
Predicting Execution Time for Variable Behaviour EmbeddedReal-Time
Components

Johan Fredriksson, Thomas Nolte, Mikael Nolin
Dept. of Computer Science and Electronics
Mälardalen University, Västerås, Sweden

Heinz Schmidt
Dept. of Comp. Science and Software Eng.

Monash University, Victoria, Australia

Abstract

Embedded systems for vehicle control critically depend
on efficient and reliable control software, together with
practical methods for their production. Component-based
software engineering for embedded systems is currently
gaining ground since variability, reusability, and maintain-
ability are supported. However, existing tools and methods
do not guarantee efficient resource usage in these systems.

In this paper we present a method, which increases the
accuracy of execution time predictions for embedded com-
ponents without lowering reusability of the components.
For assessing the correct timing behaviour, the method clas-
sifies run types by their time in addition to their probability.

1 Introduction

Components are elements of reuse, and should there-
fore be context independent. Hence, they must conform
to a worst-case scenario for all possible contexts, leading
to possibly inaccurate predictions for each specific usage.
However, by considering the context of a component it is
possible to make predictions moreaccurate, and thus use
less resources. Introducing a context aware execution time
representation allows for a more efficient use of resources,
which in turn contribute to a lower product cost.

The embedded systems industry is under competitive
pressure to continually shorten its time-to-market and in-
crease product differentiation at the same time. Component
software and its reuse accelerates this competitive process.
As a result however, (i) embedded systems become increas-
ingly software-intensive, (ii) costs shift from hardware to
software, and, (iii) individual components integrate increas-
ing functionality over different projects and reuse cycles.

Integrating more functions into a single component gives
rise to increasingly varying behaviour, some variants only
invoked in a particular deployment context, some only as
part of adaptive behaviour triggered by context-awareness
or deployment-specific configuration parameters. Proper-

ties of the component such as time and reliability are vari-
able and context-dependent and the variance may be large.
Software components in embedded systems make it ex-
tremely hard to predict system properties and hence guaran-
tee quality of the systems and the services they provide. At
the same time, componentization has been the key to struc-
tured design processes with predictable properties in many
engineering domains. For software, in particular, a context-
free characterisation of component properties is inadequate
for accurate predictions.

1.1 Related Work

The work in this paper is a continuation of ideas pre-
sented in [4] and [10]. In the SWEETwcet analysis tool
suite [2, 5, 9], abstract interpretation is used to predict
wcet with specific input intervals. However, this approach
requires source code, and reusability is lowered because
analysis is required for every new usage. Hybrid methods
may overcome some deficiencies by combining static and
dynamic methods. In, e.g., [8] methods are used to generate
benchmarks to determinewcet of basic blocks of code. In
[1] the program is divided into different parts each associ-
ated with a probability distribution for execution times.

2 Contexts and reuse

Some of the main driving forces for component-based
software engineering are reuse and third party composition.
Both speed up development significantly by using already
developed and pre-tested components. To facilitate reuse,
and third party composition components are deployable on
different configurations. Often only a subset of the total
functionality of a component is used in different reuse con-
figurations. To be able to use the component in any of the
different supported configurations, without reanalyzing the
component, it must be predicted for the worst possible sce-
nario. This of course may lead to inaccurate predictions and
poor utilization of resources.

1



We introduce a context aware execution-time represen-
tation to achieve more accurate predictions. To support this
representation we classify component behaviour and inter-
faces.

Components consists ofbehaviours, provided interface
andrequired interface. The provided interface is associated
with ausage profilethat describes the configuration. In [11]
the fourth author has shown how usage-profile probabili-
ties compose over component architectures and give rise to
probabilistic predictions of reliability. There the reliability
annotations are associated with required interfaces and the
usage-profile probabilities with provided interfaces. In the
current paper we take a similar approach, except that the
requirement annotations are related towcet and that these
times are computed from observations rather than from for-
mal execution models. The required interface is associated
with a control contextthat describes the data and control
flow based on usage probabilities.

The behaviour is restricted by the usage profile, and the
control context is restricted by the behaviour. We can model
the control context as a function of the usage profile. Thus
we get a compositional model where the behaviour of a
component is restricted by a function of the usage profile
of the preceding components.

The behaviour of the component is directly related to the
execution time of the component, thus we specify the extra-
functional propertiesworst-case execution time(wcet) and
best-case execution time(bcet) for each component.

3 Usage profile

In software reliability theory (see e.g. Musa [7]) usage
profiles are probability distributions for so-called run types.
Probabilities are calculated using long program runs and
large numbers of them. To guarantee statistical properties
(for example relative independence of input order), these
are divided up into short runs, for example cycles in peri-
odic real-time systems, transaction in transaction process-
ing systems, and if necessary sampled. Run types are then
defined as sets of similar runs based on input classes or other
context parameters.

