
Mälardalen University Licentiate Thesis
No.67

Introducing a Memory
Efficient Execution Model in a

Tool-Suite for Real-Time
Systems

Kaj Hänninen

2006

Department of Computer Science and Electronics
Mälardalen University

Västerås, Sweden

Copyright c© Kaj Hänninen, 2006
ISSN 1651-9256
ISBN 91-85485-22-5
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press

Abstract

This thesis shows how development of embedded real-time systems can be
made more efficient by introduction of a memory efficient execution model in
a commercial development suite. To identify the need of additional support
for execution models in development tools, the thesis investigate by a series of
interviews, the common requirements in development of industrial embedded
real-time systems. The results indicate that there exists functionality in in-
dustrial systems that could be more efficiently implemented in other execution
models than the currently supported ones. The thesis then presents how use
of multiple execution models (hybrid scheduling) can reduce processor utiliza-
tion in real-world applications. Furthermore, the thesis presents an integration
of a memory efficient execution model in an industrially used real-time oper-
ating system. In addition, the thesis describes an efficient technique to analyze
memory consumptions of functionality executing under the introduced execu-
tion model.

Embedded computers play an important role in peoples everyday life. Nowa-
days, we can find computers in product such as microwave ovens, washing
machines, DVD players, cellular phones and cars, to mention a few examples.
For example, a modern car may have more than 70 embedded control units
handling functionality such as airbags, anti-lock braking, traction control etc.
In addition, there is a clear trend indicating that the amount of computer con-
trolled functionality in products will continue to increase.

Many of today’s embedded systems are resource constrained and the soft-
ware for them is developed for a few execution models. Even though re-
searchers have proposed a large number of different execution models for em-
bedded real-time systems, in practice however, only a few of the proposed
execution models are supported in industrial development tools. This implies
that developers often force fit functionality to be executed under these models,
resulting in poor resource utilization and increasing complexity in software.

i

To the memory of Stissen

Preface

The work presented in this thesis has been sponsored by KK-Stiftelsen (the
Swedish Knowledge Foundation) within the graduate school SAVE-IT .

I wish to thank the following people for their excellent supervision, guid-
ance, encouragement etc.: Mikael Nolin, Jukka Mäki-Turja, Christer Norström,
Kurt-Lennart Lundbäck, John Lundbäck, Hjördis Lundbäck, Mats Lindberg,
Mikael Arvids, Harriet Ekwall and all research colleagues at Mälardalen Real-
Time Research Centre (MRTC).

I wish to express my deepest gratitude to: CG, Pastisch, M’Morris, Azze,
Krutte, Chibi, Esa, Peter and the PSBs.

Kaj Hänninen
Västerås, September, 2006

v

List of Publications

Publications included in this thesis

Paper A: Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Present and
Future Requirements in Developing Industrial Embedded Real-Time Systems -
Interviews with Designers in the Vehicle Domain, In Proceedings of the 13th
Annual IEEE International Conference and Workshop on the Engineering of
Computer Based Systems, Potsdam, Germany, March, 2006.

Paper B: Jukka Mäki-Turja, Kaj Hänninen, Mikael Nolin, Efficient Devel-
opment of Real-Time Systems Using Hybrid Scheduling, In Proceedings of the
International Conference on Embedded Systems and Applications, Las Vegas,
USA, June, 2005.

Paper C: Kaj Hänninen, John Lundbäck, Kurt-Lennart Lundbäck, Jukka
Mäki-Turja, Mikael Nolin, Efficient Event-Triggered Tasks in an RTOS, In Pro-
ceedings of the International Conference on Embedded Systems and Applica-
tions, Las Vegas, USA, June, 2005.

Paper D: Kaj Hänninen, Jukka Mäki-Turja, Markus Bohlin, Jan Carlson,
Mikael Nolin, Analysing Stack Usage in Preemptive Shared Stack Systems,
MRTC report ISSN 1404-3041 ISRN MDH-MRTC-202/2006-1-SE,Mälardalen
Real-Time Research Centre, Mälardalen University, July, 2006. A version of
this paper has been accepted for publication at RTSS, Rio de Janeiro, Brazil,
December, 2006.

vii

viii

Other publications by the author

• Jukka Mäki-Turja, Mikael Nolin, Kaj Hänninen, Towards Efficient De-
velopment of Embedded Real-Time Systems, the Component Based Ap-
proach, The 2006 International Conference on Embedded Systems and
Applications, Las Vegas, USA, June, 2006

• Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Investigation of In-
dustrial Requirements in Development of Embedded Real-Time Systems,
MRTC report ISSN 1404-3041 ISRN MDH-MRTC-185/2005-1-SE,Mälardalen
Real-Time Research Centre, Mälardalen University, August, 2005

• Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Industrial Requirements
in Development of Embedded Real-Time Systems -Interviews with Senior
Designers, Work-in-Progress Session of the 17th Euromicro Conference
on Real-Time Systems, Palma de Mallorca, Spain, July, 2005

• Kaj Hänninen, John Lundbäck, Kurt-Lennart Lundbäck, Jukka Mäki-
Turja, Mikael Nolin, Introducing Resource Efficient Event-Triggered Tasks
in an RTOS, MRTC report ISSN 1404-3041 ISRN MDH-MRTC-170/2005-
1-SE, Mälardalen Real-Time Research Centre, Mälardalen University,
February, 2005

• Jukka Mäki-Turja, Kaj Hänninen, Mikael Nolin, Response Times in Hy-
brid Scheduled Systems, MRTC report ISSN 1404-3041 ISRN MDH-
MRTC-169/2005-1-SE, Mälardalen Real-Time Research Centre, Mälardalen
University, February, 2005

• Kaj Hänninen, Jukka Mäki-Turja, Component technology in Resource
Constrained Embedded Real-Time Systems, Technical Report, MRTC,
March, 2004

• Toni Riutta, Kaj Hänninen, Optimal Design, Master’s thesis, Mälardalen
University, Department of Computer Science and Engineering, February,
2003

Contents

I Thesis 1

1 Introduction 3
1.1 Embedded real-time systems 4
1.2 Execution models . 4
1.3 Execution models in development 5
1.4 Outline of thesis . 6

2 Research framework 7
2.1 Methodology . 7
2.2 Background and motivation 8
2.3 Problem description . 8
2.4 Research questions . 9
2.5 Contribution . 10

3 Conclusion 13

Bibliography 15

II Included Papers 17

4 Paper A:
Present and Future Requirements in Developing Industrial Em-
bedded Real-Time Systems
- Interviews with Designers in the Vehicle Domain 19
4.1 Introduction . 21
4.2 Investigation setup . 22
4.3 Investigation results . 23

ix

x Contents

4.3.1 Application characteristics 24
4.3.2 Functional application properties 25
4.3.3 Temporal application properties 27
4.3.4 Operating systems 28
4.3.5 Execution models 29
4.3.6 Resource limitations 29
4.3.7 Desired tool support 30
4.3.8 Software components 30

4.4 Discussion - our observations 31
4.5 Conclusions . 34
4.6 Verification of the investigation results 35
Bibliography . 35

5 Paper B:
Efficient Development of Real-Time Systems Using Hybrid Schedul-
ing 39
5.1 Introduction . 41
5.2 System description . 43

5.2.1 Example system . 44
5.3 Modelling the system . 45

5.3.1 Task model with offsets 46
5.3.2 System model . 47

5.4 Related work . 48
5.5 Case study . 49

5.5.1 An example system 49
5.6 Conclusions . 52
Bibliography . 53

6 Paper C:
Efficient Event-Triggered Tasks in an RTOS 57
6.1 Introduction . 59
6.2 The single shot execution model (SSX) 59
6.3 The Rubus operating system 61
6.4 Integration of SSX in Rubus 63
6.5 Evaluation of SSX in Rubus 65

6.5.1 Evaluation method 65
6.5.2 Application description 66
6.5.3 Results . 68

6.6 Conclusion and future work 69

Contents xi

Bibliography . 69

7 Paper D:
Analysing Stack Usage in Preemptive Shared Stack Systems 73
7.1 Introduction . 75
7.2 Related work . 76

7.2.1 Stack analysis . 76
7.2.2 Preemption analysis 77

7.3 Stack analysis of preemptive systems 78
7.4 System model for hybrid scheduled systems 80

7.4.1 Formal system model 80
7.5 Stack analysis of hybrid scheduled systems 82

7.5.1 Correctness . 84
7.5.2 Computational complexity 84

7.6 Evaluation . 85
7.6.1 Simulation setup . 86
7.6.2 Results . 87

7.7 Conclusions and future work 89
Bibliography . 91

I

Thesis

1

Chapter 1

Introduction

Throughout the years, software development for embedded computer systems
has undergone changes. Development processes have been modernized and
refined to fulfil the evolving requirements on applications. High level pro-
gramming languages (e.g. C, C++) have been adopted as alternatives to the
traditional low level programming languages such as assembler. A more recent
trend is the introduction of component- and model-based engineering in the
embedded community.

However, very little effort has been done to encapsulate novel execution
models in commercial operating systems and development tools. Even though
researchers within the real-time community have provided a large number of
different execution models, only a few of them are actually used in industrial
systems. Many of the research project addressing co-existence of several dif-
ferent execution model within a single computer system, has ended up as pure
academic work.

Taking advantage of the novel execution models provided by the research
community, the development of embedded real-time systems can be made more
efficient, with respect to memory and processor utilization, while fulfilling re-
quirements on predictable use of resources. This thesis shows how an efficient
execution model can be integrated as support in an industrial tool-suite for de-
velopment of dependable real-time systems. The integrated execution model,
denoted SSX, enables stack sharing among tasks for efficient use of memory.
Furthermore the thesis presents methods that allow the execution model to be
analyzed with respect to timing and memory consumption, making the execu-
tion model usable in an industrial setting.

3

4 Chapter 1. Introduction

1.1 Embedded real-time systems

In conventional computer systems, functional correctness is of primary con-
cern. Real-time systems however, emphasize both functional and timing re-
quirements in computing. One important and commonly used timing require-
ment in real-time systems is called: the deadline. The deadline is a representa-
tion of the latest point in time that a functionality must be finished. In fact, the
deadline attribute is of such importance that real-time systems are categorized
into either hard of soft systems, based on whether deadlines are critical or not.
In hard real-time systems it is required that all deadlines are met, whereas soft
systems allow certain missed deadlines. In addition to the deadline attribute,
other types of timing requirements are applicable for real-time systems, see
e.g., [2, 4, 7] for more examples.

To investigate whether timing requirements can be fulfilled or not in a real-
time system, the system must lend itself to analysis. In essence, this implies
that both the hardware and software should be analyzable with respect to timing
attributes. In addition, real-time systems often interact with the environment
by sensors and actuators. In many of the environments, safety critical situa-
tions can occur, implying that dependability issues have to be considered in
development of such systems.

1.2 Execution models

Computer systems, desktop types or embedded ones, execute processes, threads
or tasks, according to one or more execution models. In general, an execution
model can be seen as methods that provide ways to execute tasks or carry out
functionality in computer systems. The execution model in a real-time system
can be composed of, for example, a scheduling technique, a task- and memory-
model. Research in scheduling techniques for real-time systems has resulted in
a large number of different scheduling algorithms, see e.g., [3, 1, 7, 2, 4, 6, 5, 9],
many of them are developed for a conventional memory model and a specific
task model. In addition, many real-time systems involve concurrent activities,
implying that the execution model is one of the fundamental parts in realizing
a system of parallel (seemingly parallel in uni-processor systems) executing
tasks. In distributed computer system with functionality executing over several
nodes, many execution models might be involved in realizing a functionality,
e.g., execution models for the computing nodes and execution models for the
communications network.

1.3 Execution models in development 5

This thesis addresses the integration of a predictable and memory efficient
execution model, denoted SSX, in a commercially available tool-suite. The
SSX model is only one of several execution models proposed by the research
community. The model is attractive since it permits run-time stack sharing
among tasks, hence reducing the amount of memory needed in many type of
applications. Furthermore, the SSX model can be implemented with very little
run-time overhead in an operating system.

1.3 Execution models in development

In development of embedded real-time systems, a developer must choose an
execution model to realize a functionality. For instance, using the Rubus tool-
suite [8], a developer can choose from three supported execution models (i)
a cyclic time-triggered static execution model, (ii) a dynamically scheduled
background executed model or, (iii) dynamically scheduled event-triggered
high priority model for interrupts. Every execution model has its benefits
and drawbacks. For example, a cyclic time-triggered static execution model
is predictable and reproducible, hence often used for safety critical functional-
ity. However, since real-time systems often require reaction to external events,
the time-triggered model requires polling of the events. Polling events of-
ten waste processor time, since polling is performed regardless of whether
an event has occurred or not. On the other hand, an execution model sup-
porting dynamic scheduled tasks might be less resource demanding than the
time-triggered model, but it is more difficult to reproduce an execution (for
testability) of the system, under a dynamic execution model.

Undoubtedly, choosing suitable execution models in development of a sys-
tem is associated with a lot of issues, some of them arising from application
requirements e.g. the type of functionality and their temporal requirements,
others from the activities in a development process, e.g., availability of analy-
sis support. It is likely that the requirements, the available tool support, imple-
mentation, testing and maintainability aspects as well as target platform etc, all
guides the choice of execution models. In addition, many operating systems
only provide a few (commonly one or two) execution models to be used in
development.

It’s obvious that the choice of execution model greatly affects development,
in that all design decisions ultimately must adhere to the support provided by
the execution model. With the increasing amount of diverging type of func-
tionality, ranging from safety critical functionality to non critical functionality

6 Chapter 1. Introduction

such as information and entertainment, new and more suitable execution mod-
els must be supported by commercial operating systems and development tools.
Restricting the developers to use one specific execution model (e.g. a static
cyclic model) for all functionality, increases the complexity of systems since
developers are forced to come up with solutions adhering to the specific execu-
tion model. In addition, force fitting all functionality to be executed under one
execution model often results in systems where the available resources, such
as processing time and memory, are unnecessary over-allocated. Hence, as the
need for new features in products increases, so do the need for better usage
of the limited computational resources, by resource efficient and predictable
execution models.

1.4 Outline of thesis

The reminder of this thesis is outlined as follows.

Part I
Chapter 2 outlines the methodology. It describes the background and the
addressed problems. Furthermore, the chapter outlines the research questions
and presents the contribution of the thesis.
Chapter 3 concludes the thesis.
Part II
The second part of this thesis contains publications with detailed descriptions
of the research carried out within this thesis.

Chapter 2

Research framework

This chapter presents the research framework used in this thesis. It gives in-
formation of the research methodology, background and problem formulation.
The research question addressed in this thesis is presented and motivated. The
chapter ends with a presentation of the contributions of the thesis.

2.1 Methodology

The research forming this thesis has been performed in close cooperation with
industry. Arcticus Systems AB, an OS and tool developer with recognized
competence in design of real-time applications, has been the main industrial
partner.

The research problems addressed in this thesis are mainly based on a series
of interviews with senior designers in the heavy vehicle domain. Answering the
research questions has mainly been done by prototyping. Prototypes of Rubus
OS supporting multiple execution models, and an efficient application to com-
pute memory requirements for an execution model (the SSX model), has been
developed. Validation of the research requires the prototypes to be integrated
as support in sharp releases of the Rubus tool-suite. The integration has been
initiated and is currently an ongoing activity. The next generation of the Rubus
tool-suite will support a memory efficient stack sharing execution model (SSX
model). Furthermore, the tool-suite will have a timing and memory analysis
application for the SSX model integrated.

7

8 Chapter 2. Research framework

2.2 Background and motivation

Computer scientists are constantly proposing new theories to improve develop-
ment of real-time systems. For example, the research community has provided
a large numbers of different execution-models, however, only a few of these
models has gained real interest in the industrial domain. In general, very lit-
tle of the theories that allows predictable and resource efficient integration of
multiple execution-models has been adopted by industry. The reason for this,
we believe is, that there has been little effort done to encapsulate these theories
by supporting development tools and techniques.

The aim of this thesis is to study the possibility to make development of
embedded real-time systems more efficient by introducing support for a pre-
dictable and memory efficient execution model in a tool-suite for development
of embedded real-time system.

2.3 Problem description

With the large number of different execution models, provided by the research
community, an investigation of common requirements within the intended do-
main is required. It is required since many of the proposed execution models
are developed in academia and often without considering actual real-world re-
quirements. There are several real-world requirements that put restrictions on
execution models and hence restrict the number of suitable models for an in-
tended domain. For example, development processes and safety issues as well
as target platforms might put specific requirements on execution models.

Moreover, a predictable integration of a novel execution model for develop-
ment of dependable systems, require careful design and consideration of safety
issues when implemented in an operating systems. This is especially important
when several execution models must co-exist in the same operating system. In
addition, many of the academic execution models only provide analyzability
of timing properties. However, in real-world applications it is likely that both
timing properties and memory consumptions should be analyzable. Hence, an
efficient execution model for industrial development might need to be analyz-
able with respect to timing and memory consumption, while co-existing with
other execution models. This might require development of novel analysis
methods.

2.4 Research questions 9

2.4 Research questions

To address the research problem defined in the previous section, the following
research questions was formulated.

What are common requirements in development of embedded real-time sys-
tems?

(Q-1)

In order to integrate support for an efficient and suitable execution model
in development tools, the common requirements within the intended domain
should be investigated. This question will give an indication of the main prop-
erties that an execution model should support. The question is motivated by
the fact that many systems are resource constrained and that the architectures
can differ between different systems. For example, within the heavy vehicle
domain, the systems often consist of a few electronic control units (ECU) with
a lot of functionality (hundreds of tasks) within each ECU. On the other hand,
within the automotive domain, the systems are developed with a large number
of ECUs, where each ECU typically has a dedicated functionality. This might
affect requirements on the execution models, in the sense that an execution
model must be efficient due to resource constraints and predictable for differ-
ent type of functionality to execute on the same target.

How can development using multiple execution models (hybrid static, dynamic)
be efficient with respect to processor utilization?

