You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Task-Level Probabilistic Scheduling Guarantees for Dependable Real-Time Systems - A Designer Centric Approach

Fulltext:


Publication Type:

Conference/Workshop Paper

Venue:

IEEE International Workshop on Object/component/service-oriented Real-time Networked Ultra-dependable Systems

Publisher:

IEEE


Abstract

Dependable real-time systems typically consist of tasks of mixed-criticality levels with associated fault tolerance (FT) requirements and scheduling them in a fault-tolerant manner to efficiently satisfy these requirements is a challenging problem. From the designers’ perspective, the most natural way to specify the task criticalities is by expressing the reliability requirements at task level, without having to deal with low level decisions, such as deciding on which FT method to use, where in the system to implement the FT and the amount of resources to be dedicated to the FT mechanism. Hence, it is extremely important to devise methods for translating the highlevel requirement specifications for each task into the low-level scheduling decisions needed for the FT mechanism to function efficiently and correctly.In this paper, we focus achieving FT by redundancy in the temporal domain, as it is the commonly preferred method in embedded applications to recover from transient and intermittent errors, mainly due to its relatively low cost and ease of implementation. We propose a method which allows the system designer to specify task-level reliability requirements and provides a priori probabilistic scheduling guarantees for real-time tasks with mixed-criticality levels in the context of preemptive fixed-priority scheduling. We illustrate the method on a running example.

Bibtex

@inproceedings{Aysan2013,
author = {H{\"u}seyin Aysan and Radu Dobrin and Sasikumar Punnekkat},
title = {Task-Level Probabilistic Scheduling Guarantees for Dependable Real-Time Systems - A Designer Centric Approach},
month = {March},
year = {2011},
booktitle = {IEEE International Workshop on Object/component/service-oriented Real-time Networked Ultra-dependable Systems},
publisher = {IEEE},
url = {http://www.es.mdu.se/publications/2013-}
}