In the “real” physical world, distinct run types exist and
are often engineered into systems, for example, asmodes
of operation. We hypothesize that run types are signifi-
cant discriminators ofwcet and can be utilised for more
accuratewcet modelling. Thus we define ausage profile
asU = 〈I0, ..., In−1〉, where theIi(0 ≤ i < n) are in-
put variables, each with a small domainDi of values of a
given type, and a probability distributionPi : Di → [0, 1]
for the occurrence of these values in the input. We as-
sume that these variables (and hence their distributions)
are chosen to be statistically independent and either have
small domains naturally or model discretized partitions of

  pr 
 

v0 v1 v2 v3 ... Input 
 

P 
 

V 

Figure 1. Input variable I

real input variables. (See Fig. 1 for an illustration of
these concepts). The input domainM is then defined as
M := D0 × . . . × Dn−1. The probability distributions
Pi(0 ≤ i < n) extend uniquely to a probability distrib-
ution P : M → [0, 1] on the input domain, defined by
P (x0, . . . , xn−1) = P0(x0) × · · · × Pn−1(xn−1).

 Pr 
 

      m0 m1 m2 ..... Input 
 

pt 
 

Active input 
 

P 
 

Figure 2. Usage profile

Furthermore we assume0 ≤ pt < 1 is a given proba-
bility threshold to ignore low probability inputs (and con-
sequently later their times). This will permit predictionsof
the form “with 0.99 probabilitywcet< 500ms.” Inputs
over the threshold are calledactiveand the ratio ofactive
inputsoverall inputs is called the usage-profileutilization.
See also Fig. 2.

4 Context-aware prediction

Components are reused in different products and differ-
ent contexts. A different usage profile can substantially
change the behaviour of a component. To predict the ex-
ecution time of a complex component with high accuracy,
today components must be reanalyzed for every new usage
profile – a costly activity. Also, it is not certain that source
code is available for components as they may be delivered
by sub contractors. In this case analyses become even more
costly.

Our method overcomes the problem by analyzing the ex-
ecution times and their probability as a function of the com-
ponent input. We assume that execution time varies with
different inputs and their associated run types. The input
domain is divided into discrete segments that we call “bins”,
as shown in Fig. 3.

Similar work includes [6], which uses abstract interpre-
tation and eliminates dead code not used in the given con-

2



text. This however is not possible for black-box compo-
nents since source code is required.

 

Input 
 

et 
 

Input 
 

et 
 

WCET 
 BCET 
Execution time 

m0 m1 m2 ... 
 

    m0 m1 m2 ... 
 (a) (b) 

Figure 3. One bin versus four bins

Given a specific usage profile for a component, it is
straightforward to assess which bins are active, i.e., contain
an active input. The purpose is to remove the “bins”, i.e.,
the execution times, that are not active in a specific usage.
Thus the difference betweenwcet andbcet for the entire
component can be lowered heuristically.

For each input value, there exist a correspondingwcet
andbcet for the component, corresponding to the high-
est and lowest execution time possible through all inputs in
the bin as shown in Fig. 3. Each bini is associated with a
wcet

i andbceti, corresponding to the highest and lowest
execution time within the bin.

 
Pr 
 

Input 
 

pt 

Active input 
 

et 
 

Active bin 
 

m0 m1 m2 ..... 

Figure 4. Usage profile applied to the bins

A usage profile is applied, and the bins that contain an
active input are considered for thewcet andbcet for the
entire component, as shown in Fig. 4, where Fig. 2 is over-
laid on top of Fig. 3.

5 Prediction framework

The prediction framework is a set of models for calculat-
ing the accuracy of the prediction. Each bin can represent
an area based on the number of inputs in the bin and the
difference between thewceti andbceti.

After dividing the input domain into bins, the bins that
are inactive in a specific usage profile are removed. By re-
moving bins, the number of candidates for the component

wcet andbcet is lowered. Consequently the accuracy of
the execution time may be increased.

An important factor for the success of the method is how
the input domain is segmented into bins. It is desirable
to have a behaviour with minimal variation inwcet. The
finest-resolution binning would associate a single bin with
each single value and thus bring variation to0: however at
very high modelling and computational cost. Instead, we
strive to simplify the model such that no exhaustive analy-
sis is required for reuse of components. Therefore we asso-
ciate both variation and the number of bins with a penalty
and aim to minimise both at the same time. The rational of
the penalizing bin creation is that it is harder to reuse and
analyze a component with a high number of bins, than a
component with a low number of bins. Thus, we want as
high accuracy as possible with as few bins as possible.

The implementation is based on genetic algorithms (GA)
[3], where each gene represents an input range, i.e., the size
of a bin. Each chromosome represents the entire system
with all inputs assigned to bins. Each system produced by
the GA is evaluated by the framework, and is given a fitness
value dependent on the total area of the bins.

The fitness function that guides the genetic algorithm is
defined to minimize the sum of the areas of all bins while
promoting few bins above many bins. For each simulation
the method divides the component into bins and compares
the areas and incrementally finds new divisions with lower
areas. When the GA has found a good division of bins, a
number of random usage profile are assigned to the compo-
nent to evaluate the performance of the method.

