You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

A Zirconia Cylindrical TM010 Cavity for Permittivity Measurements at 1 GHz

Fulltext:


Research group:


Publication Type:

Conference/Workshop Paper

Venue:

2018 IEEE CAMA Conference on Antenna Measurement and Applications


Abstract

The most accurate dielectric measurements are made by resonant cavity methods, the circular TM010 type being the simplest and most common. However, an airfilled such cavity at 1 GHz needs to be 250 mm in diameter. There is another problem as well: its limited applicability with very lossy samples, due to a too low Q value. This paper describes the development and properties of a metalized zirconia ceramic cavity for use at about 1 GHz. With its permittivity ε′ = 30 its diameter becomes 40 mm instead of 150 mm for the airfilled version. Additionally and importantly, the dynamic range of the loss factor ε″ is greatly expanded. The calibration procedure using numerical retromodelling is described and a measurement example of a ternary alcohol mixture is carried out. The accuracy is also estimated.

Bibtex

@inproceedings{Petrovic5267,
author = {Nikola Petrovic and Per Olov Risman},
title = {A Zirconia Cylindrical TM010 Cavity for Permittivity Measurements at 1 GHz},
month = {September},
year = {2018},
booktitle = {2018 IEEE CAMA Conference on Antenna Measurement and Applications },
url = {http://www.es.mdu.se/publications/5267-}
}