You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Diagnosis and Biofeedback System for Stress

Fulltext:


Publication Type:

Conference/Workshop Paper

Venue:

6th international workshop on Wearable Micro and Nanosystems for Personalised Health (pHealth)


Abstract

Today, everyday life for many people contain many situations that may trigger stress or result in an individual living on an increased stress level under long time. High level of stress may cause serious health problems. It is known that respiratory rate is an important factor and can be used in diagnosis and biofeedback training, but available measurement of respiratory rate are not especially suitable for home and office use. The aim of this project is to develop a portable sensor system that can measure the stress level, during everyday situations e.g. at home and in work environment and can help the person to change the behaviour and decrease the stress level. The sensor explored is a finger temperature sensor. Clinical studies show that finger temperature, in general, decreases with stress; however this change pattern shows large individual variations. Diagnosing stress level from the finger temperature is difficult even for clinical experts. Therefore a computer-based stress diagnosis system is important. In this system, case-based reasoning and fuzzy logic have been applied to assists in stress diagnosis and biofeedback treatment utilizing the finger temperature sensor signal. An evaluation of the system with an expert in stress diagnosis shows promising result.

Bibtex

@inproceedings{Begum1418,
author = {Shahina Begum and Mobyen Uddin Ahmed and Peter Funk and Ning Xiong and Bo von Sch{\'e}ele and Maria Lind{\'e}n and Mia Folke},
title = {Diagnosis and Biofeedback System for Stress},
month = {June},
year = {2009},
booktitle = {6th international workshop on Wearable Micro and Nanosystems for Personalised Health (pHealth)},
url = {http://www.es.mdh.se/publications/1418-}
}