You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Towards Adaptive Hierarchical Scheduling of Real-time Systems

Fulltext:


Authors:


Publication Type:

Student Thesis


Abstract

Hierarchical scheduling provides predictable timing and temporal isolation; two properties desirable in real-time embedded systems. In hierarchically scheduled systems, subsystems should receive a sufficient amount of CPU resources in order to be able to guarantee timing constraints of its internal parts (tasks). In static systems, an exact amount of CPU resource can be allocated to a subsystem. However, in dynamic systems, where execution times of tasks vary considerably during run-time, it is desirable to give a dynamic portion of the CPU given the current load situation. In this thesis we present a feedback control approach for adapting the amount of CPU resource that is allocated to subsystems during run-time such that each subsystem receives sufficient resources while keeping the number of deadline violations to a minimum. We also show some example simulations where the controller adapts the budget of a subsystems.If we allocate CPU only based on subsystems demand and don't take into account the availability of the resource, timing guarantees of the lower priority subsystems (using a priority based scheduler in the global level) will be violated in the overload situations. In such a situation the high criticality modules should be superior to the low criticality modules in receiving resources. In this thesis, in the extension of our adaptive framework, we propose two techniques for controlling the CPU distribution among modules in an overload circumstance. First we introduce the notion of subsystem criticality and then distribute CPU portions based on the criticality level of subsystems.

Bibtex

@mastersthesis{Khalilzad2377,
author = {Nima Khalilzad},
title = {Towards Adaptive Hierarchical Scheduling of Real-time Systems},
month = {April},
year = {2011},
url = {http://www.es.mdu.se/publications/2377-}
}