You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Hierarchical Real-Time Scheduling and Synchronization



Research group:

Publication Type:

Licentiate Thesis


The Hierarchical Scheduling Framework (HSF) has been introduced to enable compositional schedulability analysis and execution of embedded software systems with real-time constraints. In this thesis, we consider a system consisting of a number of semi-independent components called subsystems, and these subsystems are allowed to share logical resources. The HSF provides CPU-time to the subsystems and it guarantees that the individual subsystems respect their allocated CPU budgets. However, if subsystems are allowed to share logical resources, extra complexity with respect to analysis and run-time mechanisms is introduced. In this thesis we address three issues related to hierarchical scheduling of semi-independent subsystems. In the first part, we investigate the feasibility of implementing the hierarchical scheduling framework in a commercial operating system, and we present the detailed figures of various key properties with respect to the overhead of the implementation. In the second part, we studied the problem of supporting shared resources in a hierarchical scheduling framework and we propose two different solutions to support resource sharing. The first proposed solution is called SIRAP, a synchronization protocol for resource sharing in hierarchically scheduled open real-time systems, and the second solution is an enhanced overrun mechanism. In the third part, we present a resource efficient approach to minimize system load (i.e., the collective CPU requirements to guarantee the schedulability of hierarchically scheduled subsystems). Our work is motivated from a tradeoff between reducing resource locking times and reducing system load. We formulate an optimization problem that determines the resource locking times of each individual subsystem with the goal of minimizing the system load subject to system schedulability. We present linear complexity algorithms to find an optimal solution to the problem, and we prove their correctness.


author = {Moris Behnam},
title = {Hierarchical Real-Time Scheduling and Synchronization},
number = {94},
month = {October},
year = {2008},
url = {}