(Q-2)

This question will answer how development of embedded systems, using
static and dynamic execution models, can be made more efficient with respect
to processor utilization. The question is motivated because many embedded
systems have very limited amount of processing time, and by the fact that the
amount of functionality in embedded systems are increasing. The question will
answer how the available processing time can be efficiently used in a system
with static and dynamic execution models.

How can the SSX model be integrated to co-exist with other execution mod-
els in a real-time operating system?

(Q-3)

10 Chapter 2. Research framework

This question will answer how the SSX model can be integrated to co-exist
with other execution models in an operating system used in development of
industrial real-time systems. The question is motivated by the fact that many
embedded systems contain safety critical functionality. Hence, when introduc-
ing a new execution model, it must be guaranteed that the new model do not
interfere with the existing ones in the sense that it affect the safety of the sys-
tems.

How can the run-time memory consumption within the SSX model be analyzed?

(Q-4)

This question addresses analyzability of memory requirements, specifically
the stack memory requirements, for functionality executing under the SSX
model. The question will answer how to efficiently predict memory require-
ments for functionality executing under the execution model. It is motivated
by the fact that most execution models only provide timing analysis of func-
tionality. Very little effort has been done to analyze memory consumption of
execution models.

2.5 Contribution

This section addresses the research questions and describes the contributions
of the author.

What are common requirements in development of embedded real-time sys-
tems?

(Q-1)

Paper A addresses Q-1. The paper presents a series of interviews, aiming to in-
vestigate requirements in development of heavy vehicles. The paper describes
both current and future requirements.

How can development using multiple execution models (hybrid static, dy-
namic) be efficient with respect to processor utilization?

(Q-2)

2.5 Contribution 11

Paper B addresses Q-2. The paper shows how a hybrid, static and dynamic,
scheduled system can be made more efficient by moving functionality from
the static scheduled part to the dynamically scheduled part while guaranteeing
analyzability of timing properties.

How can the SSX model be integrated to co-exist with other execution mod-
els in a real-time operating system?

(Q-3)

Paper C addresses Q-3. The paper describes an integration of the SSX model
in a commercial operating system called Rubus. The SSX model is motivated
by requirements described in paper A and the fact that the model lend itself to
timing analysis, as described by paper B.

How can the run-time memory consumption within the SSX model be ana-
lyzed?

(Q-4)

Paper D addresses Q-4. The paper describes an exact and an approximate
method to establish an upper bound on maximum stack usage in preemptive
shared stack systems. The described methods can be applied to, for example,
tasks executing under the SSX model.

The following describes the authors contributions in detail.

Paper A: Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Present and Fu-
ture Requirements in Developing Industrial Embedded Real-Time Systems -
Interviews with Designers in the Vehicle Domain, In Proceedings of the 13th
Annual IEEE International Conference and Workshop on the Engineering of
Computer Based Systems, Potsdam, Germany, March 2006.

Kaj was the main author of the paper and has been the involved in all parts
of the work. He was responsible of preparing the study and establishing the
research questions. He coordinated the interviews and analyzed the results. He
was also responsible of reporting the results.

12 Chapter 2. Research framework

Paper B: Jukka Mäki-Turja, Kaj Hänninen, Mikael Nolin, Efficient Devel-
opment of Real-Time Systems Using Hybrid Scheduling, In Proceedings of the
International Conference on Embedded Systems and Applications, Las Vegas,
USA, June 2005.

Kaj has been involved and provided the real-world information for the case
study part of the paper.

Paper C: Kaj Hänninen, John Lundbäck, Kurt-Lennart Lundbäck, Jukka
Mäki-Turja, Mikael Nolin, Efficient Event-Triggered Tasks in an RTOS, In Pro-
ceedings of the International Conference on Embedded Systems and Applica-
tions, Las Vegas, USA, June 2005.

Kaj was the main author of the paper and has been involved in all parts of
the work. He was responsible of implementing the execution model in Rubus
and evaluating the implementation.

Paper D: Kaj Hänninen, Jukka Mäki-Turja , Markus Bohlin, Jan Carlson,
Mikael Nolin, Analysing Stack Usage in Preemptive Shared Stack Systems,
MRTC report ISSN 1404-3041 ISRN MDH-MRTC-202/2006-1-SE,Mälardalen
Real-Time Research Centre, Mälardalen University, July, 2006.

Kaj was the main author of the paper. He initiated and coordinated the work
and did the background research on related work. He was also responsible for
parts of the implementation and did the evaluation of the approximate method.

Chapter 3

Conclusion

This thesis addressed the introduction of an efficient execution model in a tool-
suite for development of industrial embedded real-time systems. The thesis
showed, by an investigation of industrial requirements, that many systems are
developed using only a few execution models and that introduction of novel
execution models could make development of industrial systems more efficient.

An integration of an efficient stack sharing execution model (SSX) in a real-
time operating system was presented. The integration was presented in detail
to highlight common issues in implementing support for multiple execution
models in a real-time operating system. Furthermore, it was shown that the
integrated execution model could be analyzed for both timeliness and memory
consumption. A case study of an industrial system showed that reductions
in processor utilization could be achieved, by using the integrated execution
model.

In essence, this thesis showed that introduction of additional execution
models in industrial development tools, can make development of real-time
systems more efficient.

13

Bibliography

[1] N. Audsley, A. Burns, M. Richardson, and A. Wellings. Hard Real-Time
Scheduling: The Deadline Monotonic Approach. In IEEE Workshop on
Real-Time Operating Systems, 1992.

[2] G.C. Buttazzo. Hard Real-Time Computing Systems. Kluwer Academic
Publishers, 1997. ISBN 0-7923-9994-3.

[3] C. Liu and J. Layland. Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment. Journal of the ACM, 20(1):46–61, 1973.

[4] J. Liu. Real-Time Systems. Prentice Hall, 2000. ISBN 0-13-099651-3.

[5] K. Sandström, C. Eriksson, and G. Fohler. Handling interrupts with static
scheduling in an automotive vehicle control system. In Proceedings of
the 5th International Conference on Real-Time Computing Systems and
Applications, 1998.

[6] B. Sprunt, L. Sha, and J.P. Lehoczky. Aperiodic task scheduling for hard
real-time systems. Real-Time Systems Journal, 1(1), 1989.

[7] J.A. Stankovic, M. Spuri, K. Ramamritham, and G.C Buttazzo. Deadline
Scheduling for Real-Time Systems, EDF and Related Algorithms. Kluwer
Academic Publishers, 1998. ISBN 0-7923-8269-2.

[8] Arcticus systems. Web page, http://www.arcticus-systems.se.

[9] J. Xu and D.L Parnas. Scheduling processes with release times, deadlines,
precedence and exclusion relations. IEEE Transaction on Software Engi-
neering, 16(3), 1990.

II

Included Papers

17

Chapter 4

Paper A:
Present and Future
Requirements in Developing
Industrial Embedded
Real-Time Systems
- Interviews with Designers
in the Vehicle Domain

Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin
In Proceedings of the 13th Annual IEEE International Conference and Work-
shop on the Engineering of Computer Based Systems, Potsdam, Germany,
March, 2006.

19

Abstract

In this paper, we aim at capturing the industrial viewpoint of todays and fu-
ture requirements in development of embedded real-time systems. We do this
by interviewing ten senior designers at four Swedish companies, developing
embedded applications in the vehicle domain. This study shows that reliability
and safety are the main properties in focus during development. It also shows
that the amount of functionality has been increasing in the examined systems.
Still the present requirements are fulfilled using considerably homogenous de-
velopment methods. The study also shows that, in the future, there will be
even stronger requirements on dependability and control performance at the
same time as requirements on more softer and resource demanding functional-
ity will continue to increase. Consequently, the complexity will increase, and
with diverging requirements, more heterogeneous development methods are
called for to fulfil all application specific requirements.

4.1 Introduction 21

4.1 Introduction

There is an increasing trend towards software solutions in embedded systems.
Replacing mechanical functionality with computer-controlled solutions gives
opportunities for more advanced and more flexible functionality, e.g., anti-lock
braking, traction control etc. Over the years, a large number of publications,
e.g., [1][2][3][4][5][6][7][8] has addressed design issues, embedded applica-
tion trends or requirements in development of industrial embedded systems.
Möller et al [4] present the industrial requirements, both technical as well as
process related requirements, on component technologies in the heavy vehicle
domain. Åkerholm et al [8] presents an investigation concerning classification
of quality attributes for component technologies in the vehicle industry. The
investigation show that dependability characteristics (safety, reliability and pre-
dictability) are considered as the most important ones. Koopman [3] presents
attributes of four different types of embedded systems (signal processing sys-
tems, mission critical and distributed control systems and consumer electronic
systems). Koopman addresses requirements, life-cycle support and business
models in development of embedded systems. Graaf et al [1] presents an in-
dustrial inventory of seven companies developing embedded software products.
Their inventory of state of practice addresses requirements engineering and ar-
chitectural issues such as design and analysis. The inventory covers compa-
nies from many different domains, e.g., developers of mobile phones and con-
sumer electronics, distributed data management solutions etc. In this paper,
we investigate the industrial requirements in the vehicle domain, especially re-
quirements related to real-time issues on a high overall level, such as safety
and reliability requirements of embedded application/products, as well as on a
lower technical level, such as choice of operating system (OS) and execution
models. The study was performed as a series of interviews with ten senior
designers at four Swedish companies. Specifically, we address the following
questions: Q1. What characterise the embedded applications? Q2. What are
the designers concern on application properties such as safety, maintainability,
testability, reliability, portability and reusability? Q3. How are the applica-
tions verified/analysed? Q4. What are the considerations in choosing an OS,
and execution model? Q5. What resources are considered as constrained in
the systems, and to what degree? Q6. What kind of tool support is needed in
the development of future systems? Q7. What are the designers experiences of
software components, i.e., component based development?

The aim of this work is foremost to explore and describe the current and
future industrial requirements as perceived by the senior designers. The paper

22 Paper A

is organised as follows. In Section 4.2, we describe the framework used in the
study of the requirements. In Section 4.3, we describe the results of the con-
ducted interviews. In Section 4.4, we address the main questions of the study
and discuss our observations of the interviews. In Section 4.5, we conclude
our investigation. The paper ends, in Section 4.6, with a discussion concerning
verification of the presented results.

4.2 Investigation setup

For this study, we adopted the investigation framework described by Robson
[9]. According to the framework, both the purpose of a study and the theory
guiding the study should form as guidance when developing the actual research
questions. The substance and the form of the research questions form the basis
when deciding on suitable investigation method and sampling strategy.
Purpose: The main objective of this study was to investigate the typical set of
industrial requirements in development within the embedded control commu-
nity in the vehicle domain. The results are expected to form a foundation for
further research on tool support, design, analysis and synthesis of embedded
real-time systems using multiple execution models.
Theories: Our experience is that there has been little effort done to encapsulate
novel theories by supporting development tools and techniques in the indus-
trial domain. Traditionally, the development of these systems tends to focus
on the safety critical parts, which constitutes a small fraction of the total sys-
tem functionality. Homogenous development methods are often used for both
the safety-critical and the non-critical functionality in the systems. This results
in unnecessary complex designs and over utilised systems, where valuable re-
sources such as processing time and memory resources are wasted. We believe
that there is a need for more sophisticated development support compromising
of additional tool support and more domain and application specific develop-
ment platforms, resulting in a more heterogeneous development environment
and resource efficient run-time structure. The development platform should
aim at handling complexity by relieving the developer of too low details while
preserving predictability for core functionality as well as flexibility for less
critical functionality in the run-time structure.
Questions: We compromised upon a set of quantitative and qualitative, closed
and open-ended questions. The main purpose of the quantitative questions was
to facilitate analysis of importance among application properties.
Data collection: Due to the substance and the form of the research questions,

4.3 Investigation results 23

the study was conducted as face-to-face interviews using a questionnaire. A
pilot study was performed at an OS and development tool vendor. The purpose
of the pilot study was to refine the data collection plans and to evaluate the
feasibility of the chosen data collection method. The structure of the question-
naire was refined and additional questions were added, as a result of the pilot
study.
Sampling: In this study, we use purposive non-probability samples, i.e., the
samples are selected as to interest (we do not make generalisation to any pop-
ulation beyond the samples). Four successful and renowned companies in the
Swedish vehicle domain were participating in the study. The samples repre-
sent both subcontractors as well as own equipment manufacturers. Moreover,
the selection is a representative subset of both off-road and road vehicles. The
companies range from small and medium-sized enterprises to large corporate
groups. The thorough examination of the applications and development pro-
cesses require us for secrecy reasons to refer the companies as A, B, C and D.
Ten software designers with several years of experience from development of
control systems for embedded real-time systems participated in the study. For
preparation reasons, the questionnaire was mailed in advance to each intervie-
wee.
Analysis: Upon agreement with the interviewees, each interview was tape-
recorded. The recordings and notes taken during the interviews were inter-
preted and analysed both individually and at group basis. We did however not
use any specific software package to interpret or analyse the collected data.
Biases: Several factors may introduce unwanted biases in a real-world study.
For example, recording interviews may affect the respondent, welcoming or
sharing the respondents’ views may affect the interview, and so on. To avoid
or at least minimise possible biases, we followed recommendations given in
[10][9][11] about how to construct questionnaires and conduct face-to-face in-
terviews in real-world situations. It is our experience that the research ques-
tions were easily understood and similarly interpreted by the interviewees, and
that the recording had no or very little effect on the respondents and the out-
come of the interviews.

4.3 Investigation results

In the following section, we describe: (i) Real-time and functional character-
istics of the examined applications. (ii) The interviewees concern on selected
application properties. (iii) The currently used resource management policies

24 Paper A

and available execution models of the examined applications. (iv) The actual
resource situation in the examined systems i.e., availability of computing re-
sources such as CPU time and memory. (v) Some desired support in develop-
ment tools, as expressed by the interviewees.

4.3.1 Application characteristics

The product volumes of the investigated applications are typically less than
1000 products per year. The applications are mainly used as control appli-
cations for various types of vehicles. In addition to control functionality, the
applications typically contain functionality for information handling such as
logging for diagnostic purposes and presentation of data i.e., visual interac-
tion with the system operators. The architectures of the examined systems are
of distributed character where several nodes, Electronic Control Units (ECUs),
perform computations and communicate with each other mainly via CAN buses.
Each ECU is usually dedicated to handle specific type of functionality e.g., an
engine controller is mainly responsible for controlling engine specific function-
ality such as fuel injection, ignition etc. The number of ECUs in the systems
has typically been increasing over the years. For example, table 4.1 shows the
amount of software and the number of control units in evolution of a single
product at one of the investigated companies.

Table 4.1: An example of the amount of software and the number of ECUs in
a single vehicle, at company A

Year 1991 1997 2002
Lines of code 20000 55000 140000
Files (.c, .h) 50 400 700

ECUs 1 2 3

Current characteristics: The examined applications are realized by hard
and soft real-time tasks. In several systems, hard real-time tasks are used to
model the majority of all functionality. In extreme cases, as much as 95% of
the functionality is modelled by hard real-time tasks. In addition, functionality
with requirements that are neither hard nor soft, but somewhere in-between, is
often modelled as hard. In context to this, the designers stress that develop-
ment of hard application tasks is considered as more controllable and simpler
than development of soft application tasks. In addition, several interviewees
consider time-triggered systems to be the most convenient way to model hard

4.3 Investigation results 25

real-time functionality. Typical technical requirements in the examined appli-
cations include; jitter requirements and precedence relations among tasks. The
timing constraints, e.g., deadlines on different functionality, can vary as much
as three orders of magnitude in a single application, typically from millisec-
onds to several seconds. The amount of safety critical functionality varies in
the investigated applications. In all of the examined applications, the control
functionality is considered as being most safety critical and developed mainly
using the time-triggered paradigm. Several interviewees consider their systems
being I/O intensive. In some systems, as much as 30% of the available pro-
cessing time and hundreds of I/O pins is used to handle I/O functionality. The
I/O functionality is realised by both time and event-triggered execution mod-
els. However, it is most commonly realised using the time-triggered model,
i.e., through polling. The information intensity in the investigated applica-
tions varies. In some applications, the information originates from logging and
diagnostics of the systems operational conditions, whereas other applications
receive and process external information that is presented to the users during
operation.
Future characteristics: The interviewees believe that the information intensity
and number of control functionality will increase in the future. They state that
in the future both legislation and insurance reasons will force development of
more sophisticated control algorithms and require an increasing amount of in-
formation to be saved for diagnostic reasons. In addition, designers from one
company predicts that legislations, especially non-pollution laws, and future
trends in development of vehicle engines will require better control precision.
This will result in an increased transformation from open to closed loop con-
trolling. Furthermore, some interviewees predict that functionality interacting
with the environment will be developed using fewer sensors in the future and
that certain conditions/states of the environment will be derived using the re-
maining set of sensors. Classification of functionality in Safety Integrity Levels
(SIL) [12] is also believed to be an important activity in the future.

