You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Applying the Peak Over Thresholds Method on Worst-Case Response Time Analysis of Complex Real-Time Systems

Publication Type:

Conference/Workshop Paper

Venue:

19th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA13)

Publisher:

IEEE


Abstract

The predictability of timing behavior is a very important performance issue of a real-time system. As the complexity of modern industrial systems increases, analyzing the timing behaviors of those systems becomes more and more challenging. Most of the existing analysis methods depend on static and detailed information of the systems under analysis. However, sometimes only partial information of a system can be available, or it may require too much effort on obtaining those details, making those analysis methods much less feasible. Moreover, those methods usually focus on some specific system models with unrealistic assumptions, consequently, applying those methods on a complex industrial real-time system may result in overly pessimistic results. Therefore, in this paper, we propose a statistical method to compute Worst-Case Response Times (WCRTs) of complex real-time systems regarding soft timing constraints, which can provide a higher general applicability with less required system information. Our approach employs a Peak Over Thresholds (POT) method, which is a branch of the Extreme Value Theory (EVT). For the evaluation, we have applied this approach on the analysis of message transmission latencies over Controller Area Networks (CAN).

Bibtex

@inproceedings{Liu2956,
author = {Meng Liu and Moris Behnam and Thomas Nolte},
title = {Applying the Peak Over Thresholds Method on Worst-Case Response Time Analysis of Complex Real-Time Systems},
month = {August},
year = {2013},
booktitle = {19th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA13)},
publisher = {IEEE},
url = {http://www.es.mdu.se/publications/2956-}
}