You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Performance Preservation using Servers for Predictable Execution and Integration

Fulltext:


Authors:


Publication Type:

Conference/Workshop Paper

Venue:

The 38th Annual International Computers, Software & Applications Conference

Publisher:

IEEE


Abstract

In real-time embedded systems the components and components integration must satisfy both functional correctness and extra-functional correctness, such as satisfying timing properties. Deploying multiple real-time components on a physical node poses timing problems in components’s integration. These timing problems during integration further effect predictability and reusability of real-time components.We propose a novel concept of runnable virtual node (RVN) whose interaction with the environment is bounded both by a functional and a temporal interface, and the validity of its internal temporal behaviour is preserved when integrated with other components or when reused in a new environment. Our realization of RVN exploits the latest techniques for hierarchical scheduling framework to achieve temporal isolation, and the principles from component-based software-engineering to achieve functional isolation. Proof-of-concept case studies executed on an AVR based 32- bit micro-controller demonstrates the preserving of real-time properties within components for predictable integration and reusability in a new environment without altering its temporal behaviour in both hierarchical scheduling and RVN contexts.We also take a step ahead towards expanding the performance preserving servers’ concept for multicore platform on which the scheduling of real-time tasks is inherently unpredictable due to the contention for shared physical memory and caches. It results in proposing and implementation of a novel type of server, called Multi-Resource Server (MRS) which controls the access to both CPU and memory bandwidth resources such that the execution of real-time tasks become predictable. The MRS provides temporal isolation both between tasks running on the same core, as well as, between tasks running on different cores. Further, we provide the schedulability analysis for MRS to provide predictable performance when composing multiple components on a shared multi-core platform.

Bibtex

@inproceedings{Inam3546,
author = {Rafia Inam},
title = {Performance Preservation using Servers for Predictable Execution and Integration},
month = {July},
year = {2014},
booktitle = {The 38th Annual International Computers, Software {\&} Applications Conference},
publisher = {IEEE},
url = {http://www.es.mdu.se/publications/3546-}
}