4.3.2 Functional application properties

In this section, we present the interviewees concern on the following applica-
tion properties: safety, maintainability, testability, reliability, portability and
reusability.
Safety: Safety is considered as a derived property originating foremost from
analysis and testing. In some of the examined systems, redundancy and cer-
tain safety properties are solved outside the actual software implementation, by

26 Paper A

physical cabling etc. The software in these systems can be overridden by me-
chanics in case the software malfunctions and a safety critical situation occurs.
Maintainability: Some interviewees state that the developers consider and try
to facilitate future maintainability of applications. Some interviewees also state
that they have very strong requirements (economical and quality) on applica-
tions being error free since withdrawing an erroneous application would be
very costly due to the product volumes. There seems to be an agreement on
that maintainability will have to be considered as a more important property
in the future, specifically in the context of upgradeability. The lifespan of the
examined systems can be several decades and customers put demand on new
features and require hardware replacement parts to be available during the en-
tire lifespan of a system. This requires applications to be well structured and
easy to understand for future developers (maintainers).
Testability: Testability is stated as an important and necessary property to
achieve reliability and safety. Today testing is the main technique to verify
functional requirements.
Reliability: Several interviewees state that a company’s reputation is very much
dependent on the reliability of the delivered systems; i.e., it is considered as be-
ing of utmost importance to develop systems that actually are, and perceived
by customers as, reliable. Failure in producing reliable systems is often stated
to origin from erroneous requirement specifications, i.e., not from the imple-
mentation itself.
Portability: Some interviewees do not consider portability during development,
simply because they seldom change hardware or OSs. Other respondents claim
that portability is an increasing concern and that it is mainly facilitated by sep-
aration of hardware and software dependent functionality.
Reusability: Reusability of both soft- and hardware is an ongoing activity in
all of the examined systems. However, the amount of reusable software varies
in the examined systems. Some interviewees’ state that reusability of archi-
tectures is not achieved until they have undergone several modifications, hence
it may takes years before certain parts of architectures are actually reusable.
To facilitate reusability among different systems, some of the companies have
developed common software platforms. The platforms contain all common
functionality and have standardised interfaces. General software components
are also mentioned as reusable entities. The components are general in the
sense that they are, to a large degree, application independent.
Additional properties: When asked for additional properties that are consid-
ered as important for their applications, the interviewees mentioned robust-
ness, scalability and usability. Robustness is defined by the respondents as

4.3 Investigation results 27

’the absence of unexpected behaviour’ or as ’an additional degree of reliabil-
ity’. Scalability is considered in the context of development as the ability to
scale systems using the available development tools. Usability of architectures
is mentioned as a process related issue. In that context, the usability of ar-
chitectures is said to be dependent on whether it facilitates understanding and
communication between developers. All of the respondents stress the impor-
tance of architectural descriptions as means of communication between people
i.e., not only as logical or structural system description.

4.3.3 Temporal application properties

This section describes the interviewees view on the temporal analysability of
the applications and verification of functional/temporal behaviour. It also ad-
dresses the verification of resource utilisation in the examined applications.
Analysability and verification: Analysis of real-time properties such as response-
times, jitter, and precedence relations, are commonly performed in develop-
ment of the examined applications. In this context, some interviewees stress the
desire of better analysis support in development tools and state that analysing
a whole system with respect to temporal and spatial attributes is very difficult,
sometimes even intractable. Due to the difficulties in analysing a complete
system, and for upgradeability reasons, some of the examined systems are in-
tentionally over-dimensioned with respect to processing power and memory re-
sources. The emphasis on verification is foremost on the functional behaviour.
Our experience is that the temporal attributes are not serving as direct guiding
factors (albeit they are more or less considered) during development.
Functional behaviour: All of the respondents had a unanimous opinion that
analysis and verification of the functional behaviour was the most important
activity in the verification and analysis processes (more important than analy-
sis and verification of temporal behaviour). The functional behaviour is mainly
verified by manual and automatic module and systems tests. Failure mode and
effect analysis (FMEA) are commonly performed both during development and
on complete systems. Several interviewees state that source code inspection is
performed among the developers and that it serves as analysis/verification of
functional behaviour.
Temporal behaviour: The verification of temporal behaviour was said to have
lower importance than of functional behaviour. The temporal verification of
the examined systems commonly involves verification of precedence relations
among functions and verifying that deadlines are met i.e., that estimated worst-
case execution times holds and that calculated worst case response-times are

28 Paper A

met.
Verification of resource utilisation: Many of the examined systems have been
evolving for several years. The amount of resources, e.g., the number of control
units, has been increasing over the years. Currently, all of the examined sys-
tems have more than enough processing time and available memory to perform
the intended computations. Hence, verification of resource utilisation, such
as memory consumption, is considered of lower importance. However, some
interviewees desire possibilities to analyse memory consumption, mainly to
be used when the available resources are running low, i.e., before additional
resources (ECUs) have to be added to the system.

4.3.4 Operating systems

In this section, we describe the issues involved in choosing operating system
and the execution models used in the examined applications. We describe the
main motivations to why these operating systems were chosen and the intervie-
wees expressed experience of the used execution models. When investigating
the type of technical considerations that has bearing on the choice of OS for
the embedded applications, we discovered several non-technical considerations
that are strong motivators to the choice of a specific OS, e.g., requirements
on coordination to use a common OS at different departments of a company.
These requirements do not directly reflect the technical need in development.
The technical requirements are commonly considered later on. However, the
requirements on simplicity, i.e., ease of use, is a motivator both when choosing
OS and among available execution models The commercial operating systems
that are used, or have been used, in the embedded applications by the investi-
gated companies are Rubus [13], VxWorks [14], OSE [15], O’Tool [13], RTX
[16] and WinCE [17]. In addition, one of the investigated companies devel-
ops their own operating systems, used in a majority of their applications. The
main motivation for this is that their own operating systems are claimed to
be simpler, more robust and have less run-time footprint (timing and memory
overhead) than the commercial OSes. The interviewees’ state that the main
considerations when choosing a commercial operating system include:

• Cost (royalties, licenses).

• Availability of supported development tools related to the OS.

• The supported execution models in the OS, i.e., its suitability for the
application domain.

4.3 Investigation results 29

• Coordination within a corporate group or subsidiaries to use a common
OS.

• Recommendations originating from other companies evaluating the OS.

• The popularity of the OS, i.e., to what extent is the OS used by other
companies.

• The OSs internal timing and memory overhead.

• Safety classification issues.

4.3.5 Execution models

Both time- and event-triggered execution models are used in all of the exam-
ined applications. The time-triggered model is commonly used for control
functionality whereas the even-triggered model is used mainly for informa-
tion handling for diagnostic reasons. The interviewees state that the choice
of execution model in development is mainly dependent on: (i) Verification
possibilities, both functional and temporal. (ii) Flexibility of adding new func-
tionality. (iii) Required response-time on functionality. (iv) Simplicity of use
in development.

4.3.6 Resource limitations

This section describes the current resource situation in the examined systems,
as expressed by the interviewees. We investigated whether and to what degree,
the amount of processing time, RAM, ROM and communication bandwidth,
were considered constrained in the systems. As described in Section 4.3.3,
many of the examined systems are intentionally over-dimensioned; hence, the
interviewees did not consider any of the resources as being particularly con-
strained during software development. However, in case the systems would
run out of resources, the interviewees’ state that they would most probably
consider installing additional hardware resources rather than redesigning the
way the applications utilises the resources. This is however, said to be depen-
dent on the urgency of system delivery. In extreme cases, functionality has
been removed from the examined systems, when the available resources have
been fully utilised.

30 Paper A

4.3.7 Desired tool support

In this section, we present the interviewees expressed desire concerning sup-
port in development tools and their experiences of software components, i.e.,
component-based development [18]. The expressed wishes, concerning sup-
port in development tools, amplify the requirements on verification, safety and
reliability aspects. The concise picture seems to be requirements on simulation
and verification possibilities of applications on PCs. Moreover, an integrated
possibility for model-based development with Matlab and Simulink together
with automated code generation is another common desire expressed by the in-
terviewees. The following is a list of desired tool support, as expressed by the
interviewees. The desired support addresses both technical and process related
issues. The interviewees would like to see:

• Simulation of the embedded applications on PCs.

• Replacing of text based user interfaces with graphical user interfaces.

• Support for model based development with possibilities to exchange in-
formation between tools from different vendors.

• Abstractions of graphical models i.e., visualisation of architectures at
different levels and from different views.

• Automatic code generation e.g., from models to source code.

• Support for formal verification of source code.

• Support for execution time analysis.

• Possibilities to identify or trace the requirement specifications from the
source code, and vice versa.

The current support in development tools varies at the companies. For
example, one company has extensive support for simulation of embedded ap-
plications on a PC, whereas others do not have simulation possibilities at all.
However, none of the examined companies has all of the listed support in their
development tools.

4.3.8 Software components

Only one of the examined companies explicitly state that they use software
components in the development of their applications. The company uses both

4.4 Discussion - our observations 31

in-house as well as third party developed components. The reasons to why
the other investigated companies do not use software components are related
to facts such as difficulties in understanding the concept of component-based
development. Furthermore, issues such as modifiability of functionality are
stated as a restricting factor for use of software components. However, all of the
interviewees’ state that the abstraction possibilities that components provide, is
one of the main motivators of component based development, simply because
it facilitates understanding and communication between developers.

4.4 Discussion - our observations

In this section, we address the main questions of the study and present our own
observations and conclusions of the interviews.

Q1. What characterise the embedded applications?
The fact that more and more mechanical solutions are replaced with soft-

ware, results in an increasing complexity both in size and in diversity. The
applications are evolving and contain more heterogeneous functionality that
before. In the future, this requires abilities to cope with (i) increasing data han-
dling and (ii) increasing complexity in control functionality. It is common that
applications contain a mix of hard and soft real-time tasks. We observed that a
surprisingly small fraction (e.g., 25% at company A) of the requirements re-
flects need of hard real-time tasks. Still, the use of hard real-time tasks is very
high (75% at company A). We believe that the high utilisation of hard tasks
is mainly related to three reasons: (i) simplicity in development (ii) for veri-
fications/reproducibility reasons (iii) tradition in development. The simplicity
in development originates from years of evolving support in development tools
that to large extents is intended for development of safety critical real-time sys-
tems. There is also a tradition in using hard real-time tasks for the majority of
functionality, simply because developers tend to rely on designs from previous
projects, instead of scrutinizing and considering the designs appropriateness
for the diverging type of functionality found in today’s and in future applica-
tions. Hence, the predicted increase in information intensity and diversity of
functionality, require use of more suitable development models, i.e., models
for diverging strategies that can handle both safety critical functionality as well
as more flexible and resource efficient functionality in the same system.

Q2. What are the designers concern on application properties such as
safety, maintainability, testability, reliability, portability and reusability?

The future classification of functionality in Safety Integrity Levels (SIL)

32 Paper A

implies that reliability, safety, analysability and testability will continue to be
very important application properties in the future. Moreover, we believe that
facilitating maintainability of the applications will be a more important activity
to consider due to the increasing complexity, long product life cycles and de-
mand on upgradeability of the applications. However, moving into the area of
more maintainable systems, through, e.g., raising the level of abstraction and
introducing reusable frameworks, introduces challenges since it must be done
without compromising the systems safety or reliability.

Q3. How are the applications verified/analysed?
Functional behaviour is typically verified through testing on the target plat-

form, whereas properties such as temporal behaviour are mainly verified with
support of software analysis tools. Worst-case execution times are commonly
estimated during development, and later on, verified through measurements on
the target platform. The interviewees desire tools for verification of both func-
tional and temporal behaviour of embedded applications on PCs. We believe
that for the large fraction of future functionality, predictable and flexible exe-
cution models, where combinations of different analysis techniques that focus
more on average case behaviour and quality of service rather than on worst-
case behaviour, will be significant.

Q4. What are the considerations in choosing an OS, and execution model?
Politics and non-technical aspects are strong motivators in choosing OS.

It is obvious that such issues could motivate the use of an OS that is more
or less suitable to fulfil the technical issues in an application domain or spe-
cific needs within a corporate group. We believe that the increasing com-
plexity in the examined application domain require more focus on technical
issues, such as availability of novel tool support related to the OS and possi-
bility to utilise more suitable execution models in the OS. For example, with
increasing demand on safety classification such as SIL, the OS must be able
to support the trade off between technical aspects such as verifiability and ef-
ficiency. For example, the small core of safety critical functionality should be
allowed to use more resources if it must fulfil the SIL classification and be
verifiable (testable and analysable), whereas the rest of the functionality (non-
safety-critical) should utilise more resource efficient run-time mechanism to
implement the functionality.

Q5. What resources are constrained in the systems, and to what degree?
Our investigation revealed that the computational resources are not consid-

ered as constrained during software development. We believe there are two
possible reasons for this. (i) The investigated companies are already using
resource efficient development methods (legacy methods), originating from

4.4 Discussion - our observations 33

times when all functionality was homogenously implemented. (ii) The sys-
tems are over-dimensioned at the same time as the developers put most effort
in implementing complex functionality without having tool support to analyse
resource consumption, e.g., memory usage. The increasing number of ECUs
reveal that the computational resources are highly utilised from time to time,
i.e., before addition of hardware. With an increase in diverging functionality,
the current situation where a static schedule is used for the majority of all func-
tionality, will either be intractable or overly resource demanding (ending up in
new ECUs being added) in the future. Instead, the future development tools
need to support an efficient and verifiable way to allocate resources, so that
the developers either can: (i) Continue their efficient way of developing with
efficient tool support adapted to the diverging functionality in the application
domain, or (ii) Have novel tool support that allows them to begin developing
systems using efficient and resource saving models. Some interviewees ex-
perience that the quality of software increases when developers do not have to
worry about resource consumption. Hence, future support for resource efficient
development needs to be automated to as large extents as possible.

Q6. What kind of tool support is needed in the development of future
systems?

The view on future requirements is that safety critical functionality needs
to be certifiable and the emphasis on less critical functionality will be on more
efficient resource usage (e.g., average resource utilisation rather than worst
case utilisation). This requires system integration tools with possibilities to
take domain specific models that support efficient automatic code generation,
reproducibility for the safety critical functionality and efficient resource usage
for the rest. In addition, to cope with the increasing complexity developers
need tools that lift the level of abstraction, i.e., tools that provide both different
levels of abstraction as well as different views (e.g., temporal and functional)
at each level of abstraction. It is imperative that the tools relieve some burden
of developers (our study show that simplicity is a strong motivator in develop-
ment) for example by letting synthesis tools provide details (such as assigning
temporal attributes, priorities etc.) so that requirements are met.

Q7. What are the designers experiences of software components, i.e., com-
ponent based development

There is an ongoing activity at one of the investigated companies concern-
ing reusability of general type (application independent) software components.
We believe that general components facilitate development and may increase
the software quality since they are often adapted in several applications and
being subject to extensive testing. However, to be resource efficient, or pre-

34 Paper A

dictable for safety critical parts, these type of components need to be efficiently,
and/or predictably, synthesised, i.e., become application specific in the run time
system. Hence, the components should be general and execution model inde-
pendent during development, and then mapped to an application specific run-
time structure.

4.5 Conclusions

In this paper, we presented some requirements in development of industrial
embedded systems in the vehicle domain. The requirements were collected by
a number of interviews with ten senior designers at four companies in Swe-
den. Many of the investigated applications are developed using methods that
are adequate for the (relatively small) parts that are safety critical. Less critical
parts are adapted to fit into the framework of the critical parts. With the in-
creasing size and complexity of software, this homogenous way of developing
applications will, we believe, be inadequate. In the future software develop-
ment strategies, methods and tools must be able to capture the different diverse
requirements of the applications and trends in the application domains. Rang-
ing from a small core part of the application that is safety critical to a larger
part of the system focused on, for example, quality of service and average
case behaviour. The characteristics of the examined systems and the predicted
increase in information intensity and higher precision on control functional-
ity, would allow for more suitable execution models, i.e., resource saving and
quality enhancing, to be introduced (one company even expressed their inter-
est in execution models addressing variable quality of service levels). A wide
spectrum of different kind of tool support is desired in development of the ap-
plications. For example, tools for model-based development with simulation
possibilities and automatic code generation are considered as highly desirable.
Furthermore, the use of software components and CBSE in general, provides
possibilities for architectural descriptions at a high level. The importance of ar-
chitectural descriptions as means of communication between developers, i.e.,
not only as logical or structural system descriptions, implies that a strong moti-
vator to use software components is their ability to serve as descriptive entities,
i.e., not only as reusable entities.

4.6 Verification of the investigation results 35

4.6 Verification of the investigation results

According to Robson [9] there are no standardised means of assuring complete
reliability in a study that use flexible design strategy. We did however follow
recommendations in [9] to minimise threats to the reliability of the conducted
study by:

• Studying and minimising possible sources of biases.

• Describing the application characteristics, properties etc. (Section 4.3)
based on information from notes and tape recordings taken during the
interviews.

• Interpreting the respondents answers at a group basis when necessary.

• Verifying the observations (Section 4.4 and Section 4.5), with the help
of a senior designer with expertise in vehicular real-time systems.

• Verifying our observations (Section 4.4) with representatives from two
of the participating companies.

Bibliography

Bibliography

[1] B. Graaf, M. Lormans, and H. Toetenel. Embedded software engineering:
The state of the practice. IEEE Software, 20(6), 2003.

[2] B. Graaf, M. Lormans, and H. Toetenel. Software technologies for em-
bedded systems: An industry inventory. In 4th International Conference
on Product Focused Software Process Improvement, Rovaniemi, Finland,
2002.

[3] P. Koopman. Embedded systems design issues(the rest of the story). In
Proceeding of the International Conference on Computer Design(ICCD),
Austin, October 1996.

[4] A. Möller, J. Fröberg, and M. Nolin. Industrial requirements on compo-
nent technologies for embedded systems. In International Symposium on
Component-based Software Engineering(CBSE7), Edingburgh, Scotland,
May 2004.

[5] A. Möller, M. Åkerholm, J. Fröberg, and M. Nolin. Industrial grading of
quality requirements for automotive software component technologies. In
Embedded Real-Time Systems Implementation Workshop in conjunction
with the 26th IEEE International Real-Time Systems Symposium, Miami,
USA, December 2005.

[6] C. Norström, M. Gustafsson, K. Sandström, J. Mäki-Turja, and N-E.
Bånkestad. Experiences from introducing state-of-the-art real-time tech-
niques in the automotive industry. In Eight Annual IEEE International
Conference and Workshop on the Engineering of Computer-Based Sys-
tems, Washington, US, April 2001.

36

[7] P.G. Paulin, C. Liem, M. Cornero, F. Nacabal, and G. Goossens. Em-
bedded software in real-time signal processing systems: Application and
architecture trends. In Proceedings of the IEEE, Volume 85, Issue 3, 1997.

[8] M. Åkerholm, J. Fredriksson, K. Sandström, and I. Crnkovic. Quality
attribute support in a component technology for vehicular software. In
Fourth Conference on Software Engineering Research and Practice in
Sweden, Linköping, Sweden, October 2004.

