You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Distributed Multivariate Physiological Signal Analytics for Drivers’ Mental State Monitoring

Publication Type:

Conference/Workshop Paper


4th EAI International Conference on IoT Technologies for HealthCare


This paper presents a distributed data analytics approach for drivers’ mental state monitoring using multivariate physiological signals. Driver’s mental states such as cognitive distraction, sleepiness, stress, etc. can be fatal contributing factors and to prevent car crashes these factors need to be understood. Here, a cloud-based approach with heterogeneous sensor sources that generates extremely large data sets of physiological signals need to be handled and analyzed in a big data scenario. In the proposed physiological big data analytics approach, for driver state monitoring, heterogeneous data coming from multiple sources i.e., multivariate physiological signals are used, processed and analyzed to aware impaired vehicle drivers. Here, in a distributed big data environment, multi-agent case-based reasoning facilitates parallel case similarity matching and handles data that are coming from single and multiple physiological signal sources.


author = {Shaibal Barua and Mobyen Uddin Ahmed and Shahina Begum},
title = {Distributed Multivariate Physiological Signal Analytics for Drivers’ Mental State Monitoring},
month = {October},
year = {2017},
booktitle = {4th EAI International Conference on IoT Technologies for HealthCare},
url = {}