future work

This paper presents a novel method to determine the
maximum stack memory used in preemptive, shared stack,
real-time systems. We provide a general and exact problem
formulation applicable for any preemptive system model
based on dynamic (run-time) properties.

By approximating these run-time properties, together
with information about the underlying run-time system, we

present a method to safely approximate the maximum sys-
tem stack usage at compile time. We do this for a relevant
and commercially available system model: A hybrid, stat-
ically and dynamically, scheduled system. Such a system
model provides lot of static information that we can use to
estimate the dynamic start- and finishing-times. Our ap-
proach essentially consists of finding the nested preemption
pattern that results in the maximum shared stack usage. We
prove that our method is a safe upper bound of the exact sys-
tem stack usage and show that our method has a polynomial
time complexity.

In a comprehensive simulation study we evaluated our
technique, and compared it to the traditional method to esti-
mate stack usage. We find that our method significantly re-
duce the amount of stack memory needed. For realistically
sized task sets a decrease in the order of 70% is typical.

In this paper we focused on a system model for a given
commercial real-time operating system. In the future we
plan to extend our approximation method to a more general
system model, to incorporate all the features of the general
model for tasks with offsets [10]. Thus, making this analy-
sis technique applicable to a wider range of systems.

Our current method could also be extended to account
for other types of information that can further limit the
number of possible preemptions. We currently only ac-
count for separation in time (offsets and response-times)
between tasks. However, in many systems other types of
information, such as precedence and mutual-exclusion rela-
tions may exists between tasks. Thus limiting the possible
preemptions.

The method presented here could also be used in syn-
thesis and configuration tools that generate optimized sys-
tems from given application constraint. In this case, the re-
sults from our analysis can be used to guide optimization or
heuristic techniques that tries to map application function-
ality to run-time objects.
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