[9] C. Robson. Real World Research, 2nd edition. Blackwell Publishing,
2002.

[10] M G.E. Peterson. User satisfaction surveys, what the engineer should
know. In Proceedings of the Ninth IEEE Symposium on Computer-Based
Medical Systems, June 1996.

[11] R. Yin. Case Study Research, 3rd edition. Sage Publications, 2003.

[12] International Electrotechnical Commission (IEC). Functional safety and
IEC 61508. Geneva, Switzerland, May 2000.

[13] Arcticus systems. Web page, http://www.arcticus-systems.se.

[14] Wind River. Web page, http://www.windriver.com.

[15] Enea Embedded Technology. Web page, http://www.ose.com.

[16] Ardence. Web page, http://www.vci.com.

[17] Microsoft. Web page, http://msdn.microsoft.com/embedded/prevver/ce.net/.

[18] I. Crnkovic and M. Larsson. Building Reliable Component-Based Soft-
ware Systems. Artech House, 2002.

Chapter 5

Paper B:
Efficient Development of
Real-Time Systems Using
Hybrid Scheduling

Jukka Mäki-Turja, Kaj Hänninen, Mikael Nolin
In Proceedings of the International Conference on Embedded Systems and Ap-
plications, Las Vegas, USA, June, 2005.

39

Abstract

This paper will show how advanced embedded real-time systems, with
functionality ranging from time-triggered control functionality to event-triggered
user interaction, can be made more efficient. Efficient with respect to develop-
ment effort as well as run-time resource utilization. This is achieved by using
a hybrid, static and dynamic, scheduling strategy. The approach is applicable
even for hard real-time systems since tight response time guarantees can be
given by the response time analysis method for tasks with offsets.

An industrial case study will demonstrate how this approach enables more
efficient use of computational resources, resulting in a cheaper or more com-
petitive product since more functionality can be fitted into legacy, resource
constrained, hardware.

5.1 Introduction 41

5.1 Introduction
As the complexity of embedded real-time systems keeps growing, both by in-
creases in size and in diversity, the developers are faced with the increasing
challenge of modelling, analyzing, implementing and testing both the func-
tional as well as the temporal behavior of these systems. This paper will present
ways to simplify some of that complexity by introducing methods to verify the
temporal correctness for a larger class of such systems.

Traditionally, one design parameter has been what execution model to choose.
Two common and widespread execution models are the static and dynamic ex-
ecution models:

• Static scheduling, where a schedule is produced off-line. The schedule
contains all scheduling decisions, such as when to execute each task or to
send each message. During run-time a simple dispatcher dispatches tasks ac-
cording to the schedule. Static scheduling is sometimes referred to as time-
triggered scheduling.

• Dynamic scheduling, where scheduling decisions are made on-line by a run-
time scheduler. Typically some task attribute (such as priority or deadline)
is used by the scheduler to decide what task to execute. The scheduler im-
plements some queueing discipline, such as fixed priority scheduling or ear-
liest deadline first. Dynamic scheduling is sometimes referred to as event-
triggered scheduling.

Since both models have their pros and cons, the design decision of which
one to use is not simple. A few trade-offs when choosing execution model are:

• Overhead – Since all scheduling and synchronization decision are made off-
line in the static approach, the run-time overhead for scheduling is kept low.
In dynamic scheduling these decisions are made on-line, often resulting in a
larger overhead.

• Responsiveness – Statically scheduled systems are inflexible and have there-
fore limited possibility in responding to dynamic events, resulting in poor
responsiveness. Dynamically scheduled systems, on the other hand, handles
dynamic events naturally and can provide high degree of responsiveness.

• Resource usage – In order to provide some degree of responsiveness for dy-
namic events in the environment, statically scheduled systems tend to waste
resources on redundant polling, whereas event-triggered dynamic schedulers
only handle the actual events, enabling better service to soft or non-real time
functionality when events do not occur at their maximum rate.

• Overload – In static scheduling the effects of overload are highly predictable.

42 Paper B

The exact capacity, e.g. in terms of number of inputs handled, is known and
the effect of lost events, e.g. due to slow polling, can be predicted. In dynamic
scheduling, no natural overload control is inherent. Instead, ad-hoc mecha-
nisms are used to prevent, e.g., faulty sensors from flooding the systems with
interrupts. A dynamically scheduled system which becomes overloaded is
unpredictable, it is often difficult to assess which buffer will overflow and
thus which tasks will miss their deadlines.

• Determinism – A statically scheduled system is highly deterministic, it exe-
cutes according to the pre-defined schedule each time. A dynamically sched-
uled system, on the other hand, may exhibit different behavior each time the
system is run, due to, e.g., race conditions on shared resources. This has a
major impact on reproducibility, and thus also on the functional testability,
of the system. Determinism also simplifies the verification process which is
a major part when certifying safety critical applications.

• Complex constraints – Statically scheduled systems can handle more com-
plicated inter-task relation constraints. For example, control systems, where
control performance is important, need to have small (input and/or output)
jitter, which is easier to accommodate in a static scheduler than with simpler
dynamic scheduling parameters.

• Adding new functionality – Once a static schedule has been constructed
it can be very hard to add new functionality in the system, a completely
new schedule has to be constructed. For a dynamically scheduled system,
new functions can be added with a minimum of impact on other parts of the
system.

For further discussions on these trade-offs see [1] which advocates cyclic schedul-
ing), and [2] which advocates dynamic, fixed priority, scheduling.

As can be seen, both approaches have their virtues and one often wishes
to have both approaches available when developing embedded real-time appli-
cations. This desire is clearly illustrated by the last few years of development
in the area of field busses for automotive applications. The Controller Area
Network (CAN) [3] has been predominant in the automotive industry. CAN
provides dynamic scheduling (using fixed priority scheduling). However, the
automotive industry felt a need for a more dependable and predictable bus ar-
chitecture. So when Kopetz brought attention to his Time Triggered Protocol
(TTP) [4], which provides static scheduling, many automotive manufacturers
and their sub-contractors embraced the new technology. It was soon recognized
that TTP was a bit too static. Hence, a consortium of automotive manufactur-
ers and sub-contractors started the development of FlexRay [5], which pro-

5.2 System description 43

vides both static and dynamic scheduling. Also, on the operating-system side,
products that support both static and dynamic scheduling have emerged. For
instance, Arcticus Systems’ operating system Rubus [6], and the open source
real-time operating system Asterix [7]. In fact, most priority driven operat-
ing systems can implement hybrid static and dynamic scheduling by letting a
dispatcher (a time-table) execute at highest priority.

Thus, we see that the need to combine static and dynamic scheduling have
led to some practical solutions available today. However, one problem with
systems that tries to combine static and dynamic scheduling is that they of-
ten consider the dynamic part as non real-time, e.g. [6, 5]. That is, dynamic
scheduled tasks/messages are not given any response-time guarantees, only
best-effort service is provided. However, in order to fully utilize the potential
of combining static and dynamic scheduling in hard real-time systems, both
the dynamic and the static parts need to be able to provide response-time guar-
antees. A recent study of industrial needs recognizes that one of the key issues
for embedded systems is analyzability [8].

This paper presents a method to model hybrid, statically and dynamically,
scheduled systems with the task model with offsets [9]. With this model, and
the corresponding response time analysis, tight response time guarantees can
be given also for dynamically scheduled tasks. The modelled system can be
realized with commercially available operating systems support. Furthermore,
in a case study we show how a legacy system at Volvo Construction Equipment
could benefit from this approach by migrating functionality from the resource
demanding statically scheduled part to the dynamically scheduled part, freeing
system resources while still fulfilling original temporal constraints.

Paper Outline: Next, Section 5.2 describes the type of systems studied in
this paper. Section 5.3 shows how these systems can be modelled using the task
model with offsets. Section 5.4 discusses related work. Section 5.5 illustrates,
through a case study, how this approach can be applied to a legacy system,
migrating functions from a static schedule, freeing system resources. Finally,
Section 5.6 presents our conclusions.

5.2 System description
In this paper, we address the issue of providing tight response-time guaran-
tees to dynamically scheduled tasks running “in the background” of a static
schedule. The system model contains:

• Interrupts. There may be multiple interrupt levels, i.e., an interrupt may be
preempted by higher level interrupts.

44 Paper B

• A static cyclic schedule.
◦A set of periodic static tasks (functions) are scheduled in the schedule. Each

task has a known worst case execution time (WCET).
◦The schedule has a length (a duration) that is equal to the LCM (least com-

mon multiple) of all statically scheduled function periods. The schedule is
constructed off-line by a scheduling tool.

◦Each function is scheduled at an offset relative to the start of the schedule.
This is also referred to as a function’s release time.

◦The static cyclic scheduler activates each function in the schedule at its
release time. When the whole schedule has been executed the schedule is
restarted from the beginning.

Interrupts may preempt the execution of statically scheduled functions.

• A set dynamically dispatched tasks. We call each such task a dynamic task.
These tasks executes in the time slots available between interrupts and stat-
ically scheduled functions. Dynamic tasks are scheduled by a fixed priority
preemptive scheduler. They are assumed to be periodic or, at least, to have a
known minimum time between two invocations.

We assume that a static cyclic schedule has been constructed prior to the
analysis of dynamic tasks. Furthermore, we assume that the schedule is valid
even if its functions are preempted by interrupts. How a scheduler can generate
a feasible schedule, with interfering interrupts, is described in [10].

5.2.1 Example system
Fig. 5.1 shows a static cyclic schedule of length 20, with 4 functions released
at times 0, 5, 10 and 15, with WCETs 4, 1, 1 and 3 respectively.

0 2015105

Figure 5.1: Example of static cyclic schedule

In Fig. 5.2 we see an example execution scenario when executing the sched-
ule from Fig. 5.1, with one interfering interrupt source and one dynamically
scheduled task (two instances of that task are activated). We make the obser-
vation that both interrupts and the static schedule act like higher priority tasks
from the dynamic tasks’ point of view.

5.3 Modelling the system 45

0 2015105

Interrupt

Static Schedule

Dynamic Task

Execution Pattern

A
rr

iv
al

s
an

d
E

xe
cu

tio
n

T
im

es

Figure 5.2: Example execution scenario

One of the main objectives of this paper is to enable response-time calcula-
tions for dynamic tasks. The goal is to model static schedules (and interrupts)
so as to incur as little interference on dynamic tasks execution as possible.
Thus, modelling both functions’ WCETs as well as their release times as accu-
rately as possible.

5.3 Modelling the system
Classical response-time analysis (see e.g. [11, 12, 13]), assumes that a critical
instant1 occurs when all tasks are released simultaneously. Using this model,
the static schedule described in Section 5.2, can be modelled as 4 tasks. These
tasks would have a period of 20 and WCETs of 4, 1, 1, and 3 respectively.
However, this approach is overly pessimistic since it assumes that all four static
tasks can be released for execution at the same time. In our example, assuming
no interrupt interference, a dynamic task with a WCET of 1, would have a
response time of 10 (4+1+1+3+1). However, looking at Fig. 5.1 one can see
that the actual worst possible response-time is 5 (if the dynamic tasks coincides
with the static function scheduled at time 0).

In static schedules it is impossible for all static tasks to start at the same
time. The task model with offset introduced by [14, 15] is able to capture the

1Point in time, where the task under analysis is released for execution, resulting in the longest
possible response-time.

46 Paper B

time separation in static schedules, and thus reduce the pessimism. In [9] we
further reduced the pessimism in the corresponding response time formulae.

5.3.1 Task model with offsets
The task set, Γ, in [9] consists of a set of k transactions, Γ1, . . . , Γk. Each
transaction Γi is activated by a periodic sequence of events with period T i. A
transaction Γi, contains |Γi| number of tasks, and each task is activated when
a relative time, offset, elapses after the arrival of the event.

τij is used to denote a task. The first subscript denotes which transaction the
task belongs to, and the second subscript denotes the number of the task within
that transaction. A task τij is defined by a worst case execution time (Cij), an
offset (Oij), a deadline (Dij), maximum jitter (Jij), maximum blocking from
lower priority tasks (Bij), and a priority (Pij). The task set Γ is formally
expressed as follows:

Γ :={Γ1, . . . , Γk}
Γi :=〈{τi1, . . . , τi|Γi|}, Ti〉
τij :=〈Cij , Oij , Dij , Jij , Bij , Pij〉

There are no restrictions placed on offset, deadline or jitter. The maximum
blocking time for a task, τij , is the maximum time it has to wait for a resource
which is locked by a lower priority task. In order to calculate the blocking
time for a task, usually, a resource locking protocol like priority ceiling or
immediate inheritance is needed. Algorithms to calculate blocking times for
different resource locking protocols are presented in [16]. Priorities can be
assigned with any method (e.g. rate monotonic, deadline monotonic, or user
defined priorities). One must assume that the load of the task set is less than
100%.2

Parameters for an example transaction (Γi) with two tasks (τi1 and τi2) is
depicted in Fig. 5.3. The offset denotes the earliest possible release time of a
task relative to the start of its transaction and jitter (illustrated by the shaded
region) denotes maximum possible variability in the actual release of a task.
The upward arrows denotes earliest possible release of a task and the height
of the arrow corresponds to the amount of execution released. The end of the
shaded region represents the latest possible release of a task.

2This can easily be tested, and if not fulfilled some response-times may be infinite; rendering
the task set unschedulable.

5.3 Modelling the system 47

0

O i1=2

Oi2=5

Ci2=1 Time

1 2 3 4 5 6 7 8 9 10

Ti=10
Ci1=2

Ji1=8

Ji2=1

Figure 5.3: Example transaction

5.3.2 System model
The system in Section 5.2 can be modelled, and dynamic tasks subsequently
analyzed for response times, with the above task model as follows (subscripts
i, s, and d denote a generic interrupt, static, and dynamic transaction respec-
tively):

• Each interrupt will be modelled as a transaction, Γi, containing one single
task (i.e., |Γi| = 1) with Ti set to minimum inter-arrival time of the corre-
sponding interrupt. These interrupt tasks will have the highest priorities in
the system. If there are several interrupt levels, priorities are assigned ac-
cordingly, i.e., highest priority to highest interrupt level.

• The static schedule is modelled as one transaction, Γs, where each release
time in the schedule is modelled as one task, τsj , where the offset ,Osj , is set
to the corresponding release time. The worst case execution time, C sj , is set
to the corresponding functions WCET. The priority, one suffices, for static
tasks must be lower than for any interrupt, but higher than those for dynamic
tasks.

Our example schedule of Fig. 5.1 will be modelled as a transaction (T s =
20) with 4 tasks, with offsets 0, 5, 10, 15 and worst case execution time of 4,
1, 1, 3 respectively.

• Dynamic tasks will have the most variability on how they are modelled.
In the simplest case they are modelled exactly the same way as interrupts
but with lower priorities. This situation corresponds to simple periodic (or
sporadic) dynamic tasks with no jitter, no time separation (offsets), and no
blocking. However depending on the nature of the dynamic tasks their cor-
responding transaction can be extended by:
◦jitter if there is variability in their periodicity,

48 Paper B

◦by blocking if they share resources and providing the run-time system sup-
ports an analyzable resource sharing protocol, and

◦offsets if there are temporal dependencies, such as precedence, among dy-
namic tasks.

Note that dynamic tasks cannot communicate with static tasks, via locked
resources, since they must not affect their temporal behavior. However, there
exist methods to communicate between these two systems that will not affect
the temporal behavior of static tasks, see e.g. [17].

Assuming the dynamic task of Fig. 5.2 is a sporadic task with minimum
inter-arrival time of 10 time units and a release jitter of 3 time units, it is
modelled as a transaction with Td = 10 containing one task with Jdj = 3.
The execution time is 2 and since it is the lowest priority task the blocking is
zero (Cdj = 2 and Bdj = 0).

The formulae to calculate the response times rely on a relaxed critical in-
stant assumption stating that only one task out of every transaction has to coin-
cide with the critical instant. The complete formulae can be found in [9], and
would, for our example system of Fig. 5.2, result in a response time of 5 time
units for a dynamic task with Cdj = 1, assuming no interrupt interference.

Since all type of tasks, interrupt, static, and dynamic, can be analyzed for
responsiveness, the inability of providing response time guarantees will no
longer be a basis for rejecting an execution model for a function, thus making
hybrid static and dynamic scheduling suitable even for hard real-time systems.

5.4 Related work
There has been number of research projects addressing the issue of combin-
ing several execution models [18, 19, 20]. These provide reservation-based
guarantees where task characteristics are not fully known in advance. Fur-
thermore, no commercially available real-time operating system support exist
for them. Our approach is to model existing systems, supported by commer-
cial RTOSes, where task attributes are fully known at design time. However,
[21] aims at modelling real situations through hierarchically modelling differ-
ent schedulers. They cover preemptive and non-preemptive priority schedulers
and do not model static schedulers. In fact, the work presented in this paper
could extend their more general framework with the ability to model also static
schedulers.

5.5 Case study 49

5.5 Case study
A case study [22] conducted at Volvo Construction Equipment (VCE) [23],
with the objective of finding a way to use available resources in a more efficient
way has studied the design trade-offs between static and dynamic scheduling.

VCE has a tradition in statically scheduled systems. This is mainly due to
the safety critical nature of their control systems in their heavy machinery, e.g.,
articulated haulers, trucks, wheel loaders and excavators. Rubus OS by Arcti-
cus [6], used by VCE, has run-time support for the system model described in
Section 5.2.

Currently at VCE, all safety critical functionality is implemented in the
static part and only soft real-time or non real-time activity resides in the dy-
namic part. In recent interviews (in an ongoing research project) they state that
about 20-25% of their applications are considered safety critical, mainly re-
siding in transmission and engine control. However, some operational modes,
have static schedule utilization as high as 74%.

The demand on more functionality in next generation machinery is grow-
ing. However, the static schedule is getting close to full utilization, leaving
little or no room for new functionality. This can either be addressed with new
and more expensive hardware or to find a better way of utilizing the current
hardware resources.

