You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

A Model-driven Safety Certification Method for Process Compliance

Fulltext:


Authors:


Publication Type:

Conference/Workshop Paper

Venue:

2nd International Workshop on Assurance Cases for Software-intensive Systems, joint event of ISSRE 2014.


Abstract

A safety case is a contextualized structured argu- ment constituted of process and product-based sub-arguments to show that a system is acceptably safe. The creation of a safety case is an extremely time-consuming and costly activity needed for certification purposes. To reduce time and cost, reuse as well as automatic generation possibilities represent urgent research directions. In this paper, we focus on safety processes mandated by prescriptive standards and we identify process- related structures from which process-based arguments (those aimed at showing that a required development process has been applied according to the standard) can be generated and more easily reused. Then, we propose a model-driven safety certification method to derive those arguments as goal structures given in Goal Structuring Notation from process models given in compliance with Software Process Engineering Meta-model 2.0. The method is illustrated by generating process-based arguments in the context of ISO 26262.

Bibtex

@inproceedings{Gallina3694,
author = {Barbara Gallina},
title = {A Model-driven Safety Certification Method for Process Compliance},
month = {November},
year = {2014},
booktitle = {2nd International Workshop on Assurance Cases for Software-intensive Systems, joint event of ISSRE 2014.},
url = {http://www.es.mdu.se/publications/3694-}
}