You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Methods for Large-Scale Time-Triggered Network Scheduling

Publication Type:

Journal article


Future cyber–physical systems may extend over broad geographical areas, like cities or regions, thus, requiring the deployment of large real-time networks. A strategy to guarantee predictable communication over such networks is to synthesize an offline time-triggered communication schedule. However, this synthesis problem is computationally hard (NP-complete), and existing approaches do not scale satisfactorily to the required network sizes. This article presents a segmented offline synthesis method which substantially reduces this limitation, being able to generate time-triggered schedules for large hybrid (wired and wireless) networks. We also present a series of algorithms and optimizations that increase the performance and compactness of the obtained schedules while solving some of the problems inherent to segmented approaches. We evaluate our approach on a set of realistic large-size multi-hop networks, significantly larger than those considered in the existing literature. The results show that our segmentation reduces the synthesis time by up to two orders of magnitude.


author = {Francisco Pozo and Guillermo Rodriguez-Navas and Hans Hansson},
title = {Methods for Large-Scale Time-Triggered Network Scheduling},
url = {}