Demand on responsiveness (i.e. deadlines) for functionality in the static
part ranges from a few milliseconds up to several seconds. This could po-
tentially result in very large schedules (with corresponding high memory con-
sumption). VCE’s solution to this has been to fix the schedule length at 100ms,
which result in waste of computing resources due to redundant polling for any
function with a responsiveness demand higher than 100ms (even functions with
responsiveness demand within 100ms but associated with events that occur sel-
dom will in this case waste computing resources). A solution that could get rid
of this redundant polling, while still guaranteeing the responsiveness and with-
out increasing the schedule length, would be highly desirable.

5.5.1 An example system
Here we will present an example system that can be viewed as a simplified
version of one of the systems constructed by VCE. A complete system would
consists of several hundreds of tasks [22] and would be too complex to present
in this paper. We will show how functions currently residing in the static part
can be moved to the dynamic part and, by using the response-time analysis of
[9], still guarantee that the function deadlines will be met. Type of function-

50 Paper B

ality that could be moved, according to [22], consists of events that by nature
are event-triggered, visual interaction with driver, and logging of operational
statistics. Another example of functionality that may be moved to the dynamic
part is control functionality that is not part of sampling or actuation. Control
performance is often sensitive to jitter in sampling and actuation and there-
fore often placed in a static schedule [24]. However, the control calculation
and updating of control state do not have these strict requirements on jitter and
their responsiveness requirement is only restricted by the corresponding out-
put action and sampling in the next period respectively. Therefore control and
updating control state functionality could be moved to the dynamic part.

Task i Ti Ci Di U100 UT

A 10 2 10 20% 20%
B 20 2 5 10% 10%
C 50 1 2 2% 2%
D 50 6 50 12% 12%
E 100 8 100 8% 8%
F 2000 7 100 7% 0.35%
G 2000 8 100 8% 0.4%
H 2000 8 2000 8% 0.4%

Table 5.1: The set of tasks in the Static system

For our example, the task specification in table 5.1 will be used. (For sim-
plicity we will in this example ignore interrupt interference.) Tasks F and G
handle events that may occur once every 2000ms, and with a response time
requirement of 100ms. Placing tasks F and G in a static schedule, means that
they would have to be polled at the rate of their deadline (100ms) instead of
their period (2000ms) (since we do not know exactly when the events are going
to occur). Task H, however, could be polled at the rate of its period (2000ms),
however, the resulting schedule would become too large and memory consum-
ing (it would have to extend for 2000ms and thus consume over 20kb of ROM).
Setting the schedule length to 100ms would be adequate for all tasks except
task H. Hence, the schedule length is set to 100ms, and a resulting schedule
can be seen in Fig. 5.4 on the facing page.

In table 5.1, U 100 represents the task utilization when scheduled in a static
schedule with a period of 100ms, and U T represents the utilization when tasks
are scheduled with their period.

The total utilization of the static schedule is 75%. Adding new functional-

5.5 Case study 51

0 40302010 50 90807060 100

ABc DG FE c D BBBB AAAAAAAA A H

Figure 5.4: Static schedule for table 5.1 task set

ity, requiring some kind of temporal guarantee, to this system can be difficult,
there are not many free time-slots in the schedule, especially if there has to be
room also for interrupts and non-real-time functionality.

Improving the system

However if tasks F, G, and H could be made event triggered, by placing them
in the dynamic part of the Rubus OS, some resources could be freed. The
resulting static schedule can be seen in Fig. 5.5. The utilization for the static
schedule now becomes 52%. The utilization for the three dynamic tasks are
1,15%, resulting in a total utilization of just above 53%. Thus, by moving these
three tasks from the static schedule we free nearly 22%3 of the CPU resources.

0 40302010 50 90807060 100

ABc DE c D BBBB AAAAAAAA A

Figure 5.5: Schedule without tasks F, G and H

Now, it remains to see whether the three tasks will meet their deadlines
when running as dynamic tasks. To be able to calculate response times for
tasks F, G, and H we model the static schedule as a transaction with Ts = 100.
WCETs and offsets are set as follows:

Csj = (5, 10, 4, 2, 10, 3, 10, 2, 4, 2)
Osj = (0, 10, 20, 30, 40, 50, 60, 70, 80, 90)

Assuming that F, G, and H have priorities high, medium, and low respec-
tively, we can calculate the response times for the three tasks according to [9].

3Increase in overhead for tasks F, G, and H as dynamic tasks will be marginal, hence not
considered here.

52 Paper B

And the result is:

RF = 26 RG = 44 RH = 64

We see that all three tasks will meet their deadlines of table 5.1. In fact,
their responsiveness is considerably increased compared to being statically
scheduled every 100ms. It could be mentioned that by removing tasks F, G
and H from the schedule we have enabled shorter response times for other dy-
namic tasks, that might have existed in the system, as well. The schedule in
Fig. 5.4 has a longest busy period of 54ms (between 30–84), whereas the new
schedule in Fig. 5.5 has a longest busy period of 14ms (between 10–24). Since
any dynamic task (in the worst case) will have to wait for the longest busy
period, we now have significantly reduced that time.

With the approach presented in this paper the static schedule could be kept
small (with respect to memory consumption as well as utilization). By mod-
elling the static schedule as one transaction, response time analysis for task
with offsets can be used to evaluate timeliness for the dynamic part.

Our solution reduce utilization by moving functionality, previously polled
excessively, from the static schedule to the dynamic part. Our method also
gives a possibility to shrink the static schedule since functions with long peri-
ods can be moved from the static schedule. It should be mentioned however,
that all tasks in the static schedule share a common stack, whereas moving
tasks from the schedule to the dynamic part may require them to have sep-
arate stacks, hence increasing the memory consumption for dynamic tasks.
However, using a resource locking protocol such as the immediate inheritance
allows also dynamic tasks to share a single stack [16, 25].

The possibility to selectively migrate functions from static scheduled legacy
systems to dynamic scheduled systems will substantially facilitate for compa-
nies to gradually move into the area of dynamic scheduling, and thus, in the
long run, help companies to use cheaper hardware for, or fit more functions
into, their products. Also the development process becomes easier because
event triggered functionality does not have to be force-fitted into a static model.

5.6 Conclusions
As stated in [8] analyzability is one of the major concern for embedded systems
development. We have in this paper shown how a hybrid, static and dynamic,
scheduling model can be modeled and dynamic tasks analyzed for responsive-
ness. The type of system presented can be realized by commercially available

5.6 Conclusions 53

OS support, e.g., Rubus OS by Arcticus [6]. In fact, any fixed priority OS com-
plemented with an external static scheduler can implement this type of system
with the static schedule as a task at highest priority.

A hybrid, static and dynamic, scheduling model simplifies the design trade-
offs of which scheduling model to choose. Appropriate scheduling model can
be chosen on function level instead of system level. Since temporal guaran-
tees can be provided, this approach will also be applicable for hard real-time
systems. Choosing the most appropriate model for each function, instead of
force-fitting it to an overall model, not only simplifies the design choices but
also gives the possibility to save system resources and improve responsiveness.
This is demonstrated in a case study [22] at Volvo Construction Equipment us-
ing the commercial real-time operating system Rubus by Arcticus [6].

Bibliography

Bibliography

[1] J. Xu and D.L. Parnas. Priority Scheduling Versus Pre-Run-Time
Scheduling. The Journal of Real-Time Systems, 18(1):7–23, January
2000.

[2] C.D. Locke. Software architecture for hard real-time applications - cyclic
executives vs. fixed priority executives. The Journal of Real-Time Sys-
tems, 4:37–53, 1992.

[3] Road Vehicles – Interchange of Digital Information – Controller Area
Network (CAN) for High Speed Communications, February 1992.
ISO/DIS 11898.

[4] H. Kopetz and G. Grünsteidl. TTP – A Protocol for Fault-Tolerant Real-
Time Systems. IEEE Computer, pages 14–23, January 1994.

[5] FlexRay Home Page. http://www.flexray-group.org/.

[6] Arcticus Systems Web-Page. http://www.arcticus.se.

[7] The Asterix Real-Time Kernel. http://www.mrtc.mdh.se/projects/asterix/.

[8] Anders Möller, Joakim Fröberg, and Mikael Nolin. Industrial Re-
quirements on Component Technologies for Embedded Systems. In
7th International Symposium on Component-based Software Engineering
(CBSE7). IEEE Computer Society, May 2004.

[9] Jukka Mäki-Turja and Mikael Nolin. Tighter Response-Times for Tasks
with Offsets. In Proc. of the 10th International conference on Real-Time
Computing Systems and Applications (RTCSA’04), August 2004.

54

Bibliography 55

[10] Kristian Sandström, Christer Eriksson, and Gerhard Fohler. Handling in-
terrupts with static scheduling in an automotive vehicle control system. In
5th International Workshop on Real-Time Computing Systems and Appli-
cations (RTCSA ’98), pages 158–165, Hiroshima, Japan, October 1998.
IEEE Computer Society.

[11] N.C. Audsley, A. Burns, R.I. Davis, K. Tindell, and A.J. Wellings. Fixed
Priority Pre-Emptive Scheduling: An Historical Perspective. Real-Time
Systems, 8(2/3):173–198, 1995.

[12] A. Burns and A. Wellings. Real-Time Systems and Programming Lan-
guages. Addison-Wesley, second edition, 1996. ISBN 0-201-40365-X.

[13] M. Joseph and P. Pandya. Finding Response Times in a Real-Time Sys-
tem. The Computer Journal, 29(5):390–395, 1986.

[14] J.C. Palencia Gutierrez and M. Gonzalez Harbour. Schedulability Analy-
sis for Tasks with Static and Dynamic Offsets. In Proc. 19th IEEE Real-
Time Systems Symposium (RTSS), December 1998.

[15] K. Tindell. Using offset information to analyse static priority pre-
emptively scheduled task sets. Technical Report YCS-182, Dept. of Com-
puter Science, University of York, England, 1992.

[16] G.C. Buttazzo. Hard Real-Time Computing Systems. Kluwer Academic
Publishers, 1997. ISBN 0-7923-9994-3.

[17] Dag Nyström, Mikael Nolin, Aleksandra Tesanovic, Christer Norström,
and Jörgen Hansson. Pessimistic Concurrency-Control and Versioning to
Support Database Pointers in Real-Time Databases. In Proc. of the 16 th

Euromicro Conference on Real-Time Systems, June 2004.

[18] J. Regher and J.A. Stankovic. HLS: A framework for composing soft
real-time schedulers. In Proc. 22th IEEE Real-Time Systems Symposium
(RTSS). IEEE Computer Society, December 2001.

[19] S. Saewong, R. Rajkumar, J.P. Lehoczky, and M.H. Klein. Analysis of
hierarchical fixed priority scheduling. In Proc. of the 14 th Euromicro
Conference on Real-Time Systems. IEEE Computer Society, June 2002.

[20] Scott Brandt, Scott Banachowski, Caixue Lin, and Timothy Bisson. Dy-
namic Integrated Scheduling of Hard Real-Time, Soft Real-Time, and

Non-Real-Time Processes. In Proc. 24th IEEE Real-Time Systems Sym-
posium (RTSS). IEEE Computer Society, December 2003.

[21] J. Regher, A. Reid, K. Webb, M. Parker, and J. Lepreau. Evolving real-
time systems using hierarchical scheduling and concurrency analysis. In
Proc. 24th IEEE Real-Time Systems Symposium (RTSS). IEEE Computer
Society, December 2003.

[22] T. Riutta and K. Hänninen. Optimal Design. Master’s thesis, Mälardalens
Högskola, Dept of Computer Science and Engineering, 2003.

[23] Volvo Construction Equipment. http://www.volvoce.com.

[24] A. Cervin. Improved scheduling of control tasks. In Proc. of the 11 th

Euromicro Workshop of Real-Time Systems, pages 4 – 10, June 1999.

[25] Northern Real-Time Applications. SSX5 True RTOS, 1999.

Chapter 6

Paper C:
Efficient Event-Triggered
Tasks in an RTOS

Kaj Hänninen, John Lundbäck, Kurt-Lennart Lundbäck, Jukka Mäki-Turja,
Mikael Nolin
In Proceedings of the International Conference on Embedded Systems and Ap-
plications, Las Vegas, USA, June, 2005.

57

Abstract

In this paper, we add predictable and resource efficient event-triggered
tasks in an RTOS. This is done by introducing an execution model suitable
for example control software and component-based software. The execution
model, denoted single-shot execution (SSX), can be realized with very simple
and resource efficient run-time mechanisms and is highly predictable, hence
suitable for use in resource constrained real-time systems. In an evaluation,
we show that significant memory reductions can be obtained by using the SSX
model.

6.1 Introduction 59

6.1 Introduction

When designing software for embedded systems, resource consumption is of-
ten a major concern. Software consumes resources primarily in two domains:
the time domain (execution time), and the memory domain (e.g., RAM and
flash memory). For systems without real-time requirements, the resource con-
sumption in the time domain may be of less importance. However, most em-
bedded systems are either used to control or monitor some physical process,
or used interactively by a human operator. In both of these cases, it is often
required that the system responds within fixed time limits. Hence, methods
for development of embedded systems need to allow design of both memory
and time efficient systems. Moreover, predictable use of the resources are re-
quired. Predictions of the amount of resources needed to execute the system
are used to dimension the system resources (e.g., selecting CPU and amount
of memory). The current trend in development of embedded systems is to-
wards using high-level design tools with a model-based approach. Models are
described in tools like Rational Rose, Rhapsody, Simulink, etc. From these
models, whole applications or application templates are generated. However,
this system generation seldom considers resource consumption. The resulting
systems become overly resource consuming and even worse; they exhibit un-
predictable resource consumption at run-time. In this paper, we describe and
evaluate the integration of a resource efficient and predictable execution model,
denoted single shot execution model (SSX), in a commercial real-time operat-
ing system. The execution model facilitates stack sharing to reduce memory
consumption and priority scheduling to allow timing predictions. The paper
is organized as follows. In section 6.2, we describe the properties of the SSX
model and the prerequisites needed to utilize the model. In section 6.3, we
describe our target platform, the Rubus RTOS. In section 6.4, we describe the
integration of SSX in Rubus and in section 6.5, we evaluate the stack usage un-
der the SSX model in different execution scenarios. In section 6.6, we conclude
the integration of SSX in Rubus.

6.2 The single shot execution model (SSX)

Throughout the years, research in real-time scheduling and real-time oper-
ating systems has resulted in a vast number of different execution models,
e.g.,[1][2][3][4][5], one of them being the single shot execution model in which
tasks are considered to terminate at the end of each invocation, i.e., execute to

60 Paper C

completion (as opposed to indefinitely looping tasks). Baker [1] and Davis et
al. [2] shows that the single shot execution model, with an immediate prior-
ity ceiling protocol, enables possibilities for efficient resource usage by stack
sharing among several tasks. Stack sharing in the SSX model is feasible be-
cause higher priority tasks are allowed to pre-empt lower priority tasks and
execute to completion (i.e., terminate) before lower priority tasks are allowed
to resume their execution. However, the fact that a task must execute to com-
pletion (terminate) before any lower priority task is allowed to execute, puts
some restrictions on suspensions of tasks in the SSX model:

• To guarantee correct stack access, self-scheduling of SSX tasks, i.e., call-
ing timed sleep or delay functions may not be used in the application
code of SSX tasks.

• Task synchronization should be done using the Immediate Priority Ceil-
ing Protocol (IPCP). This ensures that a task will never be allowed to
start executing, before it is guaranteed to have access to all resources it
needs. Hence, calls for accessing shared resources, such as semaphores,
will never result in blocking due to locked resources. Any possible
blocking will occur before the task is allowed to start execute.

However, these design restriction also facilitate predictability since the ad-
ministration of the tasks is left entirely to the operating system. Moreover,
it is known that the immediate priority ceiling protocol is deadlock free and
exhibits an upper bound on blocking times for tasks sharing resources. This
implies that an analysis technique such as response-time analysis [6] enables
analysis of temporal properties of an SSX system. The SSX model is concep-
tually very simple, at run-time a task can be in one of three states: terminated,
ready, or executing. The main difference, from a developers view, is that a
conventional RTOS often uses so called self-scheduled tasks. This means that
a task is activated once, typically at system start-up, and eventually, after some
possible initialization code, ends up in an infinite loop where it self-schedules
itself, e.g., using delay calls. An SSX task, on the other hand, when activated
by the OS, executes with no delay calls, and terminates upon completion. This
means that such tasks have to be re-scheduled by the OS in order to provide
a continuous service. Figure 6.1 illustrates the structural difference between a
conventional task and an SSX task.

In this paper, we present an integration of the SSX model in the Rubus
RTOS. We also present a quantitative evaluation of stack usage under different
execution scenarios.

6.3 The Rubus operating system 61

taskEntryFunc(){
while(1){
//Task code
sleep(time)
}
}

taskEntryFunc(){

//Task code
}

taskEntryFunc(){
while(1){
//Task code
sleep(time)
}
}

taskEntryFunc(){

//Task code
}

Figure 6.1: Looping task (left). Typical SSX task (right)

6.3 The Rubus operating system

Rubus is a real-time operating system developed by Arcticus Systems [7].
Rubus is targeted towards systems that typically require handling of both safety
critical functions as well as less critical functions. The emphasis of Rubus is
placed on satisfying reliability, safety and temporal verification of applications.
It can be seen as a hybrid operating system in the sense that it supports both
statically and dynamically scheduled tasks. The key features of Rubus RTOS
are:

• Guaranteed real-time service for safety critical applications

• Best-effort service for non-safety critical applications

• Support for time- and even-triggered execution of tasks

• Support for component based applications

Rubus consist of three separate kernels (Figure 6.2). Each kernel supports
a specific type of execution model.