6 Ongoing Evaluation

Currently we are working on further formalizing the
method and the framework. We are also evaluating the per-
formance of the method in the implemented framework by
simulating random components and usage profiles. Some
initial findings of the evaluation are briefly discussed later
in the remainder of this section.

The framework is evaluated with respect to performance,
relation between number of bins and accuracy, and, perfor-
mance with respect to probability threshold.

The components are simulated with random timing be-
haviour, i.e., the execution time is a random function of
the input. usage profiles are created with a set of random
variables, where each variable has a random type, range
and a probability distribution conforming to one of normal,
binomial or Poisson distributions. The distributions have
been chosen based on the assumption that many physical
processes follow these distributions.

Random execution-time generation is chosen based on
the following assumptions: real software usually has a be-
haviour resulting in more distinct patterns than random; if

3



accuracy can be increased even for uniformly random dis-
tributed execution times, it is reasonable to believe that the
performance gain is even higher for real software follow-
ing non-random patterns; real software usually has some
peaks and valleys that can be isolated to achieve better per-
formance.

Initial results indicate a higher improvement for low uti-
lizations. For random distribution when few inputs are
used, i.e., a low usage-profile utilization, high improve-
ments, over 50%, are shown. However, improvements up
to 20% are achieved for higher utilizations. Still these re-
sults are very preliminary, and further evaluation is required
in order to show results with high confidence.

0%

10%

20%

30%

40%

50%

60%

1 3 5 7 9 11 13 15
number of bins

im
p

ro
ve

m
e

n
t

25%

50%

75%

Log. (25%)

Log. (50%)

Log. (75%)

Figure 5. Initial results

Fig. 5 show the improvement of accuracy depending on
the number of bins. The y-axis in is the improvement of
accuracy between a context-free (one bin) and a context-
sensitive (several bins) such that:

improvement =
Areacontextfree − Areacontextsensitive

Areacontextfree

The x-axis is the number of bins the GA has chosen is the
best division. The improvement is presented with respect to
different usage-profile utilizations and different numberof
inputs. The fitted curves (dashed) are fitted as polynomials
with the least square method.

The curve with highest improvement has a utilization of
25%, the middle curve a utilization of 50%, and finally the
lowest improvement is shown for a utilization of 75%.

7 Summary

In this paper, we have shown how usage profiles suit-
ably represent context information to increase the accuracy
of timing predictions in reusable components, without de-
creasing reusability. Our method combines probability the-
ory from reliability engineering with genetic algorithms and

promises to show a significant increase in accuracy ofwcet
prediction. We reported initial findings of an ongoing eval-
uation.

References

[1] G. Bernat, A. Colin, and S. Petters. pWCET, a Tool
for Probabilistic WCET Analysis of Real-Time Sys-
tems. InWCET, pages 21–38, 2003.

[2] A. Ermedahl.A Modular Tool Architecture for Worst-
Case Execution Time Analysis. PhD thesis, Uppsala
University, Dept. of Information Technology, Uppsala
University, Sweden, June 2003.

[3] C. M. Fonseca. and P. J. Flemming. An overview
of evolutionary algorithms in multiobjective optimiza-
tion. Evolutionary computation, 3(1), 1995.

[4] J. Fredriksson. Increasing accuracy of property pre-
dictions for embedded real-time components. In18th
Euromicro Conference on Real-Time Systems (ECRTS
06), WiP, July 2006.

[5] J. Gustafsson, A. Ermedahl, and B. Lisper. Towards a
flow analysis for embedded system C programs. In
10th Intl. Workshop on Object-Oriented Real-Time
Dependable Systems, Sedona, USA, Feb. 2005.

[6] M.-L. Ji, J. Wang, S. Li, and Z.-C. Qi. Automated
wcet analysis based on program modes. InAST’06,
Shanghai, China. ACM, MAY 2006.

[7] A. I. John D. Musa and K. Okumoto. Software
Reliability - Measurement, prediction, application.
McGraw-Hill, New York, 1987.

[8] R. Kirner, P. Puschner, and I. Wenzel. Measurement-
Based Worst-Case Execution Time Analysis using
Automatic Test-Data Generation. InIn Proceedings of
the 4th Euromicro International Workshop on WCET
Analysis, June 2004. Catania, Italy.

[9] Mälardalen University. WCET project homepage,
http://www.mrtc.mdh.se/projects/wcet. Mälardalen
University, 2006.

[10] A. Möller, I. Peake, M. Nolin, J. Fredriksson, and
H. Schmidt. Component-based context-dependent hy-
brid property prediction. InERCIM - Workshop on
Dependable Software Intensive Embedded systems,
Porto, Portugal, September 2005. ERCIM.

[11] R. H. Reussner, H. W. Schmidt, and I. Poernomo.
Reliability prediction for component-based software
architectures. Journal of Systems and Software,
66(3):241–252, 2003.

4