The Red kernel supports time driven execution of static scheduled ’Red
tasks’, mainly to be utilized for applications with fixed hard real-time require-
ments. The static schedule is created off-line by the Rubus Configuration
Compiler. Synchronizations of shared resources are handled by time sepa-
ration in the static schedule. All tasks executed under the Red kernel share
a common stack. A Red task is implemented by a C function, and the task
is completed when the function returns. The Blue kernel administrates event
driven execution of dynamic scheduled ’Blue tasks’, mainly intended for ap-
plications having soft real-time requirements. Task handled by the Blue kernel
are scheduled on-line by a fixed priority pre-emptive scheduler. Synchroniza-
tions among Blue tasks are managed by a Priority Ceiling Protocol (PCP)[8].

62 Paper C

Rubus OS
Red Kernel
Red Threads

Basic Services

Green Kernel
Interrupts Blue Kernel

Blue Threads

Figure 6.2: Rubus RTOS architecture

As opposed to the Red execution model, the Blue execution model does not
support stack sharing among Blue tasks. Blue tasks are commonly used as
indefinitely looping tasks (see Figure 6.1) periodically reactivated by system
calls, e.g., blueSleep, that suspends the execution of Blue tasks for a specified
time interval. The Green kernel handles external interrupts. The ’Green tasks’
are scheduled on-line with a priority based scheduling algorithm dependent of
the application hardware, i.e., microprocessor. The Rubus off-line scheduler
is guaranteed to generate a static schedule (see Red kernel above) with suffi-
cient slack available to handle interrupts [9]. When a Green task is executed,
it may utilize the stack of the currently active Red or Blue task, implying that
the active task may need to supply stack space for interrupt handling. Dispatch
priorities of the tasks executing under the different kernels are illustrated in
Figure 6.3. Tasks managed by the Green kernel have highest priority, and tasks
managed by the Blue kernel have lowest priority.

 High

Red Tasks

Interrupts

Blue Tasks

Low

Figure 6.3: Task priorities in Rubus

Rubus supports the possibility to utilize software components for applica-
tion development. The computational part of the supported software compo-
nents is realized either by a Green, Red or by a Blue task.

6.4 Integration of SSX in Rubus 63

6.4 Integration of SSX in Rubus

Introducing a new execution model in an operating system for resource con-
strained embedded real-time systems, require careful design to minimize the
overhead of the new model and effects (temporal and spatial) on existing mod-
els. On one hand, we could minimize the memory overhead imposed by the
new execution model, by sharing administrative code in the kernel between the
existing execution models and the new execution model. In doing so, we would
impose additional timing overhead on the existing models wherever a kernel
needs to be able to separate the different models, e.g., at sorting, queuing and
error handling etc. On the other hand, we could avoid imposing timing effects
on the existing models by separating the models, i.e., modularize, and allow
the kernel to administrate the new SSX model in isolation from the existing
execution models. This approach would increase the number of administrative
functions, thus requiring more memory. In this implementation, we choose
to share administrative OS code between the SSX model and the Blue model
since the timing overhead imposed by the SSX model, on the Blue model, is
very low. A new execution model may be introduced to a system by changing
the current scheduling policy or existing task model. In our case, we retain
the same scheduling policy for the SSX model as for the Blue model (fixed
priority scheduling). However, a new task model is introduced to support the
SSX model. Each task in Rubus is defined by its: basic attributes, Task Control
Block (TCB), stack/heap memory area and application code. By adding peri-
odicity and deadline attributes to the existing task model, we are able to share
all fundamental task structures between SSX tasks and the existing Blue tasks.
Administration of SSX tasks is handled entirely by the Blue kernel (Figure
6.4).

Rubus OS
Red Kernel
Red Threads

Basic Services

Green Kernel
Interrupts Blue Kernel

Blue + SSX
Threads

Figure 6.4: Rubus RTOS architecture with SSX model

64 Paper C

The resulting relation of task priorities in Rubus, including SSX, is illus-
trated in Figure 6.5. The priority assignments and the fact that the administra-
tion of SSX tasks are handled entirely by the Blue kernel, makes the temporal
attributes of tasks using the SSX model fully analyzable. In systems consisting
solely of SSX tasks, the analysis can be performed with [6]. The SSX tasks
can also be analyzed in hybrid systems consisting of Interrupts, Red tasks and
SSX tasks with [10].

 High

Low

Red Tasks

Interrupts

SSX Tasks

Blue Tasks

Figure 6.5: Task priorities in Rubus, including SSX

All tasks executing under the SSX model share a common stack (in fact,
there is nothing that prevents stack sharing also between Red and SSX tasks).
The common stack pointer, for SSX tasks, is globally accessible, hence it does
not have to be stored in the TCBs. To support resource sharing in the SSX
model, the immediate priority ceiling protocol was implemented. The follow-
ing is a summary of all major changes made in Rubus to support the SSX
execution model:

• Separation of tasks administrated by the Blue kernel and executed under
different models

• Modification of administrative functions to support SSX tasks

• Error detection for SSX tasks

• Activation functionality for the SSX tasks

• Introduction of the immediate priority ceiling protocol

The integration of SSX in Rubus allows the execution model to be directly
applicable for the Rubus component model. Hence, the possibility to utilize
software component for applications has been extended to include four execu-
tion models, the Green, the Red, the Blue and the SSX model. The shared stack

6.5 Evaluation of SSX in Rubus 65

in the SSX model can be safely dimensioned, as shown below, by summing the
maximum stack usage of all tasks in each priority level, and adding stack-space
for interrupts. SSX tasks with equal priorities cannot pre-empt each other in
Rubus, hence it suffice to take the maximum stack usage in each priority level.

j

Pi
P

ssx sususu
ij

 maxint ∑
∈∀ ∈∀

+=
τ

sussx, denotes maximum stack usage of all SSX tasks. suint, denotes
interrupt stack usage. Pi denotes the set of tasks with priority i. P denotes the
set of all priority levels. τi denotes task i. su(τi) denotes stack usage, including
context switch overhead, of task i. A more accurate dimensioning approach
would be to examine possible pre-emptions, and identify the pre-emption(s)
resulting in maximum stack usage. Identification of possible pre-emptions in a
fixed priority based system is considered in [11].

6.5 Evaluation of SSX in Rubus

Stack sharing allows for an efficient memory usage, which may avoid or at least
postpone the need for additional RAM in evolving systems. To illustrate how a
shared stack affects memory usage, we simulate different execution scenarios
where the total stack usage varies a lot depending on the execution model in
use. We simulate three different execution scenarios using two different execu-
tion models, the Blue and the SSX model, for each scenario. The first scenario
is obtained from a flyer promoting the SSX5 RTOS [4]. The second scenario
models a traditional control application, where a sequence of tasks is used to
sense, calculate control parameters, and actuate. These tasks are executed in
sequence, hence they do not pre-empt each other. The third scenario illustrates
a system with full pre-emption depth, i.e., all tasks are pre-empted. The sce-
nario can be seen as an example where the benefit of SSX is less, e.g., SSX as
interrupt handling tasks in systems with multiple interrupt levels.

6.5.1 Evaluation method

The evaluations are performed under a Rubus OS simulator running on a PC.
We calculate the stack usage as the maximum number of data pushed onto the
stack, from the dispatching of a task until it has finished execution. In doing so,
we are able to include the concealed pushes of stack frames, i.e., stack usage
occurring before execution of the actual task code, in the calculations. All

66 Paper C

stacks are initially filled with a pre determined data pattern. We then calculate
the number of overwritten data patterns, i.e., stack usage, by examining the
content of the stacks at termination of the system. It is assumed that tasks do
not push frames identical to the pre determined data pattern at run time.

6.5.2 Application description

In each of the following execution scenarios, timer interrupts are generated at
a frequency of 100Hz. Each timer interrupt activates the Blue kernel task, re-
sponsible for time supervision and dispatching of the tasks in the system. The
service routine for timer interrupts, having highest priority in the system, ex-
ecute on the stack of an active task. However, in the following scenarios, the
worst-case execution times of the tasks are very short, resulting in all tasks fin-
ishing their executions before any consecutive timer interrupt hits the system.
The run time model in each of the following scenarios is fixed priority, pre-
emptive scheduling. We denote the priority of a task with Π, and its period, or
in the case of sporadic tasks, its minimum interarrival time with T.

Scenario 1
The task set in the following scenario, obtained from a flyer evaluating the over-
heads of SSX5 [4], consists of; seven periodic tasks with periodicities ranging
from 10ms to 80ms, and three interrupt handling tasks with a minimum inter-
arrival time of 20ms (see Table 6.1).

Table 6.1: Task set, Scenario 1
Task Π T(ms) Stack usage(bytes) SSX/Blue

τKERNEL 15 10 144/132
τ1 5 10 72/152
τ2 5 10 72/152
τ3 4 20 72/152
τ4 4 20 72/152
τ5 3 40 72/152
τ6 2 80 72/152
τ7 2 80 72/152
τ8 5 ≥ 20 72/72
τ9 5 ≥ 20 72/72
τ10 5 ≥ 20 72/72

Running the system under the SSX model (with one shared stack for tasks

6.5 Evaluation of SSX in Rubus 67

τ1 - τ10), results in a total stack usage of 316 bytes. With the Blue kernel stack
included, the total stack usage is 460 bytes. Yet again, we evaluate scenario
1 but with the difference that tasks τ1 - τ7 are executed as Blue tasks (Blue
execution model), achieving a pseudo periodic behavior by a call to a sleep
function. According to the Rubus OS reference [7], the suspension (sleep) of
the tasks requires two additional local variables, and besides the sleep call, an
additional call to a function that converts the suspension time into timer ticks,
resulting in increased stack usage (from 72 bytes to approximately 152 bytes)
for a Blue task. This results in a total stack usage of 1480 bytes for tasks τ1 -
τ10. With the Blue kernel stack included, the total stack usage is 1612 bytes.
We noticed that the kernel uses 12 bytes less stack under the Blue model, than
under the SSX model. This is due to Blue tasks scheduling themselves, instead
of being assigned an activation time by the kernel. Table 6.2 shows the resulting
stack usage for scenario 1.

Table 6.2: Stack usage, Scenario 1
Exec. model Total stack usage (bytes)

SSX 460
Blue 1612

Savings ≈71%

Scenario 2
The following scenario consists of pure periodic tasks with harmonic period
times (see Table 6.3). The scenario can be seen as a simplification of a typical
vehicular control system, e.g., as described in [12].

Table 6.4 shows the resulting stack usage for scenario 2 under the SSX and
Blue execution models.

Scenario 3
The previous scenario shows an ideal situation for introducing SSX tasks.
However, in applications where most tasks are asynchronous and pre-emptions
appear randomly, the gains of SSX tasks is less, Thus, this scenario is pre-
pared to show that the total stack usage, in certain situations, is nearly identical
between the SSX and Blue execution model. The task set in this scenario con-
sists of one periodic task τ4 and three event-triggered tasks τ1 - τ3 (see Table
6.5). The execution of the task set is prepared to exhibit full pre-emption depth
meaning that if a task can be pre-empted it will be so. Each task is assigned a
unique priority, thus enabling pre-emption between each pair of tasks.

68 Paper C

Table 6.3: Task set, Scenario 2
Task Π T(ms) Stack usage(bytes) SSX/Blue

τKERNEL 15 10 144/132
τ1 5 10 72/152
τ2 5 10 72/152
τ3 4 20 72/152
τ4 4 20 72/152
τ5 3 40 72/152
τ6 2 80 72/152
τ7 2 80 72/152

Table 6.4: Stack usage, Scenario 2
Exec. model Total stack usage (bytes)

SSX 216
Blue 1196

Savings ≈82%

Table 6.6 shows the resulting stack usage for scenario 3 under the SSX and
Blue execution models.

6.5.3 Results

Simulations have shown that stack memory usage in Rubus OS varies when
comparing systems executed under the SSX model and systems executed under
the Blue model. The differences in stack usage are mainly dependent on the
type of application being realized. The fact that each Blue task is allocated its
own stack makes them less memory efficient in all scenarios. In an example
system of 7 non-pre-emptable tasks, the difference in stack memory usage is as
much as 82% less for SSX tasks than for Blue tasks. Another system derived
from a flyer on SSX5, results in a difference of 71% less stack usage for the
SSX tasks than for the Blue tasks. However, less difference in stack usage is
observed in situations of deeply nested pre-emptions. As the pre-emption depth
increases, the difference in stack usage typically decreases. This is shown by
our simulations of a system with full pre-emption depth where the difference
in stack usage between the SSX model and the Blue model, is relatively low.

6.6 Conclusion and future work 69

Table 6.5: Task set, Scenario 3
Task Π T(ms) Stack usage(bytes) SSX/Blue

τKERNEL 15 10 144/132
τ1 5 - 72/72
τ2 4 - 72/72
τ3 3 - 72/72
τ4 2 80 72/152

Table 6.6: Stack usage, Scenario 3
Exec. model Total stack usage (bytes)

SSX 612
Blue 708

Savings ≈14%

Hence, the SSX model is specifically suitable for applications where jobs (or
transactions) of dependent tasks are modeled without pre-emptions within the
jobs e.g., control systems. On the contrary, the SSX model is less beneficial
for applications experiencing large pre-emption depths. However, in any type
of application, the SSX model is at least as resource efficient, with respect to
stack usage, as the Blue model. This makes the SSX model an attractive choice
when developing systems.

6.6 Conclusion and future work

In this paper, we presented the integration of a resource efficient and pre-
dictable single shot execution model in the Rubus RTOS. The model allows
for efficient stack usage and predictability of temporal attributes. These facts
make the model attractive for development of resource constrained real-time
systems. The integration has shown that the model can be integrated with very
simple run-time mechanisms. As future work, we are planning to include sup-
port for development and analysis (temporal and spatial) of SSX in Rubus Vi-
sual Studio (VS), which is an integrated environment for design, simulation
and analyzing of embedded real-time applications.

Bibliography

Bibliography

[1] T.P. Baker. A stack based resource allocation policy for real-time pro-
cesses. In Proceedings of the 11th IEEE Real-Time Systems Symposium,
1990.

[2] R. Davis, N. Merriam, and N. Tracey. How embedded applications using
an rtos can stay within on-chip memory limits. In Proceedings of the WiP
and Industrial Experience Session, Euromicro Conference on Real-Time
Systems, June 2000.

[3] C.D. Locke. Software architecture for hard real-time applications: Cyclic
executives vs. fixed priority executives. In Journal of Real-Time Systems,
4, 1992.

[4] SSX5 true RTOS Northern Real-Time Applications. Web page,
http://www.ssx5.com/NRTAHome.htm.

[5] J. Xu and D.L Parnas. Priority scheduling versus pre-run-time scheduling.
In International Journal of Time-Critical Computing Systems, 18, 2000.

[6] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings. Fixed pri-
ority pre-emptive scheduling: An historical perspective. In Real-Time
Systems, 8(2/3), 1995.

[7] Arcticus systems. Web page, http://www.arcticus-systems.se.

[8] L. Sha, R. Rajkumar, and JP. Lehoczky. Priority inheritance protocols: An
approach to real-time synchronization. In IEEE Transactions on Comput-
ers, Volume: 39, Issue 9, 1990.

[9] K. Sandström, C. Eriksson, and G. Fohler. Handling interrupts with static
scheduling in an automotive vehicle control system. In Proceedings of

70

the 5th International Conference on Real-Time Computing Systems and
Applications, 1998.

[10] J. Mäki-Turja, K. Hänninen, and M. Nolin. Efficient development of real-
time systems using hybrid scheduling. In Proceedings of the International
Conference on Embedded Systems and Applications (ESA), June 2005.

[11] R.Dobrin and G.Fohler. Reducing the number of preemptions in fixed
priority scheduling. In Proceedings of the 16th Euromicro Conference on
Real-Time Systems, July 2004.

[12] T. Riutta and K. Hänninen. Optimal design. Master’s thesis, Dept. of
Computer Science and Engineering, Mälardalen University, 2003.

Chapter 7

Paper D:
Analysing Stack Usage in
Preemptive Shared Stack
Systems

Kaj Hänninen, Jukka Mäki-Turja, Markus Bohlin, Jan Carlson, Mikael Nolin
MRTC report ISSN 1404-3041 ISRN MDH-MRTC-202/2006-1-SE,Mälardalen
Real-Time Research Centre, Mälardalen University, July, 2006. A version of
this paper has been accepted for publication at RTSS, Rio de Janeiro, Brazil,
December, 2006.

73

Abstract

This paper presents a novel method to determine the maximum stack memory
used in preemptive, shared stack, real-time systems. We provide a general and
exact problem formulation applicable for any preemptive system model based
on dynamic (run-time) properties. We also show how to safely approximate
the exact stack usage by using static (compile time) information about the sys-
tem model and the underlying run-time system on a relevant and commercially
available system model: A hybrid, statically and dynamically, scheduled sys-
tem.

Comprehensive evaluations show that our technique significantly reduces
the amount of stack memory needed compared to existing analysis techniques.
For typical task sets a decrease in the order of 70% is typical.

7.1 Introduction 75

7.1 Introduction

In conventional multitasking systems, each thread of execution (task) has its
own allocated execution stack. In systems with a large number of tasks, a large
number of stacks are required, hence the total amount of RAM needed for the
stacks can grow exceedingly large.

Stack sharing is a memory model in which several tasks share one common
run-time stack. It has been shown that stack sharing can result in memory
savings [1, 2] compared to the conventional stack model. The shared stack
model is applicable to both non-preemptive as well as preemptive systems and
it is especially suitable in resource constrained embedded real-time systems
with limited amount of memory. Stack sharing is currently supported by many
commercial real-time kernels e.g. [3, 4, 5, 6].

The traditional method to calculate the memory requirements for a shared
run-time stack in preemptive systems, is to sum the maximum stack usage of
tasks in each preemption level (priority level in fixed priority systems) and pos-
sibly considering additional overheads such as memory used by interrupts and
context switches. A major drawback with the traditional calculation method is
that it often results in over allocation of stack memory, by presuming that all
tasks with maximum stack usage in each priority level can preempt each other
in a nested fashion during run-time. However, there may in many cases be no
actual possibility for these tasks to preempt each other (e.g. due to explicit or
implicit separation in time). Moreover, the possible preemptions may not be
able to occur in a nested fashion.

Taking advantage of the fact that many real-time system exhibit a pre-
dictable temporal behavior it is possible to identify feasible preemption sce-
narios, i.e., which preemptions can in fact occur, and whether they can occur
in a nested fashion or not. Hence, a more accurate stack analysis can be made.
One example of a system that lends itself to such analysis is a hybrid, statically
and dynamically, scheduled system with an off-line scheduler producing the
static schedule and a fixed priority scheduler (FPS) dispatching tasks at run-
time. The commercial operating system Rubus OS by Arcticus Systems AB
[5], supports such a system model. The Rubus OS is mainly used in resource-
constrained embedded real-time systems. For instance, in the vehicular indus-
try, Volvo Construction Equipment (VCE) [7], BAE Systems Hägglunds [8],
and Haldex Traction Systems [9] all use the Rubus OS in their vehicles and
components.

In this paper we present the general problem of analyzing a shared sys-
tem stack for resource constrained preemptive real-time systems. We provide

76 Paper D

a general and exact problem formulation applicable for preemptive systems
based on dynamic run-time properties. We also present an approximate stack
analysis method to derive a safe upper bound on stack usage in offset based
(static offsets), fixed priority, preemptive systems that use a shared stack. We
evaluate and show that the proposed method gives significantly lower upper
bounds on stack memory requirements than existing stack dimensioning meth-
ods for fixed priority systems.

Paper outline. Section 7.2 describes related work and sets the context
for the contributions of this paper. In sections 7.3, 7.4, and 7.5 we present
the exact formulation of determining the maximum stack usage and our safe
approximation of the stack usage for our target system model. Section 7.6
presents a simulation evaluation of our approximative analysis method, and
Section 7.7 concludes the paper.

7.2 Related work

The notion of shared stack has been used in several publications to describe the
ability to utilize either a common run-time stack or a pool of run-time stacks.
For example, in [10] stack sharing is performed by having a pool of available
stack areas. When a task starts executing, it fetches a stack from the pool,
returning it at termination. In [11] Middha et al. address stack sharing in the
sense that the stack of a task can grow into the stack area of another task.

In this paper we use the notion of stack sharing when several tasks use
one common, statically allocated, run-time stack. This type of stack sharing
can be efficiently implemented in systems where tasks has a run-to-completion
semantics and do not self-suspend themselves. This type of stack sharing is
supported by several commercial real-time operating systems e.g. [4, 5, 6]

7.2.1 Stack analysis

In [12] Baker presents the Stack Resource Protocol (SRP) that permits stack
sharing among processes in static and some dynamic priority preemptive sys-
tems. The basic method to determine the maximum amount of stack usage in
SRP is to identify the maximum stack usage for tasks at each priority level and
then to sum up these maximums for each priority level. A safe upper bound
(SPL) on the total stack usage using information about priority levels can for-

7.2 Related work 77

mally be expressed as:

SPL =
∑

l∈prio-levels

max
i∈tasks with prio l

(Si) (7.1)

where Si is the maximum stack usage of task i.
Gai et al. [13] present the Stack Resource Protocol with Thresholds (SRPT)

that allows stack sharing under earliest deadline scheduling. They also present
an algorithm to optimize shared stack usage by use of non-preemption groups
for tasks using SRPT. They extend the work of Saksena and Wang [14] by
taking the stack usage of tasks into account when establishing non-preemption
groups.

In [1] Davis et al. address stack memory requirements by using non-
preemption groups to reduce the amount of memory needed for a shared stack.
They show that the number of preemption levels required for typical system
can be relatively small, whilst maintaining schedulability. They also state that
the reduction of preemption levels are dependent on the spread of the tasks
deadlines.

Although non-preemption groups can reduce the amount of RAM needed
for a shared stack, the use of non-preemption groups affects a system by re-
stricting the occurrences of preemptions, which can have a negative affect on
schedulability. The method we present in this paper can further reduce the
system stack by performing our analysis after preemption groups have been
assigned.

7.2.2 Preemption analysis

In [15] Dobrin and Fohler presents a method to reduce the number of preemp-
tions in fixed priority based systems. They define three fundamental conditions
that have to be satisfied in order for a preemption to occur. The same condi-
tions form the basis of our upper bound method described in Section 7.5. Note
that even though the conditions are satisfied, it does not necessarily mean that a
preemption will occur, only that there is a possibility for a preemption to occur.
Furthermore, even though a set of preemptions are possible, it may be impos-
sible for all of them to occur in a nested fashion, i.e., they cannot all contribute
to the worst case stack usage.

Lee et al. [16] present a technique to bound cache-related preemption de-
lays in fixed-priority preemptive systems. They account for task phasing and
nested preemption patterns among tasks to establish an upper bound on the
cache timing delay introduced by preemptions. Their work relates to ours in

78 Paper D

the sense that we investigate occurrences of nested preemption patterns. How-
ever, our objectives differ in that Lee et al. are mainly interested in timing
delays caused by cache reloading and preemption patterns whereas we address
shared memory requirements as an effect of nested preemption patterns.

7.3 Stack analysis of preemptive systems

The primary purpose of an execution stack is to store local data (variables and
state registers), parameters to subroutines and return addresses. In a real-time
system there is typically a separate, statically allocated stack for each task,
but under certain conditions, tasks can share stack to achieve a lower overall
memory footprint of the system.

We consider systems where several tasks use a common, statically allo-
cated, run-time stack. For this to be possible, we assume that a task only uses
the stack between the start time of an instance and the finishing time of that
instance, i.e., no data remains on the stack from one instance of a task to the
next. Furthermore, we require non-interleaving task execution, see for exam-
ple [12, 1]. If υj starts between the start and finish of υi, then υi is not al-
lowed to resume execution until υj has finished. In practice, this is ensured
by not allowing tasks to suspend themselves voluntarily, or to be suspended
by blocking once they have started their execution. In practice this means that
OS-primitives like sleep() and wait_for_event() cannot be used, and
that any blocking on shared resources must be handled before execution start,
e.g., with a semaphore protocol like immediate inheritance protocol [17].

We formally define the start and finishing time of a task instance υ i, as
follows:

st i The absolute time when υi actually begins executing.

ft i The absolute time when υi terminates its execution.

At any given point in time, the worst case total stack usage of the system equals
the sum of the stack usage for each individual task instance. Thus, with s i(t)
denoting the actual stack usage of υi at time t, the maximum stack usage of the
system can be expressed as follows:

max
t∈time instant

∑

υi∈task instances

si(t). (7.2)

This corresponds to the amount of memory that must be statically allocated
for the shared stack, to ensure the absence of stack overflow errors. For some

7.3 Stack analysis of preemptive systems 79

systems, e.g., non-preemptive, statically scheduled systems with simple task
code, it might be possible to directly compute or estimate s i(t). In general,
however, they are not directly computable before the system is executed.

We note that the total stack usage depends on three basic properties:

(i) the stack memory usage of each task instance;

(ii) the possible preemptions that may occur between any two instances; and

(iii) the ways in which preemptions can be nested.

Determining the stack memory usage of a single task instance requires
knowledge of the possible control-flow paths within the task code [18]. How-
ever, due to the difficulties in determining the exact stack usage at every point
in time for a given task instance, shared-stack analysis methods often assume
that whenever a task is preempted, it is preempted when it uses its maximum
stack depth. We make the same assumption, and use S i to denote the maximum
stack usage for task instance υi (thus, when υi and υj are instances of the same
task, we have Si = Sj). Bounds on maximum stack usage for a given task
can be derived by abstract interpretation, using tools such as AbsInt [19] and
Bound-T [20].

In order to calculate the maximum stack usage of the full system, we need
to account for all possible preemption patterns. A task instance υ i is preempted
by another task instance υj if (and only if) the following holds:

st i < stj < ft i. (7.3)

In particular, we are interested in chains of nested preemptions. We define
a preemption chain to be a set {υ1, υ2, . . . , υk} of task instances such that

st1 < st2 < · · · < stk < ftk < ftk−1 < · · · < ft1. (7.4)

Under the assumption that the worst case stack usage of a task can occur
at any time during its execution, the worst case stack usage SWC for a shared
stack preemptive system can be expressed as follows:

SWC = max
PC∈preemption chains

∑

υi∈PC

Si. (7.5)

This formulation, however, cannot be directly used for analyzing and di-
mensioning the shared system stack since it is based on the dynamic (only
available at run-time) properties st i and ft i. To be able to statically analyze the

80 Paper D

system, one has to relate the static (compile-time) properties to these dynamic
properties, by establishing how the system model, scheduling policy, and run-
time mechanism constrain the values of the actual start and finishing times.
The problem can be viewed as an optimization problem with the objective of
maximizing the total stack usage of the schedule, subject to system constraints
on how tasks are ordered in the schedule.

7.4 System model for hybrid scheduled systems

The system model we adopt is based on a commercial operating system Rubus
OS, by Arcticus Systems AB [5], which supports the execution of both time
triggered and event triggered tasks. The Rubus OS is mainly intended for and
used in dependable resource-constrained embedded real-time systems.

The system model is a hybrid, static and dynamic, scheduled system where
a subset of the tasks are dispatched by a static cyclic scheduler (time triggered
tasks) and the rest of the tasks are dispatched by events in the system (event
triggered tasks). The static schedule is constructed off-line and a fixed priority
scheduler (FPS) dispatches tasks at run-time. The event triggered tasks can be
categorized in two different classes: (i) interrupts which have higher priority
than the time-triggered tasks, and (ii) event-triggered tasks which have lower
priority than the time-triggered tasks.

The time triggered tasks share a common system stack and it is the ob-
jective of this paper to analyze, and ultimately dimension, this shared system
stack efficiently. The time-triggered subsystem is used to host safety critical
applications. Hence, to isolate it from any erroneous event-triggered tasks it
uses its own stack.

In essence, this system model is an offset based task model with static
offsets introduced by [21, 22]. In [23] we showed how tight response times
can be calculated (in polynomial time [24]) for such a hybrid system.

7.4.1 Formal system model

The system model used is an offset based model with static offsets [21, 23, 24,
22] and is defined as follows: The system, Γ, consists of a set of k transactions
Γ1, . . . , Γk. Each transaction Γi is activated by a periodic sequence of events
with period Ti (for non-periodic events Ti denotes the minimum inter-arrival
time between two consecutive events). The activating events are mutually in-
dependent, i.e., phasing between them is arbitrary.

7.4 System model for hybrid scheduled systems 81

A transaction, Γi, contains |Γi| tasks, and each task may not be activated
(released for execution) until a time, offset, elapses after the arrival of the acti-
vating event.

We use τij to denote a task. The first subscript denotes which transaction
the task belongs to, and the second subscript denotes the number of the task
within the transaction. A task, τij , is defined by a worst case execution time
(Cij), an offset (Oij), a deadline (Dij), maximum jitter (Jij), maximum block-
ing from lower priority tasks (Bij), and a priority (Pij). Furthermore, Sij is
used to denote the maximum stack usage of τ ij . The system model is formally
expressed as:

Γ :={〈Γ1, T1〉, . . . , 〈Γk, Tk〉}
Γi :={τi1, . . . , τi|Γi|}
τij :=〈Cij , Oij , Dij , Jij , Bij , Pij , Sij〉

There are no restrictions placed on offset, deadline or jitter, i.e., they can each
be either smaller or greater than the period.

We assume that the system is schedulable and that the worst case response-
time, (Rij), for each task has been calculated [24]. How a scheduler can gen-
erate a feasible schedule, with interfering interrupts, is described in [25, 23].

Due to the non-interleaving criterion for stack sharing, we require that tasks
exhibit a run-to-completion semantics when activated, i.e., they cannot suspend
themselves. An invocation of a task can be viewed as a function call from the
operating system, and the invocation terminates when the function call returns.

When tasks share the same priority they are served on a first-come first-
served basis. We assume that, if access to shared resources are not handled
by the static scheduler by time separation, a resource sharing protocol where
blocking is done before start of execution is employed (such as the stack re-
source protocol [12] or the immediate inheritance protocol [17]).

The problem is to calculate the stack needed for the time triggered tasks.
That is, we need to calculate the stack usage for a single transaction, which we
will denote Γt. Task j belonging to Γt we will denote τtj . The tasks in the
transaction can be preempted by other tasks in the transaction and by higher
priority event triggered tasks.

Since Γt represents the static schedule, which is cyclicly repeated with pe-
riod Tt, offset, jitter and deadline are less than the period, i.e., O tj , Dtj , Jtj ≤
Tt.

82 Paper D

7.5 Stack analysis of hybrid scheduled systems

In this section we describe a polynomial time method to establish a safe upper
bound on the shared stack usage for the system model described in Section 7.4.
The upper bound is safe in the sense that the run-time stack can never exceed
the calculated upper bound.

A safe upper-bound estimate of the exact problem can be found by using
offsets and maximum response times as approximations of actual start and fin-
ishing times. Generalizing the preemption criteria identified by Dobrin and
Fohler [15], we form the binary relation τ ti ≺ τtj with the interpretation that
τti may be preempted by τtj . The relation holds whenever (1) τti can become
ready before τtj , (2) τti possibly finishes (i.e., has a response time) after the
start of τtj , and (3) τti has lower priority than τtj . The relation can now for-
mally be defined as:

τti ≺ τtj ≡ Oti < Otj + Jtj + Btj ∧ Otj < Rti ∧ Pti < Ptj . (7.6)

Lemma 1. The ≺ relation is a safe approximation of the possible preemptions
between tasks in Γt. That is, if τti can under any run-time circumstance be
preempted by τtj , then τti ≺ τtj will hold.

Proof of Lemma 1. Suppose that τti is preempted by τtj . We show that this
implies (1) Oti < Otj + Jtj + Btj , (2) Otj < Rti, and (3) Pti < Ptj .

(3) follows directly from the preemption. Now let t be the time instant
when τtj has finished blocking, which implies t ≤ Otj + Jtj + Btj . Then
a possibly empty interval [t, sttj] of execution with higher priority than τtj

follows, in which τti cannot execute because Pti < Ptj . Since τti must start
before τtj , we can conclude that stti < t, which together with Oti ≤ stti and
t ≤ Otj + Jtj + Btj gives us Oti < Otj + Jtj + Btj and (1). From Equation
7.3 we have sttj < ftti and this together with Otj ≤ sttj and ftti ≤ Rti leads
to Otj < Rti and (2), which completes the proof. �

The upper-bound problem can now be informally stated as finding the max-
imum stack usage of all possible preemption chains in Γ t. This equals find-
ing the time instant in the schedule which has a maximum stack usage, given
the approximation of actual start and finishing times with offsets and response
times respectively, and assuming that at all preemptions the preempted task
uses its maximal stack.

A sequence Q of tasks is a possible preemption chain (PPC) if it holds that
τti ≺ τtj for all τti, τtj in Q where τti occurs before τtj in the sequence. The

7.5 Stack analysis of hybrid scheduled systems 83

stack usage SUQ of a PPC Q is the sum of the stack usage of the individual
tasks in the chain, i.e., SUQ =

∑
τti∈Q Sti.

A straightforward computation of a safe upper bound for a set of tasks in-
volves computing the stack usage for all PPCs. However, for a set of n tasks
there exist 2n−1 different PPCs in the worst case, which yields an exponential
time complexity for an algorithm based on this idea. A more efficient algo-
rithm can be constructed by first finding sets of tasks which all overlap in time,
without regarding priorities. These sets can then be investigated in turn to find
a PPC with maximal stack usage.

We let the relation τti � τtj hold whenever the semiclosed intervals [Oti, Rti)
and [Otj , Rtj) intersect, or more formally:

τti � τtj ≡ Oti < Rtj ∧ Otj < Rti. (7.7)

The relation � is a relaxation of the ≺ relation, that is, τti ≺ τtj → τti �
τtj . To see this, suppose that τti ≺ τtj which implies Oti < Otj + Jtj + Btj ∧
Otj < Rti, according to Equation 7.6. Since Otj + Jtj + Btj ≤ Rtj follows
from the notion of response time, we have O ti < Rtj ∧Otj < Rti, which also
is the definition of τti � τtj .

We can now define an overlap set Kr as a set of tasks where:

∀τti, τtj ∈ Kr : τti � τtj .

The stack usage SUKr of an overlap set Kr is defined as the maximum
stack usage SUQ of all PPCs Q where Q ⊆ Kr:

SUKr = max
∀Q⊆Kr:PPC (Q)

(SUQ). (7.8)

Kr is maximal if and only if there exist no overlap set Ks such that Kr ⊂ Ks.

Lemma 2. For any PPC Q, there exists a maximal overlap set Kr such that
Q ⊆ Kr.

Proof of Lemma 2. From the definitions of a PPC and the ≺ and � relations,
we know that for all tasks τti ≺ τtj in Q it also holds that τti � τtj , and thus
Q is an overlap set. Then either Q is maximal or it can become maximal by
extending it with additional tasks. In either case, the lemma holds. �

In all, the algorithm for computing the upper bound SUB on the maximum
stack usage for a set of tasks Γt can be summarized as follows:

84 Paper D

1. Find the maximal overlap sets in Γt:
K = {K1, K2, . . . , Kk}.

2. For each of them, compute SUKr as in Equation 7.8.

3. The upper bound of the stack usage for Γ t can now be computed as
follows:

SUB = max
∀Kr∈K

(SUKr). (7.9)

Informally, we start by finding all sets of tasks that can overlap in time
based on their offsets and worst case response times, which safely approxi-
mates their actual start and finishing times. For each such set (K i) we find all
possible preemption chains (PPCs) by also taking task priorities and maximal
jitter and blocking time into account, and compute the stack usage for each
such chain. The stack usage of Ki is the maximum stack usage of all its PPCs,
and the maximum stack usage (SUB) of the system is then obtained by taking
the maximum stack usage of every K i.

7.5.1 Correctness

In order to claim correctness of our approximate stack analysis method we
have to show that it never underestimates the actual stack usage that can occur
during run-time.

Theorem 1. The value computed by the SUB algorithm is a safe upper bound
on the actual worst case stack usage for tasks in Γt. Formally, SWC ≤ SUB .

Proof. Let Ψ ⊆ Γt be the sequence of tasks instances participating in the
preemption situation which cause the worst case stack usage, that is, SWC =∑

τti∈Ψ Sti. According to Lemma 1, we must have τti ≺ τtj for tasks τti and
τtj that occur in that order in Ψ, and thus Ψ is a PPC with SUΨ = SWC .
Then, Lemma 2 ensures that there exists a maximal overlap set K r such that
Ψ ⊆ Kr, and we have SUΨ ≤ SUKr . Thus, SWC ≤ SUKr ≤ SUB , which
concludes the proof.

7.5.2 Computational complexity

The relaxation of ≺ into interval intersection (Equation 7.7) allows us to effi-
ciently compute an upper bound on the stack usage (Equation 7.9) by applying
a polynomial longest path algorithm on the linearly-bounded number of maxi-
mal overlap sets.

7.6 Evaluation 85

To first see that the set of maximal overlap sets K = {K1, K2, . . . , Kk}
contain at most n elements, i.e., k ≤ n, consider the graph (Γ t, E), where Γt

is the set of vertices and E = {τtiτtj | (τti � τtj) ∧ τti, τtj ∈ Γt} is the
set of edges. From Equation 7.7 we have that edges τ tiτtj ∈ E correspond to
intersection of the semi-closed intervals [Oti, Rti) and [Otj , Rtj), and there-
fore the graph is an interval graph [26]. Because every interval graph is also
chordal [26], all maximal complete subgraphs in (Γ t, E), which corresponds
to all maximal overlap sets, can be found in linear time [27]. Furthermore, for
chordal graphs there exists at most n such sets, and thus we have at most n
overlap sets [26].

The problem of finding the worst PPC within a single overlap set K r is
significantly easier than for an arbitrary set of tasks. Since it holds that τ ti �
τtj for all tasks τti, τtj ∈ Kr, and therefore in particular that Oti < Rtj for
all tasks in Kr, we need only look for a maximum stack usage chain Q where
(1) Oti < Otj + Jtj + Btj , and (2) Pti < Ptj for all tasks τti and τtj in that
order in Q to find the worst PPC. A directed graph consisting of tasks in K r

and arcs corresponding to properties (1) and (2) is acyclic, and for such graphs
a longest-path type algorithm can be used to find the worst PPC [28]. There
exist longest-path algorithms with a time complexity of O(n + m), where n
is the number of tasks and m is the number of possible preemptions, of which
there are at most n(n − 1)/2. Taking the maximum of a maximal PPC in each
set Kr, of which there are at most n, we will therefore find a maximum stack
size PPC in at most O(n2 + nm) time.

7.6 Evaluation

We evaluate the efficiency of our proposed method to establish a safe upper
bound on shared stack usage, by randomly generating realistic sized task sets.
The size, load and stack usage of the task sets are derived from a wheel-loader
application by Volvo Construction Equipment [7]. We use three different meth-
ods to calculate the shared system stack usage:

SPL The traditional method to dimension a shared system stack by summing
up the maximum stack usage in each priority level, see e.g. [1].

SUB The safe upper bound on the shared stack usage presented in Section 7.5

SLB A lower bound on on the shared stack usage, for each task set.

The lower bound is established using a simple heuristic method that tries to
maximize shared stack usage by generating only feasible preemption scenarios

86 Paper D

for the task set, and thus represents scenarios that definitely can occur. From
all PPCs, the heuristic selects a sample set of roughly 500 chains. For each of
them, the method tries to construct a feasible arrival pattern for the ET tasks,
and actual execution time values, that cause an actual preemption between the
tasks in the chain. The quality of this heuristic method degrades as the length
of the chains or the total number of PPCs increases, which can be seen in the
figures.

By establishing a safe upper bound and a feasible lower bound, we know
that the actual worst case stack usage is bounded by SUB and SLB. The rea-
son for including SLB is to give an indication on the maximum amount of
improvement there might be for SUB.

7.6.1 Simulation setup

In our simulator we generate random task sets as input to the stack analysis
application. The task generator takes the following input parameters:

• Total number of TT (time triggered) tasks (default = 250)

• Total load of TT tasks (default = 60%)

• Minimum and maximum priorities of TT tasks (default = 1 and 32)

• Minimum and maximum stack usage of TT tasks (default = 128 and
2048)

• Total number of ET (event triggered) tasks (default = 8)

• Total load of ET tasks (default = 20%)

• The shortest possible minimum inter-arrival time of an ET task (default
= 1.000)

The generated schedule for TT tasks is always 10.000 time units. All ET tasks
have higher priority than TT tasks. The default values for the input parameters
represent a base configuration derived from a real application [7].

Using these parameters a task set with the following characteristics is gen-
erated:

• Each TT offset (Oti) is randomly and uniformly distributed between 0
and 10.000.

7.6 Evaluation 87

• Worst case execution times for TT tasks, Cti, are initially randomly as-
signed between 1 and 1000 time units. The execution times gets ad-
justed, by multiplying all Cti by a fraction, so that the the TT load (as
defined by the input parameter) is obtained.

• TT priorities are assigned randomly between minimum and maximum
value with a uniform distribution.

7.6.2 Results

Each diagram shows three graphs corresponding to the stack usage calculated
by the three methods: SPL, SUB, and SLB. Each point in the graphs represent
the mean value of 100 generated task sets. We also measured the 95% confi-
dence interval for the mean values, these are not shown because of their small
size (less than 7% of the y-value for each point). We also measured the CPU
time to calculate an upper bound on shared stack usage for each generated task
set. Using the method described in Section 7.5, the calculations took less than
63ms on an Intel Pentium 4, 2.8GHz with 512MB of RAM.

 0

 50

 100

 150

 200

 250

 50 100 150 200 250

Sh
ar

ed
 s

ta
ck

 u
sa

ge
 (

K
B

)

Maximum priority of TT tasks

SPL SUB SLB

Figure 7.1: Varying the number of priority levels of TT tasks

In Fig. 7.1 we vary the maximum priority for TT tasks between 1 and 300,
keeping the minimum priority at 1. This gives a distribution of possible priori-
ties (priority levels), from 1 to n, where n is indicated by the x-axis. We see, in
Fig. 7.2 which zooms in on Fig. 7.1 for maximum priorities up to 10, that the

88 Paper D

difference in stack usage between SPL and SUB is less noticeable with a low
number of priority levels (see Fig. 7.2). However, for larger number of priority
levels the difference is significant. SPL is not expected to flatten out before all
tasks actually have unique priorities, whereas our method (SUB) flattens out
significantly earlier. We conclude that the maximum number of tasks in any
preemption chain is increasing very slowly (or not at all) when the number of
TT tasks increases above a certain value, since the system load is constant.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8 9 10

Sh
ar

ed
 s

ta
ck

 u
sa

ge
 (

K
B

)

Maximum priority of TT tasks

SPL SUB SLB

Figure 7.2: Varying the number of priority levels of TT tasks (zoom of Fig. 7.1)

In Fig. 7.3 we vary the maximum stack usage of each TT tasks between
128 bytes and 4096 bytes. We do this by assigning an initial stack of 128 bytes
for each TT task, i.e. initially the stack size variation is zero. We then vary the
stack size between 128 and 512 bytes, 128 and 1024 bytes, and so on. The
diagram shows that SUB gives significantly lower values on shared stack us-
age than the traditional SPL. We also notice that an increase in stack variation
scales up(linearly) the differences between SPL and SUB. The linearity is ex-
pected, since an increase in stack variation do not affect occurrences of possible
preemptions in the system i.e. possible nested preemptions are retained.

In Fig. 7.4 we vary the maximum number of TT tasks between 5 and 275.
We see that the shared stack usage of the traditional SPL is dramatically in-
creasing in the beginning. This is due to the fact that when the number of
TT tasks is lower than the maximum priority of TT tasks (32), most TT tasks
have unique priorities. SUB, on the other hand, increases much slower than

7.7 Conclusions and future work 89

 0

 20

 40

 60

 80

 100

 120

 0 512 1024 1536 2048 2560 3072 3584 4096

Sh
ar

ed
 s

ta
ck

 u
sa

ge
 (

K
B

)

Maximum stack usage of TT tasks (bytes)

SPL SUB SLB

Figure 7.3: Varying stack usage of TT tasks

SPL because the maximum number of tasks involved in any preemption chain
is slowly increasing. SUB is expected to further approach SPL since increas-
ing the number of tasks will increase the likelihood of larger number of tasks
involved in the preemption chains.

In Fig. 7.5 we vary the total load of TT tasks between 10% (0.1) and 70%
(0.7). The figure shows that the shared stack usage of SPL is constant whereas
SUB is slowly increasing. SPL is expected to be constant, since it is only
affected by the number of priority levels and unaffected by the actual preemp-
tions that can occur in a system. The increase of SUB is due to increasing
response-times of TT tasks when the TT load increases, which will increase
the likelihood of larger number of tasks involved in nested preemptions.

7.7 Conclusions and future work

This paper presents a novel method to determine the maximum stack memory
used in preemptive, shared stack, real-time systems. We provide a general and
exact problem formulation applicable for any preemptive system model based
on dynamic (run-time) properties.

By approximating these run-time properties, together with information about
the underlying run-time system, we present a method to safely approximate the
maximum system stack usage at compile time. We do this for a relevant and

90 Paper D

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

Sh
ar

ed
 s

ta
ck

 u
sa

ge
 (

K
B

)

Number of TT tasks

SPL SUB SLB

Figure 7.4: Varying the number of TT tasks

commercially available system model: A hybrid, statically and dynamically,
scheduled system. Such a system model provides lot of static information that
we can use to estimate the dynamic start- and finishing-times. Our approach
essentially consists of finding the nested preemption pattern that results in the
maximum shared stack usage. We prove that our method is a safe upper bound
of the exact system stack usage and show that our method has a polynomial
time complexity.

In a comprehensive simulation study we evaluated our technique, and com-
pared it to the traditional method to estimate stack usage. We find that our
method significantly reduce the amount of stack memory needed. For realisti-
cally sized task sets a decrease in the order of 70% is typical.

In this paper we focused on a system model for a given commercial real-
time operating system. In the future we plan to extend our approximation
method to a more general system model, to incorporate all the features of the
general model for tasks with offsets [21]. Thus, making this analysis technique
applicable to a wider range of systems.

Our current method could also be extended to account for other types of
information that can further limit the number of possible preemptions. We cur-
rently only account for separation in time (offsets and response-times) between
tasks. However, in many systems other types of information, such as prece-
dence and mutual-exclusion relations may exists between tasks. Thus limiting

7.7 Conclusions and future work 91

 0

 10

 20

 30

 40

 50

 60

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Sh
ar

ed
 s

ta
ck

 u
sa

ge
 (

K
B

)

Total load of TT tasks

SPL SUB SLB

Figure 7.5: Varying the load of TT tasks

the possible preemptions.
The method presented here could also be used in synthesis and configura-

tion tools that generate optimized systems from given application constraint.
In this case, the results from our analysis can be used to guide optimization
or heuristic techniques that tries to map application functionality to run-time
objects.

Bibliography

Bibliography

[1] R. Davis, N. Merriam, and N. Tracey. How embedded applications using
an rtos can stay within on-chip memory limits. In Proceedings of the WiP
and Industrial Experience Session, Euromicro Conference on Real-Time
Systems, June 2000.

[2] K. Hänninen, J. Lundbäck, K.-L. Lundbäck, J. Mäki-Turja, and M. Nolin.
Efficient event-triggered tasks in an rtos. In Proceedings of the Interna-
tional Conference on Embedded Systems and Applications, June 2005.

[3] Micro Digital. Web page, http://www.smxinfo.com/mt.htm.

[4] Live Devices ETAS Group. Web page,
http://en.etasgroup.com/products/rta/.

[5] Arcticus systems. Web page, http://www.arcticus-systems.se.

[6] Unicoi Systems. Web page,
http://www.unicoi.com/fusion_rtos/fusion_rtos.htm.

[7] Volvo construction equipment. Web page,
http://www.volvoce.com.

[8] Bae systems hägglunds. Web page, http://www.haggve.se.

[9] Haldex traction systems. Web page, http://www.haldex-traction.com/.

[10] Micro Digital Inc. smx Features and Architecture.

[11] B. Middha, M. Simpson, and R. Barua. MTSS: Multi task stack sharing
for embedded systems. In Proceedings of the ACM International Confer-
ence on Compilers, Architecture, and Synthesis for Embedded Systems,
San Francisco, CA, Sept 2005.

92

Bibliography 93

[12] T.P. Baker. A stack based resource allocation policy for real-time pro-
cesses. In Proceedings of the 11th IEEE Real-Time Systems Symposium,
1990.

[13] P. Gai, G. Lipari, and M. Di Natale. Minimizing memory utilization of
real-time task sets in single and multi-processor systems-on-a-chip. In
Proceedings of the 22nd Real-Time Systems Symposium, London, UK,
Dec 2001.

[14] M. Saksena and Y. Wang. Scalable real-time system design using preemp-
tion thresholds. In Proceedings of the 21st Real-Time System Symposium,
Dec 2000.

[15] R. Dobrin and G. Fohler. Reducing the number of preemptions in fixed
priority scheduling. In 16th Euromicro Conference on Real-time Systems,
Catania, Sicily, Italy, July 2004.

[16] C. G. Lee, K. Lee, J. Hahn, Y. M. Seo, S. Lyul Min, R. Ha, S. Hong,
C. Yun Park, M. Lee, and C. Sang Kim. Bounding cache-related preemp-
tion delay for real-time systems. IEEE Transactions on Software Engi-
neering, 27(9):805–826, Sept 2001.

[17] A. Burns and A. Wellings. Real-Time Systems and Programming
Languages, chapter 13.10.1 Immediate Ceiling Priority Inheritance.
Addison-Wesley, second edition, 1996.

[18] R. Heckmann and C. Ferdinand. Verifying safety-critical timing and
memory-usage properties of embedded software by abstract interpreta-
tion. In Proceedings of the Design, Automation and Test in Europe, March
2005.

[19] AbsInt. Web page, http://www.absint.com/stackanalyzer/.

[20] Tidorum. Web page, http://www.tidorum.fi/bound-t/.

[21] J. C. Palencia Gutierrez and M. Gonzalez Harbour. Schedulability anal-
ysis for tasks with static and dynamic offsets. In Proceedings of the 19th
Real-Time Systems Symposium, Dec 1998.

[22] K. Tindell. Using offset information to analyse static priority pre-
emptively scheduled task sets. Technical Report YCS-182, Dept. of Com-
puter Science, University of York, England, 1992.

[23] J. Mäki-Turja, K. Hänninen, and M. Nolin. Efficient development of
real-time systems using hybrid scheduling. In International conference
on Embedded Systems and Applications (ESA), June 2005.

[24] J. Mäki-Turja and M. Nolin. Fast and tight response-times for tasks with
offsets. In Proceedings of the 17th Euromicro Conference on Real-Time
Systems, July 2005.

[25] Kristian Sandström, Christer Eriksson, and Gerhard Fohler. Handling in-
terrupts with static scheduling in an automotive vehicle control system. In
5th International Workshop on Real-Time Computing Systems and Appli-
cations (RTCSA ’98), pages 158–165, Hiroshima, Japan, October 1998.
IEEE Computer Society.

[26] T. A. McKee and F.R. McMorris. Topics in intersection graph theory.
SIAM Monographs on Discrete Mathematics and Applications #2. Soci-
ety for Industrial and Applied Mathematics (SIAM), 1999.

[27] D. J. Rose and R. E. Tarjan. Algorithmic aspects of vertex elimination.
In STOC ’75: Proceedings of seventh annual ACM symposium on Theory
of computing, pages 245–254, New York, NY, USA, 1975. ACM Press.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to algorithms. MIT Press, Cambridge, MA, USA, second edition, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts false
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ABSALOM
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /Algerian
 /ALIBI
 /Andy-Bold
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /BATAVIA
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CASMIRA
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Courant
 /Courant-Bold
 /Courant-BoldItalic
 /Courant-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /ELEGANCE
 /ELLIS
 /EngraverFontExtras
 /EngraverFontSet
 /EngraverTextH
 /EngraverTextNCS
 /EngraverTextT
 /EngraverTime
 /EstrangeloEdessa
 /EXCESS
 /FootlightMTLight
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /GENUINE
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /HarlowSolid
 /Harrington
 /Helonia
 /Helonia-Bold
 /Helonia-BoldItalic
 /Helonia-Italic
 /HELTERSKELTER
 /HERMAN
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /ISABELLE
 /Jazz
 /JazzCord
 /JazzPerc
 /JazzText
 /JazzTextExtended
 /JOAN
 /Jokerman-Regular
 /JuiceITC-Regular
 /JUSTICE
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Maestro
 /MaestroPercussion
 /MaestroWide
 /Magneto-Bold
 /MANDELA
 /Mangal-Regular
 /MaplePi
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5Bold
 /Mathematica5Mono
 /Mathematica5MonoBold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MATTEROFFACT
 /MaturaMTScriptCapitals
 /MICRODOT
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MT-Extra
 /MVBoli
 /NATURALBORN
 /NEOLITH
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OldEnglishTextMT
 /Onyx
 /OPENCLASSIC
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /PepitaMT
 /Petrucci
 /Phonetic
 /Playbill
 /PoorRichard-Regular
 /PRETEXT
 /PUPPYLIKE
 /Raavi
 /RADAGUND
 /Ravie
 /REALVIRTUE
 /SecretServiceTypewriter
 /Seville
 /SHELMAN
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA93Regular
 /SnapITC-Regular
 /Sshlinedraw
 /Stencil
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolPi-Normal
 /Tahoma
 /Tahoma-Bold
 /Tamburo
 /TempusSansITC
 /Thames
 /Thames-Bold
 /Thames-BoldItalic
 /Thames-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TRENDY
 /Tunga-Regular
 /Webdings
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /Vivaldii
 /VladimirScript
 /Vrinda
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

